


flagged because of 90th percentile or higher maximum standard
error of prediction, and were located mostly along the Oregon
Coast Range as well as the southern Puget Sound Region that cor-
responds to Mt. Rainier (Fig. A1).

Appendix B. Comparison of PROSPER streamflow permanence
probabilities to USGS gages across the Pacific Northwest

Methods

PROSPER model predictions were compared to streamflow
statistics at USGS gages for years prior to the PROSPER period of
record as an additional validation measure of correspondence
between streamflow permanence probabilities and observed val-
ues. Streamflow data at these USGS gages that correspond to the
2004–2016 modeling period were part of the observation data
used to build the random forest model. Daily streamflow statistics
at USGS gages for streamflow measurements recorded through
November 2001 and computed by Wolock (2003c) were evaluated
for 1072 USGS gages within the study area. These data were
snapped to their corresponding location on the stream grid. Gages
included in the analysis had more than five years of continuous
streamflow records, were located within 100 m of a stream grid
cell, and were neither located on cells with missing predictor vari-
able data, nor located on a canal or diversion. The gages were sub-
divided into two groups that either represented a no flow condition
or a flowing condition. Gages where the first percentile of the daily
streamflow was less than 0.0283 m3s�1 (1 ft3s�1) were classified as
no flow; gages where the first percentile of the daily streamflow

was greater than or equal to 0.0283 m3s�1 (1 ft3s�1) were classified
as flow. This value was chosen because it was not clear if zero val-
ues at some of the gages represented true minimum daily values or
reflected missing data. Therefore, in all cases, the first percentile
threshold value of 0.0283 m3s�1 (1 ft3s�1) was applied as a more
robust approach over the minimum daily value that is determined
by a single value and thus more prone to being influenced by a
non-representative value. Additionally, the selection of
0.0283 m3s�1 was based on the finding that there was no change
in the statistical significance of the results (described in the follow-
ing paragraph) when the threshold value was varied within the
range of 0 to 0.113 m3s�1 (0–4 ft3s�1).

Because of the broad range of climates that occur within the
study area, the gages were further partitioned into one of six cli-
mate classes as defined by Leibowitz et al. (2016) to determine if
differences existed in streamflow permanence probabilities among
different climates (Fig. B1). Climate classes ranged from very wet
to arid based on the Feddema (2005) Moisture Index that incorpo-
rates precipitation and evapotranspiration. Climate classes are
assigned for Washington, Oregon, and Idaho and do not extend
to adjacent states that are still included in the study area (about
15% of study area). Welch’s unequal variances t-tests were used
to detect differences between mean PROSPER streamflow perma-
nence probabilities for flow and no-flow gages in each climate class
(Welch, 1947). While acknowledging that the data from USGS
gages are for different time periods, and thus potentially different
climatic conditions than PROSPER data, the comparison neverthe-
less can serve as a proxy for the accuracy of mean PROSPER
predictions.

Fig. B1. Map of USGS streamflow gages used to compare raw streamflow permanence probabilities across six climate classes, defined by Leibowitz et al. (2016) for
Washington, Oregon, and Idaho. Climate classes do not extend beyond this three-state area.
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Results

Streamflow permanence probabilities were significantly lower
for no flow-classified USGS gages across the climate classes
(Fig. B2). The Very Wet climate class was the only exception in
which statistical differences were not detected between stream-
flow permanence probabilities of flow- and no flow-classified
gages. Differences in the range of streamflow permanence proba-
bilities across climate classes highlighted the variability in how
streamflow permanence probabilities represent streamflow per-
manence. For example, streamflow permanence probabilities that
correspond to flow-classified USGS gages in the arid climate class
were low enough to be well within the range of streamflow perma-
nence probabilities that correspond to no flow-classified USGS
gages in other climate classes, thus presenting a challenge for a
global interpretation of streamflow permanence probabilities.
Recognition of this variability consequently necessitated the sub-
sequent threshold analysis that allows translation of streamflow
permanence probabilities back into wet or dry conditions (Appen-
dix A).

Appendix C. A predictor variable suitability grid to evaluate
PROSPER streamflow permanence predictions

A predictor variable suitability grid was created to identify pix-
els for which predictor variable values extend beyond those asso-
ciated with streamflow observation point locations that were
used in the model development. The number of predictor variables
with values that fell outside of the range of values used for model
development was compiled for each pixel to create the Predictor
Variable Suitability Grid. Larger numbers reflect more predictor
variables at that 30-m location that were outside the range of pre-
dictor variable values used in model development and thus might
indicate potentially less reliable predictions. A complementary
attribute includes the proportion of predictor variables with values
within the range of predictor variable values that were used in

model development. Larger proportions reflect more predictor
variables at that 30-m location that were within the range of pre-
dictor variable values used in model development and thus can
indicate more reliable predictions. While portions of the study area
might have a lower density of streamflow observations, for exam-
ple central and easternWashington, these areas are potentially still
well represented if they are statistically similar (defined in predic-
tor variable space) to other locations that are represented in the
streamflow observation dataset used to calibrate the random forest
model.

Approximately 38% of pixels within the study area have at least
one predictor variable that was outside the range of values used in
model development. However, more than 80% of those pixels have
less than 5 variables outside of the model range. The maximum
number of predictor variables for an individual grid cell pixel at
which values extended beyond the range of model development
is 101.

Currently, the predictor variable suitability grid does not iden-
tify the specific predictor variables whose values are beyond those
used in the model; future work should identify specific predictor
variables in the grid and their spatial distribution in the study area.
However, in the absence of this analysis, a reasonable approach for
end users may be to simply consider these areas that have a rela-
tively high number value in the grid (e.g., more than 5) as poten-
tially not well represented by the model. High number values in
the grid results in higher uncertainty in streamflow permanence
probabilities at those locations and may account for streamflow
permanence probabilities and classifications that are not aligned
with on-the-ground conditions.

Appendix D. Comparison of PROSPER streamflow permanence
classifications with NHDPlus streamflow classifications

Streamflow permanence classifications were compared to
NHDPlus streamflow classifications (perennial or intermittent)
for HUC8 watersheds in the study area as another method to quan-

Fig. B2. Boxplots of mean PROSPER streamflow permanence probabilities (SPP) for the 2004–2016 modeling period at U.S. Geological Survey stream gages classified as either
with flow (1st percentile of daily streamflow less than 0.0283 m3s�1) or with no flow (1st percentile of daily streamflow greater than or equal to 0.0283 m3s�1). USGS stream
gages were distributed across six different climate classes defined for Washington, Oregon and Idaho (Leibowitz et al., 2016); gages located outside this three-state area were
not assigned a climate class. Results of Welch’s unequal variance t-test for significant differences are reported for each climate class in addition to the number of USGS gages
in each gage class within each climate class.
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tify the reliability of identified threshold values (Appendix A).
Seven HUC8 watersheds, mostly clustered in the North Cascades
Mountain Region along the northern border of the study area
(Fig. A1), were flagged because of disagreement with NHDPlus
classifications. Although there is recognition that NHDPlus classifi-
cations are an imperfect baseline for comparison based on the
known errors in the NHDPlus classification system (Fritz et al.,
2013), it is nevertheless the most spatially comprehensive stream-
flow permanence dataset for the study area, particularly for data-
sparse regions. There was an approximately 80% agreement
between streamflow field observations used in the model develop-
ment and the NHD classifications, using both the medium and high
resolution NHD. The streamflow permanence classifications were
extracted from the PROSPER stream grid cells using a 15-meter buf-
fer around theNHDPlusflowlines. For eachHUC8 region, thepropor-
tion of 30-m grid cells classified as wet, based on the streamflow
permanence classifications averaged over the years 2004–2016,
was compared to theproportionof stream length classifiedasperen-
nial in the NHDPlus dataset. The HUC8 regions were ranked and
sorted according to both the proportion of pixels classified as wet
by the streamflow permanence classification and the proportion of
streams classified as perennial by NHDPlus. The HUC8 streamflow
permanence classification ranks were plotted against NHDPlus
ranks and a 90% confidence interval ellipse was constructed. The
HUC8 regions outside the 90% confidence interval with NHDPlus
were flagged as having potentially unreliable threshold values.

Appendix E. Obtaining PROSPER predictions in StreamStats

StreamStats is a Web-based GIS application that was created by
the USGS to provide users with access to an assortment of analyt-
ical tools and datasets that are useful for water-resource planning
and management (U.S. Geological Survey, 2016). StreamStats, as
well as a brief description of the application and links to user
instructions, definitions, fact sheets, and other information, can
be accessed at http://water.usgs.gov/osw/streamstats/. It is recom-
mended that, in addition to the application description and user
instructions, users read the limitations for the StreamStats applica-
tion before attempting to use StreamStats.

The PROSPER data are publicly available through the StreamS-
tats Web App, as well as in ScienceBase as downloadable GeoTiffs.
It is recommended that StreamStats is used for obtaining PROSPER
predictions at individual locations or a subset of locations, while
ScienceBase is used for obtaining PROSPER data for large regions.
In StreamStats, the user can view each of the annual PROSPER
streamflow permanence probability grids for the Pacific North-
west. When a particular pixel (stream location) is selected, a pop
up window will contain the streamflow permanence probability
for each annual probability grid selected by the user, as well as
the respective wet or dry classifications made using the local
threshold analysis (Appendix A).

For a single location:

1. Go to the StreamStats Web App (https://streamstats.usgs.gov/
ss/) and click the ‘‘Exploration Tools” link in the upper left cor-
ner application window. Select ‘‘PROSPER Tool”.

2. Select the years of data you want to analyze in the ‘‘Include in
query” boxes and change the ‘‘Displayed layer” to the dataset
you want to visualize in the application window.

3. Zoom to your area of interest, or type a location in the box pro-
vided in the table of contents on the left side of the application
window.

4. Click on a pixel to show the PROSPER predictions for the years
included in the query.

5. If you wish to adjust the configuration, click ‘‘Configure” in the
‘‘Exploration Tools” window.

6. When you are satisfied with the location and data you have
selected, Click ‘‘Continue” under the ‘‘Build Report” tab (it
should be shown automatically).

Upon completing steps 1–6, a report should be generated that
provides the data specified, as well as any warnings or flags asso-
ciated with the location. In the report are options to download
the data as a comma-delimited text file (.csv).

Appendix F. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.hydroa.2018.100005.
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