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Abstract: In this work, we build and test three memristor-based true random number generator
(TRNG) circuits: two previously presented in the literature and one which is our own design. The
functionality of each circuit is assessed using the National Institute of Standards and Technology
(NIST) Statistical Test Suite (STS). The TRNG circuits were built using commercially available off-the-
shelf parts, including the memristor. The results of this work confirm the usefulness of memristors
for successful implementation of TRNG circuits, as well as the ease with which a TRNG can be built
using simple circuit designs and off-the-shelf breadboard circuit components.

Keywords: true random number generator; memristor; entropy; multivibrator; oscillator

1. Introduction

Random numbers have a variety of uses in modern computing and information se-
curity, ranging from simple decision making in a video game, to encryption of secure
documents and keeping banking transactions secure [1–6]. The security of data and com-
munication channels is especially important today with the increase in connected devices
throughout the world. Random number generators (RNGs) continue to be essential for
keeping devices and communication channels secure.

RNGs fall in to two main types: pseudo random number generators (PRNGs) and
true random number generators (TRNGs) [7]. PRNGs are often implemented as a linear
feedback shift register (LFSR) or a linear congruential generator (LCG) [8] among others.
One thing that separates PRNGs from TRNGs is the fact that all PRNGs are deterministic.
That is, if the current state of the PRNG is known, then the future output of the PRNG
can be predicted. A primary use of PRNGs is often scientific research and simulations
(e.g., Monte Carlo) [6,9].

TRNGs do not generate random numbers based on a formula, but instead capture
entropy from the environment to generate random numbers within hardware. Unlike
PRNGs, the output from a TRNG is not deterministic and can never be guessed by knowing
the previous outputs or current state of the generator. This is the primary reason that TRNGs
are often used for securing data and communications channels.

TRNGs can be implemented in many ways. Examples of TRNGs include measuring
the time between clicks on a Geiger counter [10], measuring frequencies or latencies of
asynchronous events on a PC [11,12] and circuits comprised of oscillators where entropy is
captured as jitter [3–5,7,13–16]. Even modern CPUs can have dedicated hardware on the
application specific integrated circuit (ASIC) to capture entropy [17].

A recent approach in TRNG circuits has been to use a memristor device [18–20] to
capture entropy for TRNG circuit designs [1,2,5,6,15,21–23]. Many of these designs use the
memristors in a circuit that oscillates (e.g., a ring oscillator) or is driven by a pulse generator.
In many cases, the memristor is simply used in place of a resistor in a more traditional
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oscillator circuit. Memristors offer a great platform for the simulation of stochastic events
due to the nature of the filamentary memristor to be constituted of constantly rearranging
atoms [20].

In this work, we implement two TRNG circuits recently presented in the literature [1,2]
using commercially available off-the-shelf memristors [24] and parts [25]. We then put
these circuits to the tests established by the National Institute of Standards and Technology
(NIST) Statistical Test Suite (STS), which is used to assess the randomness of TRNGs [26].
Last, we build a memristor-based TRNG circuit of our own design and put it through
the same tests in order to demonstrate the ease of implementation of memristor-based
TRNGs and their accessibility to anyone using commercially available components. While
there are other statistical test suites available to test the randomness of RNGs, the NIST
STS had the most widespread use in our literature survey, having been used to assess
RNGs in [1,2,5–8,14–16]. A brief description of each test in the NIST STS can be found in
Appendix A.

2. Materials and Methods
2.1. Electrical Components and Measurements

Commercially available off-the-shelf parts were used to implement each of the cir-
cuits and the electrical tests. The memristor used was a discrete Tungsten Self Directed
Channel (W-SDC) 16-pin dual in-line package (DIP) consisting of 8 memristor devices
per package [24] The other circuit components were purchased at DigiKey [25] and the
part numbers are listed in the schematic diagrams. All circuits were implemented on
breadboards; however, the TRNG developed for this work was also implemented on a
printed circuit board (PCB). The W-SDC memristor operates using a self-directed channel
mechanism as described for the basic SDC memristor [18], except that the device structure
is designed to provide a more continuous resistance change and operate using a mixture
of phase-change and SDC mechanisms by including a thin layer of cosputtered W-Ge2Se3
between layers of Ge2Se3.

Electrical measurements were performed using a Digilent Analog Discovery 2 [27]
with a breadboard breakout card which connected the AD2 to a breadboard. The AD2
was used to supply power to the circuit, generate the pulse train input and clock signals
and collect the data using Digilent Waveforms software provided with the AD2. A stream
of single bits was sampled on the rising or falling edge of the input data clock. One bit
(or sample) is generated serially per clock cycle. Each bit represents the output of the
TRNG for a single clock cycle. The bits were concatenated serially together into a CSV
file and post-processed using a Perl script to convert them to a binary format. The Perl
script used is provided in the supplemental material. Any additional details for electrical
measurements specific to each circuit are described in the circuit description sections under
2.2 Circuits Tested. A total of 100 bitstreams each of length 1 million bits were tested for
randomness for each circuit. The final binary bitstreams are a series of ones and zeroes that
is serially written to a file by the Perl script that processes the CSV files. The Perl script
used is included in the Supplementary Material file.

Von Neumann debiasing [9] was used when post-processing data from the RNG
circuits and is included in the Perl script generating the CSV files. Whitening (also known
as debiasing) is a method of removing a bias in the output bitstream, for example if there
are more zeroes than ones. Von Neumann or other types of debiasing algorithms are often
used to debias the output of true random number generators [5,7,10,16,17]. It was found
to be necessary to apply debiasing to the output of all three RNG circuits tested due to
the bias in the output data from the TRNGs. Von Neumann’s debiasing scheme is simple
to implement in either hardware or software. It provides a simple method of removing
bias from a stream of bits without impacting the entropy of the bitstream. Debiasing is
a technique that is commonly used in TRNGs. To describe this process, we use Figure 1
which shows a biased input bitstream that is debiased by Von Neumann whitening. Bits in
the input bitstream are grouped into pairs. If the two bits are the same, then both bits are
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discarded. If the two bits are different, then only the first bit is kept. The resulting bitstream
is the debiased output. In Figure 1, below, the first pair of binary bits are one, one. The bits
are the same, so the sample is discarded. The next pair of bits, zero, one, are different. The
first bit (zero) is kept and added to the final bitstream. This process is repeated until all
pairs in the input bitstream have been processed.
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Figure 1. Example of Von Neumann whitening.

2.2. Circuits Tested

Two previously described TRNGs using memristors were implemented in hardware
with the W-SDC memristor device: Jiang’s [1] and Rai’s [2]. A third TRNG circuit tested was
our own design, referred to as Student TRNG (S-TRNG). These circuits are shown in Figure 2.

2.3. Jiang’s TRNG

Jiang’s circuit, Figure 2a, was physically implemented in their reported work [1] using
an Ag:SiO2-based diffusive memristor device. In Jiang’s design a pulse train is sent through
a memristor that is placed in series with a resistor. Entropy is captured in the memristor
device as a variability in the time it takes for the device to transition from a high resistance
state to a low resistance state.
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Figure 2. Circuits tested. (a) Jiang’s circuit modified for testing [1]; (b) Rai’s circuit adapted for
testing [2]; (c) Our design, student-true random number generator (S-TRNG).

2.3.1. Jiang’s Circuit Operation

The operation of Jiang’s TRNG is described in the timing diagram chart in Figure 3.
When the output of the memristor-resistor circuit (Mem Out) is low (the memristor is
a high resistance), below Vref, the comparator output (Clk_en_) is high. When Clk_en_
signal is high the counter is disabled. In the opposite case when the memristor is in a low
resistance state, the output of the circuit is higher than Vref and the Clk_en_ signal is low
which enables the counter. This is a slight modification to Jiang’s original circuit which
used an AND gate at the input of the counter to enable or disable the clock signal instead
of the counter’s enable pin. The two circuits are functionally equivalent because the AND
gate acts as an enable on the clock signal. If the enable input is a 0, then the output of the
AND gate suppresses the clock and is always 0. If the enable input is a 1 then the output of
the AND gate matches the input of the clock pin.
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Figure 3. Timing diagram explanation of Jiang’s true random number generator circuit.

The time window region denoted by A in Figure 3 shows the time during which the
random bit from the previous clock is sampled by the Digilent AD2. Line B denotes the
rising edge of the pulse train. The counter is cleared during this time by a short pulse on the
clear input. This is the time that the memristor will be programmed to a lower resistance
state. At the time denoted by line C, the memristor changes from a high resistance to a low
resistance. When the Mem Out voltage rises above Vref the output of the comparator goes
low. This enables the Clk_en_ on the counter, allowing it to count. At D, the pulse train
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voltage goes low, causing the Mem Out voltage to drop below Vref and disable the counter,
holding the output value of the MSB. The random bit generated in this case is held at “1”.
The memristor will also be reset from a high to low state during this time. At E the cycle
restarts. At F the transition of the memristor from high to low resistance occurs earlier than
the previous cycle. The Clk_en_ signal goes high at G and the counter is disabled, this time
holding its output at a “0” because a different number of clock cycles were counted than in
the previous pulse train window.

2.3.2. Breadboard Implementation and Measurements of Jiang’s Circuit

We implemented Jiang’s circuit on a breadboard using a W-SDC memristor, which is a
different memristor technology from that used by Jiang. A 4 kHz pulse train frequency
and a 50 MHz clock frequency (both generated by the Digilent AD2 Wavegen and pattern
functions) were used during testing. Vref was generated using a potentiometer between
the Digilent AD2 V+ power supply and V- power supply. This allowed the Vref voltage
to be easily adjusted for varying pulse input voltage amplitudes. The least significant
bit (LSB) output from the counter was sampled by a digital input on the AD2. Data was
saved using a 20 kHz sample rate. A 22 kΩ resistor was used in series with the W-SDC
memristor device, as seen in Figure 2a. The final binary output was post-processed using
Von Neumann debiasing [9] and analyzed using the NIST STS application [28]. 100 samples
of 1 million bits were tested. Elapsed time to collect these samples was approximately 40 h.
Figure 4 shows an image of the breadboard implementation of Jiang’s TRNG circuit.
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2.4. Rai’s TRNG

The second TRNG implemented in this paper, proposed by Rai et al., is a design that
takes inspiration from a common dual inverter oscillator TRNG design [2]. Rai’s design
has not previously been physically implemented prior to our work herein. Instead, the
design was simulated by Rai using the TiO2 memristor model described in [29]. Entropy is
captured as the time that it takes for a conductive channel to form in the memristor device,
or the time that it takes the device to transition from high resistance to low resistance.

2.4.1. Rai’s Circuit Operation

Rai’s TRNG circuit consists of two inverter delay paths, with a memristor in series
with the inverter devices in each delay path [2]. The outputs of the two inverter strings
are both sampled and the output of the TRNG is based on which output switches first. If
the Dfirst output switches first the output is 0. If the Dsecond output switches first, then the
output is a 1.

In Rai’s circuit simulation a latch was used. In our circuit implementation (Figure 2b)
we used a comparator to act as the latch since it has a latching feature. We implemented
the circuit with one delay path connected to the input of the comparator and the other
delay path connected to the latch input on the comparator. If the first delay path is faster,
the output of the comparator is driven high before the output is latched by the second
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delay path. If the second delay path is faster, the output of the comparator is latched at a
low output.

2.4.2. Breadboard Implementation and Measurements of Rai’s Circuit

The breadboarded circuit for Rai’s TRNG design is shown in Figure 5. TI CD40106BE
inverter chips were used along with the W-based SDC memristors to create the inverter-
memristor delay path chains. The circuit input was driven by a square wave clock generated
from the Digilent AD2 Wavegen. A frequency of 2 kHz was used for the pulse train clock
input. An Analog Devices AD8561 comparator was used to capture which device switched
first by using the latch input on the comparator. Vref was generated by an analog output
from the Digilent AD2. 100 samples of 1 million bits were tested. The lapsed time to collect
this data was approximately 80 h.
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Figure 5. Breadboard implementation of Rai’s true random number generator circuit. The circuit is
connected to the Digilent AD2 on the right.

2.5. S-TRNG

A new memristor-based TNRG circuit, referred to as the student TRNG, or S-TRNG,
was created, implemented and characterized for comparison to the previous two circuits.
The circuit diagram for this design is shown in Figure 2c. The core concept of the S-TRNG
circuit is similar to many other TRNGs [3–5,7,13–16]. The circuit consists of two oscillators.
One oscillator runs at a fast speed and the other oscillator runs at a slow speed. The slow
oscillator acts as a clock to sample data from the fast oscillator. Entropy is captured in
the slow oscillator as jitter or variability in the period of the oscillator. In the case of the
S-TRNG two slow oscillators are used and the outputs are XOR’d together to increase the
frequency of the resulting slow clock. This allowed us to collect data at a faster rate.

2.5.1. S-TRNG Circuit Operation

The S-TRNG circuit consists of two memristor multivibrator oscillators feeding into an
XOR gate. The output of the XOR gate feeds into the latch input of a comparator. This acts
as a slow oscillator that samples the output of a much faster oscillator. A third multivibrator
circuit with a resistor (not memristor) is used to generate the fast oscillations. The output of
this circuit is fed into the input of the comparator. In this way, the fast oscillator is sampled
by the clock generated by the slow oscillators.

The multivibrator circuit consists of an op-amp with a voltage divider from the output
of the op-amp connected to the noninverting input of the op-amp. A memristor that
charges a capacitor is connected form the output to the inverting input of the op-amp. The
output of the op-amp oscillates between the positive supply voltage (VCC) and the negative
supply voltage (−VCC). When the output is at VCC, the voltage at the noninverting input
is 1/2 VCC due to the voltage divider. The voltage at the inverting input will be charged
from −1/2 VCC to 1/2 VCC. Once he inverting input reaches a voltage of 1/2VCC (the
same voltage at the noninverting input), the output of the op-amp will switch to −VCC.
The voltage at the noninverting input will switch to −1/2 VCC and the capacitor will
begin discharging from a voltage of 1/2 VCC to a voltage of −1/2 VCC. Once a voltage of
−1/2 VCC is reached at the inverting input, the cycle will start over again.
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The oscillation period of the multivibrator circuit is the total time it takes to charge
the capacitor from −1/2 VCC to 1/2 VCC and then discharge back down to −1/2 VCC.
The oscillation period of the multivibrator circuit can be derived for a generic memristor
device with a high resistance of RH, a low resistance of RL and a time to switch of RLH
by examining two time windows of operation. The first time window is the charging of
the capacitor while the memristor is in a low resistance state until it switches to a high
resistance state. This is modelled by Equation (1) to calculates VLH, the voltage at which
the memristor device switches from a high resistance to low resistance state.

VLH = VCC − 1.5VCCe−
TLH
RLC (1)

The second time window is shown in Equation (2) calculates THLC as the time from
when the device switches low resistance to high resistance state until the capacitor is
fully charged.

TLHC = −RHC ln (
1
2

VCC
VCC − VLH

) (2)

Equation (3) is the sum of the time to switch from high resistance to low resistance
and the remaining time to charge the capacitor.

TC = TLH + TLHC (3)

Equations (1) and (2) can be simply flipped to model the discharge of the capacitor.
Equation (3) is easily adapted for the discharge portion of the multivibrator output cycle to
get Equation (4).

TD = THL + THLD (4)

Equation (5) is simply the sum of Equations (3) and (4) and gives the period of one
oscillation of the multivibrator. Equation (5) shows the time of a single oscillation period of
the multivibrator with a memristor.

TOSC = TC + TD = TLH + TLHC + THL + THLD (5)

As the switching delay of the memristor changes with each cycle of the memristor in
the multivibrator circuit, entropy is captured by the TRNG as a random stream of bits. It
must be noted that it is essential to choose a capacitor value that is large enough such that
it takes longer to charge or discharge the capacitor than it does for the memristor to switch
from high resistance state to low resistance state or vice versa.

Figure 6 show histograms of the variability in a measurement of the clock period of the
multivibrator oscillator design implemented with a memristor (top) or a resistor (bottom).
The period is measured as the time from one rising edge to the next rising edge of the
output of the oscillator. The variability of the period of the oscillator is significantly greater
when the memristor device is used in the multivibrator circuit than when the resistor is
used. Figure 7 shows an example clock period for the memristor-based oscillator (with
high variability of clock period) and the resistor-based oscillator (with low variability of
clock period).

2.5.2. Breadboard Implementation and Measurements of S-TRNG Circuit

The circuit was initially prototyped on a breadboard (Figure 8a) and then designed and
tested on a PCB (Figure 8b). Similar responses were measured using the NIST STS tests for
the two different implementations. Therefore, final testing was performed using the PCB.
As with the Jiang and Rai circuits, 100 bitstreams each of length 1 million bits were tested
with the PCB S-TRNG circuit. One bit of data is collected for each clock cycle of the slow
oscillator of the TRNG. In contrast to the Jiang and Rai TRNGs, the S-TRNG is self-clocked
by the slow oscillator in the circuit. In this case it is necessary to asynchronously sample
the output of the S-TRNG with the Digilent AD2. It was also necessary to oversample by a
factor of more than 2× due to the variability in the clock period of the memristor-based
slow oscillator. Both Jiang and Rai’s circuits were clocked by the Digilent AD2 allowing
use of the pulse train clock as the data collection clock for those TRNGs.
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Figure 6. Histograms of the entropy captured as a slow clock sampling a fast clock in a dual oscillator
type random number generator used in the S-TRNG circuit. Top graph: with a memristor. Bottom
graph: with only a resistor. A total of 6000 clock periods were sampled for each oscillator type.
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Figure 8. (a) Breadboard implementation; (b) Printed circuit board (PCB) implementation of the
S-TRNG circuit.

Capacitor values of 1 nF were used for the slow oscillators with the W-SDC devices
resulting in an oscillation frequency that could range from about 500 Hz to 5 kHz, depend-
ing on the memristor device state. Resistor and capacitor values of 2.2 kΩ and 100 pF were
used for the fast oscillator circuit, resulting in an oscillation frequency of 600 kHz. Due to
the significant amount of variability in the output clock frequency of the slow oscillator it
was necessary to oversample by a factor more than 2x. A clock frequency of 40 kHz was
used to sample the output of the circuit. With each slow oscillator operating at a frequency
of approximately 4 kHz it took about 25 h to complete the data collection.

3. Results

The NIST statistical test suite [26] briefly described in Appendix A was used to assess
the randomness of all three TRNGs implemented. All NIST tests were run with the default
settings and parameters listed in Appendix A. Data for all TRNGs were post-processed with
Von Neumann whitening. The results of these tests are summarized in Table 1 where each
NIST test is listed along with the passing rate for that test for each circuit. Two additional
table columns are listed to show a comparison of the prior published test results for the
Jiang circuit using a different memristor type and the published simulation results for the
Rai against the measurements made in this work. In order to be considered passing, a
proportion of at least 96% of the 100 bitstreams for each test must pass.

Table 1. Comparison of all TRNG measurement results for the 15 STS tests and additional sequence,
debiasing and implementation comparison for each dataset. Pass rates are shown for each STS test.
Bolded pass rates are considered failing (less than 96%).

NIST STS Test Jiang TRNG (from [1]) Jiang TRNG Rai TRNG (from [2]) Rai TRNG S-TRNG

Frequency 97% 99% 100% 100% 98%
Block Frequency 99% 99% - 100% 98%

Cumulative Sums 97% 99% 100% 100% 97%
Runs 99% 98% 100% 100% 82%

Longest Run 100% 99% - 100% 100%
Rank 100% 96% - 100% 98%
FFT 99% 99% 100% 100% 97%

Non Overlapping Template 98% 99% - 99% 99%
Overlapping Template 99% 98% - 100% 98%

Universal 100% 99% - 100% 100%
Approximate Entropy 99% 99% 100% 100% 94%
Random Excursions 98% 98% - 96% 98%

Random Excursions Variant 99% 99% - 98% 99%
Serial 100% 99% - 96% 98%

Linear Complexity 100% 99% - 100% 100%

Sequence Length 1,000,000 1,000,000 5000 1,000,000 1,000,000
Sequences Tested 76 100 100 100 100
Debiasing applied No Yes No Yes Yes

Circuit Implementation Hardware Hardware SPICE Hardware Hardware
Memristor Device Ag:SiO2 W-SDC Model for TiO2 [28] W-SDC W-SDC
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Jiang reported passing the STS tests (first data column in Table 1) using the Ag:SiO2-
based diffusive memristor device with >96%. The hardware implementation (second data
column in Table 1) using the W-SDC memristor also shows all tests passing. In order to pass
the frequency test during the W-SDC circuit implementation in our work it was necessary
to apply debiasing to the output of the TRNG. Without debiasing Jiang’s TRNG circuit had
a pass rate is 0% for the STS frequency test. Jiang’s circuit performed slightly worse in our
implementation than in [1]. This could be due to a variety of factors, most likely the fact
that a different type of memristor device was used for our testing.

Rai’s simulated results using the TiO2 model [29] are given in the third results column
in Table 1. Only five NIST tests were simulated in Rai’s report. However, the hardware
implementation of Rai’s TRNG using the W-SDC memristor (Table 1, fourth data column)
shows that the Rai TRNG passes every NIST test with superior performance to any other
TRNG tested in our study. However, without debiasing our hardware implementation of
Rai’s TRNG has a pass rate of 0% for the STS frequency test, similarly to the result obtained
for the Jiang circuit.

The last data column in Table 1 shows the S-TRNG test results 13 of the 15 NIST
STS tests are passing for this circuit. The Runs test failed with an 82% pass rate and the
approximate entropy test fails with a 94% pass rate. The runs test is a measure of the number
of runs within a sequence. A run is defined as a repetition of the same value within the
sequence. For example, a run of zeros with length 4 would be “0000”. If the number of runs
of each length does not match the expected distribution of runs within a random sequence,
then the runs test fails. The approximate entropy test analyzes patterns within the data,
specifically looking at sequences of length m and m+1 bits. If the distribution of patterns
within the random sequence does not match the expected value, then the approximate
entropy test fails. A thorough examination of the circuit for sources of potential noise could
eliminate certain deterministic behavior and improve the pass rate of the circuit for these
two tests.

Throughput of the TRNGs tested varied by design. Throughput is a measure of how
quickly each TRNG is able to generate random data. All TRNGs ran until 100 million
bits were collected after Von Neumann whitening. The S-TRNG was the quickest at 25 h
(1111 bits per second). Jiang was the next highest throughput at 40 h (694 bits per second).
Rai required 80 h to collect data (347 bits per second). It should be noted that the throughput
of the TRNGs depends greatly on the devices and circuit component values used in the
case of the S-TRNG. The oscillation frequency of the S-TRNG can be affected by both the
W-SDC device variability, as well as the chosen capacitor value in the circuit. Similarly, both
Jiang and Rai TRNGs throughput are affected by the frequency at which the pulse train
runs. This is limited by the time that it takes for the memristor devices to switch states.

4. Discussion

Three TRNG circuits were physically implemented and tested using W-SDC memris-
tors. The Jiang and Rai memristor-based TRNG circuits passed all NIST STS tests for true
randomness. The student TRNG (S-TRNG) passed 13 out of 15 of the NIST STS tests. There
are several pros and cons of each TRNG analyzed in this work. The S-TRNG circuit is more
complex than both Rai and Jiang and does not generate random numbers as well as Rai or
Jiang. However, the S-TRNG design is self-clocked; that is, an external clock signal does
not need to be provided to the circuit. This can be an advantage in some cases. In addition,
it was found during testing Rai’s TRNG that some fine-tuning was required in order to
get the delay chain time delays close to each other in order to produce meaningful output.
This could be accomplished a couple different ways, by either swapping out memristor
devices until two devices were found that gave similar delays or adding resistance in series
with the memristor or adding small amounts of capacitance at the output of the memristor.
In addition, it was found that the delicate balance of delay paths can shift throughout the
course of testing. This is one area where simulation alone is not sufficient to prove the
randomness of the TRNG. The S-TRNG required no tweaking in this manner. All TRNGs
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required whitening of the output in order to pass the frequency test. It was found during
initial development of the S-TRNG circuit that the W-SDC memristor in place of a resistor
in the multivibrator circuit resulted in a significant increase in the amount of jitter produced
by the circuit. This property was exploited to significantly increase amount of entropy
captured by the circuit. It was also found that it can be useful to implement a counter after
the XOR gate and before the input to the latch to essentially divide the slow clock to an
even slower frequency. This effect allows for more entropy to be captured because the jitter
from multiple slow clock cycles now contributes noise to the sampling of the fast clock.
In addition, the frequency of the slow clock can be more easily adjusted by selecting a
different output from the binary counter IC.

Throughout the extensive development and testing of the S-TRNG circuit it was found
that one of the primary factors that can lead to non-random output from the TRNG is
supply noise. Power supply ripple can be observed due to the instantaneous high current
observed when the multivibrator circuit switches from one mono-stable state to the other.
This supply ripple from one oscillator switching can lead to other oscillators sharing the
same supply switching at the same time. In order to improve the power supply isolation
between the slow oscillators and the fast oscillator, the voltage generator outputs on the
Digilent AD2 were used to power the fast oscillator while the normal power supply outputs
were used to supply the slow oscillators. This helps to ensure that there is no correlation
between the fast and slow oscillators due to power supply noise injected by one oscillator
or the other.

5. Conclusions

Memristors have been physically implemented in circuits to produce true random
number generation through entropy capture. Two circuits described in the literature were
implemented (Jiang [1] and Rai [2]) and one additional circuit was design and implemented
in this work. The goal of this work was to demonstrate that true random number generator
circuits are readily achievable with off-the-shelf components and circuit designs at many
levels of sophistication.
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Appendix A

NIST (the National Institute of Standards and Technology) has made software available
to test the randomness of random number generators [26]. The Statistical Test Suite (STS)
version 2.1.2 was used to analyze binary bitstreams of numbers generated by RNGs. The
STS contains a series of 15 statistical tests for randomness of a series of generated numbers.
Some tests are as simple as verifying that the number of ones and zeros is an even 50/50
split (Frequency Test). Other tests look for repeating patterns or continuous runs of the
same bit within the sequence. In the paragraphs that follow, a complete list and brief
description of each test is included.

Appendix A.1. Frequency (Monobits) Test

A truly random number should have a 50/50 distribution of ones and zeros. The
frequency test analyzes the number of ones and zeros in the test sequence. The test will

https://www.mdpi.com/1099-4300/23/3/371/s1
https://www.mdpi.com/1099-4300/23/3/371/s1
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fail if there are significantly more ones than zeros, or significantly more zeros than ones.
The number of ones and zeros should be approximately equal. None of the other NIST
randomness tests are valid if this test does not pass. A case of all zeros or all ones in a
sequence is not random and would fail the frequency test.

Appendix A.2. Frequency Test Within a Block

This test is equivalent to the frequency test described above. This test simply looks at
the frequencies of ones and zeros in an M-bit sample block. For a truly random number, the
number of ones and zeros should be approximately equal. It may be possible for a series of
100 zeros followed by 100 ones to pass the frequency test, but the frequency test within a
block would catch and fail this case.

Appendix A.3. Runs Test

The purpose of the runs test is to evaluate the total number of runs in the sequence of
random numbers. A run consists of a sequence of repeating bits, bounded on each end by
an opposite bit. The length of the run is the number of bits that are identical in the run. For
example, the sequence “100001” is a run of zeros of length 4. This test checks if the number
of runs of various lengths matches the expectation for a random sequence. Specifically, this
test can find oscillations in the random sequence. A sequence of four zeros followed by
four ones repeating over and over might pass both frequency tests above, but would fail
the runs test because there are no runs of length one, two, or three.

Appendix A.4. Longest Runs Test

The longest runs test finds the longest run of ones in each block and tabulates the
frequencies into categories. Each category is the length of the run. Analysis of the frequency
of the occurrence of longest runs in a block can predict if a number is random. Runs of
ones that are longer than expected indicate a non-random number generator. Runs of zeros
are not checked in this test. This test operates under the assumption that runs of zeros are
similar to runs of ones.

Appendix A.5. Binary Matrix Rank Test

The purpose of this test is to look for linear dependence among the fixed length
substrings of the original sequence. The binary sequence test calculates the rank of a matrix
formed by arranging the input sequence in the rows and columns. The test fails if a linear
dependence is detected among the fixed length substrings of the original sequence. This
sequence is also included in other randomness test software.

Appendix A.6. Discrete Fourier Transform (Spectral) Test

The Discrete Fourier Transform (DFT) Spectral test analyzes the random sequence and
looks for periodic patterns in the sequence. This test will detect if repetitive patterns are
near each other. A perfectly random sequence should have a spectral analysis that is flat
(should look like noise). The test will fail if there are peaks in the spectrum that exceed the
95% threshold. The binary representation of a sine wave will fail the DFT tests due to a
single large spectral peak.

Appendix A.7. Non-Overlapping Template Matching Test

The purpose of this test is to analyze the rate of occurrence of pre-specified target lists
of numbers. This test searches for matches between the binary templates provided (located
in the “templates” folder) and the random input sequence. If a match is not found the
sequence is shifted by 1 bit and a search for the next sequence begins from that sequence.
If a sequence is found, then the search for the next sequence starts from the end of the
current sequence. The test fails if too many occurrences of the same pattern are found in
the sequence. For example, the test sequence mentioned above in the frequency block test
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of four zeros followed by four ones repeating would fail the non-overlapping template
matching test.

Appendix A.8. Overlapping Template Matching Test

The overlapping template match sequence is very similar to the non-overlapping
template matching test described above. The main difference from the non-overlapping
test is that the overlapping template test will scan for new sequences starting at an in-
crement of one from the start of the last sequence instead of starting at the end of the
previous sequence. The test fails if too many occurrences of the same pattern are found in
the sequence.

Appendix A.9. Maurer’s “Universal Statistical” Test

The purpose of this test is to search for repetition in the input sequence. The first
portion of the sequence is turned into a set of patterns. The rest of the sequence is analyzed
for repetition of these patterns. The purpose of this test is to check if the sequence is
easily compressible without loss of information. If there are too many occurrences of these
patterns in the rest of the sequence, then the sequence is non-random. This test is similar to
the overlapping and non-overlapping template tests.

Appendix A.10. Linear Complexity Test

The purpose of this test is to compute the length of LFSR required to generate the input
pattern. The Berlekamp-Massey algorithm is used to determine the minimum length LFSR
needed to generate a pattern for each block in the sequence. A pattern with short length
LFSRs, or a pattern that lacks linear complexity is considered non-random. In many cases,
PRNGs cannot be detected by this test because most modern PRNGs have an extremely
long period. The well-known Mersenne Twister has a period of 219937-1.

Appendix A.11. Serial Test

The serial test analyzes the frequency of occurrence of all possible overlapping patterns
in the input sequence. A random pattern should have a similar occurrence rate of all other
patterns if it is random. The input is considered non-random if some patterns have a higher
than expected rate of occurrence. Note that for a pattern length of 1, the serial test is the
same as the frequency test.

Appendix A.12. Approximate Entropy Test

This test focuses on the frequency of all possible overlapping patterns across the entire
sequence. This test compares the frequency of occurrence of m-bit patterns with m+1-bit
patterns in the sequence. The test will fail if the frequency of overlapping blocks is not
what is expected for a random sequence.

Appendix A.13. Cumulative Sums Test

The cumulative sums test analyzes the cumulative sum of the sequence to test that the
sequence never deviates too far from the expected value. Ones add one to the cumulative
sum and zeros subtract one from the cumulative sum. If the sequence is random, the
cumulative sum should never deviate too far from zero. The cumulative sums test will
fail if the excursion from zero is too large or too small. From the previous example of a
sequence of 100 ones followed by 100 zeros, the cumulative sum will reach a value of
100 steps away from zero which is not probable to occur in a series of random numbers of
length 200 that is passing the frequency tests.

Appendix A.14. Random Excursions Test

The random excursions test is a different take on the cumulative sums test. Like the
cumulative sums test, a one adds one to the cumulative sum and a zero take one away
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from the cumulative sum. Sequences are selected such that they start and end at zero. An
analysis of the number of visits to a particular state (i.e., −4, −3, −2, −1, +1, +2, +3, or
+4) in the sequences is performed. If the number of visits to a particular state does not
match that expected of a random sequence, the sequence is not random. From the previous
example of a series of four ones followed by four zeros repeated, the cumulative sums test
will consistently reach a cumulative sum of +4 and 0 with the same rate of occurrence. For
a truly random sequence a cumulative sum of +4 should occur less often than a cumulative
sum of 0.

Appendix A.15. Random Excursions Variant Test

Just like the cumulative sums and random excursions test, the random excursions
variant test analyzes the total number of times each state is visited. The states in this test
range from −9 to +9. If the number of visits to each state deviates from that expected of a
random sequence, the test fails.
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