


[45], was significantly increased. Proteins essential for, or indicative of, early muscle regenera-

tion were also increased including vimentin (VIME), muscle-type acylphosphatase-2 (ACYP2),

and protein unc-45 homolog B (UN45B). Myoblast proliferation was also suggested by signifi-

cant increases in proteins driving cell division [i.e., the 55 kDa regulatory subunit of serine/

Fig 2. Experimental eccentric contraction injury stimulates physiological responses characteristic of

muscle regeneration. Mice (4-12/group) underwent the EC regimen described above. Non-injured and

injured TA muscles were harvested at the indicated times post-injury, flash-frozen and used to evaluate the

relative expression of genes involved in muscle regeneration by qRT-PCR as described in Methods. Data are

given as the mean fold-change in gene expression relative to the non-injured muscle ± standard error of the

mean (SEM). Calculation of the 95% confidence interval using the log2-transformed fold-change values

revealed that all genes were significantly increased at each time point relative to the non-injured control as

indicated by the grouped asterisks, except the 24h ptgs1 expression. No corresponding proteomics analyses

were conducted at 24 or 48 hrs; at 54 hrs post-injury the only corresponding protein that was significantly

altered by injury was vimentin (Table in S1 Table: Proteins Significantly Altered by Injury; 1.745-fold increase;

p = .0236).

doi:10.1371/journal.pone.0172486.g002

Table 1. Dynamics and Cellular Phenotypes of Infiltrating Leukocytes after Muscle Injury.

Time Point *N CD11b+ cells/mg of TA

muscle

Differential of CD11b+ cells (%) Percent Ly-6C Positive

MO/MP (M1)

Percent F4/80 Positive

MO/MP (M2)MO/MP PMNL Eosinophils Other†

24 hr 2 3941 ± 347 42.0 ± 9.2 47.6 ± 8.8 2.1 ± 0.9 8.3 ± 4.5 42.9 ± 7.0 6.2 ± 2.7

48 hr 2 4763 ± 544 65.3 ± 9.5 14.8 ± 9.2 2.9 ± 1.6 17.0 ± 8.5 20.8 ± 3.1 16.1 ± 6.7

54 hr

+ saline

4 4176 ± 1204 68.0 ± 6.0 12.3 ± 5.4 7.0 ± 4.0 12.7 ± 4.5 16.8 ± 6.6 35.1 ± 5.9

54 hr

+ NSAID

3 3736 ± 1984 67.8 ± 10.3 13.4 ± 5.9 3.6 ± 1.7 7.8 ± 6.9 14.8 ± 5.0 28.5 ± 10.6

Animals underwent eccentric contraction-induced muscle injury as described in Methods. TA muscles were harvested at the indicated times. Tissues

harvested at 54 hr were taken from animals 7 hrs after treatment with either NSAID vehicle (saline) or the non-selective NSAID, ketorolac tromethamine,

given at 47 hrs post-injury. Data are means ± SD; MO/MP = Monocyte/Macrophage, PMNL = Polymorphonuclear Leukocyte.

* Each N represents TA muscles from 3 animals.
†Other cells include lymphocytes and other unidentified cells.

No statistical differences were observed in tissues at 54 hrs in saline control vs NSAID-treated animals.

doi:10.1371/journal.pone.0172486.t001
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threonine protein phosphatase 2A (2ABD) and mitochondrial fission 1 protein (FIS1)]. Simi-

larly, active repair of the neuromuscular junction and the sacrolemmal membrane appeared to

be underway as evidenced by increased dihydropyrimidinase-related proteins 1 and 2 (DPYL1,

2) and dysferlin (DYSF), respectively. Revascularization was also promoted via a down regula-

tion of collagen alpha-1(XV) chain (COFA1) whose C-terminal region contains the anti-angio-

genic factor, endostatin. Endogenous defenses against stress-induced cytotoxicity appeared

activated as indicated by increases in several chaperone proteins [clusterin (CLUS), DnaJ homo-

log subfamily A member 2 (DNJA2), heat-shock protein beta-2 (HSPB2)] and an inhibitor of

ROS-induced apoptosis [glutaredoxin-related protein 5 (GLRX5) [46]]. Serum-associated pro-

teins such as albumin (ALBU) and serotransferrin (TRFE) were also significantly increased in-

dicating that edema remains a prominent feature at this point in the injury resolution process.

In contrast, NSAID administration significantly altered 277 proteins in the injured TA

muscles (Fig 3A; also see Table in S2 Table: Proteins Significantly Altered by NSAID) com-

pared to injured muscles from vehicle-treated animals. Of these, 71% (196/277) were decreased

by NSAIDs including 14 metabolism and pro-biogenesis proteins that were found to be sig-

nificantly increased by injury alone (Table 2 and S2 Table: Proteins Significantly Altered by

NSAID). These findings support a direct NSAID-induced reversal of key repair responses to

injury.

IPA core analysis of the 277 NSAID-regulated proteins returned “Cell Death and Survival”

as the top molecular and cellular functional category (128 unique proteins; P< .001; Fig 4).

The activation state of all subcategories involving cell death was predicted to be increased,

whereas those involving cell survival and proliferation were predicted to be decreased (Fig 4).

Interestingly, 19 proteins mapped to subcategories of “Necrosis of Muscle” and/or to “Cell

Death of Muscle”. These subcategories had z-scores of 2.729 and 3.085, respectively, predicting

an increased activation state (Table 3). In contrast, the subcategories of “Cell Survival” (43 pro-

teins; z-score = -3.339) and “Cell Proliferation” (103 proteins; z-score = -2.721) were predicted

to be decreased by NSAID administration (Table 3).

Closer inspection by Gene Ontology analysis and available information in the NCBI protein

database showed that the proteins affected by NSAID administration are broadly distributed

and enriched in the nucleus, mitochondria, neuromuscular junction and plasma membrane.

These proteins are involved in several key biological functions (Fig 3B; also see Table in S2

Fig 3. AMT-tag proteomics identifies proteins from injured muscles that are significantly altered by NSAID treatment. (A)

Proteins that met both the criteria of “Coverage” (defined as: [Number of paired injured and control muscles� 50% or (N(injured) or

N(control))�75%]) and of “Difference” (defined as: [|Fold Change|�1.25 or |N(injured)—N(control)|� 50%)]) were subjected to statistical

analysis to identify those that were significantly affected by NSAID treatment. Proteins were analyzed for quantitative effects using

a standard T-test and for qualitative effects using G-test methodology [32]. In total, 277 differentially expressed proteins were found

to be significantly altered by NSAID administration. (B) Functional categories of the 277 differentially expressed proteins (assigned

as described in Methods; Table in S2 Table: Proteins Significantly Altered by NSAID) are depicted. PTM: post-translational

modification; ECM: extracellular matrix.

doi:10.1371/journal.pone.0172486.g003
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Table 2. Common proteins significantly altered by injury and by NSAID administration.

ID Protein Name Accession

Number

Functional

Category

Function Response

to

Injury

Alone

Response

to

Injury

+ NSAIDs

GCP2 Gamma-tubulin complex

component 2

Q921G8 Cell cycle control Involved in microtubule nucleation at the

centrosome

down up

ATLA2 Atlastin-2 Q6PA06 Non-muscle cell

specific biogenesis

GTPase that functions in endoplasmic reticulum

tubular network biogenesis

down up

GLRX5 Glutaredoxin-related protein

5; mitochondrial

Q80Y14 Apoptosis-related Involved in iron homeostasis; protects against

ROS-induced apoptosis

up down

FIS1 Mitochondrial fission 1

protein

Q9CQ92 Cell cycle control Involved in mitochondrial fission during cell

replication

up down

K2C7 Keratin; type II cytoskeletal 7 Q9DCV7 Cell cycle control Blocks interferon-dependent interphase and

stimulates DNA synthesis

up down

ARFG1 ADP-ribosylation factor

GTPase-activating protein 1

Q9EPJ9 Intracellular

trafficking

Involved in membrane trafficking and vesicle

transport

up down

ALBU Serum albumin P07724 Metabolism &

Transport

Main protein of plasma up down

EST1C Carboxylesterase 1C P23953 Metabolism &

Transport

A carboxylesterase up down

ESTD S-formylglutathione

hydrolase

Q9R0P3 Metabolism &

Transport

Thioester hydrolase up down

ACYP2 Acylphosphatase-2; muscle

type isozyme

P56375 Muscle cell

specific biogenesis

Acylphosphatase targeting the Ca2+/Mg2

+-ATPase from sarcoplasmic reticulum of skeletal

muscle; increased with muscle differentiation

up down

FHL3 Four and a half LIM domains

protein 3

Q9R059 Muscle cell

specific biogenesis

A novel alpha7/beta1 integrin-interacting protein up down

DPYL2 Dihydropyrimidinase-related

protein 2

O08553 Non-muscle cell

specific biogenesis

Plays a role in neuronal development and polarity up down

K2C8 Keratin; type II cytoskeletal 8 P11679 Non-muscle cell

specific biogenesis

Helps link the contractile apparatus to dystrophin

at muscle costameres

up down

MOES Moesin P26041 Non-muscle cell

specific biogenesis

Probably connect major cytoskeletal structures to

the plasma membrane

up down

ACBP Acyl-CoA-binding protein P31786 Signal

transduction

Intracellular carrier of acyl-CoA esters up down

DYSF Dysferlin Q9ESD7 Signal

transduction

Key Ca++ sensor involved in sarcolemma repair

after mechanical stress injury

up down

CES1D Carboxylesterase 1D Q8VCT4 Metabolism &

Transport

Major lipase in white adipose tissue up up

EST1 Liver carboxylesterase 1 Q8VCC2 Metabolism &

Transport

Liver detoxification enzyme. up up

CYTB Cystatin-B Q62426 Non-muscle cell

specific biogenesis

An intracellular thiol proteinase up up

DNJA2 DnaJ homolog subfamily A

member 2

Q9QYJ0 Protein folding/

chaperone

Co-chaperone of Hsc70 up up

ELOC Transcription elongation

factor B polypeptide 1

P83940 Transcription Aka elongin; a general transcription elongation

factor

up up

HNRPC Heterogeneous nuclear

ribonucleoproteins C1/C2

Q9Z204 Translation Binds pre-mRNA and nucleates the assembly of

40S hnRNP particles

up up

Comparison of protein profiles in “Non-Injured vs Injured TA muscles in vehicle-treated mice” and in “TA muscles from injured mice treated with or without

NSAID” revealed 22 shared proteins that were significantly altered in both groups. Most proteins (91%) were significantly increased by injury and were

involved in metabolism, biogenesis and survival. In 16 of 22 cases (73%), NSAID administration reversed the injury-induced response.

doi:10.1371/journal.pone.0172486.t002
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Table: Proteins Significantly Altered by NSAID) including muscle metabolism, biogenesis and

function, and cellular processes including apoptosis as described below.

Metabolism and transport

This functional category contained the greatest number of NSAID-affected proteins (68/277;

24.5%). While not muscle-specific, these proteins are heavily involved in muscle energetics

and 88% were down-regulated by NSAIDs including those involved in glycolysis, TCA cycle,

electron transport and beta-oxidation. This finding is consistent with the known ability of

NSAIDs to delay muscle regeneration after injury [6,8,10] and to suppress muscle metabolism

after strength-training exercise (reviewed in [47]).

Fig 4. IPA reveals “Cell Death and Survival” as the major biofunction affected by NSAID administration after muscle injury. Heat maps of

biological functions in which significantly altered proteins were associated with NSAID administration. Color scale is based on z-score with orange

indicating predicted activation and blue indicating inhibition. Top: Global view of all returned biofunctions. Bottom: Enlarged view of “Cell Death and

Survival” showing “Cell Death of Muscle Cells” (white star), “Necrosis of Muscle” (yellow star) and “Cell Survival” (blue star).

doi:10.1371/journal.pone.0172486.g004
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Muscle specific biogenesis/structure/function

Myogenesis: NSAID administration negatively impacted several proteins associated with post-

injury myogenesis. Loss of desmin (DESM) is a hall-mark feature of muscle injury [48] and

NSAID treatment significantly reduced this protein. Vimentin (VIME), an intermediate fila-

ment protein expressed in regenerating but not mature muscle fibers [49,50] was also down-

regulated. Although vimentin is expressed by other cell types including macrophages[51],

results from our cellular studies above suggest that the NSAID-induced reduction in vimentin

was not due to reduced inflammatory cell influx. Proteins that regulate myoblast differentia-

tion/maturation were also negatively affected by NSAID administration including ankrin

repeat domain-containing protein-2 (ANKR2, a coordinator of proliferation and apoptosis

during myoblast differentiation; also abbreviated ANKRD2) [52], cysteine and glycine-rich

protein 3 (CSRP3, also known as muscle LIM protein [MLP]–a critical positive regulator of

myogenic differentiation [53]) and nascent polypeptide-associated complex subunit alpha;

muscle-specific form (NACAM—a muscle-specific transcription factor present in differenti-

ated myotubes but not myoblasts). In contrast, injury alone increased ANKR2 and CSRP3 by

2.5 and 2.1-fold, respectively. Although these latter increases did not reach statistical signifi-

cance (p = .07), they are consistent with studies by Barash et al whose genomic profiling of EC-

injured mouse TA muscles showed significant increases in ANKRD2 and CSRP3/MLP gene

expression that peaked at ~12 hrs post-injury and remained elevated at 48 hrs [23].

Sarcolemmal Repair: EC-induced injury is associated with disruptions in sarcolemmal

integrity and repair of such lesions depends on the coordinated interaction of tripartite motif-

containing protein 72 (TRI72), dysferlin (DYSF) [54,55] and microtubules [56]. Our data

demonstrate that NSAID administration reduced TRI72, DYSF and multiple members of the

Table 3. IPA predicts an NSAID-induced Increase in Cell Death and a Reduction in Proliferation/Survival in Regenerating TA Muscles.

Diseases or

Functions

Annotation

p-Value Predicted

Activation State

Activation z-

score

#

Molecules

Molecules

Necrosis of Muscle 2.15E-

06

Increased 2.729 19 ALDOA, APIP, BAG1, CACNB2, CALR, COL6A1, CYCS, DYSF,

EEF1A2, EEF1D, HK1, HSPB6, HSPE1, MDH1, MYH4, MYH6,

RAF1, TNNT1, TPT1

Cell Death of Muscle 2.30E-

05

Increased 3.085 17 ALDOA, APIP, BAG1, CACNB2, CALR, CYCS, DYSF, EEF1A2,

EEF1D, HK1, HSPB6, HSPE1, MDH1, MYH4, RAF1, TNNT1, TPT1

Proliferation of Cells 6.72E-

07

Decreased -2.721 103 ACTN1, AHCY, AIMP1, AKR1B1, AKR1B10, ALB, ALDOA, ANXA1,

ANXA2, ANXA6, ARAF, BAG1, BIN1, BRAF, C3, CACNA1D,

CACNA1S, CACNB3, CALR, CAPZA1, CCT2, CFL1, CNBP, CNPY2,

COL4A2, COL6A1, COL6A2, CSNK1D, CSRP3, CTSD, DBI, DES,

DLST, DNAJA2, DPYSL2, EEF1D, EIF5A, EIF5A2, EML1, ETFB,

EZR, F2, FBN2, FHL1, FIS1, GPX3, HK1, HNRNPC, HNRNPD,

HSPA4, HSPA5, HSPB6, ITGB1, KRT7, KRT8, LAMB2, LAP3,

MYH10, MYH6, MYH7, NACA, NDRG2, NME1, NUDCD3, PDIA3,

PEBP1, PKM, PPIA, PPIB, PPP1CA, PPP1CB, PPP2CA, PRDX1,

PRPH, PSMC4, PTGES3, RAF1, RPS14, RPS19, SERPINA1,

SERPINA3, Serpina3g (includes others), SERPINC1, SPEG,

SPTAN1, TAGLN, TAGLN2, TF, Tmsb4x (includes others), TPT1,

TTR, TUBB, TUBB2A, TUBB3, TUBB4B, TXN2, TXNDC5, UBE2L3,

USMG5, VCP, VIM, YBX3, YWHAZ

Cell Survival 2.08E-

04

Decreased -3.339 43 AIMP1, ALB, BAG1, BRAF, C3, CACNB3, CALR, EEF2, EIF2S1,

EZR, F2, GLUD1, HK3, HSPA4, HSPA5, HSPB6, ITGB1, KHK,

NDRG2, NME1, PDIA3, PKLR, PKM, PPIA, PPIB, PPP1CA,

PPP1CB, PPP2CA, PRDX6, PRPH, PSMC4, RAF1, RPL38, TPT1,

TUBB, TUBB3, TUBB4A, TXNDC5, UBE2L3, USMG5, VCP, VIM,

YWHAZ

doi:10.1371/journal.pone.0172486.t003

NSAID-induced changes in regenerating skeletal muscle

PLOS ONE | DOI:10.1371/journal.pone.0172486 February 28, 2017 14 / 23



beta tubulin family (TBB2A, 2B, 4A, 4B, 6). To our knowledge, these data provide the first

evidence that NSAIDs may interfere with repair of sarcolemmal integrity after injury.

Cytoskeleton: NSAID administration also significantly impacted multiple myocytoskeletal

proteins. Specifically, 6 isoforms of adult skeletal muscle myosin heavy chain (MYH), 1 perina-

tal myosin heavy chain and 1 myosin regulatory light chain were significantly increased by

NSAID administration. Three of these (MYH4, MYH6, and MRLS) are characteristic of fast-

twitch muscles, such as the TA muscle used here, whereas MYH1, 7 and 7B are largely associ-

ated with slow-twitch fibers. Actin bundling/capping proteins were also increased including F-

actin-capping protein subunits alpha-1 and -2 (CAZA1, CAZA2), cofilin-1 (COF1), and two

forms of transgelin (TAGL, TAGL2). NSAID administration also significantly increased 3

members of the actinin family (ACTN1, 2, 3), myozenin-3 (MYOZ3) and telethonin (TELT).

ACTN2 and -3 are skeletal muscle-specific and, together with MYOZ3 and TELT, link Z-line

proteins to the myofibrillar actin filaments of the sarcomere.

In contrast, other Z-line associated proteins that link the sarcomere to the costamere [57]

were decreased by NSAID treatment including DESM and CSRP3/MLP (mentioned above),

zinc finger domain-containing proteins known as four-and-a-half LIM domain proteins 1 and

3 (FHL1, 3), PDZ and LIM domain protein 3 (PDLI3), and xin actin-binding repeat-contain-

ing protein 2 (XIRP2).

Apoptosis

Several anti-apoptosis proteins were significantly down-regulated by NSAID administration,

including two members of the 14-3-3 family (1433E, 1433Z; [58]), translationally-controlled

tumor protein (TCTP) [59], the mitochondrial proteins 3-ketoacyl-CoA thiolase (THIM; aka

acetyl-Coenzyme A acyltransferase; [60]) and thioredoxin (THIOM; [61]), mitochondrial fis-

sion process protein 1 (MTFP1; aka mitochondrial 18kDa protein; [62]), and methylthioribu-

lose-1-phosphate dehydratase (MTNB)–an inhibitor of the caspase 9/cytochrome c/APAF-

1-dependent cell death pathway [63]. Calreticulin (CALR) was also down-regulated; cell-

surface CALR serves as a general recognition ligand on apoptotic cells that facilitates their

recognition and removal during resolution of inflammation [64]. Although only repre-

sented by a single peptide in our dataset, the novel anti-apoptosis protein Bcl-2-associated

athanogene-1 (BAG1) was highly down-regulated by NSAID administration (>13-fold

reduction; p = 0.002).

The NSAID-induced decrease in anti-apoptosis proteins was associated with a significant

increase in caspase 3/7 enzymatic activity in injured TA muscle homogenates from 4 of 4

ketorolac-treated animals compared to non-injured muscle (mean increase = 23.7%, p = .02,

Fig 5). In contrast, caspase 3/7 activity in injured TA muscles from saline-treated animals was

significantly reduced in all animals tested (mean decrease = 26.2%; p = .005, Fig 5).

Discussion

Antecedent non-penetrating soft tissue injury often precedes the development of severe bacte-

rial infection, including the ~50% of patients with group A streptococcal necrotizing fasciitis/

myonecrosis who lack an obvious portal of bacterial entry (reviewed in [65]). Although some

epidemiologic factors that increase the risk of death have been defined, the risk factors for

initiation of infection are less clear. Non-penetrating trauma and use of non-steroidal anti-

inflammatory drugs (NSAIDs) have each been associated with infection onset and/or worse

outcomes in humans and in animal models of this infection (reviewed in [16]). For instance,

in 2007, a retrospective study found that patients with GAS necrotizing fasciitis (but not those

with GAS cellulitis) were 6 times more likely than matched controls to have a recent history of

NSAID-induced changes in regenerating skeletal muscle
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blunt trauma [66]. Further, a 2008 prospective epidemiologic study showed that NSAID use

was independently associated with increased risk for severe GAS infection [67]. Our own work

has shown that NSAID administration promotes trafficking of circulating GAS to sites of

injury [18], greatly accelerates progression of established infection and reduces antibiotic effi-

cacy [19].

To investigate how NSAIDs might predispose injured muscle to infection, the present study

exploited our established animal model of eccentric contraction (EC)-induced muscle injury.

Unlike previous reports in which NSAIDs were administered prior to experimental injury or

excessive exercise, the present studies were designed to more closely mimic the human sce-

nario in which NSAIDs are typically used during the peak of perceived muscle soreness–typi-

cally 24–48 hrs post-injury. At this point post-injury, markers of inflammation and muscle

dysfunction are objectively measurable. For example, Lieber’s group has shown in mouse and

rat models that muscle force-generating capacity remains significantly reduced at 24–48 hrs

following experimental strain-associated muscle injury [23,24] and that this dysfunction is

associated with marked architectural and inflammatory changes and in myoregulatory gene

expression [23,24]. Results of the genetic, histologic and functional studies presented here are

consistent with these reports and provide evidence that active muscle regeneration is ongoing

at the time chosen for NSAID administration (47 hr post-injury) in our model.

Also within this critical 24–48 hr timeframe after injury, Arnold and colleagues have shown

that infiltrated pro-inflammatory M1 macrophages convert to an anti-inflammatory/pro-reso-

lution M2 phenotype to sustain myogenic differentiation, myofiber growth and membrane

repair [25]. Because such phenotype switching is critical for muscle regeneration after injury

and because prostaglandin metabolites (e.g. 15d- PGJ2) promote the M2 phenotype [68], we

first investigated whether delayed NSAID use might directly affect the M1 to M2 transition.

Ketorolac, given after the peak of M1 influx, had no significant effect on the numbers or

Fig 5. NSAID-induced decrease in anti-apoptosis proteins is associated with increased caspase

activity. Caspase 3/7activity in muscle homogenates from saline- and NSAID-treated animals (4/group) was

measured at 54 hrs after injury (7 hrs post-treatment) by commercial ELISA. Data are given as the fold-

change for each animal relative to its own non-injured TA muscle. Responses between saline versus NSAID-

treated animals were statistically significant as determined by ANOVA using a mixed model with random

effect of animal within treatment with the level of significance set at p < .05.

doi:10.1371/journal.pone.0172486.g005
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functional phenotypes of macrophages in the injured TA muscles. These data suggest that the

signaling events promoting macrophage phenotype switching either occurred prior to NSAID

administration or are NSAID-insensitive. Further, these results suggest that any NSAID-

induced deficit in functional muscle regeneration is not related to effects on pro-resolution

M2 leukocyte dynamics at this NSAID administration time point.

Like macrophages, muscle fibers can alter their functional phenotype under certain con-

ditions such as changes in nerve supply, loading/unloading and aging [69]. Our findings sug-

gest that NSAID use should be included on this list. Specifically, we demonstrate a NSAID-

associated increase in slow MYH isoforms in the fast-twitch TA muscle which could, in part,

explain the purported loss of muscle strength associated with NSAID use. The mechanism

responsible is not apparent here, though the observed reduction in the thyroid hormone trans-

port protein, transthyretin (TTHY; 3.19-fold decrease) could play a role [70] Further, by in-

creasing MYOZ3, NSAID administration could activate the calcineurin/NFAT signaling

pathway that drives transcription of slow fiber type-specific genes even in fast-twitch muscles

[69]. An NSAID-induced transition of muscle fiber type could have clinical import in children,

in those lacking normal muscle regenerative capacity, in patients with progressive loss of mus-

cle mass (elderly, AIDS), and those undergoing rehabilitation after trauma or surgery. More

research is required to confirm this notion.

Muscle repair/regeneration also requires repair of the saracolemmal membrane, revascular-

ization and re-innervation of the myofiber, and reconstitution of the extracellular matrix

[71]. Our proteomics data suggest that at 48–54 hrs after EC injury, muscle repair is well

underway and is dominated by proliferation of muscle cell precursors and upregulation of

stress-response/damage control mechanisms. Our data further suggest a damage-control, pro-

survival process is also engaged. Each of these restorative processes was deleteriously affected

by NSAID administration.

The NSAID-induced down-regulation of multiple inhibitors of the mitochondrial-based

intrinsic apoptosis pathway was particularly intriguing. The 14-3-3 family of proteins, via

binding to pro-apoptotic moieties such as Bcl-2-associated death promoter (BAD) and other

ligands, is critical for cell survival signaling [58]. TCTP prevents apoptosis by inserting into

the mitochondrial membrane and blocking Bax dimerization [72,73] and may also destabilize

the tumor suppressor (pro-apoptosis) protein p53 [74,75]. Translational regulation of TCTP

occurs via the PI3K/Akt/mTORC1 pathway [76]. Zhang and colleagues have recently shown

that mTOR is essential for myogenesis [77]. Thus, our data may supply a missing link in the

pathway between injury and regeneration and suggest that an injury/TCTP/mTOR axis drives

this process. MTNB (also known as Apaf-1-interacting protein, APIP [78]) was initially identi-

fied by Cho et al as an inhibitor of hypoxia-induced intrinsic apoptosis in skeletal muscle [63]

where it competes with caspase 9 for binding to Apaf-1 of the active apoptosome. APIP/

MTNB also inhibits cytochrome c-induced activation of caspase-9 [63,79]. These activities are

independent of its enzymatic function in methionine salvage [80]. Lastly, BAG1 was signifi-

cantly reduced by NSAIDs. BAG1 is a novel multifunctional protein that was first identified

via its ability to functionally augment the anti-apoptotic protein, Bcl-2 [81]. Recently, Warren

et al demonstrated that contraction-induced injury, but not freeze injury, induced high level

gene expression of a related protein, BAG3 [82]. In our study, the functional consequence of

NSAID-induced down-regulation of these anti-apoptosis proteins was increased caspase activ-

ity in the injured muscles.

Interestingly, studies have suggested that controlled apoptosis is required for myogenic dif-

ferentiation [83,84] and Fernando et al have implicated activated caspase-3 in this process. In

their studies, caspase-3 activity was maximally (but transiently) increased in cultured murine

C2C12 myoblasts after 24 hrs of serum withdrawal-induced differentiation. Biochemical
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blockade or genetic ablation of caspase-3 dramatically reduced myotube formation. Other data

from this study suggested that the differentiation-associated caspase-3 activity was not strictly

apoptotic since traditional markers of apoptosis (i.e., PARP cleavage, Annexin V staining)

were absent or unchanged in these cells. In contrast to their findings, our data demonstrate an

overall down-regulation of caspase activity in muscles undergoing regeneration at 54 hrs after

strain injury (Fig 5, left). Further, our immunohistologic studies and western blot analysis of

injured vs non-injured TA muscles from untreated mice failed to demonstrate an injury-

induced increase in activated caspase-3 at this time (not shown). These apparently dichoto-

mous results might be explained by differences in the model systems used (i.e., in vitro cul-

tured cells with serum starvation vs whole muscles undergoing regeneration after strain

injury) or the single time of sampling in our in vivo model (i.e., 54 hr post injury). We also

demonstrate here that NSAID administration significantly increased caspase activity in regen-

erating muscles (Fig 5, right). Here too, we found no evidence of caspase-3 activation in tissues

or tissue homogenates from NSAID-treated mice (not shown). In the absence of detectable

caspase-3 activity and because our enzymatic detection assay measures both active caspase-3

and -7, it suggests a possible role for caspase-7 in the NSAID-induced response. Further, it is

also conceivable that some activity attributed by Fernando et al to caspase-3 may in fact be

related to caspase-7 since 1) these enzymes share overlapping substrate specificities [85] and 2)
because the pharmacologic inhibitor used by these investigators (Z-DEVD.fmk) also inhibits

caspase-7 [86]. Caspase-7 is an endoplasmic reticulum (ER)-associated caspase and can be

regulated by the ER stress response protein known as glucose-regulated protein 78 (GRP78)

[87] (also shown here to be reduced by NSAID administration). Thus, we hypothesize that

GRP78-based inhibition of caspase-7 activity is required to ensure muscle regeneration after

strain-induced injury and that NSAIDs delay repair by relieving this inhibition. Elucidation of

this potential mechanism this requires further study.

Conclusions

In summary, our data provide new evidence suggesting that NSAID use during the peak of post-

injury pain and inflammation decreases muscle metabolism, prevents neuromuscular junction

and sarcolemmal repair, stimulates muscle fiber type transition and promotes a pro-apoptosis

phenotype. Such findings provide molecular evidence supporting the notion that NSAIDs have

a negative influence on myogenesis, including reducing muscle strength post-healing. By pro-

moting cell death, NSAIDs could expand the nidus of injury, thereby increasing muscle suscepti-

bility to post-injury infection [18,19]. These findings support renewed concerns about the risks

versus benefits of NSAID use, especially in those with increased susceptibility to contraction-

induced injury, those with muscle wasting or poor regenerative capacity, and those at risk for

life-threatening bacterial myonecrosis. Given the potential to change the current paradigm of

pain management in these settings, studies to validate these results in humans are warranted and

must include NSAIDs of different classes given at different times post-injury.
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