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ABSTRACT 

Forecasting the timing and magnitude of snowmelt and runoff is critical to managing mountain water 
resources. Warming temperatures are increasing the rain–snow transition elevation and are limiting the 
forecasting skill of statistical models relating historical snow water equivalent to streamflow. While physically 
based methods are available, they require accurate estimations of the spatial and temporal distribution of 
meteorological variables in complex terrain. Across many mountainous areas, measurements of precipitation 
and other meteorological variables are limited to a few reference stations and are not adequate to resolve the 
complex interactions between topography and atmospheric flow. In this paper, we evaluate the ability of the 
Weather Research and Forecasting (WRF) Model to approximate the inputs required for a physics-based 
snow model, iSnobal, instead of using meteorological measurements, for the Boise River Basin (BRB) in 
Idaho, United States. An iSnobal simulation using station data from 40 locations in and around the BRB 
resulted in an average root-mean-square error (RMSE) of 4.5 mm compared with 12 SNOTEL measure

ments. Applying WRF forcings alone was associated with an RMSE of 10.5 mm, while including a simple bias 
correction to the WRF outputs of temperature and precipitation reduced the RMSE to 6.5 mm. The results 
highlight the utility of using WRF outputs as input to snowmelt models, as all required input variables are 
spatiotemporally complete. This will have important benefits in areas with sparse measurement networks and 
will aid snowmelt and runoff forecasting in mountainous basins. 

1. Introduction 

Rapidly warming climate in the western mountains of 
North America is changing the partitioning of rain and 
snow and increasing the rain–snow transition elevation 
(Nolin and Daly 2006; Nayak et al. 2010; Klos et al. 2014; 
Lute et al. 2015; Trujillo and Molotch 2014). Rain-on-snow 
flooding events are becoming more common (Surfleet 
and Tullos 2013; Tohver et al. 2014; Freudiger et al. 
2014), can cause significant damage to downstream areas 

(Kattelmann 1997; Rössler et al. 2014; Pomeroy et al. 
2016), and pose a significant challenge to reservoir plan
ning and operations that are typically designed around 
the premise of a single, large spring melt pulse. The in
creasing frequency and uncertain timing of such occur
rences reduces flexibility to retain or release reservoir 
water to optimize availability for agricultural use. On 
the opposite side of the spectrum, droughts require 
complex operations to ensure that the water releases 
are optimized to not waste the limited available water. 
Traditional statistical forecasting methods are based on 

historical data relating streamflow and field measurements 
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of snow depth and snow water equivalent (SWE) at a 
relatively small number of reference sites in a given 
watershed. These historical models are unable to account 
for the impacts of winter rain or mixed phase events, 
suggesting the need for less statistical, and more mech

anistic, physics-based snow and hydrologic forecasting 
models (Frei et al. 1999; Groisman et al. 2001, 2004, 
Mote 2003, 2006; Mote et al. 2005; Regonda et al. 2005; 
Pierce et al. 2008). Such models, however, require ex
tensive meteorological forcing data, which are typically 
limited in remote mountain regions (Marks and Frew 
1999; Garen and Marks 2005). Typical meteorological 
data networks in mountainous regions are relatively 
sparse, have variable periods of record, and contain 
frequent data gaps of varying length. 
The Weather Research and Forecasting (WRF) Model 

(Skamarock et al. 2008) has previously been used to 
dynamically downscale output from global weather 
forecasts, global climate models (GCMs), or reanalysis 
data with an initial spatial resolution of 50–200 km to a 
more management-relevant resolution of between 1 and 
12 km. These dynamically downscaled WRF outputs are 
evenly distributed with relatively high spatial resolution 
(when ran at high resolution), and are temporally com

plete which makes them particularly efficient as forcing 
data for hydrologic modeling applications. In moun

tainous regions with complex topography and highly 
heterogeneous land cover, however, further downscal
ing may be required to produce WRF meteorological 
outputs at the finescale grid resolution (10–250 m) re
quired to accurately capture small-scale snowpack vari
ability in mountainous terrain (Winstral et al. 2014). It is 
critical in this process that we understand how to account 
for any scale differences between WRF output and local 
variation in slope, aspect, elevation and land cover. 
Numerical weather prediction models are commonly 

used to provide meteorological inputs for hydrology 
models both for predicting streamflow from a short-
term events, or for entire water years (from 1 October 
through 30 September). Miller and Kim (1996) investigated 
a 5-day flood event on the Russian River in California by 
using the Mesoscale Atmospheric Simulation (MAS) 
model, at 20-km resolution, as input to the hydrology 
model TOPMODEL. Results showed a 10% difference 
between modeled and observed streamflow. 
Westrick and Mass (2001) investigated a short-term 

rain on snow event for the Snoqualmie River, Wash

ington, using the Fifth-Generation PSU–NCAR Me

soscale Model (MM5) to synthesize inputs to the 
Distributed Hydrology Soil and Vegetation Model 
(DHSVM) at 4-, 12-, and 36-km spatial resolution. The 
authors used simple interpolation schemes to downscale 
the MM5 outputs to the 150-m DHSVM domain and 

applied a bias adjustment to precipitation and wind speed 
to better estimate streamflow. Westrick et al. (2002) then 
extended this analysis to evaluate real-time applica
tions over multiple basins in Washington State though 
an entire winter. While some basins simulated streamflow 
better than others, the average error was 38% for 
the entire winter season, compared with 31% using 
meteorological-station-based observations. 
Wayand et al. (2013) investigated three scenarios over 

10 years in the American River basin, California. The 
first scenario utilized one measurement station and 
distributed the observations with the Parameter-Elevation 
Regressions on Independent Slopes Model (PRISM; 
Daly et al. 1994) for precipitation and temperature. The 
second case used a 6-km WRF simulation downscaled to 
the 150-m DHSVM grid using static lapse rates, with the 
third case combining WRF and empirical models for 
radiation. The resulting WRF outputs for precipitation 
were biased high, with smaller diurnal temperature 
ranges than observations. Modeled streamflow per
formance was poor for all scenarios due to differences in 
precipitation timing and application of an uncalibrated 
hydrology model. 
The physically based snow model SNOWPACK 

(Lehning et al. 2002; Bartelt and Lehning 2002) was 
forced at a point with output from the Canadian regional 
model GEM15 to evaluate the potential of simulating 
critical weak layers for avalanche forecasting (Bellaire 
et al. 2011; Bellaire and Jamieson 2013). Chen et al. 
(2014a) used 2-km WRF Model outputs to drive 6 land 
surface models and compare how closely they matched 
SWE at 112 Natural Resources Conservation Service 
(NRCS) Snowpack Telemetry (SNOTEL) stations 
across the Colorado River headwaters. To do this they 
used output from the 4 nearest WRF cells to esti
mate weather parameters at each SNOTEL site. They 
found that WRF Model output resulted in a reasonable 
agreement with the 112 SNOTEL site-averaged SWE 
measurements, but that there was large variation from 
site to site. Much of this variation was due to elevation 
differences between the sites and the elevations assigned 
to the 2-km WRF grid cells. 
The WRF Model could provide a significant advance

ment over current geostatistical methods for deriving 
meteorological forcing data for hydrologic models where 
sparse measurement networks exist. Current geostatistical 
methods interpolate station measurements of meteo

rological data (Havens et al. 2017; Garen et al. 1994; 
Goovaerts 2000; Livneh et al. 2014; Luo et al. 2008), 
however, these methods are severely limited in moun

tainous regions and may not accurately capture the true 
spatial distribution of parameters (Hedrick et al. 2018). 
Regional-scale models, such as WRF, provide a new 



MAY 2019 HAVENS ET AL . 849 

FIG. 1. Boise River Basin modeling domain with major subbasins. Meteorological stations used 
in modeling with measurements used at each site. 

opportunity to simulate historic forcing data when ground 
measurements are unreliable or at a coarse temporal res
olution. However, the downscaling from the regional-scale 
domain to the snow-modeling domain must be tested 
and WRF Model outputs evaluated for bias and sen
sitivity to downscaling. 
In this study we used output from a WRF simulation 

to force a physically based snowmelt model, iSnobal 
(Marks et al. 1999), in lieu of using meteorological 
station measurements. The study area has a relatively 
dense measurement networks for a large watershed 
allowing for comparison with an atmospheric model, 
as opposed to the typically sparse and inconsistent mea

surements found in most large watersheds. The objectives 
for this study were twofold: 

1) Utilize atmospheric model outputs from WRF to pro
duce iSnobal results that are consistent with iSnobal 
results from measured meteorological conditions. 

2) Improve iSnobal results with WRF through additional 
bias adjustments to precipitation and air temperature, 
along with applying elevation dependent downscaling. 

The utility of the methodology will be determined by 
comparison of baseline iSnobal results from meteo

rological stations with two iSnobal results using WRF. 
The first was simple interpolation of WRF output. The 
second applied bias adjustment then elevation dependency 
to the WRF output. 

2. Model configurations 

a. Boise River Basin 

The Boise River Basin (BRB) in southwest Idaho, 
United States, defined in this study as the watershed 
above Lucky Peak Dam, is located just east of Boise, 
Idaho, and encompasses roughly 7000 km2 (Fig. 1). The 
BRB contains three large subbasins: Mores, Twin Springs, 
and Featherville, each draining one of the three main forks 
of the Boise River. The BRB ranges in elevation from 
858 to 3249 m, with Mores ranging between 939 and 
2470 m, Twin Springs between 997 and 3249 m, and 
Featherville between 1289 and 3125 m. The majority 
of winter precipitation occurs as snow, with average 
annual precipitation of 500 mm at the lowest elevations 
to 1500 mm at higher elevation (Garen and Marks 2005). 
The BRB was selected for this study because it is one 
of the most thoroughly instrumented large mountain 
basins in the western United States, with more than 
40 measurement sites, including 14 SNOTEL sites 
monitoring both precipitation and SWE. 
The BRB is composed of forest (43%), shrub land 

(35%), herbaceous (21%), and other land covers (1%) 
based on analysis of the 2011 National Land Cover 
Database (NLCD; Homer et al. 2015). Each subbasin 
has its own dominant land cover with Mores mainly forest 
(62%), Twin Springs land cover similar to the basin 
average, and Featherville 53% forest and 24% shrub. 
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Vegetation maps used for modeling were aggregated from 
30-m NLCD classifications to a 100-m classification. 

b. iSnobal 

The physically based, distributed snowmelt model, 
iSnobal (Marks et al. 1999), is a topographic-grid-based 
energy and water balance model. The iSnobal model 
simulates the snowpack as two layers, with the active 
surface layer exchanging energy and mass with the 
atmosphere and the lower layer transferring energy 
and mass between the snow surface layer and soil. The 
snow temperature, density, and liquid water content 
are calculated for each layer. The iSnobal forcing data 
inputs are raster surfaces over a digital elevation model 
(DEM) of incoming thermal (longwave) radiation, air 
temperature, vapor pressure, wind speed, soil tempera

ture, net solar radiation, and precipitation (including 
precipitation temperature, phase, and percent snow). 
Given the forcing data inputs, the energy balance, snow 
temperature, depth, mass, and cold content (energy re
quired to bring the snowpack to 08C) are computed for 
each grid cell. Melt cannot occur until the temperature 
of the snow cover rises to 08C, under which conditions 
the cold content equals 0 J m22. Liquid water drainage 
from the snow does not occur until the liquid water 
holding capacity of the snow is exceeded. 
The BRB modeling was conducted within a 1500 by 

1500 pixel domain (Fig. 1) at 100-m resolution and at 
an hourly time step. This resolution allows for a grid 
size that captures topographically controlled snow-
melt processes but does not require an unreasonable 
computation time. A 100-m DEM was coarsened from 
the publicly available 10-m DEM to match the required 
modeling resolution. 

c. Weather Research and Forecasting Model 

The WRF Model (Skamarock et al. 2008) is  an atmo

spheric modeling system used in both research and opera
tions for a variety of applications (e.g., weather forecasting, 
seasonal forecasting, atmospheric chemistry and regional 
climate modeling). The code is open source with commu

nity development and support provided by the National 
Center for Atmospheric Research (NCAR). WRF is ap
plied at a range of scales from horizontal resolutions of less 
than 1 km for large-eddy simulations, to tens of kilometers 
for coarse resolution forecasts and climate simulations. The 
model has two dynamical cores one used primarily for 
operational applications, the Nonhydrostatic Mesoscale 
Model (NMM), and another, the Advanced Research 
WRF (WRF-ARW), which is geared toward research 
and was used to generate the dataset used for this study. 
The WRF-ARW model solves the governing equations 
of atmospheric dynamics and uses selected modularized 

FIG. 2. Nested domains used for the WRF Model simulation. 
Domains d01, d02, and d03 have horizontal grid resolutions of 9, 3, 
and 1 km, respectively. Topography is shown as resolved by the 
model within each domain. 

physics packages to account for processes such as cloud 
microphysics, shortwave and longwave radiation, and 
land surface processes. 
The WRF output used in this paper is from a single 

simulation generated using WRF version 3.5.1 over nested 
model domains (Fig. 2) in the interior Pacific Northwest 
region of the United States. The horizontal resolution of 
the model domains d01, d02, and d03 are 9, 3, and 1 km, 
respectively. The simulation extends from 1 October 2009 
through 1 June 2010 and uses initial and boundary atmo

spheric conditions from the North American Regional 
Reanalysis. Based upon Ikeda et al. (2010), the model con
figuration included the following physics parameterizations: 

d Community Noah land surface model (Chen and 
Dudhia 2001), 

d Thompson et al. (2008) microphysics scheme, 
d Mellor–Yamada–Janjić (MYJ) planetary boundary 
layer scheme (Janjić 2002), 

d Community Atmosphere Model (CAM) shortwave 
and longwave radiation schemes (Collins et al. 2004), 
and 

d Kain–Fritsch convective parameterization scheme 
(Kain 2004) on the outer domain only. 

3. Methods 

Three iSnobal model runs were performed at 100-m 
spatial resolution and at an hourly time step. The first 
run used only meteorological station measurements, 
serving as the control simulation. The second model run 
used bilinear interpolation to regrid WRF output to the 
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iSnobal domain. The third model run used bias-adjusted 
WRF air temperature and precipitation from stations 
in a larger area in south Idaho, then incorporated 
detrended interpolation of WRF outputs to the iSnobal 
BRB domain. 

a. Spatial distribution of station measurements 

Data from a total of 40 meteorological stations in and 
around the BRB were used as baseline data to derive 
distributed model inputs as a control model run (Fig. 1). 
Seven stations are operated by the Bureau of Land 
Management (BLM), nine are operated by the Boise 
office of the U.S. Bureau of Reclamation (USBR), 
seven are operated by the Idaho Transportation De

partment (ITD), fourteen are part of the SNOTEL 
network, and three are operated by the Sawtooth 
National Forest Avalanche Center (SNFAC). Due to 
multiple station operators, station instrumentation and 
configuration varied between meteorological stations. 
For this study, we used the Spatial Modeling for Re

sources Framework (SMRF; Havens et al. 2017) version 
0.5.3 (Havens et al. 2019b) to interpolate the point sta
tions measurements to the gridded modeling domain. 
In depth methodologies within SMRF can be found in 
Havens et al. (2017) and the configuration file for complete 
replication of the distributed forcing input is available 
(Havens et al. 2019a). Certain forcing parameters (air 
temperature, precipitation, and vapor pressure) used 
elevation-dependent detrended kriging (Garen et al. 
1994; Garen 1995), which has been successfully applied in 
other modeling studies (Susong et al. 1999; Garen and 
Marks 2005). Detrended kriging first removes the eleva
tion trend from the measurement data by calculating the 
least squares fit to the measured values as a function of 
elevation. The residuals are distributed to the gridded 
model domain using ordinary kriging with an assumed 
linear semivariogram. The elevation trend is then added 
back to the kriged residuals based on the gridcell elevation. 
Meteorological station measurements of air tempera

ture from 38 stations were distributed using detrended 
kriging. Air temperature typically has a negative trend 
with elevation and the detrended kriging was constrained 
to keep this negative trend. 
Dewpoint and vapor pressure rely on coincident mea

surements of air temperature and relative humidity, which 
were measured at 19 of the meteorological stations. At 
each of these stations, the vapor pressure was calculated 
using the measured air temperature and relative humidity 
based on Clausius–Clapeyron empirical relationship. 
The vapor pressure was then distributed using de
trended kriging with a negative elevation trend. From 
the distributed vapor pressure, the dewpoint temperature 
was calculated. 

Twenty-one stations measured precipitation, fourteen 
of which were SNOTEL stations. The measured pre
cipitation data were filtered to remove both high- and 
low-amplitude noise while ensuring that the accu
mulated precipitation was always increasing using the 
Automated Precipitation Correct Program (APCP; 
Nayak et al. 2008). The instantaneous precipitation for 
each station was calculated from the difference in ac
cumulated precipitation, then distributed at an hourly 
time step using detrended kriging and ensuring a posi
tive elevation trend. Undercatch correction was not 
performed due to limited wind data at the measurement 
sites. 
Snowmelt models are sensitive to the precipitation 

phase, as this can either build the snowpack or change 
the snowpack energy balance and potentially induce 
melt (Marks et al. 1998; Kormos et al. 2014). The pre
cipitation phase was determined from the precipitation 
temperature, set as the dewpoint temperature, which 
allows for a reliable estimate of precipitation phase, 
especially near the rain–snow transition elevation (Marks 
et al. 2013). From the precipitation temperature, the 
percent snow and snow density are estimated using 
procedures described by Susong et al. (1999). 
Fourteen meteorological stations measured wind 

speed and direction, with three at sheltered SNOTEL 
locations and the rest in more exposed locations along 
roadways or in large clearings. With the abundance of 
snowfall in the BRB, the Idaho Transportation De

partment and the Sawtooth National Forest Avalanche 
Center have installed three wind measurement stations 
on the exposed mountain peaks and have measured 
wind speeds in excess of 35 m s21. These wind stations 
provide a unique challenge when distributing wind 
speed using the methods developed by Winstral and 
Marks (2002) and Winstral et al. (2009). This distribution 
method uses the maximum upwind slope to parameterize 
how upwind terrain affects whether or not the pixel is 
determined to be either sheltered or exposed. The max

imum upwind slope parameter was calculated for a 30-m 
DEM and averaged up to the 100-m model DEM for 
72 wind directions. The exposed-peak stations required a 
special case to set the maximum upwind slope to the 
minimum calculated value to reduce the potential of 
artificially high wind speeds in the surrounding areas. 
Maximum and minimum wind speeds were set at 0.47 
and 35m s21, respectively, to ensure turbulent transfer 
calculation stability. 
Estimating solar and thermal radiation over the BRB 

requires multiple steps, all of which were performed 
within SMRF. Both solar and thermal radiation require 
cloud factor calculated as the measured solar radiation 
over the clear sky radiation. Incoming solar radiation 
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measured at 7 sites, 3 at BLM stations, 2 at USBR sta
tions, and 2 at ITD stations, was used to estimate the 
cloud factor. Measured solar radiation was integrated 
over an entire day to calculate a daily cloud factor. The 
cloud factor at each station was distributed to the model 
domain using inverse distance weighting. 
The soil temperature was set to a constant 22.58C for 

the entire simulation. This ensured that as the snowpack 
began to form, the ground heat flux did not overcome 
the energy balance and melt the snowpack prematurely. 
Once the snowpack was deep enough, the ground heat 
flux term was small, providing a limited contribution to 
the calculation of the energy balance. 

b. Simple interpolation of WRF output 

Each WRF output variable was regridded using bilinear 
interpolation. The variables were 2-m air temperature, 
2-m relative humidity, 10-m wind speed, downwelling 
longwave radiation at the surface, precipitation accu
mulated, and cloud fraction. 
Dewpoint temperature and vapor pressure were cal

culated from the interpolated air temperature and rel
ative humidity using the Clausius–Clapeyron empirical 
relationship. 
The 10-m wind speed was not adjusted for sheltering 

due to terrain as with the station measurements. Down

scaling wind from a gridded output over complex to
pography is not a simple solution and will require more 
research to analyze the best methods. 
The solar radiation output from WRF included effects 

from clouds but was not corrected for terrain shading or 
split into beam and diffuse radiation. To compensate for 
this, we followed the same methods as the station mea

surements by first calculating the clear sky radiation. We 
then estimated the cloud fraction (CLDFRA) from 
WRF outputs. CLDFRA is a four dimensional variable 
(time, latitude, longitude, atmospheric layer), and the 
distributed cloud cover at the surface was calculated as 
the average cloud fraction for all atmospheric layers. 
This method is a crude approximation and further studies 
will investigate the proper method to account for the 
cloud’s effect on radiation. The final step adjusted for 
vegetation and corrected the beam and diffuse radiation 
for the canopy and cloud factor. 
Downwelling longwave radiation from WRF was used 

as cloud corrected thermal radiation. Further adjustment 
for topographic and canopy effects were performed in the 
same manner as the station measurements. 
The albedo was estimated by keeping track of the time 

since last storm for each pixel, using the same method

ology as for the station measurements. However, the 
precipitation output from WRF has much finer scale 
spatial patterns than can be achieved from detrended 

kriging, making the albedo decay more prevalent and 
variable than those calculated from station measurements. 

c. Bias-adjusted WRF output 

Two additional modifications were made to improve 
the WRF outputs for the iSnobal application. First, to 
further improve the input data distribution, relative to 
the bilinear technique, we borrowed from the concept 
of detrended kriging. Each WRF cell was used as if it 
were a measurement station (i.e., a virtual WRF station) 
that has a latitude, longitude, and elevation. Stations 
that were within the BRB boundary were used to get the 
elevational trend in air temperature. The trend was 
subtracted out from all the WRF stations to get the 
residuals, which were distributed to the iSnobal do
main using bilinear interpolation. With the residuals 
on the iSnobal domain, the trend could be added back 
in, producing an elevation-dependent air temperature 
within the iSnobal modeling domain. 
The second modification was a simple bias correction 

function  applied to  each WRF  grid  cell  based on the  
particular cells’ value of temperature and precipitation. 
Known biases exist in WRF for air temperature when 
used with the Noah land surface model (Niu et al. 2011; 
Yang et al. 2011; Chen et al. 2014b). The following 
sections attempt to apply simple bias corrections to air 
temperature and precipitation in order to provide more 
robust inputs to iSnobal. These bias corrections were not 
meant to address the physics behind WRF but rather 
to solely adjust WRF output. The most recent WRF 
version now includes the Noah-MP land surface model 
which may reduce the temperature bias. 
Thirty-nine stations were used in the WRF 1-km inner 

modeling domain to compare air temperature and pre
cipitation (Fig. 3). Additional stations were utilized from 
outside of the BRB from the much larger WRF modeling 
domain. Seven stations were from the Reynolds Creek 
Experimental Watershed (RCEW) in SW Idaho main

tained by the USDA-ARS. The remaining 32 were 
SNOTEL stations within the modeling domain. The 
closest WRF pixel to the measurement station was 
used in the comparisons. 

1) AIR TEMPERATURE 

To address the temperature bias, the hourly WRF air 
temperature was compared to the hourly measured air 
temperature (Fig. 4). A nonlinear cold bias was observed 
when the air temperature was below about 108C with a  
warm bias above 108C. The histogram shows most of 
the values centered between 2108 and 158C. The large 
range in measurements can be attributed to two main 
factors. The first, comparing hourly measurements di
rectly to hourly WRF output, where a time shift of even 
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FIG. 3. WRF inner modeling domain d03 in blue with the BRB model domain in red. Stations 
used for bias analysis from RCEW and SNOTEL shown. 

an hour would cause differences between modeled and 
measured air temperature. Second, the WRF output did 
not have the diurnal range in maximum and minimum 
temperatures that were measured at station locations as 
previously documented by Wayand et al. (2013). 
A goodness-of-fit to the desired line (1:1 line), in red, 

showed a R2 value of 0.73. To adjust the air tempera

tures, the offset of the measured bias to the desired line 
was calculated for the range in WRF air temperatures. 
This provided a continuous bias correction offset func
tion to apply at each WRF air temperature. Once the 
correction was applied, the goodness of fit to the desired 
line improved with a R2 of 0.79. 
To address how well the bias correction did, we com

pared the daily minimum, average, and maximum air tem

peratures (Fig. 5). The differences between measured and 
modeled minimum and maximum air temperature were 
more apparent, with minimum temperatures showing a 

nonlinear bias about 08C (R2 of 0.74), the average 
temperature had a similar bias as the hourly mea

surements (R2 of 0.80), and the maximum had a cold 
bias at all temperatures (R2 of 0.63). After the bias 
correction was applied, the minimum temperature 
cold bias was not as strong (R2 of 0.73), the average 
temperature improved (R2 of 0.88), and the maximum 
still had a cold bias, but the nonlinearity was removed 
(R2 of 0.78). 

2) DEWPOINT TEMPERATURE AND VAPOR
 

PRESSURE
 

Applying a bias correction to temperature will have 
an effect on the modeled relative humidity. To com

bat this potential change, the original WRF modeled 
air temperature and relative humidity were used to 
calculate the dewpoint temperature at each WRF 
grid cell. 

FIG. 4. Hourly measured air temperature vs hourly WRF air temperature output. A cold bias exists at lower 
temperatures. The wide spread in hourly measurements was due to greater temperature fluctuations at station 
locations or differences in model timing. Original trend in black with bias corrected in red. 
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FIG. 5. Daily minimum, average, and maximum air temperatures before correction (black) and after bias correction (red). 

The distribution of the dewpoint temperature was 
performed in a similar manner to the air temperature by 
assuming each WRF cell is a virtual meteorological 
station, calculating and removing the elevation trend, 
interpolating the residuals and finally retrending to the 
iSnobal gridded domain. The final step ensures that the 
dewpoint temperature cannot exceed the distributed 
air temperature. Vapor pressure was then calculated 
from the distributed dewpoint temperature. 

3) PRECIPITATION 

The measured accumulated precipitation was cal
culated for all 39 measurement sites up to the WRF 
Model end time. The modeled accumulation from 
WRF compared to measured accumulation showed a 
striking linear trend (Fig. 6) that was biased to un
derestimated modeled accumulation with a poor fit to 
the desired line (R2 of 0.43). A bias correction ratio 
was calculated as an enhancement factor between the 
original linear trend to the desired line as a function of 
the modeled accumulated precipitation. Applying the 
enhancement factor improved the goodness of fit to an 
R2 value of 0.82. The enhancement factor was applied 
based on a cell’s modeled accumulation to get a dis
tributed enhancement factor. The distributed enhance
ment factor was applied to the hourly precipitation prior 
to downscaling to the iSnobal domain. Similar to the air 
temperature and dewpoint temperature, the hourly pre
cipitation was detrended, interpolated, and retrended 
based on WRF cells in the BRB boundary. The 
bias corrected precipitation and dewpoint tempera

ture changed the precipitation phase as well. 

4) OTHERS 

Wind, thermal radiation, and soil temperature were all 
calculated in the same manner as the simple bilinear in
terpolation. Albedo was calculated using the detrended 

precipitation which changed the calculation of net solar 
radiation. 

FIG. 6. Measured accumulated precipitation vs modeled accu
mulation shows the underestimation of precipitation from WRF 
(blue) and after simple ratio based on accumulation (orange). 

4. Results 

The objectives for the study were to use WRF out
puts as inputs to iSnobal and compare with iSnobal 
simulations from measured meteorological condi
tions. Two iSnobal simulations were performed with 
simple interpolation of WRF output and a more 
complex, elevation-dependent interpolation with bias 
adjustment of WRF output. Comparison of model re
sults was feasible due to the extensive and relatively 
dense measurement network in the BRB, as most 
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watersheds of this size have a sparse and incomplete 
measurement network. 

FIG. 7. Simple water balance showing that WRF bilinear did not have enough precipitation 
to account for streamflow and ET. Bias correcting the WRF precipitation falls more in line 
with station measurements and will account for streamflow and ET. Values in legend are the 
difference of the last value and the maximum accumulated streamflow. 

a. Precipitation bias correction 

A simple water balance was used to ensure that enough 
precipitation volume was distributed to account for basin 
outflow and evapotranspiration (ET) demands. ET de
mands for various canopy cover can be estimated using 
eddy covariance towers. At nearby RCEW, ET estimates 
were 300 mm yr21 for sagebrush and 700 mm yr21 for aspen 
(Flerchinger et al. 2010). ET estimates from the semiarid 
southwestern United States (Ha et al. 2015) were between 
415 and 510 mm yr21 and between 400 and 800 mm yr21 in 
the Sierra Nevada in California (Goulden et al. 2012) for  
ponderosa pine, a major vegetation species in the Boise 
River Basin. A rough estimate of ET based on the previous 
ET values and percent vegetation cover for each basin 
is between 400 and 490 mm yr21 for Mores, from 360 to 

425 mm yr21 for Twin Springs, and between 360 and 
440 mm yr21 for Featherville. Mores subbasin has an ad
ditional complexity due to a large population drawing 

21up to 7.6 m3 s from surface water for residential and ir
rigation water rights (Idaho Department of Water Re

sources, https://research.idwr.idaho.gov/apps/Hydrologic/ 
ccounting/). The water rights have the potential to draw 
up to 230mmyr21 for the entire year, however the actual 
water used is unknown and most likely lower. 
Comparing the distributed accumulated precipitation 

and measured streamflows, normalized to basin area, 
provides a rough estimate of the available water left 
for ET (Fig. 7). Based on the ET estimates above, the 
distributed precipitation from station measurements 
provided enough water volume to account for stream-

flow and ET in all the basins. Even though the WRF runs 
stopped prior to the end of the year, there was only one 
significant storm during the summer, potentially adding 

https://research.idwr.idaho.gov/apps/Hydrologic


856 JOURNAL  OF  HYDROMETEOROLOGY  VOLUME 20 

up to an additional 170 mm to the distributed pre
cipitation. Even with this addition, the WRF pre
cipitation would not have enough precipitation to 
account for both streamflow and ET, indicating that 
the original WRF output did not produce enough 
precipitation. However, the simple ratio correction 
created enough precipitation to account for ET and 
streamflow. 
The distributed accumulated precipitation shows a 

striking difference between simple WRF interpolation 
and bias adjusted WRF (Fig. 8). Large differences exist 
everywhere when comparing measurements to simple 
interpolation, with up to 600 mm of difference in the 
middle of the basin (Fig. 8a). After bias adjusting the 
precipitation, WRF had a much stronger elevation 
gradient, placing a higher concentration of precipita
tion at higher elevations (Fig. 8b). This differs from 
the measurement kriging, which tends to smooth the 

measurements over the domain and does not have as 
strong of an elevation gradient. 

FIG. 8. Distributed accumulated precipitation compared. Measurement kriging tended to smooth the station measurements, whereas
 
WRF had a larger elevation gradient.
 

b. SWE at a point 

Fourteen SNOTEL stations exist in the Boise River 
Basin with which to compare model results. However, 
two aspects must be taken into consideration when 
comparing a spatial model to point measurements, 
scale differences and topography. A large-scale dif
ference exists between a SNOTEL pillow (7m2) that  
is essentially a point measurement and the 100-m mod

eling pixel (10 000 m2). While there are large differ
ences in scale making direct comparison difficult, 
the importance of the comparison was to ensure that 
the proper trends in SWE accumulation and melt 
were captured. In addition to the scale differences, 
SNOTEL sites are located in sheltered flat areas. 
However, the underlying DEM of the model will likely 
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not be representative and will have some slope and as
pect to the pixel. 
The differences between scale and topography can be 

addressed by not only looking at the particular pixel that 
the SNOTEL site occupies, but also looking at those 
pixels directly adjacent. Looking at the pixels adjacent to 
the site encompasses a 300 m 3 300 m area and the local 
topography becomes apparent. Figure 9 compares 9 out 
of the 14 sites that had reliable SWE measurements. The 
model result at the pixel location is represented by a solid 
line with the adjacent pixels as dashed lines. 

FIG. 9. SWE for station measurements performed well at some sites but not at others. WRF bilinear underestimated precipitation 
at all sites. WRF bias adjusted performed better but still underpredicted at some. Bogus basin either has an issue with precipitation 
undercatch or the relative humidity sensor leading to higher dewpoint temperatures and more rain. 

The model results with stations performed well 
at some sites but not at others (Table 1). The topography 

differences are quite apparent with Jackson Peak hav
ing little variation due to the relatively flat topogra
phy and significant tree cover. Other sites had a 
large variation in SWE, for example Banner Summit, 
where an adjacent pixel matches more closely to the 
SNOTEL measurements. The model results at Bogus 
basin were extremely low due to either an under 
catch of precipitation, low relative humidity mea

surement which will affect the precipitation phase, or 
the site being extremely sheltered next to a ski run. 
The Nash–Sutcliffe efficiency (Nash and Sutcliffe 
1970) varies from 0.5 to 0.93 with an average of 
0.76. The average root-mean-square error (RMSE) is 
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4.5 mm and an average mean squared error (MSE) of 
48 mm. 
The underestimation of precipitation is quite evident 

in the simple interpolation WRF Model results (Fig. 9). 
The modeled SWE is underestimated at all sites, with up 
to 400 mm of difference between measured and modeled 
SWE. The Nash–Sutcliffe efficiency varies from 0.18 
to 0.65 with an average of 0.42. The average RMSE is 
10.5 mm and an average MSE of 128 mm. 
After bias correcting and detrending the precipitation 

and air temperature, the WRF bias adjusted model re
sults perform much better. The WRF bias adjusted re
sults were closer to the SNOTEL measurements but 
some sites were still underestimated. The Nash–Sutcliffe 
efficiency varies from 0.24 to 0.87 with an average of 0.65. 
The average RMSE is 6.5 mm and the average MSE is 
73 mm. The WRF bias correction outperforms the WRF 
bilinear and is close to the station measurements. 

TABLE 1. RMSE, MSE, and NSE for each SNOTEL site. Average is the average for all sites and all nine pixels. SM 5 station mea

surements, WB 5 WRF bilinear, and WC 5 WRF bias corrected. 

RMSE MSE NSE 

Station SM WB WC SM WB WC SM WB WC 

Atlanta Summit 2.0 10.7 5.1 17 128 51 0.93 0.50 0.80 
Banner Summit 2.8 19.5 19.1 30 220 204 0.89 0.18 0.24 
Bogus Basin 9.3 9.5 5.5 112 117 66 0.50 0.48 0.71 
Cozy Cove 1.9 5.8 4.2 21 62 43 0.81 0.45 0.62 
Dollarhide Summit 5.2 9.6 5.0 56 127 70 0.71 0.35 0.64 
Galena 2.1 5.4 4.8 21 71 60 0.85 0.50 0.58 
Galena Summit 8.2 6.7 2.5 88 86 27 0.52 0.53 0.85 
Jackson Peak 5.3 11.1 7.8 59 139 94 0.77 0.44 0.63 
Mores Creek Summit 4.4 7.8 2.7 36 100 33 0.86 0.62 0.87 
Prairie 2.0 1.8 2.7 19 20 23 0.67 0.65 0.61 
Trinity Mountain 6.4 15.3 3.5 63 200 45 0.82 0.43 0.87 
Vienna Mine 3.5 19.1 10.5 43 231 116 0.86 0.24 0.62 
Average 4.5 10.5 6.5 48 128 73 0.76 0.42 0.65 

c. Snow-covered area 

The snow-covered area (SCA) for the Boise River 
Basin and each sub basin were calculated for the station 
measurements, simple interpolation, and bias corrected 
WRF. The SCA from the MODIS product MODSCAG 
(Painter et al. 2009) was obtained for scenes that had less 
than 10% cloud cover and mainly occurred during 
the spring. Comparing the model runs to MODSCAG 
(Fig. 10) show that the snow cover modeled with station 
measurements contain snow in more pixels due to in
terpolating point measurements to the model domain. 
The simple interpolation of WRF outputs showed the 
closest to MODSCAG SCA and is attributed to the 
underestimation of precipitation. The bias corrected 
WRF outputs have a lower SCA than station mea

surements and are close to the MODSCAG SCA for 

all subbasins. The results show that the WRF outputs 
are providing a different spatial coherency than can be 
estimated from station interpolation. 

5. Discussion and conclusions 

The results show that WRF output could be used to 
provide input to iSnobal in lieu of meteorological station 
measurements and could replicate results in a large, 
well instrumented basin. WRF outputs provide spatially 
distributed forcing data at a much finer scale that cannot 
be replicated with geostatistical methods to interpolate 
measured meteorological data in a large basin such as 
the BRB. The ability to create all the necessary forcing 
inputs to iSnobal makes using WRF outputs enticing, 
especially where sparse measurement networks exist 
or have unreliable data. In some sense, regional weather 
and climate models like WRF are platforms for inter
polating large-scale atmospheric motions in accordance 
with the physics and thermodynamics as they are 
represented within these models to much finer spatial 
resolutions. However, caution must be used and the 
WRF outputs should be carefully checked to ensure 
that the model outputs are realistic as compared with 
meteorological station measurements. Without correct
ing for bias, the modeled snowpack was underestimated 
at all SNOTEL locations, mainly due to the underesti
mation of precipitation, and produced larger errors than 
using measured station data. After applying simple bias 
corrections to the air temperature and precipitation, 
the modeled snowpack performed almost as well as 
the measured station data at SNOTEL locations. The 
NSE and RMSE show that using WRF outputs as inputs 
can simulate SWE almost as well as with meteorological 
measurements. The bias correction however, will most 
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likely not be applicable to other WRF simulations from 
the complicated uncertainty in the model outputs which 
may vary between seasons, simulations, space, and 
model configuration. Therefore, each model run must 
be examined independently and prior to use, to en
sure that WRF outputs are adequate as inputs for 
snowmelt modeling. To adequately evaluate WRF 
outputs, there must be enough station meteorological 
measurements to capture the measurement gradient, 
which can be difficult in regions with sparse measure

ments. WRF simulations that span a longer time frame 
(i.e., multiple years) will need a more sophisticated 
bias adjustment to address interannual variability 
and potential climate change effects. 

FIG. 10. Comparison of SCA between model runs. Station measurements show the highest SCA during the spring. 

In applying techniques to regions where the sparse
ness of surface observations precludes the bias correc
tion technique used here, it may be necessary to rely on 
ancillary sources of information to correct hydromete

orological fields that are then used as input to hydrologic 
models. Because  WRF is  also associated with a land sur

face model (Noah, in this case), a number of land surface 
variables influenced by precipitation can be compared to 
observational data and used to infer bias in the associated 
precipitation. Two variables, in particular, that may be of 
interest in correcting biases in WRF precipitation include 
soil moisture and runoff derived from the land surface 

model and for which remote sensing (soil moisture) and 
surface observations (discharge) may be available. 
With the increased spatial information provided, new 

methods were developed to handle downscaling from 
the WRF domain to the iSnobal domain. The WRF grid 
cell locations were taken as if they were virtual meteo

rological station measurements, with a latitude, longi
tude, and elevation, in order to take advantage of 
detrended interpolation for WRF outputs that have 
some elevation dependence, like air temperature, 
vapor pressure, and precipitation. Additionally, the 
precipitation distribution from WRF was highly event 
dependent and can spatially resolve precipitation at a 
much finer scale. Because a storm could affect only part 
of the basin, the day since last storm was tracked for 
each pixel in the iSnobal domain. This produced a dis
tributed albedo estimate and each pixel could decay at 
a different rate. 
The methods described in this study to downscale 

output from meso- or regional-scale atmospheric models 
were developed using a reanalysis dataset but can be 
applied for other mesoscale model outputs. Based on 
this work, USDA-ARS worked to implement the op
erational National Weather Service model High Reso

lution Rapid Refresh (HRRR; Benjamin et al. 2016) as  
input to iSnobal in near real time in support of water 
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supply forecasts in California. Additionally, USDA-ARS 
provided near-real-time forecasts for the USBR and 
NRCS in the  Boise River  Basin (Havens et al. 2015). 
For water year 2016, the methods developed in the 
study were applied to a short-term 72-h forecast to 
help quantify how the forecasted precipitation and 
temperature will affect snow accumulation or melt to 
provide additional information, from physically based 
models, to operational water managers. 
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