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Abstract  

According to the Bioenergy Technologies Office (BETO), creating a robust next-
generation domestic bioenergy industry is an essential pathway for providing sustainable 
renewable energy alternatives. Using non-food feedstocks, like corn-stover and forest residue, 
in the biorefineries doesn't affect the food supply chain. In the commercial-scale bioenergy 
operations, a significant development in the technological advancements is required to 
determine the biomass feedstock quality at the preprocessing stage. The penetrating ability of 
the x-rays helps study the big biomass bales, but the feedstock heterogeneity—physical size, 
shape, and chemical composition—poses a significant challenge during milling, conveyance, 
feeding, and biofuel conversion processes. The inherent complexity introduced during harvesting 
and bailing makes the reconstruction and interpretation of baled biomass materials from x-ray 
data time consuming, laborious, and expensive. The presence of similar low-dense materials 
showed a small contrast difference in the x-ray images, which makes the characterization based 
on the x-ray attenuation values not promising. This paper focuses on using the shape and 
texture properties extracted with image processing techniques to characterize the different 
tissue samples in the biomass bales. 

1    Introduction  

Recently, renewable energy resources have attracted a lot of attention as countries 
worldwide are trying to find sustainable energy alternatives while reducing the impact on the 
climate. Among the resources, renewable biomass represents an abundant carbon-neutral 
energy source, which has the potential to meet the expanding energy needs in the 
transportation sector while limiting greenhouse gas emissions. According to the 2016 Billion-Ton 
report [1], there is a future potential of producing one billion tons of biomass resources 
(composed of agricultural, forestry, waste, and algal materials) available in the United States on 
an annual basis. It can generate 85 billion gallons of biofuels that can potentially displace 30% 
of U.S. petroleum consumption. Now, the Bioenergy Technologies Office's (BETO's) future looks 
to "drop-in" replacements such as bio-butanol or other bio-derived intermediates that can be 
used to replace petroleum intermediates within existing/modified refineries. 

Current research is more focused on using lignocellulosic biomass materials as a 



feedstock at the biorefineries. Lignocellulosic materials refer to the biomass originating from 
plants that cannot be used for food, which recycles unused plant matter and preserves food 
resources. The use of lignocellulosic biomass presents a crucial step in moving toward more 
sustainable renewable energy systems.  

Lignocellulosic biomass constituents are made of complex polymer structures that need 
to be broken into simple sugars before converting them to biofuels. In order to convert these 
complex polymers biologically, pretreatment is required. Much research has been done on 
understanding each constituents' behavior and optimizing the pretreatment procedures to 
achieve high yield.  

The main constituents of lignocellulosic biomass are cellulose, hemicellulose, and lignin. 
During pretreatment, the cellulose and hemicellulose are broken down to glucan and xylan, then 
converted into biofuels. Lignin is considered to be the most recalcitrant component of 
lignocellulosic biomass. Acid soluble lignin fragments formed during pretreatment can cause 
irreversible cellulose loss during enzymatic saccharification. The remaining solid lignin restricts 
enzymatic hydrolysis by physically impeding cellulase's accessibility to cellulose and un-
productively binds cellulose enzymes [2]. Different plant parts are composed of different 
carbohydrates, have different permeabilities, crystallinities, etc., and therefore do not behave 
the same way physically or chemically.  

And other factor that affects the feedstock quality is the ash content in the lignocellulosic 
biomass. Ash content during the conversion process can cause problems like slagging, fouling, 
and corrosion in the thermochemical conversion processes and can cause displacement of 
fermentable carbohydrates and potential buffering capacity during pretreatment in the 
biochemical conversion, which increase operational costs for both conversion pathways [3]. This 
could increase the costs of pretreatment, handling and disposal which can affect the end-product 
price. A review conducted by Kenney et al. in [4] estimates that a 5% increase in soil-derived 
ash would increase a 227 MLyear−1 conversion facility's costs by $1.15 Myear−1, which translates 
to a 1% increase in the minimum ethanol selling price of $0.57 L−1.  

Moisture content impacts process performance. High moisture content in storage 
promotes biological degradation of fermentable sugars, which represents a loss of valuable 
biomass components after harvesting. Moisture content determination at the biorefinery can be 
an indication of the efficacy if the off-site storage conditions. Higher moisture content bales (> 
25%) during the grinding reduces throughput which increases the overall production cost, which 
in turn affects the price of the final product.  

Biorefineries' economic sustainability relies mainly on the available biomass cost and 
quality, which should meet the cellulosic biofuel cost and also get some profits. A cost-effective 
conversion process to produce biofuels from lignocellulosic biomass material relies not just on 
the material quality, but also on the biorefinery's ability to measure and adapt their process to 
the biomass's feedstock quality. For that, the biomass-to-energy conversion cycle at the 
biorefinery should include some sensing systems. These sensing technologies need to provide 
accurate, repeatable, and timely biomass indices through the biomass-to-energy chain. The 
application of appropriate sensing technology will be critical to developing a successfully 
integrated biomass management system [5]. The goal of this research is to extract the 
fundamental knowledge of the volumetric content of the material composition, ash content and 
moisture content early in the conversion process, which can help to optimize the conversion 



process. This work mainly lays a foundation to such work.  

2      Background  

2.1 Skeletonization  

Skeletons are shape descriptors with a broad spectrum of applications in shape 
matching, recognition, animation, retrieval, and compression [6]. Skeletons provide medial 
axis representation of an object. Blum laid a foundation for the skeletonization algorithms [7]. 
Figure 1a, b shows an example image and its skeleton representation.  

  

(a)                  (b) 

Figure 1: (a) Example image (b) Skeleton  

2.2 Graph theory  

A graph represents a set of elements and a set of pairwise relationships between those 
elements. Here the elements are called nodes or vertices and the relationships are called edges. 
G = (V, E) represents the graph of an object with vertices or nodes V and edge links E. Figure 
2 shows an example of a simple graph. Any set of data points can be represented as a graph. 
In this work, skeletons are represented as graphs, in order to extract the shape information.  

 

Figure 2: Example of a simple graph with four vertices represented by dots, and its four-edge 
links connecting them. 



3      Materials and Methods  

3.1 Image Acquisition  

The CT scans used in this research for the corn stover bales are taken using the North 
Star Imaging (NSI) industrial CT 3D x-ray system at the Idaho National Laboratory. Figure 3 
shows the setup we used to extract the radiographs for the corn stover bales. Figure 3a shows 
the detector and 3c shows the x-ray source. Here corn stover materials are set upon a 2.54 
cm foam block in the form of a mini-round bale with a 12.7 cm diameter and 15.24 cm height 
(see figure 3b). In this experiment, scanning was performed with an x-ray tube voltage of 150 
kV and corresponding tube current-time settings at 60 µA.  

 

 

 
Figure 3: CT setup used to extract the radiographs of corn stover bale with (a) detector (b) 

mini-round corn stover bale (c) x-ray source. 

3.2 Pre-processing  

Once the higher density materials like rocks, and soil are removed, the next step involves 
detecting the corn stover material composition. The raw reconstructed images have background 
noise which do not contribute significantly to ethanol yield. Figure 4a shows a slice of the bale 
with background noise. We see in figure 4a that background and contents of corn stover bale 
have similar voxel intensity levels. In this work a few image preprocessing steps are incorporated 
to reduce the background noise and highlight the contents of the bale. In the preprocessing 
stage we thresholded and applied a morphological operation to remove background noise. Then 
the connected components are used to remove the small isolated voxels in the background 
noise. Connected components are extracted using the built-in function “bwlabeln” in MATLAB. 
The connected component labeling approach scans the given data and groups its voxels into 
components based on voxel connectivity. The isolated voxels are represented with small 
connected components that are defined to be noise and are removed by resetting their voxel 
values to zero. Figure 5 shows the 3D reconstructed data before and after removing the isolated 
voxels. The processed volume can now be analyzed for volumetric content of corn stover 



fractions. 

     
(a)                        (b)                       (c)  

Figure 4: A cross-sectional slice of mini-round bale at various stages of preprocessing (a) 
RAW reconstructed slice (b) Thresholded (c) After Morphological Processing. 

              

(a)                                        (b)       

Figure 5: Bale CT (a) Before pre-processing (b) After pre-processing  

3.3 Automatic detection and volume estimation of corn cob fraction  

We applied a combination of image processing techniques to extract corn cob volume 
content in a given corn stover bale. Firstly, to simplify the detection problem, skeletonization is 
applied to extract the shape information while preserving its topology. Subsequently, graphs are 
used to represent the skeletons with nodes and edge information, which provides a pairwise 
relationship between each node. Figure 6a, b, c shows an example corn cob, the skeleton for 
the corn cob, and the skeleton's graph structure. X-ray reconstruction showed the corn cobs are 
hollow in the center, which forms a cyclic loop in the skeleton (see figure 6b). With this, the 
corn cob detection problem is simplified to loop detection. The cyclic loop is detected by 
removing all the branches (see figure 7a).  

Since fully intact corn cobs resemble a cylinder, volume information of a corn cob can be 
roughly estimated by measuring the radius and height. Starting with the cyclic loop, the radius 
is estimated by determining the center of mass for the loop and calculating the distance to the 
outer boundary. To start tracing the height, a regression plane is fitted to the cyclic loop. We 
moved the plane along the normal direction, and tracing is continued until a change in the radius 
is observed. 



 

      
  (a)                     (b)                   (c) 

Figure 6: Example (a) Corn cob (b) Skeleton for the cob (C) Graph of the cob 

      

(a)                                                 (b)  

Figure 7: (a) Cyclic Loop with center of mass represented with blue cross (b) 2D cross-
sectional image of cyclic loop with arrows pointing the two distances which we 

measure 

          

(a)                          (b)                      (c)                          (d) 

Figure 8: (a) Baleset # 1 (b) Cob Extracted for Baleset #1 (c) Baleset # 2 (d) Cob Extracted 
for Baleset #2 



Table 1: Volume of cob extracted from the test bale sets 

 Total Volume  Max deviation from true volume 

Bale set # 1  
Bale set # 2  

18.07 cubic inch  
20.07 cubic inch  

2.50 cubic inch  

1.33 cubic inch 

 
 
3.4 Experimental results  

We have tested this approach on two mini-round bale sets. Figure 8 shows the 3D view 
of the two bales and the corn cobs extracted from them using this procedure. Table 1 shows 
the estimated volume of the corn cobs extracted from the bale set.  

4      Discussion & Future Work  

We are able to detect, locate, and measure corn cobs in minibales. Further research is 
required to devise a more efficient and optimized detection model. There are several limitations 
with the proposed idea as it cannot be extended to a broken corn cobs (see figure 9). Using just 
cyclic loop detection may not be optimal in a real-world application. Our next research goals 
include optimizing the model to differentiate between a loop formed with a corn cob and fully 
intact corn stalk. We are also working on devising a model for detecting the broken corn cobs 
by incorporating corn cob texture information.  

Long term goals include extracting the other plant anatomical fractions like stalks, leaves, 
and husks. We are already in the process of using the curvature information of the corn stalks 
and diameter to classify between upper stalks and lower stalks. We are also working on detecting 
the rocks and metals in the corn stover bale picked up by the baler. These rocks and metals are 
higher density materials compared to corn stover fractions. Since the density difference is 
significant, a high contrast can be observed between the rocks and metals to corn stover 
fractions in the radiographs. These rocks and metals could lead to a significant downtime at the 
biorefinery if they damaged the grinding equipment. They can also cause sparks, which 

 
Figure 9: Example of an broken cob piece  



can easily cause ignition and increase the chance for fire. It is essential to detect the shape, 
dimensions, and approximate location of these rocks and metals in the bale early in the 
screening process. Necessary measures can then be implemented to remove the contaminants 
of the bale before proceeding to the next steps. Our future plan includes adapting a similar 
analysis method to other lignocellulosic biomass materials such as forest residues and waste-
derived feedstocks.  
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