Effects of Ca Doping on Structural and Optical Properties of PZT Nanopowders

K. H. Omran
South Valley University

M. Mostafa
South Valley University

M. S. Abd El-sadek
South Valley University

O. M. Hemeda
Tanta University

R. Ubic
Boise State University

Publication Information
https://doi.org/10.1016/j.rinp.2020.103580
Effects of Ca doping on structural and optical properties of PZT nanopowders

K.H. Omran a,b,⁎, M. Mostafa b,c, M.S. Abd El-sadek a, O.M. Hemeda d, R. Ubic e

a Nanomaterials Lab., Physics Department, Faculty of Science, South Valley University, Qena 83523, Egypt
b Laser Tech. & Environment Lab., Physics Department, Faculty of Science, South Valley University, Qena 83523, Egypt
c Physics Department, College of Science, Jof University, Sakaka, Saudi Arabia
d Physics Department, Faculty of Science, Tanta University, Egypt
e Micron School of Materials Science & Engineering, Boise State University, Boise, USA

⁎ Corresponding author.
E-mail address: khaled.omran@svu.edu.eg (K.H. Omran).

https://doi.org/10.1016/j.rinp.2020.103580

Received 8 September 2020; Received in revised form 27 October 2020; Accepted 1 November 2020

A R T I C L E I N F O
Keywords:
Pechini method	nano PbCaZrTiO3
Band gap
Rietveld method
Modified tolerance factor
PZT

A B S T R A C T

The influence of the addition of calcium ions (Ca2+) in the Pb1−xCa0.52Zr0.48Ti0.48O3 system (PCZT) for x = 0.05, 0.10, 0.15, 0.20, and 0.25 on the structural and optical properties was systematically studied. The compositions were synthesized through a polymerized-complex approach based on the Pechini polymeric precursor route. The solubility limit of calcium ions within the PCZT lattice is in between x = 0.10 and x = 0.15, at which a CaTiO3 secondary phase is detected. The Goldschmidt tolerance factors, modified tolerance factors, and the effective vacancy sizes were all estimated for the synthesized nanopowders. While the Goldschmidt tolerance factors suggest the formation of a distorted perovskite structure, the values of the modified tolerance factor were extremely close to unity, indicating a strong stable ferroelectric perovskite structure. The optical band gap was found to decrease with calcium concentration to a minimum at x = 0.20 and then slightly increase at x = 0.25.

Introduction

Lead zirconate titanate (PZT) remains the most important commercial piezoelectric perovskite ceramic material [1,2]. It is characterized by a large range of properties and hence is used in a variety of commercial applications including hydroacoustic devices, microphones, nonvolatile memories, force sensors, infrared sensors, ultra-large-scale-integration (ULSI), and acceleration transducers [3–6]. Although the scientific community has been searching for innovative Pb-free piezoelectric materials with characteristics comparable to PZT for health and environmental reasons [7–9], recent comparative environmental impact studies carried out by Ibn-Mohammed et al. [7–9] showed that PZT could actually be more environmentally benign than a number of the current Pb-free alternatives such as potassium sodium niobate (KNN) and bismuth sodium titanate (BNT).

PZT can be made in various crystallographic forms, depending on composition, and these forms control the consequent electrical and physical properties. In general, it adopts a variation of the well-established perovskite structure with the basic stoichiometry ABO3, where the Pb2+ ion occupies the A site and both the Zr4+ and Ti4+ ions share the B site [1]. It is frequently prepared via a conventional solid-state synthesis method by combining antiferroelectric lead zirconate (PbZrO3) with ferroelectric lead titanate (PbTiO3) [10]. The most important PZT-type compositions are those near the morphotropic phase boundary (MPB), around PbZr0.52Ti0.48O3, where both rhombohedral (Zr-rich) and tetragonal (Ti-rich) phases coexist [11,12]. Other recent studies [12–14] reported the coexistence of tetragonal, rhombohedral, and monoclinic room-temperature phases at the MPB.

Lead-based piezoelectric materials mostly contain >60 wt% lead, which might be released to the environment in particular via the volatilization of lead oxide during the calcination and sintering stages of the production process [7,9]. The resulting lead and oxygen vacancies make it difficult to precisely control the final stoichiometry [15] and influence the piezoelectric properties [10,15–18]. These phenomena, as well as the environmental consequences of PbO volatilization, are commonly associated with PZT materials. Coupled with the growing need for nanoscale ferroelectric capacitors for ULSI memories [5], these issues have pushed researchers to explore alternative methodologies to synthesize ceramic substances with uniform homogeneity and nano particles at fairly low calcination temperatures [19,20]. For instance, the polymeric precursor route, known as the Pechini method [21], has been extensively utilized to synthesize ferroelectric materials [22–24] as it
enables the production of nano particles with exceptionally uniform size distributions [22,25] and good chemical homogeneity. It also gives the ability to control the stoichiometry through simple procedures and relatively low-cost precursors.

Indeed, the commercial applications of ceramics depend significantly on their characteristics, including crystal structure, homogeneity, stoichiometry, grain size, and grain size distribution [26,27]. The crystal structure of perovskite materials can be changed considerably by doping stoichiometry, grain size, and grain size distribution [26,27]. The crystal material could be modified by doping with either isovalent or heterovalent ions on either Pb and/or Zr/Ti sites, resulting in tailored properties required for specific applications [30,31].

In earlier studies, PZT materials have been prepared with various dopants such as La\(^{3+}\), Bi\(^{3+}\), Nd\(^{3+}\), etc. as donor dopants on the A site, substituting for Pb\(^{2+}\) [1,32], and Nb\(^{5+}\), W\(^{6+}\), V\(^{5+}\), etc. substituting for Ti\(^{4+}\)/Zr\(^{4+}\) on the B site [33,34]. For instance, improved dielectric and piezoelectric properties were achieved in ceria-doped (A site) PZT and niobium-doped (B site) PZT materials [31,35]. Similarly, A-site doping with Ba\(^{2+}\), Cd\(^{2+}\) and Sr\(^{2+}\) showed enhanced ferroelectric and piezoelectric behaviour [36,37]. In addition, Kulcsar [38], Cerqueira et al. [39], Tawfik et al. [40], Sachdeva et al. [41], and Kour et al. [42,43] have studied the doping process of Ca\(^{2+}\) in Pb\(_{1-x}\)Ca\(_x\)(Zr\(_{1-y}\)Ti\(_y\))O\(_3\) for \(x \leq 0.10\) and found that the dielectric and the piezoelectric properties improved with the addition of Ca\(^{2+}\). Nasar et al. [44] reported a strong agglomeration tendency with an increase in porosity and particle size at \(x = 0.05\).

Despite the extensive work on PZT material, relatively few attempts have been reported to reduce its lead content and hence minimize the health and environmental concerns. For this reason, a systematic report on the effect of partially substituting Pb\(^{2+}\) with Ca\(^{2+}\) is reported here, including consequent effects on the microstructural and optical features of PCZT nanopowders.

Experimental

Nanopowders of Pb\(_{1-x}\)Ca\(_x\)Zr\(_{0.52}\)Ti\(_{0.48}\)O\(_3\) (PCZT), where \(x = 0.05, 0.10, 0.15, 0.20\) and 0.25, were synthesized by simple procedures based on the Pechini method. Analytical grade lead (II) nitrate, zirconium oxyxinitrate, calcium acetate, titanium butoxide, ammonia, and citric acid were utilized as raw materials. To begin a solution of 40 wt% of citric acid was prepared. Afterwards, the stoichiometric weight of lead, calcium, and zirconium precursors was dissolved in distilled water to form a clear solution. Next, the appropriate quantity of titanium butoxide was dissolved in 30 ml of 40 wt% citric acid at 50 °C. Once a clear solution of titanium precursor was obtained, the prepared precursor solutions (lead, calcium, and zirconium precursors) were modified using a few droplets of a 40 wt% citric acid then added to the titanium precursor solution and mixed together. After a transparent solution was formed, the pH was raised to 4, where the solution lifts under continuous stirring in a covered vial for 2 h. Later, the solution was lifted to evaporate at a temperature of 80 °C to form the gel, which was then further lifted to dry at 180 °C to obtain the dried black powder. Lastly, the formed dried gel was calcined at 750 °C, as recommended [44–46], to enhance the crystallization and to form the desired nanomaterial. The details of the preparation process are shown schematically in Fig. 1 and can be found in previous published work [24].

Thermogravimetric analysis and differential scanning calorimetry (Linseis, STA PT-1000) were employed to examine the thermal behaviour of the dried gel using a heating rate of 10 °C/min. The phase identification of the prepared specimens was performed using X-ray powder diffraction (Philips, PW 1710) using Cu Kα (\(\lambda = 1.5406 \text{ Å}\) radiation. The XRD data were recorded over the angular range of 20–90° 2\(\theta\) with step size and a scan speed of 0.02° and 0.05° \text{ min}^{-1}, respectively. Full-profile fit (LeBail methodology) for the XRD data was undertaken using FULLPROF program to accurately assess the full width at half maximum of the peaks to be used in the calculation of crystallite size and lattice strain via the Williamson-Hall method. Crystallographic details involving phase fraction, crystal structure, and lattice parameters were acquired utilizing Rietveld structure refinement of the X-ray diffraction data using the FullProf software package. The Fourier transmission infrared (FT-IR) spectrum of the synthesized nanopowder was recorded over the wavenumber range 400–4000 cm\(^{-1}\) (JASCO, FT-IR 4100). Diffuse reflectance measurements were obtained with a spectrophotometer (JASCO, V-670) in the wavelength range 200–900 nm to determine the optical band gap of the prepared nanopowders via
the Kubelka-Munk formalism. Scanning electron microscopy (JEOL, JSM 5500LV) and transmission electron microscopy (JEOL, JEM 1010) were employed to reveal the microstructure of the synthesized nanopowders whereas the elemental analysis was studied using energy dispersive spectroscopy (Oxford Instruments, ISIS Link).

Results and discussion

TGA and DSC analysis

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were utilized for investigating the physical features of the black dried gel as a function of the temperature, and the results are presented in Fig. 2. About 20 mg of the dried powder was heated in TGA and DSC analysis.

Initially, the weight loss slightly reduced with temperature up to 225 °C, with about 5% mass loss. This initial stage may be attributed to the release of the adsorbed water [47,48]. The next mass loss occurred in a temperature ranging between 225 °C and 480 °C, wherein a weight loss of about 25% occurred. This major mass loss might be attributed to the combustion of the organic groups components [49,50]. The last regime, during which about 15% of the weight was lost, occurred in a temperature ranging between 480 °C and 550 °C, indicating the decomposition process which leads to the PCZT formation [51,53]. These stages of weight loss were reflected in the DSC trace as exothermic peaks. Three exothermic peaks are visible at 150 °C, 270 °C, and 520 °C. The TGA/DSC results clearly demonstrate that the mass loss remains nearly steady above 600 °C, implying that the calcination temperature must be higher than 600 °C in order to form the desired phase structure.

Structure studies

X-ray diffraction analysis

Fig. 3 presents the XRD patterns of Pb$_{(1-x)}$Ca$_x$Zr$_{0.52}$Ti$_{0.48}$O$_3$ (PCZT) nanopowders calcined at 750 °C with $x = 0.05$, 0.10, 0.15, 0.20, and 0.25. It is obvious from the XRD patterns that all of the powder samples exhibit the characteristic peaks of tetragonal PZT with some PbO secondary phase, which is consistent with the previously established observations for PZT nanopowders [24,51,53–56]. It is noteworthy that the XRD patterns of the nanopowder samples with $x = 0.15$, 0.20, and 0.25 indicate the evolution of an orthorhombic CaTiO$_3$ phase, which gets more evident and its orientation peaks grow in intensity with rising calcium amount. Moreover, the magnified XRD patterns, in Fig. 3 (b), obviously indicate the overlapping of the (002) and (200) reflections that are commonly utilized for distinguishing the tetragonal phase from rhombohedral and monoclinic phases [12,14]. It is also evidently demonstrate the development of the orthorhombic CaTiO$_3$ phase with the increase of Ca$^{2+}$ concentration. The presence of a tiny amount of pyrochlore phase and orthorhombic PbO phase is revealed by the XRD analysis, which are observed in several previously published studies [56–58]. The observed small traces of PbO can be decomposed and can disappear through the increase in the calcination temperature and time [24,56], while the accompanied pyrochlore phase is usually formed as an intermediate phase during the evolution of PZT material and can be decomposed at higher temperatures [57–59].

It is important to demonstrate that the disappearance of Ca-related secondary phases in samples with $x = 0.05$ and 0.10 indicates that the calcium is completely diffused into the cell lattice of PZT to form a solid solution of PZT, while the clear observation of the orthorhombic CaTiO$_3$ phase above $x = 0.10$ indicates that the Ca$^{2+}$ is not thoroughly dissolved in the host throughout the calcination process [60,61]. It is also noteworthy that the samples with $x = 0.05$ and 0.10 clearly show shifts on the XRD peaks towards the higher 2Theta values, which correspond to lower cell constants and cell volume, whereas the samples with $x = 0.10$ show the most intensive peaks shift towards the lower 2Theta value, which corresponds to larger lattice parameter and lattice volume. These results agree with the earlier reported observations [42,60]. Furthermore, the notable broadening of reflection peaks reflects the nanocrystalline features of the prepared powders and possible presence of microstrain [62].

The LeBail profile fitting approach was applied to the detected XRD data in order to accurately evaluate the broadening of peaks through isolating the overlapped peaks so that further precise calculations of the lattice size and the microstrain could be obtained. Additionally, the Rietveld structure refinement methodology was also applied to the XRD patterns in order to investigate the microstructure changes and to quantitatively evaluate the fraction percent of each existing phase with the variation of the Ca concentration.

Rietveld refinement. Rietveld structure refinements for the synthesized nanopowders were fulfilled through the use of FullProf software packages and high-quality collected XRD data in order to determine the fractional phase components percent as well as the various crystallographic properties. Fig. 4 presents the refinement patterns of the synthesized PCZT nanopowders. Initially, the refinement procedures were carried out following the adoption of various needed information,
including the structure information of the identified phases which are obtained from the cif files, the background that is identified as a linear interpolation of adjusted selected points, the peak profile function which is defined as Thompson-Cox-Hastings pseudo-Voigt (pV-TCH), and the determined instrumental resolution function (IRF). The IRF details were returned through employing the WinPlotr program using a detected XRD pattern from a reference specimen (Si) with the same identified measurement conditions.

The starting structure information of the tetragonal PZT, the tetragonal PbO, and the orthorhombic CaTiO$_3$ phases was obtained from COD ID #1526147, COD ID #9012698, and COD ID #2100812 files, respectively. At the beginning of the refinement, the zero shift, the scale factor, and the lattice parameters were sequentially refined, whereby a justifiable pattern was achieved. Afterwards, the refinement was proceeded with the instrumental parameters, the profile parameters, the background points, and the atomic coordinates for further improvement of the matching between the calculated and detected values. The refinement continued for all the parameters simultaneously till the best convergence was achieved, with no further improvements of the patterns or the conventional R factors. The quality of the refinement process was associated with the good agreement between the calculated and detected patterns in addition to the various mathematical factors, including the reliability (R) factors (profile R_p, weighted profile R_{wp}, and statistically expected R_{exp}), the goodness of fit (GOF), and the reduced chi2 (χ^2).

Table 1 indicates that changes in the lattice parameters, cell volumes, and c/a ratio occurred in respect of the Ca concentration. The results demonstrate that the unit cell parameters and volume slightly lowered with the increase of the Ca concentration up to $x = 0.10$ and then dramatically increased with the increase of the Ca concentration. The reduction in the volume of the unit cell could happen as a result of the partial substitution of the smaller Ca$^{2+}$ for the bigger Pb$^{2+}$ cation species (rPb$^{2+}$ = 1.49 Å, rCa$^{2+}$ = 1.34 Å as per Shannon [64]) in the synthesized PCZT nanopowders.

![Rietveld refined XRD patterns](image)

Fig. 4. Rietveld refined XRD patterns of the synthesized PCZT nanopowders.
nanopowders, showing good agreement with previously published results [42,65], whereas the subsequent increase of the lattice volume with the further increase of Ca\(^{2+}\) concentrations could be attributed to the high distortion caused by the Pb\(^{2+}\) substitution and the evolution of the foreign CaTiO\(_3\) phase along with the growth of various particle shapes and sizes [61,66]. Similar observations were reported elsewhere [67,68]. Moreover, it is believed that the formation of oxygen vacancies might also cause lattice expansion as observed in various compounds [65,69]. The microstructure studies (SEM and TEM images) support the assumption that the particle shapes and sizes are responsible for the observed lattice expansion. It is also noteworthy that the lowest R factors were observed for the sample with x = 0.10, where the greatest fractional percent of PZT was observed along with the highest observed diffused calcium inside the lattice.

The obtained fractional content of the individual phases is presented in Table 2. The results demonstrate that the fractional phase content of the tetragonal PZT significantly increased as x increased from x = 0.05 to x = 0.10, and then, it dramatically decreased as x increased, while the phase percent of the tetragonal PbO appeared with the maximum observed content at x = 0.05 and significantly decreased afterwards at x = 0.10; then, it slowly changed as x increased. On the other hand, the evolution of orthorhombic CaTiO\(_3\) was recorded at x = 0.15 and dramatically increased afterwards as the Ca concentration increased. These results reveal that the calcium was completely diffused into the PZT lattice for samples with x = 0.05 and 0.10, whereas the other samples provided that the calcium ions tend to form the orthorhombic CaTiO\(_3\) phase as a result of the limited solubility of Ca\(^{2+}\) in the solid crystal structure [60,61].

Particle size and strain analysis. The crystallite sizes and lattice microstrain of the synthesized nanopowders were estimated through the use of Williamson-Hall (WH) and Rietveld methods. It is known that the peak broadening of the XRD pattern might emerge due to several factors, including the small sizes of the investigated powder, the presence of lattice microstrain, and the instrumental contribution [62,70]. The size and strain evaluations using the isotropic strain methodology of the WH method were carried out following the instructions and equations previously reported [62,71]. For estimating the peak width correctly and for separating the overlapped diffraction peaks of the multiphase patterns, LeBail profile fitting was performed for all the investigated XRD patterns through the use of Fullprof software package along with the matched cif files of the existing phases, which are identified by QualX software and acquired from the crystallographic open database (COD) for further adaptation as initial parameters in the fitting process. The full-widths at half-maximum (FWHM) implemented in the computation of crystallite size and lattice microstrain was corrected through the elimination of the instrumental broadening using the following equation [62]:

\[
\beta_{\text{id}} = (\beta_{\text{exp}} - \beta_{\text{inst}})^{1/2}
\]

(1)

where \(\beta_{\text{exp}}\) and \(\beta_{\text{id}}\) are the experimental FWHM and the FWHM of well-crystallized reference material (here it is a silicon standard material), respectively. The Williamson-Hall (WH) plots for the studied samples of PCZT are shown in Fig. 5, while the results of the crystallite sizes and the microstrains are summarized and presented in Table 3. It is notable that the evaluated values of the crystallite size and the microstrain obtained by the WH methodology first increased with the increase of x and decreased afterwards at x = 0.15, then significantly increased at x = 0.20, and slightly decreased at x = 0.25. Inversely, the crystallite size of the Rietveld method slightly decreased when x changed from x = 0.05 to x = 0.10 and increased afterwards at x = 0.15, then decreased at x = 0.20, and later slightly increased at x = 0.25, showing an opposite trend to the other utilized line profile methods. Moreover, the established WH size values were somewhat higher than the values of the Rietveld method. Furthermore, the lattice microstrain values of the Rietveld method increased initially and then decreased at x = 0.15 and gradually increased afterwards as x increased. It is important to highlight that the current observations imply that the crystallite size is not related to the Ca concentration which is contrasted with the observations of Sachdeva et al. and Kour et al., where the crystallite size decreased as the Ca concentration increased [41,42].

It is essential to point out that the calculated high strain values of the synthesized PCZT nanopowders compared to those of PZT nanopowders reported earlier [24] could be attributed to the presence of multiple phases in addition to the differences of the ionic radius of the foreign and substituted atoms which might enhance the distortion inside the lattice cell and hence significantly induce stress and strain inside the distorted lattice [72,73]. Additionally, the sample with x = 0.10 provided the highest microstrain value, indicating that this sample had the highest observed distortion which might be attributed to the high diffused calcium inside the PZT lattice, which is consistent with the obtained results of Rietveld refinement.

Tolerance factor. The term of the perovskite tolerance factor, \(t_0\), was originally introduced by Goldschmidt and redesigned afterwards via many researchers, for example, Megaw [74] and Ubic [75], to represent the symmetry and structural stability of the perovskite materials for a specific sequence of ions and accordingly an insight into the mismatch between the bonding prerequisites of the A-site and B-site cations plus a quantitative evaluation of the structural distortion [76,77].

The Goldschmidt tolerance factor \(t_0\) can be expressed as:

\[
t_0 = \frac{r_A + r_O}{\sqrt{2}(r_{A}^{\text{id}} + r_{O}^{\text{id}})}
\]

(2)

where \(r_{A}^{\text{id}}\) and \(r_{O}^{\text{id}}\) are the effective Shannon [64] ionic radius of A, B and the oxygen ion, respectively. The \(t_0\) was calculated for the synthesized compositions and is listed in Table 4. The ionic radius of the A-/B-site was determined according to the chemical formula of the compositions, taken into account that the Ti\(^{4+}\) and Zr\(^{4+}\) co-occupy the B-site whereas the Pb\(^{2+}\) and the Ca\(^{2+}\) co-occupy the A-site in the distorted lattice [31]. The obtained results of the prepared PCZT nanopowders show that the \(t_0\) ranged from \(t_0 = 0.994\) to \(t_0 = 0.984\), implying a stable ferroelectric with distorted perovskite structure [1,31,76].

Recently, empirical modelling approaches for perovskite materials were developed [69,75] which account for the effect of A-site vacancies and oxygen vacancies. These models rely on the concepts that the increased amount of oxygen vacancies does not affect the B-site size, \(r_B\), the oxygen anions are in contact with both the A-site and B-site cations, the effective \(r_B\) is a function of \(t^*\) and that the effective \(r_B\) is a function of both the concentration of A-site vacancies and \(t_0\). According to these revised models, the modified perovskite tolerance factor \(t^*\) can be defined as [75]:

\[
t^* = \frac{4r_A - 0.011730139}{0.7290203 (r_A^{\text{id}} + r_O^{\text{id}})} - 1.760998
\]

(3)

where \(r_A\) and \(r_O\) are the pseudocubic lattice constant, the effective Shannon ionic radius of B ion, and the effective ionic radius of oxygen ion, respectively. There is though a distinct advantage of the modified tolerance factor, \(t^*\), over Goldschmidt tolerance factor, \(t_0\), in...
that it provides the tolerance factor without prior knowledge of r_A and predicts octahedral distortions more effectively than does t_0. As a result, it takes out the imprecision in estimating effective sizes of partially-occupied A sites which are of importance in the current study [69].

The pseudocubic lattice constant can be determined from the relation [69]:

$$a_{pc} = \left(\frac{V}{Z}\right)^{1/3}$$

(4)

where V is the unit-cell volume and Z is the number of ABO$_3$ formula units within the unit cell. The effective size of the oxygen anion, r_O, can be defined as [69]:

$$r_O = \left(\frac{a_{pc}}{2} - r_{B[id]}\right)$$

(5)

$$r_V = -305.775864(t^* - 1) + 863.428549(t^*)^2 - 813.609546(t^*) + 257.011523$$

(6)

Table 3 summarizes the results of Goldschmidt tolerance factor (t_o), modified tolerance factor (t^*), and effective vacancy size (r_V) for A-site and O-site.

The obtained results indicate that the Goldschmidt tolerance factor decreases as the calcium concentration (x) increases which is expected as the ionic radius of the A-site decreases with the increase of the x concentration. On the other hand, the modified tolerance factor shows an interesting tendency, where first slightly decreased up to $x = 0.10$ and dramatically increased afterwards with the increase of x concentration. The reason behind this is that the modified tolerance factor calculations depend on the pseudocubic lattice constant (a_{pc}), which in turn depends on the unit cell volume. On the one hand, the effective size

Table 4 summarizes the results of Goldschmidt tolerance factor (t_o), modified tolerance factor (t^*), and effective vacancy size (r_V) for A-site and O-site.

The obtained results indicate that the Goldschmidt tolerance factor decreases as the calcium concentration (x) increases which is expected as the ionic radius of the A-site decreases with the increase of the x concentration. On the other hand, the modified tolerance factor shows an interesting tendency, where first slightly decreased up to $x = 0.10$ and dramatically increased afterwards with the increase of x concentration. The reason behind this is that the modified tolerance factor calculations depend on the pseudocubic lattice constant (a_{pc}), which in turn depends on the unit cell volume. On the one hand, the effective size
of oxygen vacancies slightly increased up to $x = 0.10$ and then dramatically decreased with the increase of x concentration, while the effective size of lead vacancies decreased the increase of x concentration. It is noteworthy again that the calculated values of the modified tolerance factor for all of the synthesized PCZT nanopowders are extremely close to unity ($t^* = 1.005$), which indicate strong stability of the ferroelectric perovskite structure \cite{1,76}. These results suggest that the calcium ion is a good candidate to partially substitute the lead ion in the PZT system. Further studies with ferroelectric and piezoelectric experiments are needed to confirm that hypothesis.

SEM, TEM and elemental analysis

The scanning electron microscopy (SEM) images of the synthesized PCZT at $x = 0.15$ are displayed in Fig. 6 (a and b) which demonstrates that the morphology of most particles seems to be spherical in nature with a diameter in the nanometre scale along with the appearance of a rod-like granular structure, refer to the arrow. The transmission electron microscopy (TEM) technique was also used to investigate the internal particles microstructure for the sample with $x = 0.15$, as shown in Fig. 6 (c) which shows that the shapes of the particles have slightly changed with the occurrence of the rod-like agglomerates in comparison with the earlier observed results \cite{24}. Moreover, it is obvious from the micrograph that the granules pretend to be agglomerated when accumulated into the grid with irregular shape distribution. Cho \cite{23} proposed that the presence of nontransformed precursors in free granules can give rise to agglomerated grains. X-ray fluorescence spectroscopy (XRF) study was carried out for nanopowders with $x = 0.05$ and presented in Fig. 6 (d). The XRF spectrum shows intensive peaks of Pb, in addition to the emission lines of Zr, Ti, and Ca. It is evident from the spectrum that the obtained nanopowder did not show any emission lines for other elements, which reflect the pureness of the formed PCZT nanopowders. The particle sizes perceived from TEM images are further consistent with those evaluated throughout the Rietveld refinement and WH methods for the specimen with $x = 0.15$.

FT-IR study

FT-IR studies of calcium doped lead zirconate titanate compositions have been performed. Supplementary Fig. S1 provides the results derived from the preliminary analysis of the compound with $x = 0.05$. The spectrum shows that the strong observed broad band in the range from 480 cm$^{-1}$ to 700 cm$^{-1}$ relates to M-O-M bonds (M = Zr, Ti, Ca, and Pb), whereby the formation of perovskite-type structure could be emphasized \cite{78,79}. The bands situated at 1430 cm$^{-1}$ and 1120 cm$^{-1}$ correspond to C-O bond antisymmetrical stretching vibration and CO$_3^-$ stretching band, respectively \cite{49,80}, while the wide band ranging from 3400 cm$^{-1}$ to 3800 cm$^{-1}$ corresponds to the O–H stretching vibration band of modes of water molecules, which is consistent with earlier reports \cite{63,79}.

Fig. 6. (a-b), and (c) are the SEM, and the TEM images of Pb$_{0.85}$Ca$_{0.15}$Zr$_{0.52}$Ti$_{0.48}$O$_3$, while (d) is the XRF of Pb$_{0.95}$Ca$_{0.05}$Zr$_{0.52}$Ti$_{0.48}$O$_3$ synthesised nanopowders, respectively.
The optical properties of the synthesized nanopowders were investigated through measuring the optical diffuse reflectance spectra (DRS). The DRS measurements were performed in the range from 200 nm to 1100 nm, and they are displayed in Supplementary Fig. S2. The evaluation of the optical band gap was performed through the use of diffuse reflectance measurements for the powder materials which are considered more suitable technique compared to the absorbance measurements since the absorption assessments do not reveal the exact judgement of the optical gap and might end up in mistaken conclusions, whereas the reflection assessments have a value beyond the absorption measurements due to the certainty of the strengthening of the scattering phenomenon that is arising in the powder materials [81].

The DRS spectra signify a wide and obvious absorption band with the highest absorption at \(~340–370\) nm. This wide absorption band centered at \(~350\) nm is assigned to the movement from the valence band to the conduction band. For evaluating the optical gap energy, the transformed Kubelka-Munk function \(F(R)\) was employed, as illustrated earlier in [53,82]. In fact, the Kubelka-Munk paradigm is fine when the particle size is lower or close to the wavelength of the used beam, and the proportions of the refraction, reflection, and diffraction are no longer approved to be separated through the diffused reflection which implies that the scattering should occur [81]. Consequently, the Kubelka-Munk function is generally functional for considerably light scattering material.

The optical energy gap \((E_g)\) is correlated with the linear absorption coefficient \((\alpha)\) of a specific substance using the published Tauc relation, as given in the following equation:

\[
\alpha h\nu = A \left(h\nu - E_g \right)^r
\]

where \(h\nu\) is the photon energy, \(A\) is a proportion constant, and \(r\) depends on the optical transition type. The value of \(r\) is \(\frac{1}{2}\) for direct allowed transitions, 2 for indirect allowed transitions, \(\frac{3}{2}\) for direct forbidden transitions, and 3 for indirect forbidden transitions [83]. A modified Kubelka-Munk function can be obtained taking into consideration that the scattering coefficient is constant as regards the wavelength of the incident beam.

\[
(F(R)h\nu)^{1/r} = A \left(h\nu - E_g \right) \tag{9}
\]

In the present case, the plots of \((F(R)h\nu)^2\), \((F(R)h\nu)^{1/2}\), \((F(R)h\nu)^{2/3}\), and \((F(R)h\nu)^{3/2}\) as a function of the photon energy \(h\nu\) were constructed [81]. It is found that the best fitting was achieved for \(r = 1/2\) in Eq. (9), that is, \((F(R)h\nu)^{2}\) with respect to the photon energy \((h\nu)\) implying that the occurred band transition is essentially direct allowed transition, as proposed by Tauc et al., and this agrees well with the previously reported studies [53,63].

The values of the optical gap for the prepared nanopowder samples were evaluated from the intersection of the linear fit for the linear section with the photon energy \(h\nu\) axis, where \((F(R)h\nu)^2 = 0\), as shown in Fig. 7. The calculated optical band gap was 3.18, 3.12, 3.04, 3.03, and 3.08 eV for the synthesized PCZT nanopowders with the compositions of \(x = 0.05, 0.1, 0.15, 0.20,\) and \(0.25\), respectively. It is noticeable that the evaluated band gap \((E_g)\) values significantly decreased from 3.22 eV for \(x = 0\) to 3.03 eV for \(x = 0.20\) and thereafter slightly increased to 3.08 eV with the further increase in \(x\), as presented in Fig. 8(a). The observed narrowing of optical energy gap could be attributed to the insertion of \(Ca^{2+}\) in the lead site of lead zirconate titanate that might also be accountable for the formation of states within the conduction band as a result of the difference in hybridization between \(Ca^{4+}\) and \(Pb^{2+}\) [84,85]. In addition, the partial substitution of \(Pb^{2+}\) by \(Ca^{2+}\) and the subsequent evolution of \(PbO\), and \(CaTiO_3\) phases is expected to produce higher disorder leading to the creation of vacancy defects that is directly effect the electronic structure of the synthesized material and hence the redunction of the bandgap through the creation of defect levels within the band gap, i.e. lower than the conduction band edge and higher than the valence band edge [82,86]. It is also interesting to note that the calcium titanate with extremely small crystallite sizes will have a wider band gap around 3.5 to 3.85 eV [87,88], which might be responsible for the later increase of the optical band with further increase in \(x\) (calcium concentration). These observations greatly corroborate with the findings of the Rietveld structure refinements.

The variation of the band gap as regards the fractional percent of PZT-Tet, and \(CaTiO_3\)-Orth is illustrated in Fig. 8(b) which demonstrates that the band gap is greatly influenced by the presence of the \(CaTiO_3\) and the PZT phases with a general trend, where the band gap first decreased gradually and later increased at a specific point. In Addition, a more detailed observation exhibits that the energy gap is significantly affected by the partial substitution of \(Pb^{2+}\) by \(Ca^{2+}\) and the subsequent evolution of the \(CaTiO_3\) phase in comparison with the presence of the \(PbO\) phase. This result might be due to the marked difference on the optical band of these two phases, where the optical gap value of the tetragonal \(PbO\) is 1.9 eV [89], and it is about 3.6 eV for the orthorhombic \(CaTiO_3\) [90].

Conclusion

Perovskite-type \(Pb_{(1-x)}Ca_{x}Zr_{0.52}Ti_{0.48}O_{3}\) (PCZT) material with \(x = 0.05, 0.10, 0.15, 0.20,\) and \(0.25\) was successfully synthesized through the use of the polymeric precursor route. The XRD, TGA/DSC, UV–VIS, FT-IR, SEM, TEM, and XRF techniques were utilized for investigating the effects of substituting lead ions \((Pb^{2+})\) by calcium ions \((Ca^{2+})\) in PZT system on the structural and optical aspects. The TGA/DSC measurement revealed that the formation of the perovskite structure begins at \(600\) °C. The formation of the tetragonal PZT for all the prepared compositions was confirmed by the XRD analysis, while the orthorhombic \(CaTiO_3\) was found to first appear at the composition of \(x = 0.15\) and was growing as \(x\) increased. It was found that the PZT unit cell parameters and volume obtained from Rietveld refinements decreased up to \(x = 0.10\) concentration and then gradually increased as calcium concentration increased. Furthermore, the crystallite size values obtained from Rietveld refinements showed the opposite trend of the WH values. The modified tolerance factor values were extremely close to unity, indicating a strong ferroelectric perovskite structure. Nevertheless, the formation of particles in the nanometers scale was confirmed by the TEM micrographs, whereas the XRF proved the absence of the impurities in the prepared samples. Furthermore, the SEM images demonstrated the appearance of rod-like particles in the nanopowder sample of the \(x = 0.15\) concentration. The FT-IR spectrum exhibited the formation of the perovskite structure. The optical band gap energy reduced from 3.18 eV...
for $x = 0.05$ to 3.03 eV for $x = 0.20$ and increased to some extent afterwards to 3.08 eV for the composition of $x = 0.25$.

CRediT authorship contribution statement

K.H. Omran: Conceptualization, Methodology, Formal analysis, Data curation, Visualization, Writing - original draft, Writing - review & editing. **M. Mostafa:** Methodology, Validation, Writing - review & editing. **M.S. Abd El-sadek:** Methodology, Validation, Writing - review & editing. **O.M. Hemeda:** Conceptualization, Visualization, Validation, Supervision, Writing - review & editing. **R. Ubic:** Visualization, Validation, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rinp.2020.103580.

References

