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Abstract

Background

Acute muscle injuries are exceedingly common and non-steroidal anti-inflammatory drugs

(NSAIDs) are widely consumed to reduce the associated inflammation, swelling and pain

that peak 1–2 days post-injury. While prophylactic use or early administration of NSAIDs

has been shown to delay muscle regeneration and contribute to loss of muscle strength

after healing, little is known about the effects of delayed NSAID use. Further, NSAID use fol-

lowing non-penetrating injury has been associated with increased risk and severity of infec-

tion, including that due to group A streptococcus, though the mechanisms remain to be

elucidated. The present study investigated the effects of delayed NSAID administration on

muscle repair and sought mechanisms supporting an injury/NSAID/infection axis.

Methods

A murine model of eccentric contraction (EC)-induced injury of the tibialis anterior muscle

was used to profile the cellular and molecular changes induced by ketorolac tromethamine

administered 47 hr post injury.

Results

NSAID administration inhibited several important muscle regeneration processes and down-

regulated multiple cytoprotective proteins known to inhibit the intrinsic pathway of programmed

cell death. These activities were associated with increased caspase activity in injured muscles

but were independent of any NSAID effect on macrophage influx or phenotype switching.

Conclusions

These findings provide new molecular evidence supporting the notion that NSAIDs have a

direct negative influence on muscle repair after acute strain injury in mice and thus add to
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renewed concern about the safety and benefits of NSAIDS in both children and adults, in

those with progressive loss of muscle mass such as the elderly or patients with cancer or

AIDS, and those at risk of secondary infection after trauma or surgery.

Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are cornerstones of pain management in

homes and hospitals worldwide. These agents are consumed or prescribed for diverse condi-

tions ranging from mild intermittent to chronic musculoskeletal pain, as well as for pain asso-

ciated with cancer, AIDS, surgery and rehabilitation after placement of prosthetic devices.

While NSAIDs have their place in these settings, they are not innocuous and can contribute to

peptic ulcers, upper gastro-intestinal bleeding, renal disease and adverse cardiovascular events

[1]. NSAID use has also been linked to poor wound healing and to increased risk of complica-

tions following surgery, including anastomotic failure following colorectal resection (reviewed

in [2]).

NSAID use is widely advocated to manage the inflammation, pain and swelling associated

with acute muscle strain injuries. Such injuries are exceedingly common among athletes, mili-

tary personnel, and civilians of all ages. Within the first 24 to 48 hours after unaccustomed

exercise or injury, a constellation of symptoms—referred to as delayed onset muscle soreness

(DOMS)—develops that includes pain with muscle use, stiffness and swelling. Without treat-

ment, these symptoms peak between 24 and 72 hours, and typically resolve within 5 to 7 days

[3]. Yet, recent evidence suggests that the inflammatory response to injury is a necessary phase

of soft tissue healing and its inhibition with NSAIDs can significantly delay muscle regenera-

tion and decrease muscle strength after repair (reviewed in [4]). The deleterious NSAID effects

on muscle repair have been attributed to their ability to block of cyclooxygenase-2 (COX-2)-

derived prostaglandins which are known to stimulate muscle progenitor cell (satellite cell)

responses to exercise [5–7]. These studies compared satellite cell activity in human volunteers

or animal subjects when NSAIDs were administered prior to resistance training or to exercise-

induced injury. In human studies, administration of non-selective NSAIDs (e.g., ibuprofen)

blocked the exercise-induced increase in satellite cell number [7,8] and mixed muscle protein

synthesis [9]. Similarly, animal studies demonstrate a negative effect of NSAIDs on satellite cell

responses to exercise and on regeneration after injury [5,10]. Although NSAID use prior to

exercise/injury is not a typical practice in the general population, these results clearly indicate

that prophylactic use of NSAIDs, as is common among professional and elite athletes [4],

exerts a negative effect on satellite cell activity.

In addition to their effects on muscle regeneration, recent clinical and epidemiological

studies have suggested that NSAIDs may also predispose to severe bacterial infections includ-

ing those due to Clostridium difficile [11,12], Streptococcus pneumoniae [13,14], Staphylococcus
aureus [13,15], Gram negative organisms [15] and group A streptococcus (reviewed in [16]).

Regarding the latter infection, a clinical entity termed “cryptogenic” or “spontaneous” group A

streptococcal myonecrosis has been described in which patients initially present to their health

care provider for increasing localized pain, typically at a site of non-penetrating soft tissue

injury such as a muscle strain or bruise. Without an obvious portal of bacterial entry and in

the absence of the classical cutaneous signs of developing infection, the correct diagnosis is

missed or delayed. Instead, patients are prescribed NSAIDs and sent home, only to return 24–

48 hrs later in multiple organ failure and intractable hypotension. Nearly 50% of streptococcal

toxic shock syndrome (StrepTSS) patients with necrotizing soft tissue infection fall into this
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“cryptogenic” group [17]. Mortality is high (30–85%) and morbidity is extensive. By the time

the systemic manifestations of StrepTSS are evident and the correct diagnosis of myonecrosis

is made, emergent surgery—often including life-altering multiple limb amputations—is fre-

quently required to ensure survival. Survivors are often left with profound cognitive impair-

ments and endure prolonged hospitalization and rehabilitation at great emotional and

financial expense.

Though a large body of clinical evidence supported a possible injury/NSAID/group A strep-

tococcal axis, controversy remained. Opponents have argued that NSAID use merely masks

the signs and symptoms of developing infection, thereby delaying diagnosis and treatment.

Since no experimental studies had directly tested this possible association, we developed a

murine model of exercise-induced muscle strain coupled with group A streptococcal bacter-

emia in which we investigated this notion [18]. We showed that NSAID administration 47 hrs

post-injury significantly increased the trafficking of circulating group A streptococcus to the

injured site [18]. In addition, using a murine model of established infection, we further dem-

onstrated that three different non-selective NSAIDs each significantly increased disease sever-

ity and reduced the time to 100% mortality [19]. In total, this evidence suggested to us that

NSAIDs directly contribute to poor outcomes in these infections.

As mentioned above, most studies examining the mechanisms by which NSAIDs affect

muscle regeneration used models in which NSAIDs were given prior to resistance training or

exercise-induced injury. Few studies investigated NSAID effects when given later–at times

analogous to the peak of perceived muscle soreness in humans. Thus the present study utilized

flow cytometric analysis of infiltrating inflammatory cells and an unbiased proteomics ap-

proach to investigate the cellular and protein changes in murine tibialis anterior (TA) muscle

after eccentric contraction (EC)-induced muscle injury in the presence and absence of ketoro-

lac tromethamine–a non-selective NSAID—given 47 hrs after muscle injury.

Findings document a predominantly inhibitory effect of ketorolac on muscle metabolism

and biogenesis that was independent of any significant change in the numbers of infiltrating

inflammatory cells or their functional phenotypes. Instead, results suggest that NSAID use at

this time significantly down-regulates several anti-apoptosis proteins that inhibit the extrinsic

pathway of programmed cell death. Such down-regulation of pro-survival proteins was accom-

panied by increased caspase activity in the muscle. By promoting a pro-apoptosis phenotype in

regenerating muscles, NSAIDs could expand the nidus of injury, and thereby increase muscle

susceptibility to post-injury infection. This activity could also contribute to the known ability

of NSAIDs to delay muscle regeneration and reduce muscle strength post-healing. These find-

ings warrant further studies in humans and if confirmed, this new knowledge may shift the

current paradigm of pain management in multiple clinical settings.

Methods

Ethical approval

Studies involving animal subjects were approved by the Institutional Animal Care and Use

Committee (IACUC) U.S. Department of Veterans Affairs Medical Center, Boise, ID and

adhered to guidelines specified by the Veterans Health Administration (handbook 1200.07),

the U.S. Public Health Service and the National Institutes of Health. Work was conducted in

the Boise VA Medical Center’s Association for Assessment and Accreditation of Laboratory

Animal Care (AAALAC)-accredited Veterinary Medical Unit. Animals were housed in groups

of 5–10 in standard large rodent cages and allowed food and drink ad libitum. All investigators

understand this journal’s ethical principles regarding animal subjects in research and confirm

that our work complies with these principles.

NSAID-induced changes in regenerating skeletal muscle
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Animal model

This model has been previously described in detail [18]. In brief, adult Swiss Webster outbred

mice (female, 20–25 g, Taconic Laboratories; N = 9/group) were anesthetized with 2% inhaled

isoflurane in oxygen and positioned in the temperature-controlled exercise apparatus (modi-

fied model 360B, Aurora Scientific, Ontario, Canada) that permits control of both ankle dorsi-

flexion torque and muscle length. Anesthesia was maintained throughout the experimental

procedure via delivery of 2% isoflurane via nose cone and breathing rates were carefully moni-

tored. Adequacy of anesthesia was defined as no withdrawal response to toe-pinch.

The tibialis anterior (TA) muscle was stimulated electrically (10–12 volts, 100–150 Hz for

400 ms) by sterile 28-gauge needle electrodes placed subcutaneously ~2 mm apart near the right

peroneal nerve just lateral to the midline and distal to the knee joint. Beginning at 200 ms after

nerve stimulation and at maximal muscle contraction, the foot was rotated distally 78 degrees.

At the end of the stimulation period, the foot was returned to the starting position. This exercise

regimen was repeated every 30 seconds 50 times. Prior to, and immediately after exercise, the

maximal mean isometric torque (MIT) generated by two isometric contractions (i.e., the foot

held motionless) was recorded in each animal. Only animals displaying a post-EC reduction in

MIT of>40% were included for study since we [18] and others [20] have previously shown that

this level of functional impairment constitutes a moderate muscle injury. The contralateral leg

of each animal was not exercised and served as control. After exercise, a single dose of bupre-

norphine (0.1 mg/kg in 0.5 mL sterile saline) was administered to minimize post-exercise dis-

tress and to replenish fluids lost during the 1 hr exercise regimen. This opioid analgesic agent is

active at the central nervous system level; the single dose used is 20-fold less than that shown to

have modest transient anti-inflammatory activity in the rat (2 mg/kg q 12 hr) [21].

At 47 hrs after EC, animals were treated with ketorolac tromethamine (trade name, Tora-

dol; 7.5 mg/kg by IP injection) or its vehicle (saline). Ketorolac is a prescription non-selective

NSAID commonly used in clinics and emergency room settings for short-term management

of moderately severe, acute muscle pain in adults. It was chosen for these studies because 1)
it is of the same chemical subclass as ibuprofen (propionic acid) with similar COX1/COX2

inhibitory-50 [IC50] ratios (.35 and .5, respectively) [22] and can be given parenterally to ex-

perimental animals; 2) in our previously published experimental studies in mice, ketorolac sig-

nificantly increased trafficking of circulating group A streptococcus to sites of EC-induced

muscle injury [18] and 3) in established group A streptococcal myonecrosis in mice, ketorolac

was equivalent to ibuprofen and indomethacin in the ability to significantly increase severity

of infection and decrease the time to 100% mortality [19]. The time of NSAID administration

was chosen for several reasons: 1) our data (below) and those from Lieber’s group [23,24] have

shown that muscle force-generating capacity remains significantly reduced at 48 hrs post

injury and that this dysfunction is associated with marked architectural and inflammatory

changes and in myoregulatory gene expression [23,24]; 2) this time post-injury is related to the

peak soreness in humans after unaccustomed exercise or muscle injury and when NSAID use

is prevalent and 3) studies by us (presented here) and by Arnold et al [25] have shown that by

this time after experimental strain injury, polymorphonuclear leukocyte (PMNL) influx has

waned and infiltrated pro-inflammatory macrophages have begun conversion to an anti-

inflammatory, pro-resolution phenotype; thus any NSAID effect that might be observed would

not be attributable to its ability to limit the tissue leukocytic inflammatory response.

Seven hours after NSAID or vehicle administration (54 hr post-injury), mice were anesthe-

tized as described above, heparinized blood specimens obtained by retro-orbital puncture and,

while still under anesthesia, the animals were sacrificed by cervical dislocation. The TA mus-

cles from the left and right legs were harvested and flash frozen for proteome analysis. The

NSAID-induced changes in regenerating skeletal muscle
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timing of muscle harvest was based on our previously published work demonstrating a signifi-

cant NSAID-induced increase in trafficking of group A streptococcus to the TA muscle at this

time post-injury [18]. Plasma samples were frozen at -70C. In separate studies, animals were

exercised as described above and treated with NSAID or saline at 47 hrs post injury. At selected

times thereafter as indicated in the figure legends, TA muscles were harvested post-mortem

and were either flash frozen for quantitative RT-PCR analysis for genes of interest, fixed in

neutral buffered formalin for routine histopathology or processed for leukocyte isolation or

caspase activity assay as described below.

Proteomic analyses

The accurate mass and time (AMT) tag approach [26] was used to generate quantitative prote-

omics data for muscle tissues from the above described animals (see text in S1 Supporting

Information: Additional Methodology for Proteomics Analysis for full experimental details).

Comprehensive shotgun proteomics analyses were first performed to generate an AMT tag

database of identified mouse peptides/proteins. This database was then used to identify injury-

and NSAID-associated quantitative and qualitative differences in protein expression. Specifi-

cally, injured and non-injured TA muscles from each animal treated with or without NSAIDs

at 47 h after injury (9 mice/group) as described above were harvested at 7 h after NSAID (or

vehicle) administration, flash frozen and sent on dry ice to Pacific Northwest National Labora-

tory. Tissues from injured and non-injured TA muscles from all treatment groups were indi-

vidually homogenized, digested using trypsin, and aliquots from each digest were pooled and

subjected to offline fractionation [27]. Each fraction was then analyzed by nano capillary

LC-MS/MS, and the identified peptides were used to populate the mouse muscle peptide/pro-

tein AMT tag database. Peptides were identified with a false discovery rate<0.1% and with a

mass measurement error of +/- 4ppm.

The resultant comprehensive protein database was then used as a ‘look up table’ for the sub-

sequent treatment group-specific quantitative proteomics analyses, which involved analysis of

the individual tissue protein digests using the same LC-MS instrument platform, followed by

data analysis using the AMT tag approach. Briefly, the observed masses and normalized elu-

tion times (NETs) of peptides detected in the individual samples were matched against the

entries in the AMT tag database using the PRISM Data Analysis system [28], which is a series

of software tools developed in-house (e.g. Decon2LS [29] and VIPER [30]) and freely available

at omics.pnl.gov/software. Individual steps in this data processing approach are reviewed in

[26]. The peptides identified from this matching process and the associated integrated LC-MS

peak areas were retained as a matrix for subsequent data analysis.

LC-MS log transformed peak intensity (i.e., abundance) data was processed through appro-

priate quality control (QC) filters. One mouse sample did not meet adequate quality metrics

associated with correlation and missing values and was removed from subsequent analyses

[31]. Following QC, the dataset was appropriately normalized to reduce systematic effects of

the analytical process, such as variation in total sample protein. The log transformed normal-

ized peptide abundance dataset was appropriately filtered to remove peptides with inadequate

data for statistical analysis. All proteins having 1 or more peptides passing the above-men-

tioned filters were assessed.

Each protein that met both the criteria of sample-level “Coverage” [Number of paired

injured and control muscles� 50% or (N(injured) or N(control))�75%] and of sample-level

“Difference” [|Fold Change|�1.25 or |N(injured)—N(control)|� 50%) were subjected to statisti-

cal analysis to identify those proteins that were significantly affected by injury or by NSAID.

Proteins were analyzed for quantitative effects associated with injury or with NSAID

NSAID-induced changes in regenerating skeletal muscle
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administration using a standard T-test and for qualitative effects using G-test methodology

[32]. The T-test indicated proteins that are present in both treatment groups that have a quan-

titative change in expression, i.e., up- or down-expression, and G-test indicated proteins that

are present in one group and absent from another for identification of qualitative changes.

Protein quantitative measures were computed using BP-Quant [33] and standard averaging

methods [34] and statistical analysis followed the same T-test and G-test strategies.

Functional analysis

Diseases and functions associated with injury +/- NSAID administration were identified in

part using QIAGEN’s Ingenuity Pathway Analysis (IPA, version 9.0, QIAGEN Redwood City,

www.qiagen.com). Briefly, a dataset of significantly altered proteins containing the protein

identifier, the P value, and the fold-change was uploaded into IPA and a core analysis was per-

formed. For proteins that were significant by G-test (and for which a fold-change is not rele-

vant), values of 2 or -2 were assigned to indicate those that were qualitatively increased or

decreased with treatment, respectively, compared to non-treated controls.

In addition, initial protein functional categorization was performed by GeneOntology’s

PANTHER classification system (www.pantherdb.org). Primary function was further refined

based on descriptions provided by the NCBI Protein database and the available literature.

Here, the functional categories were based on the updated Clusters of Orthologous Groups

(COG) of proteins described by Tatusov et al [35] with some modifications. For multi-func-

tional proteins, the primary category was assigned by considering a role in skeletal muscle

structure, function and biogenesis.

Gene expression analyses

The TA muscles from both exercised and the contra-lateral, non-exercised legs of saline- or

NSAID-treated animals (4-12/group) were harvested at 4 or 7 hrs post-treatment (51 and 54

hrs post-injury) and immediately flash-frozen in liquid nitrogen for subsequent analysis of

gene expression by real time quantitative reverse transcriptase PCR (qRT-PCR). Frozen

muscles, suspended in TriReagent and 4-bromoanisole (Molecular Research Center Inc, Cin-

cinnati, OH), were disrupted in a TissueLyser II (Qiagen, Valencia, CA). Total RNA was

extracted from the resulting homogenate using an RNeasy RNA isolation kit (Qiagen), then

treated with TURBO DNA-free (Ambion, Grand Island, NY) to remove contaminating DNA.

RNA quantity was determined by Qubit (Invitrogen, Grand Island, NY) analysis and quality

was assessed by TapeStation (Agilent, Santa Clara, CA) analysis. cDNA was synthesized from 2

micrograms of isolated total RNA using MMLV reverse transcriptase (New England Biolabs,

Ipswich, MA) then diluted 1:10. Following manufacturer’s protocol, 1ul of the diluted cDNA

was added to 96 well reaction plates (MicroAmp™ Fast Optical plates; Applied Biosystems)

containing 1X SYBR Green/Rox PCR master mix (Qiagen) and 0.4uM RT2 qPCR Primer

Assay mix for murine genes of interest (Qiagen, Valencia, CA). qRT-PCR was performed on

either an ABI 7500 Fast PCR (Applied Biosystems) or Realplex 2 (Eppendorf) machine using

the following parameters: 95˚C for 10 min; 40 cycles of 95˚C for 15 sec and 60˚C for 1 min. A

dissociation (melting) curve was run immediately after the PCR program to verify product

integrity. The threshold cycle (Ct) for each transcript and change in threshold cycle (ΔCt) for

the gene of interest/GAPDH pair of transcripts were monitored for each amplification reaction

and the data was analyzed using the 2-ΔΔCt method [36] to calculate fold change between the

exercised and non-exercised muscles. Statistical differences were determined by inspection of

95% confidence intervals (CI) of the log2-transformed fold-change values (ΔΔCt; non-coverage

of 0 by the CI indicates statistical difference between treatment and control at p< 0.05).

NSAID-induced changes in regenerating skeletal muscle
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Leukocyte isolation

To assess the dynamics and phenotypic characteristics of infiltrating cellular response after

injury, TA muscles from 3 animals/group were removed and digested following the methods

of Arnold et al [25] with some modifications. Muscles were rinsed in DPBS then digested

twice in DMEM containing 0.2% collagenase B and 0.2% trypsin at 37˚C for 1 hr. Resultant

material was filtered with a 70 μm cell strainer. Isolated cells were recovered by centrifugation

and suspended in PBS pH 7.2, 0.5% BSA, and 2mM EDTA and passed through a 30 μm MACS

pre-separation filter (Miltenyi Biotec, Auburn, CA). After treatment with an FcR blocking

reagent (Miltenyi Biotec) to prevent nonspecific binding, CD11b+ cells were isolated by posi-

tive selection using magnetically labeled microbeads conjugated to anti-murine CD11b anti-

body (rat IgG2b; clone M1/70.15.11.5; Miltenyi Biotec) and selected by magnetic column

according to the manufacturer’s instructions. Murine monocytes/macrophages (MO/MP)

express abundant, high affinity surface CD11b. In contrast, resting granulocytes (including

eosinophils) and NK cells express fewer, lower affinity CD11b molecules; upon activation, a

functional up-regulation (i.e., increased affinity) as well as increased CD11b expression is

observed. Total cell number was assessed by direct hemocytometer counting and viability was

>98% by trypan blue exclusion.

A portion of the final cell suspension was fixed to a microscope slide by cytospin, stained

with Wright’s stain, and a manual differential performed by a blinded animal pathologist at

the Caine Veterinary Teaching Hospital, Caldwell, Idaho. To determine the phenotype of the

isolated MO/MP, cells were incubated with either PE-Ly-6C (Miltenyi Biotec), FITC-F4/80

(eBioscience), or isotype control antibodies (eBioscience) at 4˚C for 10 min. Cells were washed

once and resuspended in 0.5 mLs PBS with 0.5% BSA and 2 mM EDTA. Analysis was immedi-

ately performed on an Epics XL flow cytometer with the monocyte gate drawn based on size

and granularity. An average of 10,000 events was analyzed per sample. MO/MPs in the contra-

lateral, non-exercised TA muscle were similarly isolated in parallel, however too few cells were

recovered for subsequent analysis. Statistical differences were assessed using the Mann-Whit-

ney test, based on an exact distribution [37,38], as an alternative to the parametric t test.

Caspase activity assay

TA muscles were harvested from injured and non-injured legs 7 hrs after NSAID or vehicle

treatment (i.e., 54 hrs post-injury). Each TA muscle (4/group) was flash frozen and pulverized

by Qiagen Tissuelyzer in 250 uL of extraction buffer (25 mM HEPES pH 7.5, 0.1% Triton X-

100, 5 mM MgCl2, 2 mM DTT, 74 uM antipain, 0.15 uM aprotinin, 1.3 mM EDTA, 20 mM

leupeptin and 15 uM pepstatin). Digests were clarified by centrifugation (15,000xg, 20 min)

and protein concentration determined by bicinchoninic acid assay (BCA) assay (Pierce). Com-

bined activities of caspases 3 and 7 in the digests were measured by commercial ELISA (Pro-

mega) which utilizes a profluorescent DEVD peptide-rhodamine 110 substrate [(Z-DEVD)

2-R110]. Data are reported as Relative Luminescence Units (RLU)/mg protein normalized

to that of the non-injured control. Statistically significant differences were determined by

ANOVA using a mixed model with random effect of animal within treatment. The level of sig-

nificance was set at P< .05.

Results

Eccentric contraction model of muscle injury

To investigate the effects of injury with and without NSAID treatment on the regenerating

skeletal muscle proteome and cellular inflammatory response, we utilized our established

NSAID-induced changes in regenerating skeletal muscle
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murine model of eccentric contraction (EC)-induced muscle injury [18]. This model was cho-

sen since 1) EC injury is more relevant to the human condition than is freeze- or toxin-

induced injury, 2) the TA muscle largely consists of Type II (fast twitch) fibers [39] thereby

obviating the confounding influence of multiple fiber types in analysis; 3) fast-twitch muscles

are considered more susceptible to EC-induced injury [40] and 4) because NSAID consump-

tion for pain and swelling is highly associated with such injury [40].

Repeated bouts of EC exercise caused an ~50% loss in TA functional capacity (measured as

a reduction in Mean Isometric Torque, MIT) which is indicative of moderate muscle injury

[41]. This reduction in MIT was not different among animals subsequently randomized to

“No NSAID” and “NSAID” groups (No NSAID: 57.7% ± 5.7% vs NSAID: 59.8% ± 5.0%). EC

injury also resulted in a marked tissue inflammatory response at 24 hrs (Fig 1) and stimulated

myogenic gene expression (Fig 2). Specifically, significant early and sustained increases were

observed in myod1 (a transcription factor controlling satellite cell activation and proliferation

[20]) and vim (a structural protein upregulated in proliferating myoblasts [42]), whereas ptgs2
(prostaglandin synthetase 2 [aka cyclooxygenase 2, COX-2], an early mediator of muscle repair

[5]), was highest at 24 hr post-injury and declined thereafter (Fig 2). As noted by others [5],

expression of ptgs1 (prostaglandin synthetase 1, [COX-1]) was only minimally increased with

injury. By 48–54 hrs, myog (an inducer of myoblast maturation) was maximally upregulated

suggesting that many proliferating myoblasts had become committed to the differentiation

program.

Thus, our model fulfills multiple criteria that define acute muscle injury–namely a loss in

functional capacity, changes in muscle architecture, an early influx of inflammatory cells [20]

and expression of key genes involved in muscle regeneration after injury [5,23,43]. This model

is therefore appropriate for the study of the effects of delayed NSAID administration on mus-

cle regeneration after acute strain injury.

Injury, NSAIDs and the cellular inflammatory response

Muscle regeneration depends on a highly synchronized influx of different leukocyte popula-

tions with shifting functional capacities (reviewed [44]). Specifically, after the initial neutrophil

response has waned, infiltrated pro-inflammatory monocytes must switch into pro-resolution

macrophages to support myogenesis [25]. To examine these dynamics in our model, total

CD11b+ leukocytes were isolated over time from TA muscles by positive magnetic sorting.

Too few cells were obtained from non-injured TA muscles to permit further analysis (not

shown). In EC-injured TA muscles from untreated mice, the number of CD11b+ cells isolated

at 24 and 48 hrs was not statistically different (Table 1); however the subpopulations were

decidedly distinct. At 24 hr, neutrophils and pro-inflammatory M1 monocyte/macrophages

(MO/MPs; Ly-6C+) predominated; few pro-resolution M2 MO/MPs (F4/80+) were detected.

By 48 hrs, neutrophils were significantly reduced whereas the MO/MP population had in-

creased and their phenotype was shifting from M1 to M2 as indicated by a >50% reduction in

Ly-6C+ cells and an increase in F4/80 expression (Table 1).

To test whether delayed NSAID administration could alter the leukocytic inflammatory

response in tissue, animals were treated 47 hrs after injury with either saline or NSAID; TA

muscles were harvested 7 hrs later. At 54 hrs post-injury, vehicle-treated control animals

showed a further reduction in the percent of M1 macrophages and a continued increase in

M2s (Table 1) demonstrating that the initial pro-inflammatory response (PMNL, M1 macro-

phages) had peaked and the pro-resolution cellular response was well underway. Ketorolac

administration at 47 hrs post-injury did not significantly alter the number of CD11b+ cells, the

leukocyte differential, or the M1/M2 percentages in the tissues (Table 1).

NSAID-induced changes in regenerating skeletal muscle
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Injury, NSAIDs and the skeletal muscle proteome

An unbiased proteomics approach was used to investigate the global effects of injury, with and

without NSAID administration, on regenerating muscles. In non-NSAID treated mice, the

AMT tag proteomic approach described in Methods identified 89 significant, differentially-

expressed proteins in injured muscles at 54 hrs post-EC (Table in S1 Table: Proteins Signifi-

cantly Altered by Injury); of these, 67 (75%) were increased compared to non-injured TA mus-

cles and were predominantly associated with muscle repair processes. For example, calpain

(CAN1), a calcium-activated protease associated with the degenerative phase of muscle repair

Fig 1. Experimental muscle injury disrupts myofiber architecture and causes marked influx of

inflammatory cells. Mice underwent the eccentric contraction (EC) exercise regimen as described in

Methods. At 24 hr post-EC, animals were euthanized and both left and right tibialis anterior (TA) muscles were

harvested post-mortem for routine histopathology. One representative animal of 3 is depicted. The exercised

muscle, but not the control TA, displays destruction of normal muscle architecture and a marked inflammatory

cell influx. These pathologies, and the corresponding reduction in muscle force, are accepted criteria that

define muscle injury.

doi:10.1371/journal.pone.0172486.g001
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[45], was significantly increased. Proteins essential for, or indicative of, early muscle regenera-

tion were also increased including vimentin (VIME), muscle-type acylphosphatase-2 (ACYP2),

and protein unc-45 homolog B (UN45B). Myoblast proliferation was also suggested by signifi-

cant increases in proteins driving cell division [i.e., the 55 kDa regulatory subunit of serine/

Fig 2. Experimental eccentric contraction injury stimulates physiological responses characteristic of

muscle regeneration. Mice (4-12/group) underwent the EC regimen described above. Non-injured and

injured TA muscles were harvested at the indicated times post-injury, flash-frozen and used to evaluate the

relative expression of genes involved in muscle regeneration by qRT-PCR as described in Methods. Data are

given as the mean fold-change in gene expression relative to the non-injured muscle ± standard error of the

mean (SEM). Calculation of the 95% confidence interval using the log2-transformed fold-change values

revealed that all genes were significantly increased at each time point relative to the non-injured control as

indicated by the grouped asterisks, except the 24h ptgs1 expression. No corresponding proteomics analyses

were conducted at 24 or 48 hrs; at 54 hrs post-injury the only corresponding protein that was significantly

altered by injury was vimentin (Table in S1 Table: Proteins Significantly Altered by Injury; 1.745-fold increase;

p = .0236).

doi:10.1371/journal.pone.0172486.g002

Table 1. Dynamics and Cellular Phenotypes of Infiltrating Leukocytes after Muscle Injury.

Time Point *N CD11b+ cells/mg of TA

muscle

Differential of CD11b+ cells (%) Percent Ly-6C Positive

MO/MP (M1)

Percent F4/80 Positive

MO/MP (M2)MO/MP PMNL Eosinophils Other†

24 hr 2 3941 ± 347 42.0 ± 9.2 47.6 ± 8.8 2.1 ± 0.9 8.3 ± 4.5 42.9 ± 7.0 6.2 ± 2.7

48 hr 2 4763 ± 544 65.3 ± 9.5 14.8 ± 9.2 2.9 ± 1.6 17.0 ± 8.5 20.8 ± 3.1 16.1 ± 6.7

54 hr

+ saline

4 4176 ± 1204 68.0 ± 6.0 12.3 ± 5.4 7.0 ± 4.0 12.7 ± 4.5 16.8 ± 6.6 35.1 ± 5.9

54 hr

+ NSAID

3 3736 ± 1984 67.8 ± 10.3 13.4 ± 5.9 3.6 ± 1.7 7.8 ± 6.9 14.8 ± 5.0 28.5 ± 10.6

Animals underwent eccentric contraction-induced muscle injury as described in Methods. TA muscles were harvested at the indicated times. Tissues

harvested at 54 hr were taken from animals 7 hrs after treatment with either NSAID vehicle (saline) or the non-selective NSAID, ketorolac tromethamine,

given at 47 hrs post-injury. Data are means ± SD; MO/MP = Monocyte/Macrophage, PMNL = Polymorphonuclear Leukocyte.

* Each N represents TA muscles from 3 animals.
†Other cells include lymphocytes and other unidentified cells.

No statistical differences were observed in tissues at 54 hrs in saline control vs NSAID-treated animals.

doi:10.1371/journal.pone.0172486.t001
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threonine protein phosphatase 2A (2ABD) and mitochondrial fission 1 protein (FIS1)]. Simi-

larly, active repair of the neuromuscular junction and the sacrolemmal membrane appeared to

be underway as evidenced by increased dihydropyrimidinase-related proteins 1 and 2 (DPYL1,

2) and dysferlin (DYSF), respectively. Revascularization was also promoted via a down regula-

tion of collagen alpha-1(XV) chain (COFA1) whose C-terminal region contains the anti-angio-

genic factor, endostatin. Endogenous defenses against stress-induced cytotoxicity appeared

activated as indicated by increases in several chaperone proteins [clusterin (CLUS), DnaJ homo-

log subfamily A member 2 (DNJA2), heat-shock protein beta-2 (HSPB2)] and an inhibitor of

ROS-induced apoptosis [glutaredoxin-related protein 5 (GLRX5) [46]]. Serum-associated pro-

teins such as albumin (ALBU) and serotransferrin (TRFE) were also significantly increased in-

dicating that edema remains a prominent feature at this point in the injury resolution process.

In contrast, NSAID administration significantly altered 277 proteins in the injured TA

muscles (Fig 3A; also see Table in S2 Table: Proteins Significantly Altered by NSAID) com-

pared to injured muscles from vehicle-treated animals. Of these, 71% (196/277) were decreased

by NSAIDs including 14 metabolism and pro-biogenesis proteins that were found to be sig-

nificantly increased by injury alone (Table 2 and S2 Table: Proteins Significantly Altered by

NSAID). These findings support a direct NSAID-induced reversal of key repair responses to

injury.

IPA core analysis of the 277 NSAID-regulated proteins returned “Cell Death and Survival”

as the top molecular and cellular functional category (128 unique proteins; P< .001; Fig 4).

The activation state of all subcategories involving cell death was predicted to be increased,

whereas those involving cell survival and proliferation were predicted to be decreased (Fig 4).

Interestingly, 19 proteins mapped to subcategories of “Necrosis of Muscle” and/or to “Cell

Death of Muscle”. These subcategories had z-scores of 2.729 and 3.085, respectively, predicting

an increased activation state (Table 3). In contrast, the subcategories of “Cell Survival” (43 pro-

teins; z-score = -3.339) and “Cell Proliferation” (103 proteins; z-score = -2.721) were predicted

to be decreased by NSAID administration (Table 3).

Closer inspection by Gene Ontology analysis and available information in the NCBI protein

database showed that the proteins affected by NSAID administration are broadly distributed

and enriched in the nucleus, mitochondria, neuromuscular junction and plasma membrane.

These proteins are involved in several key biological functions (Fig 3B; also see Table in S2

Fig 3. AMT-tag proteomics identifies proteins from injured muscles that are significantly altered by NSAID treatment. (A)

Proteins that met both the criteria of “Coverage” (defined as: [Number of paired injured and control muscles� 50% or (N(injured) or

N(control))�75%]) and of “Difference” (defined as: [|Fold Change|�1.25 or |N(injured)—N(control)|� 50%)]) were subjected to statistical

analysis to identify those that were significantly affected by NSAID treatment. Proteins were analyzed for quantitative effects using

a standard T-test and for qualitative effects using G-test methodology [32]. In total, 277 differentially expressed proteins were found

to be significantly altered by NSAID administration. (B) Functional categories of the 277 differentially expressed proteins (assigned

as described in Methods; Table in S2 Table: Proteins Significantly Altered by NSAID) are depicted. PTM: post-translational

modification; ECM: extracellular matrix.

doi:10.1371/journal.pone.0172486.g003
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Table 2. Common proteins significantly altered by injury and by NSAID administration.

ID Protein Name Accession

Number

Functional

Category

Function Response

to

Injury

Alone

Response

to

Injury

+ NSAIDs

GCP2 Gamma-tubulin complex

component 2

Q921G8 Cell cycle control Involved in microtubule nucleation at the

centrosome

down up

ATLA2 Atlastin-2 Q6PA06 Non-muscle cell

specific biogenesis

GTPase that functions in endoplasmic reticulum

tubular network biogenesis

down up

GLRX5 Glutaredoxin-related protein

5; mitochondrial

Q80Y14 Apoptosis-related Involved in iron homeostasis; protects against

ROS-induced apoptosis

up down

FIS1 Mitochondrial fission 1

protein

Q9CQ92 Cell cycle control Involved in mitochondrial fission during cell

replication

up down

K2C7 Keratin; type II cytoskeletal 7 Q9DCV7 Cell cycle control Blocks interferon-dependent interphase and

stimulates DNA synthesis

up down

ARFG1 ADP-ribosylation factor

GTPase-activating protein 1

Q9EPJ9 Intracellular

trafficking

Involved in membrane trafficking and vesicle

transport

up down

ALBU Serum albumin P07724 Metabolism &

Transport

Main protein of plasma up down

EST1C Carboxylesterase 1C P23953 Metabolism &

Transport

A carboxylesterase up down

ESTD S-formylglutathione

hydrolase

Q9R0P3 Metabolism &

Transport

Thioester hydrolase up down

ACYP2 Acylphosphatase-2; muscle

type isozyme

P56375 Muscle cell

specific biogenesis

Acylphosphatase targeting the Ca2+/Mg2

+-ATPase from sarcoplasmic reticulum of skeletal

muscle; increased with muscle differentiation

up down

FHL3 Four and a half LIM domains

protein 3

Q9R059 Muscle cell

specific biogenesis

A novel alpha7/beta1 integrin-interacting protein up down

DPYL2 Dihydropyrimidinase-related

protein 2

O08553 Non-muscle cell

specific biogenesis

Plays a role in neuronal development and polarity up down

K2C8 Keratin; type II cytoskeletal 8 P11679 Non-muscle cell

specific biogenesis

Helps link the contractile apparatus to dystrophin

at muscle costameres

up down

MOES Moesin P26041 Non-muscle cell

specific biogenesis

Probably connect major cytoskeletal structures to

the plasma membrane

up down

ACBP Acyl-CoA-binding protein P31786 Signal

transduction

Intracellular carrier of acyl-CoA esters up down

DYSF Dysferlin Q9ESD7 Signal

transduction

Key Ca++ sensor involved in sarcolemma repair

after mechanical stress injury

up down

CES1D Carboxylesterase 1D Q8VCT4 Metabolism &

Transport

Major lipase in white adipose tissue up up

EST1 Liver carboxylesterase 1 Q8VCC2 Metabolism &

Transport

Liver detoxification enzyme. up up

CYTB Cystatin-B Q62426 Non-muscle cell

specific biogenesis

An intracellular thiol proteinase up up

DNJA2 DnaJ homolog subfamily A

member 2

Q9QYJ0 Protein folding/

chaperone

Co-chaperone of Hsc70 up up

ELOC Transcription elongation

factor B polypeptide 1

P83940 Transcription Aka elongin; a general transcription elongation

factor

up up

HNRPC Heterogeneous nuclear

ribonucleoproteins C1/C2

Q9Z204 Translation Binds pre-mRNA and nucleates the assembly of

40S hnRNP particles

up up

Comparison of protein profiles in “Non-Injured vs Injured TA muscles in vehicle-treated mice” and in “TA muscles from injured mice treated with or without

NSAID” revealed 22 shared proteins that were significantly altered in both groups. Most proteins (91%) were significantly increased by injury and were

involved in metabolism, biogenesis and survival. In 16 of 22 cases (73%), NSAID administration reversed the injury-induced response.

doi:10.1371/journal.pone.0172486.t002
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Table: Proteins Significantly Altered by NSAID) including muscle metabolism, biogenesis and

function, and cellular processes including apoptosis as described below.

Metabolism and transport

This functional category contained the greatest number of NSAID-affected proteins (68/277;

24.5%). While not muscle-specific, these proteins are heavily involved in muscle energetics

and 88% were down-regulated by NSAIDs including those involved in glycolysis, TCA cycle,

electron transport and beta-oxidation. This finding is consistent with the known ability of

NSAIDs to delay muscle regeneration after injury [6,8,10] and to suppress muscle metabolism

after strength-training exercise (reviewed in [47]).

Fig 4. IPA reveals “Cell Death and Survival” as the major biofunction affected by NSAID administration after muscle injury. Heat maps of

biological functions in which significantly altered proteins were associated with NSAID administration. Color scale is based on z-score with orange

indicating predicted activation and blue indicating inhibition. Top: Global view of all returned biofunctions. Bottom: Enlarged view of “Cell Death and

Survival” showing “Cell Death of Muscle Cells” (white star), “Necrosis of Muscle” (yellow star) and “Cell Survival” (blue star).

doi:10.1371/journal.pone.0172486.g004
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Muscle specific biogenesis/structure/function

Myogenesis: NSAID administration negatively impacted several proteins associated with post-

injury myogenesis. Loss of desmin (DESM) is a hall-mark feature of muscle injury [48] and

NSAID treatment significantly reduced this protein. Vimentin (VIME), an intermediate fila-

ment protein expressed in regenerating but not mature muscle fibers [49,50] was also down-

regulated. Although vimentin is expressed by other cell types including macrophages[51],

results from our cellular studies above suggest that the NSAID-induced reduction in vimentin

was not due to reduced inflammatory cell influx. Proteins that regulate myoblast differentia-

tion/maturation were also negatively affected by NSAID administration including ankrin

repeat domain-containing protein-2 (ANKR2, a coordinator of proliferation and apoptosis

during myoblast differentiation; also abbreviated ANKRD2) [52], cysteine and glycine-rich

protein 3 (CSRP3, also known as muscle LIM protein [MLP]–a critical positive regulator of

myogenic differentiation [53]) and nascent polypeptide-associated complex subunit alpha;

muscle-specific form (NACAM—a muscle-specific transcription factor present in differenti-

ated myotubes but not myoblasts). In contrast, injury alone increased ANKR2 and CSRP3 by

2.5 and 2.1-fold, respectively. Although these latter increases did not reach statistical signifi-

cance (p = .07), they are consistent with studies by Barash et al whose genomic profiling of EC-

injured mouse TA muscles showed significant increases in ANKRD2 and CSRP3/MLP gene

expression that peaked at ~12 hrs post-injury and remained elevated at 48 hrs [23].

Sarcolemmal Repair: EC-induced injury is associated with disruptions in sarcolemmal

integrity and repair of such lesions depends on the coordinated interaction of tripartite motif-

containing protein 72 (TRI72), dysferlin (DYSF) [54,55] and microtubules [56]. Our data

demonstrate that NSAID administration reduced TRI72, DYSF and multiple members of the

Table 3. IPA predicts an NSAID-induced Increase in Cell Death and a Reduction in Proliferation/Survival in Regenerating TA Muscles.

Diseases or

Functions

Annotation

p-Value Predicted

Activation State

Activation z-

score

#

Molecules

Molecules

Necrosis of Muscle 2.15E-

06

Increased 2.729 19 ALDOA, APIP, BAG1, CACNB2, CALR, COL6A1, CYCS, DYSF,

EEF1A2, EEF1D, HK1, HSPB6, HSPE1, MDH1, MYH4, MYH6,

RAF1, TNNT1, TPT1

Cell Death of Muscle 2.30E-

05

Increased 3.085 17 ALDOA, APIP, BAG1, CACNB2, CALR, CYCS, DYSF, EEF1A2,

EEF1D, HK1, HSPB6, HSPE1, MDH1, MYH4, RAF1, TNNT1, TPT1

Proliferation of Cells 6.72E-

07

Decreased -2.721 103 ACTN1, AHCY, AIMP1, AKR1B1, AKR1B10, ALB, ALDOA, ANXA1,

ANXA2, ANXA6, ARAF, BAG1, BIN1, BRAF, C3, CACNA1D,

CACNA1S, CACNB3, CALR, CAPZA1, CCT2, CFL1, CNBP, CNPY2,

COL4A2, COL6A1, COL6A2, CSNK1D, CSRP3, CTSD, DBI, DES,

DLST, DNAJA2, DPYSL2, EEF1D, EIF5A, EIF5A2, EML1, ETFB,

EZR, F2, FBN2, FHL1, FIS1, GPX3, HK1, HNRNPC, HNRNPD,

HSPA4, HSPA5, HSPB6, ITGB1, KRT7, KRT8, LAMB2, LAP3,

MYH10, MYH6, MYH7, NACA, NDRG2, NME1, NUDCD3, PDIA3,

PEBP1, PKM, PPIA, PPIB, PPP1CA, PPP1CB, PPP2CA, PRDX1,

PRPH, PSMC4, PTGES3, RAF1, RPS14, RPS19, SERPINA1,

SERPINA3, Serpina3g (includes others), SERPINC1, SPEG,

SPTAN1, TAGLN, TAGLN2, TF, Tmsb4x (includes others), TPT1,

TTR, TUBB, TUBB2A, TUBB3, TUBB4B, TXN2, TXNDC5, UBE2L3,

USMG5, VCP, VIM, YBX3, YWHAZ

Cell Survival 2.08E-

04

Decreased -3.339 43 AIMP1, ALB, BAG1, BRAF, C3, CACNB3, CALR, EEF2, EIF2S1,

EZR, F2, GLUD1, HK3, HSPA4, HSPA5, HSPB6, ITGB1, KHK,

NDRG2, NME1, PDIA3, PKLR, PKM, PPIA, PPIB, PPP1CA,

PPP1CB, PPP2CA, PRDX6, PRPH, PSMC4, RAF1, RPL38, TPT1,

TUBB, TUBB3, TUBB4A, TXNDC5, UBE2L3, USMG5, VCP, VIM,

YWHAZ

doi:10.1371/journal.pone.0172486.t003
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beta tubulin family (TBB2A, 2B, 4A, 4B, 6). To our knowledge, these data provide the first

evidence that NSAIDs may interfere with repair of sarcolemmal integrity after injury.

Cytoskeleton: NSAID administration also significantly impacted multiple myocytoskeletal

proteins. Specifically, 6 isoforms of adult skeletal muscle myosin heavy chain (MYH), 1 perina-

tal myosin heavy chain and 1 myosin regulatory light chain were significantly increased by

NSAID administration. Three of these (MYH4, MYH6, and MRLS) are characteristic of fast-

twitch muscles, such as the TA muscle used here, whereas MYH1, 7 and 7B are largely associ-

ated with slow-twitch fibers. Actin bundling/capping proteins were also increased including F-

actin-capping protein subunits alpha-1 and -2 (CAZA1, CAZA2), cofilin-1 (COF1), and two

forms of transgelin (TAGL, TAGL2). NSAID administration also significantly increased 3

members of the actinin family (ACTN1, 2, 3), myozenin-3 (MYOZ3) and telethonin (TELT).

ACTN2 and -3 are skeletal muscle-specific and, together with MYOZ3 and TELT, link Z-line

proteins to the myofibrillar actin filaments of the sarcomere.

In contrast, other Z-line associated proteins that link the sarcomere to the costamere [57]

were decreased by NSAID treatment including DESM and CSRP3/MLP (mentioned above),

zinc finger domain-containing proteins known as four-and-a-half LIM domain proteins 1 and

3 (FHL1, 3), PDZ and LIM domain protein 3 (PDLI3), and xin actin-binding repeat-contain-

ing protein 2 (XIRP2).

Apoptosis

Several anti-apoptosis proteins were significantly down-regulated by NSAID administration,

including two members of the 14-3-3 family (1433E, 1433Z; [58]), translationally-controlled

tumor protein (TCTP) [59], the mitochondrial proteins 3-ketoacyl-CoA thiolase (THIM; aka

acetyl-Coenzyme A acyltransferase; [60]) and thioredoxin (THIOM; [61]), mitochondrial fis-

sion process protein 1 (MTFP1; aka mitochondrial 18kDa protein; [62]), and methylthioribu-

lose-1-phosphate dehydratase (MTNB)–an inhibitor of the caspase 9/cytochrome c/APAF-

1-dependent cell death pathway [63]. Calreticulin (CALR) was also down-regulated; cell-

surface CALR serves as a general recognition ligand on apoptotic cells that facilitates their

recognition and removal during resolution of inflammation [64]. Although only repre-

sented by a single peptide in our dataset, the novel anti-apoptosis protein Bcl-2-associated

athanogene-1 (BAG1) was highly down-regulated by NSAID administration (>13-fold

reduction; p = 0.002).

The NSAID-induced decrease in anti-apoptosis proteins was associated with a significant

increase in caspase 3/7 enzymatic activity in injured TA muscle homogenates from 4 of 4

ketorolac-treated animals compared to non-injured muscle (mean increase = 23.7%, p = .02,

Fig 5). In contrast, caspase 3/7 activity in injured TA muscles from saline-treated animals was

significantly reduced in all animals tested (mean decrease = 26.2%; p = .005, Fig 5).

Discussion

Antecedent non-penetrating soft tissue injury often precedes the development of severe bacte-

rial infection, including the ~50% of patients with group A streptococcal necrotizing fasciitis/

myonecrosis who lack an obvious portal of bacterial entry (reviewed in [65]). Although some

epidemiologic factors that increase the risk of death have been defined, the risk factors for

initiation of infection are less clear. Non-penetrating trauma and use of non-steroidal anti-

inflammatory drugs (NSAIDs) have each been associated with infection onset and/or worse

outcomes in humans and in animal models of this infection (reviewed in [16]). For instance,

in 2007, a retrospective study found that patients with GAS necrotizing fasciitis (but not those

with GAS cellulitis) were 6 times more likely than matched controls to have a recent history of
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blunt trauma [66]. Further, a 2008 prospective epidemiologic study showed that NSAID use

was independently associated with increased risk for severe GAS infection [67]. Our own work

has shown that NSAID administration promotes trafficking of circulating GAS to sites of

injury [18], greatly accelerates progression of established infection and reduces antibiotic effi-

cacy [19].

To investigate how NSAIDs might predispose injured muscle to infection, the present study

exploited our established animal model of eccentric contraction (EC)-induced muscle injury.

Unlike previous reports in which NSAIDs were administered prior to experimental injury or

excessive exercise, the present studies were designed to more closely mimic the human sce-

nario in which NSAIDs are typically used during the peak of perceived muscle soreness–typi-

cally 24–48 hrs post-injury. At this point post-injury, markers of inflammation and muscle

dysfunction are objectively measurable. For example, Lieber’s group has shown in mouse and

rat models that muscle force-generating capacity remains significantly reduced at 24–48 hrs

following experimental strain-associated muscle injury [23,24] and that this dysfunction is

associated with marked architectural and inflammatory changes and in myoregulatory gene

expression [23,24]. Results of the genetic, histologic and functional studies presented here are

consistent with these reports and provide evidence that active muscle regeneration is ongoing

at the time chosen for NSAID administration (47 hr post-injury) in our model.

Also within this critical 24–48 hr timeframe after injury, Arnold and colleagues have shown

that infiltrated pro-inflammatory M1 macrophages convert to an anti-inflammatory/pro-reso-

lution M2 phenotype to sustain myogenic differentiation, myofiber growth and membrane

repair [25]. Because such phenotype switching is critical for muscle regeneration after injury

and because prostaglandin metabolites (e.g. 15d- PGJ2) promote the M2 phenotype [68], we

first investigated whether delayed NSAID use might directly affect the M1 to M2 transition.

Ketorolac, given after the peak of M1 influx, had no significant effect on the numbers or

Fig 5. NSAID-induced decrease in anti-apoptosis proteins is associated with increased caspase

activity. Caspase 3/7activity in muscle homogenates from saline- and NSAID-treated animals (4/group) was

measured at 54 hrs after injury (7 hrs post-treatment) by commercial ELISA. Data are given as the fold-

change for each animal relative to its own non-injured TA muscle. Responses between saline versus NSAID-

treated animals were statistically significant as determined by ANOVA using a mixed model with random

effect of animal within treatment with the level of significance set at p < .05.

doi:10.1371/journal.pone.0172486.g005
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functional phenotypes of macrophages in the injured TA muscles. These data suggest that the

signaling events promoting macrophage phenotype switching either occurred prior to NSAID

administration or are NSAID-insensitive. Further, these results suggest that any NSAID-

induced deficit in functional muscle regeneration is not related to effects on pro-resolution

M2 leukocyte dynamics at this NSAID administration time point.

Like macrophages, muscle fibers can alter their functional phenotype under certain con-

ditions such as changes in nerve supply, loading/unloading and aging [69]. Our findings sug-

gest that NSAID use should be included on this list. Specifically, we demonstrate a NSAID-

associated increase in slow MYH isoforms in the fast-twitch TA muscle which could, in part,

explain the purported loss of muscle strength associated with NSAID use. The mechanism

responsible is not apparent here, though the observed reduction in the thyroid hormone trans-

port protein, transthyretin (TTHY; 3.19-fold decrease) could play a role [70] Further, by in-

creasing MYOZ3, NSAID administration could activate the calcineurin/NFAT signaling

pathway that drives transcription of slow fiber type-specific genes even in fast-twitch muscles

[69]. An NSAID-induced transition of muscle fiber type could have clinical import in children,

in those lacking normal muscle regenerative capacity, in patients with progressive loss of mus-

cle mass (elderly, AIDS), and those undergoing rehabilitation after trauma or surgery. More

research is required to confirm this notion.

Muscle repair/regeneration also requires repair of the saracolemmal membrane, revascular-

ization and re-innervation of the myofiber, and reconstitution of the extracellular matrix

[71]. Our proteomics data suggest that at 48–54 hrs after EC injury, muscle repair is well

underway and is dominated by proliferation of muscle cell precursors and upregulation of

stress-response/damage control mechanisms. Our data further suggest a damage-control, pro-

survival process is also engaged. Each of these restorative processes was deleteriously affected

by NSAID administration.

The NSAID-induced down-regulation of multiple inhibitors of the mitochondrial-based

intrinsic apoptosis pathway was particularly intriguing. The 14-3-3 family of proteins, via

binding to pro-apoptotic moieties such as Bcl-2-associated death promoter (BAD) and other

ligands, is critical for cell survival signaling [58]. TCTP prevents apoptosis by inserting into

the mitochondrial membrane and blocking Bax dimerization [72,73] and may also destabilize

the tumor suppressor (pro-apoptosis) protein p53 [74,75]. Translational regulation of TCTP

occurs via the PI3K/Akt/mTORC1 pathway [76]. Zhang and colleagues have recently shown

that mTOR is essential for myogenesis [77]. Thus, our data may supply a missing link in the

pathway between injury and regeneration and suggest that an injury/TCTP/mTOR axis drives

this process. MTNB (also known as Apaf-1-interacting protein, APIP [78]) was initially identi-

fied by Cho et al as an inhibitor of hypoxia-induced intrinsic apoptosis in skeletal muscle [63]

where it competes with caspase 9 for binding to Apaf-1 of the active apoptosome. APIP/

MTNB also inhibits cytochrome c-induced activation of caspase-9 [63,79]. These activities are

independent of its enzymatic function in methionine salvage [80]. Lastly, BAG1 was signifi-

cantly reduced by NSAIDs. BAG1 is a novel multifunctional protein that was first identified

via its ability to functionally augment the anti-apoptotic protein, Bcl-2 [81]. Recently, Warren

et al demonstrated that contraction-induced injury, but not freeze injury, induced high level

gene expression of a related protein, BAG3 [82]. In our study, the functional consequence of

NSAID-induced down-regulation of these anti-apoptosis proteins was increased caspase activ-

ity in the injured muscles.

Interestingly, studies have suggested that controlled apoptosis is required for myogenic dif-

ferentiation [83,84] and Fernando et al have implicated activated caspase-3 in this process. In

their studies, caspase-3 activity was maximally (but transiently) increased in cultured murine

C2C12 myoblasts after 24 hrs of serum withdrawal-induced differentiation. Biochemical
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blockade or genetic ablation of caspase-3 dramatically reduced myotube formation. Other data

from this study suggested that the differentiation-associated caspase-3 activity was not strictly

apoptotic since traditional markers of apoptosis (i.e., PARP cleavage, Annexin V staining)

were absent or unchanged in these cells. In contrast to their findings, our data demonstrate an

overall down-regulation of caspase activity in muscles undergoing regeneration at 54 hrs after

strain injury (Fig 5, left). Further, our immunohistologic studies and western blot analysis of

injured vs non-injured TA muscles from untreated mice failed to demonstrate an injury-

induced increase in activated caspase-3 at this time (not shown). These apparently dichoto-

mous results might be explained by differences in the model systems used (i.e., in vitro cul-

tured cells with serum starvation vs whole muscles undergoing regeneration after strain

injury) or the single time of sampling in our in vivo model (i.e., 54 hr post injury). We also

demonstrate here that NSAID administration significantly increased caspase activity in regen-

erating muscles (Fig 5, right). Here too, we found no evidence of caspase-3 activation in tissues

or tissue homogenates from NSAID-treated mice (not shown). In the absence of detectable

caspase-3 activity and because our enzymatic detection assay measures both active caspase-3

and -7, it suggests a possible role for caspase-7 in the NSAID-induced response. Further, it is

also conceivable that some activity attributed by Fernando et al to caspase-3 may in fact be

related to caspase-7 since 1) these enzymes share overlapping substrate specificities [85] and 2)
because the pharmacologic inhibitor used by these investigators (Z-DEVD.fmk) also inhibits

caspase-7 [86]. Caspase-7 is an endoplasmic reticulum (ER)-associated caspase and can be

regulated by the ER stress response protein known as glucose-regulated protein 78 (GRP78)

[87] (also shown here to be reduced by NSAID administration). Thus, we hypothesize that

GRP78-based inhibition of caspase-7 activity is required to ensure muscle regeneration after

strain-induced injury and that NSAIDs delay repair by relieving this inhibition. Elucidation of

this potential mechanism this requires further study.

Conclusions

In summary, our data provide new evidence suggesting that NSAID use during the peak of post-

injury pain and inflammation decreases muscle metabolism, prevents neuromuscular junction

and sarcolemmal repair, stimulates muscle fiber type transition and promotes a pro-apoptosis

phenotype. Such findings provide molecular evidence supporting the notion that NSAIDs have

a negative influence on myogenesis, including reducing muscle strength post-healing. By pro-

moting cell death, NSAIDs could expand the nidus of injury, thereby increasing muscle suscepti-

bility to post-injury infection [18,19]. These findings support renewed concerns about the risks

versus benefits of NSAID use, especially in those with increased susceptibility to contraction-

induced injury, those with muscle wasting or poor regenerative capacity, and those at risk for

life-threatening bacterial myonecrosis. Given the potential to change the current paradigm of

pain management in these settings, studies to validate these results in humans are warranted and

must include NSAIDs of different classes given at different times post-injury.
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