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Abstract 

A Low Temperature Cofired Ceramic (LTCC) material system has been used to develop a protype field emission 

cathode structure for use in an experimental magnetron oscillator. The structure is designed for used with 30 Gated 

Field Emission Array (GFEA) die electrically connected through silver metal traces and electrical vias.  To 

approximate a cylinder, the cathode structure (48 mm long and 13.7 mm in diameter) is comprised of 10 faceted 

plates which cover the GFEA dies. Slits in the facet plates allow electron injection. The GFEA die (3 mm x 8 mm) 

are placed in axial columns of 3 and spaced azimuthally around a cylindrical support structure in a staggered 

configuration resulting in 10 azimuthal locations. LTCC manufacturing techniques were developed in order to 

fabricate the newly designed cathode with 7 layers wrapped to form the cylinder with electrical traces and vias. Two 

different cathode wrapping techniques and two different via filling techniques were studied and compared. Two 

different facet plate manufacturing techniques were studied. Finally, four different support stand configurations for 

firing the cylindrical structure were also compared with a square post stand having the best circularity and linearity 

measurements of the fired structure.  

Introduction 

Magnetrons are microwave oscillators used in radar, communications, industrial heating, and home use for 

microwave ovens (1,2). Magnetrons comprise an electron source (cathode), a radio frequency (RF) slow-wave 

circuit (anode), and an applied magnetic field perpendicular to the electric field between the cathode and anode. 

Injected electrons from the cathode spin around the cylindrical cathode because of the crossed electric and magnetic 

fields. Traditional magnetron cathodes use thermionic emission in which a conductive material is heated to a high 
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enough temperature to generate electron emission (1). This process, while robust and widely used, offers no control 

of emission as a function of position or time. It allows for ion back-bombardment, which can damage the cathode 

and keep it in a heated emitting state (3). Because magnetrons are free running oscillators, phase locking requires 

external equipment which is expensive at high power. Therefore, there is a need for an internal injection locking 

method to control magnetron phase (4). 

This work discusses the development of a new cathode structure which uses Gated Field Emission Arrays (GFEAs) 

(5,6,7,8) to replace the traditional thermionic cathodes. GFEAs can be modulated in time and addressed spatially 

using numerous devices spaced out around the device (3). This paper describes the development of such a cathode 

structure using DuPont 951 Low Temperature Co-fired Ceramic (LTCC) (9) to connect and support GFEA die in a 

configuration which allows the structure to replace a helical shaped thermionic cathode used in the L3Harris 

Technologies industrial CWM75KW magnetron (10). We present background information on magnetrons and then 

the detailed structure design and fabrication techniques followed by fabrication results. 

Magnetron Approach 

The experimental approach utilizes the CWM75KW industrial magnetron from L3Harris Technologies. This 

magnetron is strapped and has 10 anode cavities to provide a resonant frequency for the primary oscillation mode 

between 900-915 MHz. The magnetron typically operates with a cathode voltage of -17 kV, a current of 5 A, and a 

magnetic field of 1800 G. At these conditions the magnetron can generate 75 kW of RF power with nearly 90% 

efficiency. The magnetron uses a helically shaped wire cathode. The cylinder surface formed by the helix is 13.7 

mm (0.54 in) in diameter and 48 mm (1.89 in) in length. Current is driven through this wire to generate thermionic 

emission, and electrons are accelerated from the wire by the electric field generated between the anode and cathode. 

For this project, the helical cathode has been replaced by a 10-sided faceted cathode, as shown in the drawing in 

Figure 1. The anode, which is a 10- cavity circuit, is 80 mm (3.15 in) in length, 13.64 mm (0.537 in) from the facet 

plate flat to flat, and 8.64 mm (0.34 in) in inner diameter. The cylindrical emission area, however, is still 13.7 mm 

(0.54 in) from facet plate edge to edge (outer diameter) and 48 mm (1.89 in) in length. The anode circuit is 

fabricated from copper and includes water cooling channels. In this drawing, the faceted cathode is seen in place of 

the helical cathode with 10-sides to match the cavity geometry and to approximate a cylinder. Slits in the facet plates 

allow the electron injection into the interaction region. These “hop funnel” structures (11) protect the GFEAs placed 

below from ion back-bombardment.  
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Figure 1. Cross-sectional drawing of the magnetron structure showing the anode and the 10-sided faceted cathode with slits. The 

slits in each facet are at the locations of the GFEA die.   

In this new structure, DuPont 951 Low Temperature Co-fired Ceramic (LTCC) was used for the structure along with 

several types of silver paste. Our group has used LTCC extensively in vacuum systems for a variety of experiments. 

Pressure measurement in three different vacuum test systems have achieved pressure of <10-8 Torr when using 

various LTCC structures and silver pastes. These results show negligible outgassing compared to operations when 

the LTCC is not present, so the material has acceptable vacuum compatibility. Experiments have also been 

performed up to 400C to test LTCC and silver paste compatibility. While there was no evidence of issues with the 

LTCC outgassing, some silver paste would evaporate. This issue can be remedied in our magnetron design by 

ensuring encapsulation with a layer of LTCC which prevents the contamination or by selection of alternative pastes.  

The new cathode structure described here uses a modulated cathode comprised of GFEAs (3). These emitters 

generate electrons from field emission and are described by Fowler-Nordheim tunneling. Because these devices can 

be micro-fabricated into addressable arrays, these cathodes can emit electrons at specific locations and times rather 

than continuously (thermionic emission). The new cathode offers several advantages over the traditional cathode. 

The field emitters can be turned off and on using the relatively low (<60 V) gate voltage. Spatial modulation may 

improve performance by injecting electrons at optimal locations to minimize startup times and increase efficiency. 

Lastly, the temporal modulation could control the electron spoke formation and allow for phase-locking (3,4). 

MadisonBinegar
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at International Journal of Applied Ceramic Technology, published by American Ceramic Society. Copyright restrictions may apply. doi: 10.1111/ijac.13581



Shown in Figure 2a is a pictorial representation of the GFEA die, and shown in Figure 2b is a microscope image of 

an actual GFEA die used in the project. These 2.5 mm wide by 8 mm long die are placed axially along the cathode 

structure with 3 die per facet plate structure for a total of 30 GFEA die for the entire cathode structure. These 

GFEAs are fabricated using the process described here (8,12). Each die has 2 elements to match the 2 slits in the 

facet plates. Electrons are then extracted through these slits. 

 

Figure 2. (a) Gated vacuum field emitter diagram and (b) photograph of a die provided by Akinwande [12]. Each GFEA die is 

divided into 2 sections to allow spatial addressing. Each addressable section is subdivided into a mesh to improve emission 

uniformity.  

Design 

The new cathode that replaces the old thermionic emission cathode has a GFEA die on every side of the cylindrical 

structure with facet plates that protect the die. The die are electrically addressed by an RF stripline circuit (13), 

which is an impedance matched transmission line that is sandwiched between two ground planes. Figure 3a shows a 

diagram of a basic stripline which is comprised of a ground plane, dielectric layer, transmission line (trace), another 

dielectric layer, and another ground plane. The addressable cathode structure approach uses different elements of the 

30 die to emit electrons at different points in time (3,4). By creating a “barber pole” type transmission line, an RF 

drive signal applied to the line will propagate around the cylinder applying a drive signal to the GFEA gate 

electrodes at different times resulting in a phase difference among the drive locations. The structure is designed such 

that each emitter element of the GFEA is turned on 25% of the time as there are 4 phase elements. Because the 
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magnetron has 5 electron spokes, 5 locations are turned on simultaneously spaced azimuthally around the cathode. 

Then these elements turn off as the next elements turn on as described in prior work [ 3,4]. 

The physical characteristics of the stripline (H, T, and W dimensions) and material properties directly relate to the 

electrical properties of the stripline particularly the characteristic impedance. Figure 3b shows a diagram of the 

stripline with the die that will be used for the cathode structure. For the cathode structure, die rests on top of the 

second ground plane, and an electrical via is used to complete the transmission line to die connection. This via 

passes through a hole in the top ground plane (via clearance hole) that must be large enough to prevent shorting 

between the ground plane and the via. The via to die connection is formed using a silver paste to create a conducting 

jumper. This jumper is applied by hand once the die is connected to the structure and is shown in Figure 3b, colored 

yellow for clarity. Because each die has two emission areas, each die requires two electrical connections, one on 

each side as shown in Figure 3b. For the cathode structure, these connections are above and below each die. 

 

Figure 3. (a) Basic stripline (13) and (b) cathode structure stripline with die diagram. The central transmission line trace carries 

the RF signal and the dimensions of the structure determine the characteristic impedance. For the cathode structure shown in 

(b), a metal via connects to the trace to provide the RF signal to the gate of the GFEA die. A jumper connects the via to the die 

conductor metal.  

This cathode structure is comprised of a number of structural layers as shown in Figure. 4. The new cathode 

structure has 7 layers including (working outward radially): an internal first ground plane (L1, Figure 4a), a 

dielectric layer with a stripline trace (L2, Figure 4b), another dielectric layer with a second ground plane (L3&4, 

Figure 4c), die support layers with die slots (L5-7, Figure 4d), and finally facet plates with die placed in the slots of 
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the cathode structure (Figure 4e) to complete the full cathode assembly. To connect to all the vias, the trace layer 

needs to spiral around the cathode structure in a “barber pole” style, as shown in Figure 4b.  

The new cathode specifications and dimensional constraints are based upon the L3Harris Technologies magnetron 

(10). The stripline characteristics are such that each azimuthal revolution of the traces will result in an RF signal that 

will be 90° out of phase from the previous die. This phase delay will cause all three of the die aligned vertically to 

emit at the same time at 5 different azimuthal locations. The transmission line (for the stripline) starts from the 

bottom of the cathode where the line splits into five traces and then spirals around the cathode. Each of the five 

sublines connect to six die each (totaling 30 die) through holes in the top (outer) ground plane. The five sublines 

then merge back together and terminate into a 50 Ω resistor. The RF drive signal connects to the transmission line 

through a coaxial wire attached onto the bottom of the cathode structure.  

 

 

Figure 4. Cathode layers radially: (a) first ground plane, (b) dielectric with stripline barber pole trace divided into 5 separate 

lines, (c) dielectric with second ground plane and openings for vias, (d) die support layer with openings for die placement, and 

(e) facet plates with electron extraction slits and with uncovered die. All dimensions are mm. 
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To accommodate the stripline (transmission line) and internal electrical connections, the seven individual layers of 

LTCC are rolled up into a tube shape starting from the inner layer 1 to the outer layer 7 as seen in Figure 4. There is 

a silver paste layer on the inside of layer 1 (0.005” or 5 mil thick) that acts as the first ground plane. Layer 2 (10 mil) 

has the stripline screen-printed onto the outside, creating a 15 mil LTCC separation (dielectric) from the first ground 

plane to the transmission line. Layer 3 (10 mil) has a screen-printed jumper on the inside, to connect the 

transmission line (outside layer 2) across the seam on layer 2. This layer 3 has vias cut out of the LTCC to start the 

transmission line to die connection (layers 3 to 7). Figure 5 shows three-dimensional and two-dimensional cross-

sectional views of the cathode structure design without die, spacers, or facet plates.  

 

Figure 5. (a) 3-D cathode structure showing slots for die and via holes with the silver ground planes seen at the inside of each 

slot and (b) 2-D cross section of the cathode structure showing the various LTCC and trace layers as well as the slots for the 

GFEA die (not shown).  

Layer 4 (5 mil) has a silver paste layer on the outside to act as the second ground plane. Once again, another 15-mil 

gap (layers 3 and 4) forms the transmission line (layer 2) to the second ground plane. This layer 4 also has vias cut 

out of the LTCC to allow for the transmission line to die connection. Because of the vias, the ground plane has holes 

(ground plane clearance holes) to prevent shorting between the ground plane and the vias. The two ground planes 
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are connected by a single via (ground via), away from the others, from layers 1 to 4. Layers 5, 6, and 7 are primarily 

used for structural support and to form the slots for the GFEA die which are intended to be flush with the top layer 

7. The spacers are used to separate the die from the facet plates which are attached to the exterior of the cathode 

structure using ceramic epoxy, as shown in Figure 6. The backside of each die is coated with a silver paint, and then 

when the die is placed in its slot, additional silver paint is used to make the electrical connection from the die 

backside to the ground plane. The facet plates act as hop funnels that direct the electrons emitted from the die into 

the magnetron interaction space (11). Besides increasing uniformity of electron emission, these hop funnels also 

protect the die from ion back-bombardment, which over time could destroy the die. Hop funnels operate by reaching 

a steady-state balance between secondary electron emission and primary electron impact from the GFEAs. As such, 

the hop funnels operate at unity gain (100% effective transmission) with the correct operating voltage. For this 

design roughly 500 V is needed across the funnel.  In addition, the charge redistribution which occurs in the funnel 

greatly homogenizes the electron beam. This effect results in a uniform emission even when the electron source is 

not uniform or when the funnel is not well-aligned to the electron course.  

 

Figure 6. (a) 3-D cathode structure and (b) 2-D cross section of the entire assembly showing the GFEA die and facet plates in 

place. Note that at this cross section 5 die locations are shown.  

Fabrication 
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All of the techniques discussed in this section will directly correspond to manufacturing steps for producing the 

multilayered cathode structure. The processing techniques are grouped as (a) LTCC rolling/wrapping, (b) via filling, 

(c) machining/facet plates, and (d) firing techniques. The major cathode structure manufacturing process consists of: 

• All seven layers of LTCC are cut and cleaned and conductive paste is applied to the layer surfaces and 

vias (via filling). These vias complete the transmission line to die connection. 

• All seven LTCC layers are rolled onto the jig (LTCC wrapping) and then laminated into the cathode 

structure. 

• The electron hop funnels (facet plates) that protect the die and increase uniformity of the emission source 

are manufactured. 

• The cathode structure (firing technique) and facet plates are placed into a furnace where they are fired. 

LTCC Rolling 

Two techniques were studied for rolling the LTCC into the cylindrical structures: layer by layer and layer by group. 

The layer by layer technique is the process of wrapping one layer on the jig at a time and then laminating after all 

seven layers have been wrapped. Layer 1 is wrapped and bonded to the jig using poly 2-ethyl-2-oxazoline (PEOX). 

PEOX is a glue that is used to bond LTCC layers in the green state with minimal lamination pressure. Layer 2 is laid 

out flat, and PEOX is applied to the surface, near the edge used to align with layer 1. The jig with layer 1 is then 

placed on layer 2, using the alignment tabs to align, and held down until the PEOX dries (~30 seconds) as shown in 

Figure 7. 
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Figure 7. Layer by layer technique: layer 1 has been completely wrapped around the jig and layer 2 is about to be wrapped. The 

jig is covered with wax paper to prevent sticking. Alignment tabs help with alignment during wrapping, and PEOX holds the 

structure together prior to lamination. 

More PEOX is applied to the other surface near the edge of layer 2 and then the jig is rolled, wrapping layer 2 onto 

the jig. The process is then repeated for all the remaining layers. Finally, the spacer strips are rolled on using PEOX, 

and the cathode structure is placed in the isostatic press to be laminated. In the lamination process for DuPont 951 

series, LTCC is pressed under 20.7 MPa (3 Ksi) at 70°C (158°F) for 10 min (14). 

The layer by group technique involves gluing multiple layers together flat and then wrapping the whole group in one 

or multiple rolls. Layers 1 to 4 are overlapped about halfway on top of each other, using the fiducial marks and tabs 

to align. Then all four layers are glued together using a minimal amount of PEOX. This layer 1 to 4 strip is shown in 

Figure 8. Once the PEOX dries, the layers create an almost continuous layer that can be rolled altogether at one time 

without gluing layer 1 to the jig. Layer 5 is then aligned using the fiducial marks and rolled on using the layer by 

layer technique previously discussed. 
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Figure 8. Layer by group technique: layers 1 to 4 have been glued together with PEOX and are about to be wrapped around the 

jig which is covered with wax paper to prevent sticking. Fiducial marks help with alignment during wrapping, and PEOX holds 

the structure together prior to lamination. 

At this point the cathode structure is placed in the isostatic press where it is laminated at half the normal pressure, 

10.35 MPa (1.5 Ksi) at 70°C (158°F) for 10 min. After lamination, layers 1 to 5 are securely bonded together which 

makes rolling layers 6 and 7 using the layer by layer technique very easy. Finally, the spacer strips are rolled on 

using PEOX, and the cathode structure is placed in the isostatic press to be laminated at half pressure for a second 

time. Laminating the cathode in stages, also known as progressive lamination, adds to the structural integrity of the 

cathode (15). 

Note that in order to have electrical continuity along the stripline, it is necessary for the traces to connect across the 

gap which forms in the LTCC when it is wound into a cylinder. To accomplish this connection, the traces are 

fabricated on both the inner and outer layers of the LTCC region containing the traces. For the outer layer, only a 

short “jumper” section of silver paste is used. This layer is mechanically clocked relative to the inner layer so that 

the jumper connects the trace across the seam in the LTCC.   

Via Filling 
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Two via filling techniques are described: flat fill and pneumatic fill. The flat fill techniques fills all the vias one layer 

at a time in a flat layout before the layer is rolled. The LTCC sheets are shipped on a white non-stick mylar paper 

that is required for this technique. An LTCC cathode structure layer is placed on top of the non-sticky side of the 

white mylar paper, which should then be placed on a flat surface. Next, a via stencil is placed on top of the LTCC 

layer, as shown in Figure 9. These stencils were made using a laser cutter to cut out only the via patterns for each 

layer; thus layers 3 to 7 have their own unique stencil. Once the via holes on the layer and stencil are aligned, silver 

paste is pushed across the stencil with a squeegee, pushing paste through the stencil into the vias on the LTCC layer. 

 

Figure 9. Flat fill technique: Stencil is placed on top of layer 3 which is placed on top of non-sticky mylar; then paste is 

squeegeed across the stencil. 

 After all the vias are filled, the stencil is carefully removed and the LTCC layer plus mylar paper are placed into the 

heater (mylar paper down) to dry for a specific temperature and time. The temperatures and times specified in Table 

1 correspond to the silver paste that was used to fill the vias. The times and temperatures for the Ferro 903-A (16), 

DuPont 6145 (17), and DuPont 6141 (18) were taken from the literature and confirmed through testing. Testing 

comprised of filling the vias on a 10-mil thick LTCC layer (layer 3) and a 5-mil thick LTCC layer (layer 4) for all 

three silver pastes using the flat fill technique previously discussed. All three of the silver pastes dried completely, 
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adhering to the inside of the vias for both LTCC layer thicknesses, confirming that the drying temperatures and 

times are correct.  

Table 1. Drying temperatures and times for three different silver pastes used for the via filling process. 

Silver Paste 

Temperature 

(°C, °F) 

Time 

(minutes) 

Ferro 903-A 

(conductor) 
70, 158 30 

DuPont 6145 

(conductor) 

110, 230 10 

DuPont 6141 

(via fill) 

110, 230 5 

After the silver paste has dried, the LTCC layer and mylar paper are removed from the heater. The mylar paper is 

removed from the layer (sliding or rolling motion). Occasionally, a small amount of silver paste residue will be left 

on the mylar paper. Place the LTCC layer (side that was touching the mylar paper face up) back into the heater at the 

same temperature previously used for 5 minutes. Remove the LTCC layer from the heater and allow to cool for 

another 5 minutes before rolling or processing. 

In the pneumatic pump technique, each via tube-like structure is filled after the cathode has been wrapped and 

laminated. This technique can be used with either the layer by layer or the layer by group LTCC wrapping 

techniques. After wrapping layers 1 to 5 on the jig and laminating, the vias are filled using a pneumatic pump. The 

silver paste is loaded into a large syringe that is attached to the pump. The cathode is placed horizontally on a 3-D 

printed stand, shown in Figure 10. Using an SRA-105 pneumatic pump, pressurized air is applied to the rear of the 

syringe which pushes paste out of a custom 200 µm (0.008 in) diameter nozzle. The syringe is guided by hand to 

place the nozzle at the top (opening) of each via. The pump is activated by pressing a button that opens the pressure 

valve for approximately one second. By adjusting the pressure, the entire via can be filled with one push of the 

button. 
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Figure 10. Photograph of the pneumatic pump setup showing the pump, syringe and nozzle, and a cathode structure on a support 

stand (lower left). 

The required pressure for the Ferro 903-A/DuPont 6145 paste was ~0.21 MPa (30 psi), and the pressure for the 

DuPont 6141 was ~0.55 MPa (80 psi). These pressure differences are due to the differences in paste viscosity. The 

Ferro 903-A and DuPont 6145 paste have a viscosity of ~200 and ~160 PaS, respectively while the DuPont 6141 has 

a viscosity of ~2100 PaS. Because the pressure could be easily adjusted with the turn of a knob, these pressures were 

determined with a trial and error approach. After all 60 of the vias are filled, the cathode is placed in the heater at 

~70°C (158°F) for 10 min, regardless of the paste used. This process dries the paste enough that layers 6 and 7 can 

be wrapped and that the whole cathode to be laminated for the last time.  

Facet Plate Manufacturing 

Two techniques were studied for fabricating the slits in the facet plates: laser milling and mechanical milling. Both 

techniques require the same initial starting block of LTCC. This block is made by laminating five rectangles with 

area 76.2 mm by 127 mm (3 in by 5 in) of 10-mil thick LTCC together under 20.7 MPa (3 ksi) at 70°C (158°F) for 

10 min. This will give a block of LTCC that has enough area to cut out all ten facet plates with a thickness (~1.2 

mm) that will shrink once fired to the desired 1 mm. The laser technique uses an M-300 Universal laser to cut the 

desired geometry of the facet plates. The aforementioned block of LTCC is placed into the laser setup where the 

facet plate outline is cut twice. Both cuts are applied to the slots and outline of the facet plates to achieve the desired 

‘V’ shape slots and angled edges of ~36°. The laser milling process works by focusing the beam at a single point 

(focal point). Normal (single sheet) LTCC cutting operations cut at this focal point to give close to vertical edges 

(perpendicular to cutting bed). By raising and lowering the laser height (Z-height), the vertical cut becomes a slanted 

cut, in theory, as shown in Figure 11. 
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Figure 11. Laser milling techniques for (a) Normal Z-height, (b) cut 1, and (c) cut 2 to form tapered slits for the hop funnels in 

the facet plates. 

In actuality, changing the Z-height vaporizes and weakens different portions of the block of LTCC along this slanted 

line. The first cut lowers the material, raising the focal point to remove the middle portion of the slot. Then, the 

second cut raises the focal point more to remove a larger portion of the top of the slot. After the second cut, the facet 

plates slightly resemble the ‘V’ shape but often require additional scraping with a drill bit or end mill to remove 

residual material. Figure 12 shows the LTCC block with the facet plates being cut out using the laser technique. 

 

Figure 12. Photograph of LTCC facet plate structure during milling of the slits and formation of the facet plates. An LTCC block 

is placed on the bed; then the laser cuts the facet plate slots and outlines the plates. 

The mill technique uses a Bungard PCB mill to cut the desired geometry of the facet plates. The LTCC block, 

previously discussed, is taped to a millable substrate (usually clear plastic) and placed on the vacuum chuck on the 
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mill bed and secured using the vacuum. Like the laser technique, this mill technique also requires two cuts. The first 

cut uses a 60° ‘V’ tip end mill to cut out the ‘V’ shaped slots in the facet plates. Slow and shallow passes should be 

taken when cutting the slots to avoid breaking the center point. The second cut uses a 40° ‘V’ tip end mill to cut out 

the outline of the facet plates. The taper in the edges of the facet plates are needed to allow assembly into a 

cylindrical structure to prevent gaps at the joints. Figure 13 shows the depth of the angled end mills for each cut 

during the mill technique.  

 

Figure 13. Mill cutting cross-sectional diagram of the facet plate. 

Firing structure 

Four different techniques were implemented and tested for the firing structure. The LTCC and silver pastes react 

differently to the high furnace temperatures which can cause the cathode to warp or even crack. Most of the warping 

can be resolved by slow ramp rates during the firing profile, shown in Figure 14. The rest of the warping can be 

corrected by using techniques that physically prevent warping during firing.  

 

Figure 14. LTCC Firing profile (9) 
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The first technique was horizontal, which means that the cathode was laid down horizontally in the furnace. The 

second technique used circular caps placed on both ends of the cathode. These caps are comprised of two stacked 

circle layers of LTCC. The first layers have a large OD to hold the cathode upright, and the second layers are the 

same OD as the ID of the cathode. They are sprayed with boron nitride to prevent sticking; and they shrink at the 

same rate as the cathode which helps maintain circularity. The third technique used a stand which the cathode would 

slide over and stand upright in the furnace. The stand consists of a post and base block to keep the post upright. The 

post was designed with long rectangular layers of LTCC that, when laminated and fired flat, would shrink to a post 

having a cross-sectional area of a square. Firing flat allowed for the post to be linear (as linear as the floor of the 

furnace), and the square cross-sectional area allowed for circular support from the four corners of the square. A large 

rectangular base was attached to the bottom of the square post. The fourth technique combined the caps and stand to 

create “caps with stand”. The cathode would slide over the stand post, and then a cap would be placed on top of the 

cathode structure. These firing techniques are shown in Figure 15. 

 

Figure 15. Cathode structure firing techniques showing the cylindrical cathode in the green state with four different techniques: 

(a) Horizontal, (b) caps, (c) stand, and (d) caps with stand. 

Cathode Fabrication Technique Performance 

Because the success of each technique was user (operator) dependent, a subjective scoring system was chosen to 

compare the LTCC wrapping, via filling, and facet plate processes for our lab’s cathode structure optimization. Each 

of the technique’s strengths will be addressed based on our optimization criteria rather than the scoring system. Two 

different factors relating to repeatability criteria will be discussed for each process. In addition, the ease and speed 

with which the techniques could be mastered are also considered. All the techniques discussed can obtain good 
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results with a skilled operator, which is why some examples shown are technique independent. The purpose of this 

research was to determine which techniques were optimized for our cathode structure build. 

The layer by group technique was more easily aligned because layers 1 to 4 are aligned flat as opposed to aligned 

rolled. The layer by group technique resulted in a tighter wrap because it requires fewer wraps which reduces the 

possibility of errors: four wraps (layers 1 to 4 group, 5, 6, and 7) as opposed to seven wraps (layers 1, 2, 3, 4, 5, 6, 

and 7). The layer by layer technique requires less training because it only used one wrapping technique (one layer at 

a time) as opposed to two (group roll and one layer at a time). The layer by group technique was faster because 

multiple layers were wrapped at one time as opposed to one layer at a time. Figure 16 shows examples of misaligned 

and aligned wraps. 

 

Figure 16. (a) Examples of not acceptable and (b) acceptable cathode wraps. 

The flat fill technique is less likely to short because only layer misalignment causes shorts as opposed to overflow or 

leakage. The flat fill technique is more likely to fill the vias completely, which significantly increases the chance to 

connect the transmission line to the die (layers 3 to 7). The pneumatic pump technique requires less training because 

it consists of placing the nozzle in the via and pushing a button as opposed to aligning a template and then 

squeegeeing paste across. The pneumatic pump technique is faster because it fills the complete vias at one time as 

opposed to each layer of the vias as well as minimizing drying times. Figure 17 shows examples of incompletely and 

completely filled vias. 
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Figure 17. (a) Examples of incorrectly and (b) correctly filled vias. 

The mill technique is more repeatable because it is a mechanically automatic technique as opposed to a human hand 

technique. The mill techniques can (visual inspection) produce smoother ‘V’ shaped slots. The laser technique 

requires less training because it consists of using the laser cutter as opposed to setting up and learning the mill 

software. The laser technique is faster because it cuts and scrapes (by hand) faster than the mill can remove the 

material. Figure 18 shows examples of facet plates using the laser and mill techniques with (a) the magnified image 

of the slit using the laser, (b) magnified image of the slit using the mill, (c) image of the entire facet plate using the 

laser, and (d) magnified image of the facet plate using the mill.  

 

Figure 18. Images of the facet plates with (a) laser cut magnified image, (b) milled slits magnified image, (c) facet plate using 

laser cutting, and (d) milled facet plates. All dimensions are mm. 
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Because the outcomes of firing the structure were not user dependent, an objective scoring system was chosen to 

compare the better of the four techniques. The first metric was circularity because the facet plates and die must fit on 

the cathode and be a fixed distance from the anode. Circularity was determined by subtracting the maximum outer 

diameter (OD) from the minimum OD over three different spots along the cathode. The next metric is linearity 

because the cathode must be straight in the magnetron structure. Linearity was determined by measuring the 

displacement along the length of the cathode structure over three spots around the cathode. The three spot 

measurements were averaged for each cathode structure to give a total measurement for each structure. Each total 

measurement was calculated for two cathodes each and averaged to give circularity and linearity measurements for 

all four techniques shown in Table 2. The smallest deviation indicates the best technique.  

Table 2. Objective scoring of firing techniques. 

Parameters Horizontal Caps Stand Caps with Stand 

Circularity 

(mm) 
0.94 0.63 0.25 0.78 

Linearity 

(mm) 

0.30 1.92 0.24 1.06 

Total (mm) 1.24 2.55 0.49 1.84 

 

After analysis of the circularity and linearity metrics for each technique, the stand technique showed the best overall 

(combined) score (0.49) which makes the stand firing technique the best and most optimized for building tube-like 

structures. It has superior performance in both circularity and linearity. Figure 19 shows examples of (a) inadequate 

and (b) adequate circularity, as well as (c) inadequate and (d) adequate linearity. 
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Figure 19. Examples of (a) inadequate circularity, (b) inadequate circularity, (c) inadequate linearity and (d) adequate linearity 

of fired cathode structures. Red circles and lines in the images are used for reference. 

Testing required implementing the optimal techniques for each manufacturing process to fabricate the new field 

emission cathode structure. When comparing LTCC wrapping techniques, the layer by group technique was optimal 

because it was more easily aligned, lead to tighter wraps, and was faster than the layer by layer technique. When 

comparing via filling techniques, the flat fill technique was optimal because it was less likely to short electrically 

and more likely to connect from the stripline to the die than the pneumatic pump technique. When comparing facet 

plate techniques, the mill technique was optimal because it was more repeatable and had visibly smoother ‘V’ 

shaped slots than the laser technique. When comparing firing techniques, the stand technique was optimal because it 

had the lowest averaged circularity and linearity measurements compared to the other techniques. 

By implementing all the optimal techniques previously discussed, the new cathode structure was fabricated as 

shown in Figure 20a and then tested. The first test verified with a multimeter that the vias were not shorted 

electrically to the ground layers. After verification, die were attached to the cathode (Figure 20b) and successfully 

electrically driven in a vacuum test chamber. A ceramic paste is used to cover the gap between the die and the edge 

of the LTCC slot. A silver paint is then painted across the paste to connect the via to the GFEA die gate metal. This 

proof-of-concept cathode structure proved that the cathode structure design and implementation can be used to 

connect and operate the GFEAs in a vacuum test chamber. Lastly, facet plates were adhered to the cathode (Figure 
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20c) to achieve the final cathode structure. At this step, the facet plates would be coated with a thin film of 

aluminum and then the gaps between facets would be filled with a ceramic paste. Finally, a thin layer of silver paint 

would be coated over the ceramic to provide complete electrical connections to all of the facet plates and to ensure 

no insulating surface is exposed which could cause charging.  

 

Figure 20. (a) Fired cathode structure (b) structure with actual GFEA die connected within the slots, and (c) with example facet 

plates covering the die locations. The seams between facet plates are not filled and the plates are not yet covered with aluminum. 

In (b) a ceramic paste is seen at the end of each die (top and bottom). This paste allows a thin line of hand dispensed silver paint 

to be drawn from the via to the GFEA die gate metal. The paste overs the gap between the die and the edge of the die slot so that 

the silver paint can be deposited and sop that the paint does not flow down along the edge of the die an electrically short the 

structure to the ground (die back side). 

Conclusion 

The LTCC material system is ideal for layered internal electrical structures that can be used in high vacuum such as 

the stripline that makes up the cathode structure. Through this research, multiple manufacturing techniques were 

compared and evaluated for their strengths and weaknesses. In this research, we demonstrated that a rolled LTCC 

device consisting of layers (one strip of LTCC per layer), vias, and embedded circuits could be fabricated. We also 

demonstrated that via filling could be performed with various pastes, even after the layers have been rolled. 

Additionally, we showed that a laser could be used to cut ‘V’ shaped slots into the surface of LTCC. Finally, we 

demonstrated that circularity and linearity of a rolled device could be maintained while being fired. 
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The best techniques for each process were compared and implemented to give the optimized cathode structure 

manufacturing process. This process was used to build proof-of-concept cathode structures that would not short 

electrically and would drive the field emission die in high vacuum (10-8 Torr). The step by step cathode 

manufacturing process and the complete research is discussed in greater detail in (19). 
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