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A B S T R A C T   

The influence of the addition of calcium ions (Ca2+) in the Pb(1-x)CaxZr0.52Ti0.48O3 system (PCZT) for x = 0.05, 
0.10, 0.15, 0.20, and 0.25 on the structural and optical properties was systematically studied. The compositions 
were synthesized through a polymerized-complex approach based on the Pechini polymeric precursor route. The 
solubility limit of calcium ions within the PCZT lattice is in between x = 0.10 and x = 0.15, at which a CaTiO3 
secondary phase is detected. The Goldschmidt tolerance factors, modified tolerance factors, and the effective 
vacancy sizes were all estimated for the synthesized nanopowders. While the Goldschmidt tolerance factors 
suggest the formation of a distorted perovskite structure, the values of the modified tolerance factor were 
extremely close to unity, indicating a strong stable ferroelectric perovskite structure. The optical band gap was 
found to decrease with calcium concentration to a minimum at x = 0.20 and then slightly increase at x = 0.25.   

Introduction 

Lead zirconate titanate (PZT) remains the most important commer-
cial piezoelectric perovskite ceramic material [1,2]. It is characterized 
by a large range of properties and hence is used in a variety of com-
mercial applications including hydroacoustic devices, microphones, 
nonvolatile memories, force sensors, infrared sensors, ultra-large-scale- 
integration (ULSI), and acceleration transducers [3–6]. Although the 
scientific community has been searching for innovative Pb-free piezo-
electric materials with characteristics comparable to PZT for health and 
environmental reasons [7–9], recent comparative environmental impact 
studies carried out by Ibn-Mohammed et al. [7–9] showed that PZT 
could actually be more environmentally benign than a number of the 
current Pb-free alternatives such as potassium sodium niobate (KNN) 
and bismuth sodium titanate (BNT). 

PZT can be made in various crystallographic forms, depending on 
composition, and these forms control the consequent electrical and 
physical properties. In general, it adopts a variation of the well- 
established perovskite structure with the basic stoichiometry ABO3, 
where the Pb2+ ion occupies the A site and both the Zr4+ and Ti4+ ions 
share the B site [1]. It is frequently prepared via a conventional solid- 

state synthesis method by combining antiferroelectric lead zirconate 
(PbZrO3) with ferroelectric lead titanate (PbTiO3) [10]. The most 
important PZT-type compositions are those near the morphotropic 
phase boundary (MPB), around PbZr0.52Ti0.48O3, where both rhombo-
hedral (Zr-rich) and tetragonal (Ti-rich) phases coexist [11,12]. Other 
recent studies [12–14] reported the coexistence of tetragonal, rhombo-
hedral, and monoclinic room-temperature phases at the MPB. 

Lead-based piezoelectric materials mostly contain >60 wt% lead, 
which might be released to the environment in particular via the vola-
tilization of lead oxide during the calcination and sintering stages of the 
production process [7,9]. The resulting lead and oxygen vacancies make 
it difficult to precisely control the final stoichiometry [15] and influence 
the piezoelectric properties [10,15–18]. These phenomena, as well as 
the environmental consequences of PbO volatilization, are commonly 
associated with PZT materials. Coupled with the growing need for 
nanoscale ferroelectric capacitors for ULSI memories [5], these issues 
have pushed researchers to explore alternative methodologies to syn-
thesize ceramic substances with uniform homogeneity and nano parti-
cles at fairly low calcination temperatures [19,20]. For instance, the 
polymeric precursor route, known as the Pechini method [21], has been 
extensively utilized to synthesize ferroelectric materials [22–24] as it 
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enables the production of nano particles with exceptionally uniform size 
distributions [22,25] and good chemical homogeneity. It also gives the 
ability to control the stoichiometry through simple procedures and 
relatively low-cost precursors. 

Indeed, the commercial applications of ceramics depend signifi-
cantly on their characteristics, including crystal structure, homogeneity, 
stoichiometry, grain size, and grain size distribution [26,27]. The crystal 
structure of perovskite materials can be changed considerably by doping 
on A and/or B sites, thus tuning the electrical and physical properties 
[28,29]. Similarly, PZT material could be modified by doping with 
either isovalent or heterovalent ions on either Pb and/or Zr/Ti sites, 
resulting in tailored properties required for specific applications 
[30,31]. 

In earlier studies, PZT materials have been prepared with various 
dopants such as La3+, Bi3+, Nd3+, etc. as donor dopants on the A site, 
substituting for Pb2+ [1,32], and Nb5+, W6+, V5+, etc. substituting for 
Ti4+/Zr4+ on the B site [33,34]. For instance, improved dielectric and 
piezoelectric properties were achieved in ceria-doped (A site) PZT and 
niobium-doped (B site) PZT materials [31,35]. Similarly, A-site doping 
with Ba2+, Cd2+ and Sr2+ showed enhanced ferroelectric and piezo-
electric behaviour [36,37]. In addition, Kulcsar [38], Cerqueira et al. 
[39], Tawfik et al. [40], Sachdeva et al. [41], and Kour et al. [42,43] 
have studied the doping process of Ca2+ in Pb1-xCax(ZryTi1-y)O3 for x ≤
0.10 and found that the dielectric and the piezoelectric properties 
improved with the addition of Ca2+. Nasar et al. [44] reported a strong 
agglomeration tendency with an increase in porosity and particle size at 
x = 0.05. 

Despite the extensive work on PZT material, relatively few attempts 
have been reported to reduce its lead content and hence minimize the 
health and environmental concerns. For this reason, a systematic report 
on the effect of partially substituting Pb2+ with Ca2+ is reported here, 
including consequent effects on the microstructural and optical features 
of PCZT nanopowders. 

Experimental 

Nanopowders of Pb(1-x)CaxZr0.52Ti0.48O3 (PCZT), where x = 0.05, 
0.10, 0.15, 0.20 and 0.25, were synthesized by simple procedures based 

on the Pechini method. Analytical grade lead (ll) nitrate, zirconium 
oxynitrate, calcium acetate, titanium butoxide, ammonia, and citric acid 
were utilized as raw materials. To begin a solution of 40 wt% of citric 
acid was prepared. Afterwards, the stoichiometric weight of lead, cal-
cium, and zirconium precursors was dissolved in distilled water to form 
a clear solution. Next, the appropriate quantity of titanium butoxide was 
dissolved in 30 ml of 40 wt% citric acid at 50 ◦C. Once a clear solution of 
titanium precursor was obtained, the prepared precursor solutions (lead, 
calcium, and zirconium precursors) were modified using a few droplets 
of a 40 wt% citric acid then added to the titanium precursor solution and 
mixed together. After a transparent solution was formed, the pH was 
raised to 4, where the solution lifts under continuous stirring in a 
covered vial for 2 h. Later, the solution was lifted to evaporate at a 
temperature of 80 ◦C to form the gel, which was then further lifted to dry 
at 180 ◦C to obtain the dried black powder. Lastly, the formed dried gel 
was calcined at 750 ◦C, as recommended [44–46], to enhance the 
crystallization and to form the desired nanomaterial. The details of the 
preparation process are shown schematically in Fig. 1 and can be found 
in previous published work [24]. 

Thermogravimetric analysis and differential scanning calorimetry 
(Linseis, STA PT-1000) were employed to examine the thermal behav-
iour of the dried gel using a heating rate of 10 ◦C/min. The phase 
identification of the prepared specimens was performed using X-ray 
powder diffraction (Philips, PW 1710) using Cu Kα (λ = 1.5406 Å) ra-
diation. The XRD data were recorded over the angular range of 20–90◦

2theta with step size and a scan speed of 0.02◦ and 0.05◦ min− 1, 
respectively. Full-profile fit (LeBail methodology) for the XRD data was 
undertaken using FullProf program to accurately assess the full width at 
half maximum of the peaks to be used in the calculation of crystallite size 
and lattice strain via the Williamson-Hall method. Crystallographic de-
tails involving phase fraction, crystal structure, and lattice parameters 
were acquired utilizing Rietveld structure refinement of the X-ray 
diffraction data using the FullProf software package. The Fourier 
transmission infrared (FT-IR) spectrum of the synthesized nanopowder 
was recorded over the wavenumber range 400–4000 cm− 1 (JASCO, FT- 
IR 4100). Diffuse reflectance measurements were obtained with a 
spectrophotometer (JASCO, V-670) in the wavelength range 200–900 
nm to determine the optical band gap of the prepared nanopowders via 

Fig. 1. Schematic representation of the preparation procedures of PCZT nanopowders.  
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the Kubelka-Munk formalism. Scanning electron microscopy (JEOL, 
JSM 5500LV) and transmission electron microscopy (JEOL, JEM 1010) 
were employed to reveal the microstructure of the synthesized nano-
powders whereas the elemental analysis was studied using energy 
dispersive spectroscopy (Oxford Instruments, ISIS Link). 

Results and discussion 

TGA and DSC analysis 

Thermogravimetric analysis (TGA) and differential scanning calo-
rimetry (DSC) were utilized for investigating the physical features of the 
black dried gel as a function of the temperature, and the results are 
presented in Fig. 2. About 20 mg of the dried powder was heated in 
alumina pans from room temperature to 700 ◦C with a heating rate of 10 
◦C/min. Three main regimes of weight loss are evident in the TGA curve. 
Initially, the weight loss slightly reduced with temperature up to 225 ◦C, 
with about 5% mass loss. This initial stage may be attributed to the 
release of the adsorbed water [47,48]. The next mass loss occurred in a 
temperature ranging between 225 ◦C and 480 ◦C, wherein a weight loss 
of about 25% occurred. This major mass loss might be attributed to the 
combustion of the organic groups components [49,50]. The last regime, 
during which about 15% of the weight was lost, occurred in a temper-
ature ranging between 480 ◦C and 550 ◦C, indicating the decomposition 
process which leads to the PCZT formation [51,52]. These stages of 
weight loss were reflected in the DSC trace as exothermic peaks. Three 
exothermic peaks are visible at 150 ◦C, 270 ◦C, and 520 ◦C. The TGA/ 
DSC results clearly demonstrate that the mass loss remains nearly steady 
above 600 ◦C, implying that the calcination temperature must be higher 
than 600 ◦C in order to form the desired phase structure. 

Structure studies 

X-ray diffraction analysis 
Fig. 3 presents the XRD patterns of Pb(1-x)CaxZr0.52Ti0.48O3 (PCZT) 

nanopowders calcined at 750 ◦C with x = 0.05, 0.10, 0.15, 0.20, and 
0.25. It is obvious from the XRD patterns that all of the powder samples 
exhibit the characteristic peaks of tetragonal PZT with some PbO sec-
ondary phase, which is consistent with the previously established ob-
servations for PZT nanopowders [24,51,53–56]. It is noteworthy that 
the XRD patterns of the nanopowder samples with x = 0.15, 0.20, and 
0.25 indicate the evolution of an orthorhombic CaTiO3 phase, which 
gets more evident and its orientation peaks grow in intensity with rising 

calcium amount. Moreover, the magnified XRD patterns, in Fig. 3 (b), 
obviously indicate the overlapping of the (002) and (200) reflections 
that are commonly utilized for distinguishing the tetragonal phase from 
rhombohedral and monoclinic phases [12,14]. It is also evidently 
demonstrate the development of the orthorhombic CaTiO3 phase with 
the increase of Ca2+ concentration. The presence of a tiny amount of 
pyrochlore phase and orthorhombic PbO phase is revealed by the XRD 
analysis, which are observed in several previously published studies 
[56–58]. The observed small traces of PbO can be decomposed and can 
disappear through the increase in the calcination temperature and time 
[24,56], while the accompanied pyrochlore phase is usually formed as 
an intermediate phase during the evolution of PZT material and can be 
decomposed at higher temperatures [57–59]. 

It is important to demonstrate that the disappearance of Ca-related 
secondary phases in samples with x = 0.05 and 0.10 indicates that the 
calcium is completely diffused into the cell lattice of PZT to form a solid 
solution of PCZT, while the clear observation of the orthorhombic 
CaTiO3 phase above x = 0.10 indicates that the Ca+2 is not thoroughly 
dissolved in the host throughout the calcination process [60,61]. It is 
also noteworthy that the samples with x = 0.05 and 0.10 clearly show 
shifts on the XRD peaks towards the higher 2theta values, which cor-
responds to lower cell constants and cell volume, whereas the samples 
with x > 0.10 show the most intensive peaks shift towards the lower 2θ 
value, which corresponds to larger lattice parameter and lattice volume. 
These results agree with the earlier reported observations [42,60]. 
Furthermore, the notable broadening of reflection peaks reflects the 
nanocrystalline features of the prepared powders and possible presence 
of microstrain [62]. 

The LeBail profile fitting approach was applied to the detected XRD 
data in order to accurately evaluate the broadening of peaks through 
isolating the overlapped peaks so that further precise calculations of the 
lattice size and the microstrain could be obtained. Additionally, the 
Rietveld structure refinement methodology was also applied to the XRD 
patterns in order to investigate the microstructure changes and to 
quantitatively evaluate the fraction percent of each existing phase with 
the variation of the Ca concentration. 

Rietveld refinement. Rietveld structure refinements for the synthesized 
nanopowders were fulfilled through the use of FullProf software pack-
ages and high-quality collected XRD data in order to determine the 
fractional phase components percent as well as the various crystallo-
graphic properties. Fig. 4 presents the refinement pattarns of the syn-
thesized PCZT nanopowders. Initially, the refinement procedures were 
carried out following the adoption of various needed information, Fig. 2. TGA/DSC curves of PCZT dried gel for x = 0.05.  

Fig. 3. (a) Typical x-ray diffractograms of Pb(1-x)CaxZr0.52Ti0.48O3 nano-
powders for x = 0.05, 0.10, 0.15, 0.20, and 0.25. Enlarged (b) presents the 
evolution of CaTiO3 (220) peak and the shifting of (200) peak. 
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including the structure information of the identified phases which are 
obtained from the cif files, the background that is identified as a linear 
interpolation of adjusted selected points, the peak profile function which 
is defined as Thompson-Cox-Hastings pseudo-Voigt (pV-TCH), and the 
determined instrumental resolution function (IRF). The IRF details were 
returned through employing the WinPlotr program using a detected 
XRD pattern from a reference specimen (Si) with the same identified 
measurement conditions. 

The starting structure information of the tetragonal PZT, the 
tetragonal PbO, and the orthorhombic CaTiO3 phases was obtained from 
COD ID #1526147, COD ID #9012698, and COD ID #2100812 files, 
respectively. At the beginning of the refinement, the zero shift, the scale 
factor, and the lattice parameters were sequentially refined, whereby a 
justifiable pattern was achieved. Afterwards, the refinement was pro-
ceeded with the instrumental parameters, the profile parameters, the 
background points, and the atomic coordinates for further improvement 
of the matching between the calculated and detected values. The 
refinement continued for all the parameters simultaneously till the best 
convergence was achieved, with no further improvements of the pat-
terns or the conventional R factors. The quality of the refinement process 
was associated with the good agreement between the calculated and 
detected patterns in addition to the various mathematical factors, 
including the reliability (R) factors (profile Rp, weighted profile Rwp, and 
statistically expected Rexp), the goodness of fit (GOF), and the reduced 
chi2 (χ2). 

It is essential to point out that several aspects were taken into ac-
count while performing the refinement. Firstly, each refinement was 
initially performed several times with different identified phases. Sec-
ondly, the phases with a very small fractional amount (<2%) were not 
considered further in the refinement process. Thirdly, the calcium atom 
was assumed to occupy the lead (Pb) atomic position since the value of 

the ionic radius of rCa2+=1.34 Å is close to that of rPb2+=1.49 Å [1,42]. 
Furthermore, the sum of the occupancy of Pb and Ca atoms was con-
strained to 1 during the refinement process, which were later refined at 
the final stages. The several reliability (R) factors obtained (Rp, Rwp, and 
Rexp), χ2, and the GOF of the refined samples are enlisted in supple-
mentary Table I, whereas the obtained PZT unit cell parameters, c/a 
ratio, and the cell volume are gathered and included in Table 1. The 
obtained lattice constants values were found to be comparable with 
those established in previous studies [42,51,55,63]. 

Table 1 indicates that changes in the lattice parameters, cell volumes, 
and c/a ratio occurred in respect of the Ca concentration. The results 
demonstrate that the unit cell parameters and volume slightly lowered 
with the increase of the Ca concentration up to x = 0.10 and then 
dramatically increased with the increase of the Ca concentration. The 
reduction in the volume of the unit cell could happen as a result of the 
partial substitution of the smaller Ca2+ for the bigger Pb2+ cation species 
(rPb2+=1.49 Å, rCa2+=1.34 Å as per Shannon [64]) in the synthesized 

Fig. 4. Rietveld refined XRD patterns of the synthesized PCZT nanopowders.  

Table 1 
Unit cell constants, c/a ratio and volume of the PZT unit-cell.  

x (Mole 
Fraction) 

a (Å) b (Å) c (Å) c/a Vol 
(Å3)  

0.05 4.02915 
(21) 

4.02915 
(21) 

4.08041 
(30)  

1.0127  66.24  

0.10 4.02358 
(22) 

4.02358 
(22) 

4.07631 
(33)  

1.0131  65.99  

0.15 4.04001 
(21) 

4.04001 
(21) 

4.07959 
(34)  

1.0098  66.58  

0.20 4.05904 
(27) 

4.05904 
(27) 

4.08383 
(48)  

1.0061  67.28  

0.25 4.06370 
(27) 

4.06370 
(27) 

4.08356 
(50)  

1.0049  67.43  
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nanopowders, showing good agreement with previously published re-
sults [42,65], whereas the subsequent increase of the lattice volume 
with the further increase of Ca2+ concentrations could be attributed to 
the high distortion caused by the Pb2+ substitution and the evolution of 
the foreign CaTiO3 phase along with the growth of various particle 
shapes and sizes [61,66]. Similar observations were reported elsewhere 
[67,68]. Moreover, it is believed that the formation of oxygen vacancies 
might also cause lattice expansion as observed in various compounds 
[65,69]. The microstructure studies (SEM and TEM images) support the 
assumption that the particle shapes and sizes are responsible for the 
observed lattice expansion. It is also noteworthy that the lowest R factors 
were observed for the sample with x = 0.10, where the greatest frac-
tional percent of PZT was observed along with the highest observed 
diffused calcium inside the lattice. 

The obtained fractional content of the individual phases is presented 
in Table 2. The results demonstrate that the fractional phase content of 
the tetragonal PZT significantly increased as x increased from x = 0.05 
to x = 0.10, and then, it dramatically decreased as x increased, while the 
phase percent of the tetragonal PbO appeared with the maximum 
observed content at x = 0.05 and significantly decreased afterwards at x 
= 0.10; then, it slowly changed as x increased. On the other hand, the 
evolution of orthorhombic CaTiO3 was recorded at x = 0.15 and 
dramatically increased afterwards as the Ca concentration increased. 
These results reveal that the calcium was completely diffused into the 
PZT lattice for samples with x = 0.05 and 0.10, whereas the other 
samples provided that the calcium ions tend to form the orthorhombic 
CaTiO3 phase as a result of the limited solubility of Ca2+ in the solid 
crystal structure [60,61]. 

Particle size and strain analysis. The crystallite sizes and lattice micro-
strain of the synthesized nanopowders were estimated through the use 
of Williamson–Hall (WH) and Rietveld methods. It is known that the 
peak broadening of the XRD pattern might emerge due to several factors, 
including the small sizes of the investigated powder, the presence of 
lattice microstrain, and the instrumental contribution [62,70]. The size 
and strain evaluations using the isotropic strain methodology of the WH 
method were carried out following the instructions and equations pre-
viously reported [62,71]. For estimating the peak width correctly and 
for separating the overlapped diffraction peaks of the multiphase pat-
terns, LeBail profile fitting was performed for all the investigated XRD 
patterns through the use of FullProf software package along with the 
matched cif files of the existing phases, which are identified by QualX 
software and acquired from the crystallographic open database (COD) 
for further adaptation as initial parameters in the fitting process. The 
full-widths at half-maximum (FWHM) implemented in the computation 
of crystallite size and lattice microstrain was corrected through the 
elimination of the instrumental broadening using the following equation 
[62]: 

βhkl = (β2
exp − β2

inst)
1 /

2 (1)  

where βexp and βinst are the experimental FWHM and the FWHM of well- 
crystallized reference material (here it is a silicon standard material), 
respectively. The Williamson-Hall (WH) plots for the studied samples of 
PCZT are shown in Fig. 5, while the results of the crystallite sizes and the 

microstrains are summarized and presented in Table 3. It is notable that 
the evaluated values of the crystallite size and the microstrain obtained 
by the WH methodology first increased with the increase of x and 
decreased afterwards at x = 0.15, then significantly increased at x =
0.20, and slightly decreased at x = 0.25. Inversely, the crystallite size of 
the Rietveld method slightly decreased when x changed from x = 0.05 to 
x = 0.10 and increased afterwards at x = 0.15, then decreased at x =
0.20, and later slightly increased at x = 0.25, showing an opposite trend 
to the other utilized line profile methods. Moreover, the established WH 
size values were somewhat higher than the values of the Rietveld 
method. Furthermore, the lattice microstrain values of the Rietveld 
method increased initially and then decreased at x = 0.15 and gradually 
increased afterwards as x increased. It is important to highlight that the 
current observations imply that the crystallite size is not related to the 
Ca concentration which is contrasted with the observations of Sachdeva 
et al. and Kour et al., where the crystallite size decreased as the Ca 
concentration increased [41,42]. 

It is essential to point out that the calculated high strain values of the 
synthesized PCZT nanopowders compared to those of PZT nanopowders 
reported earlier [24] could be attributed to the presence of multiple 
phases in addition to the differences of the ionic radius of the foreign and 
substituted atoms which might enhance the distortion inside the lattice 
cell and hence significantly induce stress and strain inside the distorted 
lattice [72,73]. Additionally, the sample with x = 0.10 provided the 
highest microstrain value, indicating that this sample had the highest 
observed distortion which might be attributed to the high diffused cal-
cium inside the PZT lattice, which is consistent with the obtained results 
of Rietveld refinement. 

Tolerance factor. The term of the perovskite tolerance factor, to, was 
originally introduced by Goldschmidt and redesigned afterwards via 
many researchers, for example, Megaw [74] and Ubic [75], to represent 
the symmetry and structural stability of the perovskite materials for a 
specific sequence of ions and accordingly an insight into the mismatch 
between the bonding prerequisites of the A-site and B-site cations plus a 
quantitative evaluation of the structural distortion [76,77]. 

The Goldschmidt tolerance factor t0 can be expressed as: 

t0 =
rA(id) + rO(id)
̅̅̅
2

√
(rB(id) + rO(id))

(2)  

where rA(id), rB(id) and rO(id) are the effective Shannon [64] ionic radius of 
A, B and the oxygen ion, respectively. The t0 was calculated for the 
synthesized compositions and is listed in Table 4. The ionic radius of the 
A-/B-site was determined according to the chemical formula of the 
compositions, taken into account that the Ti4+ and Zr4+ co-occupy the B- 
site whereas the Pb2+ and the Ca2+ co-occupy the A-site in the distorted 
lattice [31]. The obtained results of the prepared PCZT nanopowders 
show that the t0 ranged from t0 = 0.994 to t0 = 0.984, implying a stable 
ferroelectric with distorted perovskite structure [1,31,76]. 

Recently, empirical modelling approaches for perovskite materials 
were developed [69,75] which account for the effect of A-site vacancies 
and oxygen vacancies. These models rely on the concepts that the 
increased amount of oxygen vacancies does not affect the B-site size, rB, 
the oxygen anions are in contact with both the A-site and B-site cations, 
the effective rO is a function of t0 and that the effective rA is a function of 
both the concentration of A-site vacancies and t0. According to these 
revised models, the modified perovskite tolerance factor t* can be 
defined as [75]: 

t* =
apc − 0.011730139

0.7209203(rB(id) + rO)
− 1.760998 (3)  

where apc, rB(id), and rO are the pseudocubic lattice constant, the effec-
tive Shannon ionic radius of B ion, and the effective ionic radius of ox-
ygen ion, respectively. There is though a distinct advantage of the 
modified tolerance factor, t*, over Goldschmidt tolerance factor, t0, in 

Table 2 
Phase fraction percentage of each identified phase as obtained from Rietveld’s 
powder structure refinement.  

x (Mole Fraction) PZT CaTiO3 PbO-Tet. 
Fract. (%) Fract. (%) Fract. (%)  

0.05 84.85 (0.50) 0 15.15 (0.17)  
0.10 93.41 (0.47) 0 6.59 (0.10)  
0.15 80.16 (0.51) 11.06 (0.40) 8.79 (0.12)  
0.20 74.13 (0.49) 18.36 (0.46) 7.51 (0.12)  
0.25 72.75 (0.47) 21.56 (0.45) 5.69 (0.10)  
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that it provides the tolerance factor without prior knowledge of rA and 
predicts octahedral distortions more effectively than does t0. As a result, 
it takes out the imprecision in estimating effective sizes of partially- 
occupied A sites which are of importance in the current study [69]. 

The pseudocubic lattice constant can be determined from the rela-
tion [69]: 

apc = (
V
Z
)

1/3 (4)  

where V is the unit-cell volume and Z is the number of ABO3 formula 
units within the unit cell. The effective size of the oxygen anion, rO, can 
be defined as [69]: 

rO =
apc

2
− rB(id) (5)  

where rB(id) is the Shannon ionic radius of the B-site cation in six-fold 
coordination. The effective size of oxygen vacancies rVo is related to 
the modified tolerance factor t* by the following expression [69]: 

rVo = − 305.775864(t*)
3
+ 863.428549(t*)

2
− 813.609546(t*)+ 257.011523

(6) 

In addition, the effective size of lead (Pb) vacancies rVPb is related to 
the Goldschmidt tolerance factor, t0, by the following expression [75]: 

rVPb = − 20.8796+ 36.9049t0 − 14.4590t2
0 (7) 

Table 4 summarizes the results of Goldschmidt tolerance factor (to), 
modified tolerance factor (t*), and effective vacancy size (rV) for A-site 
and O-site. The obtained results indicate that the Goldschmidt tolerance 
factor decreases as the calcium concentration (x) increases which is 
expected as the ionic radius of the A-site decreases with the increase of 
the x concentration. On the other hand, the modified tolerance factor 
shows an interesting tendency, where first slightly decreased up to x =
0.10 and dramatically increased afterwards with the increase of x con-
centration. The reason behind this is that the modified tolerance factor 
calculations depend on the pseudocubic lattice constant (apc), which in 
turn depends on the unit cell volume. On the one hand, the effective size 

Fig. 5. Williamson–Hall (WH) plots for Pb(1-x)CaxZr0.52Ti0.48O3 nanopowders.  

Table 3 
Crystallite size and lattice microstrain values estimated by WH, and Rietveld 
methods of PCZT nanopowders.  

x (Mole Rietveld WH 

Fraction) Size (nm) Strain Size (nm) Strain  

0.05  42.62  0.0069  47.69  0.0040  
0.10  41.76  0.0089  79.66  0.0066  
0.15  56.04  0.0074  38.94  0.0048  
0.20  42.44  0.0077  78.76  0.0064  
0.25  45.34  0.0078  69.06  0.0057  

Table 4 
Summary of the obtained results of the tolerance factors for the synthesized PCZT nanopowders.  

x (Mole Fraction) rA(id) (Å) to V (Å3) apc (Å) rO (Å) t* rV for O-site rV for Pb-site 

0 (♣)  1.4900  0.9967  67.5350  4.0723  1.3714  1.00524  1.0317  1.540 
0.05  1.4825  0.9941  66.2400  4.0461  1.3583  1.00519  1.0320  1.519 
0.10  1.4750  0.9915  65.9900  4.0410  1.3557  1.00518  1.0320  1.497 
0.15  1.4675  0.9888  66.5800  4.0530  1.3617  1.00520  1.0319  1.475 
0.20  1.4600  0.9862  67.2800  4.0672  1.3688  1.00523  1.0318  1.453 
0.25  1.4525  0.9836  67.4300  4.0702  1.3703  1.00524  1.0318  1.431 

(♣) Refers To The PDF Card No.: 00-033-0784. 
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of oxygen vacancies slightly increased up to x = 0.10 and then 
dramatically decreased with the increase of x concentration, while the 
effective size of lead vacancies decreased the increase of x concentra-
tion. It is noteworthy again that the calculated values of the modified 
tolerance factor for all of the synthesized PCZT nanopowders are 
extremely close to unity (t*= 1.005), which indicate strong stability of 
the ferroelectric perovskite structure [1,76]. These results suggest that 
the calcium ion is a good candidate to partially substitute the lead ion in 
the PZT system. Further studies with ferroelectric and piezoelectric ex-
periments are needed to confirm that hypothesis. 

SEM, TEM and elemental analysis 
The scanning electron microscopy (SEM) images of the synthesized 

PCZT at x = 0.15 are displayed in Fig. 6 (a and b) which demonstrates 
that the morphology of most particles seems to be spherical in nature 
with a diameter in the nanometre scale along with the appearance of a 
rod-like granular structure, refer to the arrow. The transmission electron 
microscopy (TEM) technique was also used to investigate the internal 
particles microstructure for the sample with x = 0.15, as shown in Fig. 6 
(c) which shows that the shapes of the particles have slightly changed 
with the occurrence of the rod-like agglomerates in comparison with the 
earlier observed results [24]. Moreover, it is obvious from the micro-
graph that the granules pretend to be agglomerated when accumulated 
into the grid with irregular shape distribution. Cho [23] proposed that 
the presence of nontransformed precursors in free granules can give rise 

to agglomerated grains. X-ray fluorescence spectroscopy (XRF) study 
was carried out for nanopowders with x = 0.05 and presented in Fig. 6 
(d). The XRF spectrum shows intensive peaks of Pb, in addition to the 
emission lines of Zr, Ti, and Ca. It is evident from the spectrum that the 
obtained nanopowder did not show any emission lines for other ele-
ments, which reflect the pureness of the formed PCZT nanopowders. The 
particle sizes perceived from TEM images are further consistent with 
those evaluated throughout the Rietveld refinement and WH methods 
for the specimen with x = 0.15. 

FT-IR study 
FT-IR studies of calcium doped lead zirconate titanate compositions 

have been performed. Supplementary Fig. S1 provides the results 
derived from the preliminary analysis of the compound with x = 0.05. 
The spectrum shows that the strong observed broad band in the range 
from 480 cm− 1 to 700 cm− 1 relates to M-O-M bonds (M = Zr, Ti, Ca, and 
Pb), whereby the formation of perovskite-type structure could be 
emphasized [78,79]. The bands situated at 1430 cm− 1 and 1120 cm− 1 

correspond to C-O bond antisymmetrical stretching vibration and CO3
2– 

stretching band, respectively [49,80], while the wide band ranging from 
3400 cm− 1 to 3800 cm− 1 corresponds to the O–H stretching vibration 
band of modes of water molecules, which is consistent with earlier re-
ports [63,79]. 

Fig. 6. (a-b), and (c) are the SEM, and the TEM images of Pb0.85Ca0.15Zr0.52Ti0.48O3 , while (d) is the XRF of Pb0.95Ca0.05Zr0.52Ti0.48O3 synthesised nanopowders, 
respectively. 
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Optical properties 

The optical properties of the synthesized nanopowders were inves-
tigated through measuring the optical diffused reflectance spectra 
(DRS). The DRS measurements were performed in the range from 200 
nm to 1100 nm, and they are displayed in Supplementary Fig. S2. The 
evaluation of the optical band gap was performed through the use of 
diffuse reflectance measurements for the powder materials which are 
considered more suitable technique compared to the absorbance mea-
surements since the absorption assessments do not reveal the exact 
judgement of the optical gap and might end up in mistaken conclusions, 
whereas the reflection assessments have a value beyond the absorption 
measurements due to the certainty of the strengthening of the scattering 
phenomenon that is arising in the powder materials [81]. 

The DRS spectra signify a wide and obvious absorption band with the 
highest absorption at ~340–370 nm. This wide absorption band 
centered at ~350 nm is assigned to the movement from the valence band 
to the conduction band. For evaluating the optical gap energy, the 
transformed Kubelka-Munk function F(R) was employed, as illustrated 
earlier in [53,82]. In fact, the Kubelka-Munk paradigm is fine when the 
particle size is lower or close to the wavelength of the used beam, and 
the proportions of the refraction, reflection, and diffraction are no 
longer approved to be separated through the diffused reflection which 
implies that the scattering should occur [81]. Consequently, the 
Kubelka-Munk function is generally functional for considerably light 
scattering material. 

The optical energy gap (Eg) is correlated with the linear absorption 
coefficient (α) of a specific substance using the published Tauc relation, 
as given in the following equation: 

αhν = A1
(
hν − Eg

)r (8)  

where hν is the photon energy, A1 is a proportion constant, and r de-
pends on the optical transition type. The value of r is 12 for direct allowed 
transitions, 2 for indirect allowed transitions, 3

2 for direct forbidden 
transitions, and 3 for indirect forbidden transitions [83]. A modified 
Kubelka-Munk function can be obtained taking into consideration that 
the scattering coefficient is constant as regards the wavelength of the 
incident beam. 

(F(R)hν)1/r
= A2

(
hν − Eg

)
(9) 

In the present case, the plots of (F(R)hν)2, (F(R)hν)1/2, (F(R)hν)2/3, 
and (F(R)hν)1/3 as a function of the photon energy hν were constructed 
[81]. It is found that the best fitting was achieved for r = 1/2 in Eq. (9), 
that is, (F(R)hν)2 with respect to the photon energy (hν) implying that 
the occurred band transition is essentially direct allowed transition, as 
proposed by Tauc et al., and this agrees well with the previously re-
ported studies [53,63]. 

The values of the optical gap for the prepared nanopowder samples 
were evaluated from the intersection of the linear fit for the linear sec-
tion with the photon energy hν axis, where (F(R)hν)2

= 0, as shown in 
Fig. 7. The calculated optical band gap was 3.18, 3.12, 3.04, 3.03, and 
3.08 eV for the synthesized PCZT nanopowders with the compositions of 
x = 0.05, 0.1, 0.15, 0.20, and 0.25, respectively. It is noticeable that the 
evaluated band gap (Eg) values significantly decreased from 3.22 eV for 
x = 0 to 3.03 eV for x  = 0.20 and thereafter slightly increased to 3.08 eV 
with the further increase in ×, as presented in Fig. 8(a). The observed 
narrowing of optical energy gap could be attributed to the insertion of 
Ca2+ in the lead site of lead zirconate titanate that is might also be 
accountable for the formation of states within the conduction band as a 
result of the difference in hybridization between Ca4s-O2p and Pb6s-O2p 
[84,85]. In addition, the partial substitution of Pb2+ by Ca2+ and the 
subsequent evolution of PbO, and CaTiO3 phases is expected to produce 
higher disorder leading to the creation of vacancy defects that is directly 
effect the electronic structure of the synthesised material and hence the 

reduction of the bandgap through the creation of defect levels within the 
band gap, i.e. lower than the conduction band edge and higher than the 
valence band edge [82,86]. It is also interesting to note that the calcium 
titanate with extremely small crystallite sizes will have a wider band gap 
around 3.5 to 3.85 eV [87,88], which might be responsible for the later 
increase of the optical band with further increase in x (calcium con-
centration). These observations greatly corroborate with the findings of 
the Rietveld structure refinements. 

The variation of the band gap as regards the fractional percent of 
PZT-Tet, and CaTiO3-Orth is illustrated in Fig. 8(b) which demonstrates 
that the band gap is greatly influenced by the presence of the CaTiO3 and 
the PZT phases with a general trend, where the band gap first decreased 
gradually and later increased at a specific point. In Addition, a more 
detailed observation exhibits that the energy gap is significantly affected 
by the partial substitution of Pb2+ by Ca2+ and the subsequent evolution 
of the CaTiO3 phase in comparison with the presence of the PbO phase. 
This result might be due to the marked difference on the optical band of 
these two phases, where the optical gap value of the tetragonal PbO is 
1.9 eV [89], and it is about 3.6 eV for the orthorhombic CaTiO3 [90]. 

Conclusion 

Perovskite-type Pb(1-x)CaxZr0.52Ti0.48O3(PCZT) material with x =
0.05, 0.10, 0.15, 0.20, and 0.25 was successfully synthesized through 
the use of the polymeric precursor route. The XRD, TGA/DSC, UV–VIS, 
FT-IR, SEM, TEM, and XRF techniques were utilized for investigating the 
effects of substituting lead ions (Pb2+) by calcium ions (Ca2+) in PZT 
system on the structural and optical aspects. The TGA/DSC measure-
ment revealed that the formation of the perovskite structure begins at 
600 ◦C. The formation of the tetragonal PZT for all the prepared com-
positions was confirmed by the XRD analysis, while the orthorhombic 
CaTiO3 was found to first appear at the composition of x = 0.15 and was 
growing as x increased. It was found that the PZT unit cell parameters 
and volume obtained from Rietveld refinements decreased up to x =
0.10 concentration and then gradually increased as calcium concentra-
tion increased. Furthermore, the crystallite size values obtained from 
Rietveld refinements showed the opposite trend of the WH values. The 
modified tolerance factor values were extremely close to unity, indi-
cating a strong ferroelectric perovskite structure. Nevertheless, the for-
mation of particles in the nanometers scale was confirmed by the TEM 
micrographs, whereas the XRF proved the absence of the impurities in 
the prepared samples. Furthermore, the SEM images demonstrated the 
appearance of rod-like particles in the nanopowder sample of the x =
0.15 concentration. The FT-IR spectrum exhibited the formation of the 
perovskite structure. The optical band gap energy reduced from 3.18 eV 

Fig. 7. Kubelka–Munk plots for band gap evaluation of the synthesised PCZT 
nanopowders heat treated at 750 ◦C for 3 h in air. 
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for x = 0.05 to 3.03 eV for x = 0.20 and increased to some extent af-
terwards to 3.08 eV for the composition of x = 0.25. 
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