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Submarine Deep-Water Lava Flows at the Base of the Western
Galápagos Platform
Molly Anderson1, V. Dorsey Wanless1 , Darin M. Schwartz1, Emma McCully1, Daniel J. Fornari2,
Meghan R. Jones2 , and S. Adam Soule2

1Department of Geosciences, Boise State University, Boise, ID, USA, 2Geology and Geophysics Department, Woods Hole
Oceanographic Institution, Woods Hole, MA, USA

Abstract To investigate the initial phases of magmatism at the leading edge of the upwelling mantle
plume, we mapped, photographed, and collected samples from two long, deep-water lava flows located at
the western base of the Galápagos Platform using the remotely operated vehicle Hercules. Lavas were
recovered from four areas on the seafloor west of Fernandina volcano, including thewestern flow fronts of two
deep-water flows, heavily sedimented terrain between the two flows, and the eastern, shallower end of one
flow. The sediment cover and morphologies are distinct between the western flow fronts and the eastern
region based on seafloor imagery, suggesting that the long lava flows are not a single eruptive unit. Major
and trace element concentrations reveal both tholeiitic and alkalic compositions and support the
interpretation that multiple eruptive units comprise the deep-water flows. Alkalic lavas have higher [La/Sm]N
ratios (2.05–2.12) and total alkali contents (5.18–5.40) compared to tholeiitic lavas, which have [La/Sm]N ratios
ranging from 1.64 to 1.68 and total alkali contents ranging from 3.07 to 4.08 wt%. Radiogenic isotope
ratios are relatively homogeneous, suggesting a similar mantle source. We use petrologic models to assess
three alternative mechanisms for the formation of the alkalic magmas: (1) high-pressure crystallization of
clinopyroxene, (2) mixing of high silica and mafic magmas, and (3) variable extents of melting of the same
mantle source. Our modeling indicates that the alkalic samples form from lower extents of melting compared
to the tholeiitic lavas and suggests that the deep-water alkalic lavas are analogous to the initial, preshield
building phase observed south of Hawaii and at the base of Loihi Seamount.

1. Introduction

The current Galápagos Islands, located on the Nazca plate ~1,000 kmwest of Ecuador, have been constructed
over the past ~4 Ma by volcanic eruptions associated with melting of an upwelling mantle plume (e.g.,
McBirney & Williams, 1969; White et al., 1993). The Galápagos are atypical for an ocean island system in that
most of the subaerial volcanoes are built on top of a large (~3,500 km2), shallow volcanic platform that stands
~3,000 m above the surrounding seafloor (Figure 1; Geist et al., 2008). The platform consists of stacked lava
terraces that can each be hundreds of meters thick and are geochemically similar to lavas erupted at adjacent
subaerial volcanoes (Geist et al., 2006, 2008). The construction of this platform likely precedes island
formation for all modern islands in the archipelago (Geist et al., 2006).

Platform and terrace construction processes in the Galápagos have been deduced from interpretations of
side scan sonar and bathymetric data from the seafloor west of Fernandina Island (Geist et al., 2006, 2008).
These studies identified several highly reflective (i.e., unsedimented and presumed young), long (up to
30 km in length), deep-water (>3,000-m depth) lava flows (DWFs) on the seafloor at the western edge of
the platform (Figures 1 and 2). Combining observations of DWFs and terrace flows led Geist et al. (2008) to
hypothesize that the platform is constructed from repeated eruptions of long lava flows at the western,
leading edge of the Galápagos hotspot, which stack and coalesce to form the thick volcanic terraces. Thus,
the DWFs at the leading edge of the Galápagos platform are thought to represent the initial phases of
platform construction and may be analogous to DWFs at the base of Loihi Seamount’s south rift zone, at
the leading edge of the Hawaiian hotspot (e.g., Lipman & Calvert, 2013; Moore et al., 1982).

To assess the magmatic and eruptive processes leading to the formation of the long lava flows, we utilize
visual observations and samples from two DWFs (#1 and #2) west of Fernandina Island (Figure 2) using the
E/V Nautilus and the Ocean Exploration Trust’s remotely operated vehicle (ROV) Hercules. We first present
information pertaining to the morphology and sedimentation on and around the DWFs, based on analysis
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of digital still photography and video footage, from which we provide
estimates of relative ages between and along each flow. We use major
and trace element contents, as well as radiogenic isotope ratios, to show
that the DWFs are compositionally heterogeneous, and include both
alkalic and tholeiitic lavas, suggesting that the flows are composed of
multiple eruptive units. Finally, we evaluate the petrogenesis of both
lava types and present a model for the origin of alkalic and tholeiitic
magmas that formed the deep-water flows in the context of ocean
island evolution in the Galápagos.

2. Previous Studies of the Seafloor West of Fernandina

In 2001, two research cruises (R/V Melville AHA-Nemo2 and R/V Revelle
DRIFT4) investigated the submarine flanks, terraces, and seafloor south
and west of Fernandina, Isabela, and Floreana Islands to better understand
the earliest stages of Galápagos volcanism and platform formation (Geist
et al., 2006, 2008; Figure 1). Using MR1 surface towed side scan sonar back-
scatter imagery gridded at 8-m resolution (Rognstad, 1992), Geist et al.
(2006, 2008) identified regions of high reflectivity (relatively unsedimented
hard-rock surfaces) on the seafloor and interpreted these as long lava
flows in the deep water (~3,300–3,500 m) up to 30 km in length with areal
extents of ~5–30 km2 and thickness estimates of <5 m (Geist et al., 2006).
These DWFs traversed relatively flat seafloor at the base of the platform
and, due to their low relief, are not resolved by existing multibeam bathy-
metry (10- to 20-m vertical resolution). The DWFs, with higher reflectivity
than the surrounding seafloor, represent the youngest volcanic deposits

Figure 1. (a) Bathymetric and (b) side scan sonar maps of the Galápagos deep-water lava flow study site; data from Geist
et al. (2006). Subaerial Galápagos Islands are shown in green and labeled in black and the shallow platform top is shown in
gray. White polygon in (a) denotes the two deep-water lava flows investigated in this study, the red polygon in (a) outlines
Fernandina volcano’s northwest submarine rift zone, yellow lines show the dive track of remotely operated vehicleHercules,
and black box indicates location of Figure 2. Volcanoes on each island in (b) are labeled in black (F=Fernandina;
E = Ecuador; W = Wolf; D = Darwin; A = Alcedo; SN = Sierra Negra; CA = Cerro Azul), and yellow lines show the dive
tracks of remotely operated vehicle Hercules.

Figure 2. Side scan sonar map of the seafloor west of Fernandina volcano
(Geist et al., 2006). The deep-water lava flows (DWFs; dark areas of high
reflectivity) are located ~10 km west of Fernandina. The two deep-water
flows investigated in this study (DWF#1 and DWF#2) are outlined in white
along with another highly reflective uninvestigated portion of the northwest
submarine rift zone of Fernandina. Sample locations are shown as circles,
with red indicating alkalic samples and blue indicating tholeiitic samples
(interflow [IF] tholeiites in light blue). Sample locations from the R/V Melville
AHA-Nemo2 and R/V Revelle DRIFT4 cruise (Geist et al., 2006) are shown as
gray (tholeiitic) and orange (alkalic) squares (rock cores [RC]) and a pink star
for the single dredge sample of mixed composition (D).
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in the region, but the patterns of reflectivity throughout the area suggest diverse acoustic facies that could
imply a range of ages for the flows (Figure 1b). Some of these large DWFs appear to originate from
Fernandina’s northwest submarine rift zone (Geist et al., 2006) or volcanic cones in the middle to lower south
flank of the northwest rift, while others have no obvious connection to the rift zone (Glass et al., 2007).

The seafloor, terraces, and rift zones west of Fernandina and south and west of Isabela were sampled
during the AHA-Nemo2 and DRIFT4 cruises using short-traverse dredging and wax coring. Major element
geochemistry of the dredge samples collected from the entire region was presented in Geist et al. (2006).
They divided the submarine lavas into three categories based on composition: (1) normal, (2) evolved, and
(3) high-K lavas. The majority of the dredged lavas are “normal” tholeiitic basalts and are characterized by
relatively high MgO (5.0–7.6 wt%), low K2O (0.38–0.77 wt%), and abundant plagioclase and olivine
antecrysts. These submarine tholeiitic lavas are compositionally similar but more crystal rich compared
to subaerially erupted lavas on Fernandina (Geist et al., 2006). The “evolved” submarine lavas, collected
along the SW rift zone of Fernandina and the western ends of the DWFs, are characterized by lower
MgO (3.19–5.00 wt%) and higher K2O (>1.5 wt%) compared to the normal series and contain clinopyrox-
ene (CPX), olivine, and plagioclase phenocrysts. The “high-K” lavas are characterized by MgO and SiO2

contents similar to the normal series but have higher incompatible element values (e.g., K2O > 1 wt%)
for a given MgO content. These lavas were interpreted to be a product of mixing between the evolved
and normal lavas (Geist et al., 2006). Both the evolved and high-K series are alkalic, based on total alkali
contents versus silica (Figure 3a).

The above descriptions by Geist et al. (2006) are based on sampling that were primarily focused on the sub-
marine rift zones and terraces, with very limited geochemical data from the DWFs. However, a single dredge
(D-17; Figure 2) that crossed DWF#1 (Figure 2) and three rock cores (RC-02, RC-04, and RC-05) all collected
small chips of glass from DWF#1 and DWF#2 (Figure 2). Major element contents from these dredges and rock
cores are reported in Geist et al. (2006), but no trace element contents were measured, due to inadequate
sample volumes. Dredge D-17 on the edge of DWF#1 only recovered a few small glass chips in the burlap
of the dredge but included both tholeiitic (MgO = 5.85–6.69 wt%; K2O = 0.45–0.59; Figure 3) and alkalic
(MgO = 4.48 wt%; K2O = 1.69; Figure 3) compositions (Geist et al., 2006). RC-02 on DWF#2
(MgO = 7.42 wt%; K2O = 0.48) and RC-05 on DWF#1 (MgO = 6.36 wt%; K2O = 0.57) are tholeiitic, while RC-
04 on the western edge of DWF#1 (MgO = 4.51 wt%; K2O = 1.63) is alkalic (Figure 3). Unfortunately, due to
the low relief across the flows, dredges from the previous field programs were not able to collect sufficient
samples to corroborate the extents of mapped flows and determine the extent of the alkalic lavas relative
to the more normal dredged tholeiites.

3. ROV Dives and Observations

Two ROV dives (Hercules 1441 and 1442) were conducted in July 2015 from the E/V Nautilus (Carey et al., 2016)
to explore the seafloor west of Fernandina. Each dive lasted approximately 15 hr and covered ~8–12 km of
seafloor (Figure 2). Navigation of the ROV was accomplished using ultrashort baseline acoustic navigation
integrated with ship-based satellite navigation resulting in geodetic precision of ~10 m.

Nearly 10,000 images of the seafloor were acquired during the ROV dives using a Multidisciplinary
Instrumentation in Support of Oceanography (MISO) GoPro™ 12-megapixel digital deep-sea camera pro-
vided by the Woods Hole Oceanographic Institution (WHOI) MISO Facility (www.whoi.edu/miso). Images
were analyzed using a MATLAB™-based graphical user interface to characterize the type of lava morphol-
ogy and sediment abundance. In addition, new multibeam bathymetric data acquired by the E/V Nautilus
were gridded at ~50-m pixel resolution and used to correlate features observed in the 8-m-gridded MR1
side scan sonar data with seafloor slope and features observed during the dives (Figure 4).

The dives characterized and sampled lavas from four areas on the seafloor west of Fernandina: (1) the deep,
terminal portions of highly reflective DWF#2; (2) a narrow, less reflective area in between the two DWFs; (3)
deep, terminal portions of highly reflective DWF#1; and (4) the upper, shallower section of DWF#1 (Figures 1
and 2). Although our results suggest that DWF#1, and possibly DWF#2, comprise multiple lava flows, we still
refer to them as flows #1 and #2 for consistency with previous studies (e.g., Geist et al., 2006). Twenty-five
basalts were collected from these regions during the 2015 cruise; two basalts were collected from the
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terminus of DWF#2, three basalts were sampled from the heavily sedimented seafloor between flows, seven
basalts were collected from the western terminus of DWF#1, and 13 basalts were collected from the
northeastern, shallow portion of DWF#1 (Figure 2).

Analyses of the digital still imagery suggest a difference in morphology, sediment cover, and thus age
between the deeper flow fronts of both DWFs, the area between the flows (interflow [IF]), and the shallower,
eastern portion of DWF#1 (Figure 4). The IF region was nearly 100% sediment with a few sparse pillow out-
crops (supporting information Figure S1b), suggesting that these lavas are older than the adjacent DWFs.
The terminal flow fronts of DWF#1 and DWF#2 are composed of heavily sedimented pillow lavas (Figures
S1a, S1c, and S1d), while the upper section of DWF#1 is composed of pillow, lobate, and sheet lava flows, with
variable but thinner sediment cover (Figures S1e and S1f). Thus, the upper section of DWF#1 is inferred to be
younger than the deeper flow front due to less sediment cover, despite similar slopes (Figure 4). Although
pillow lavas are the dominant lava morphology in all regions (Figure 4), the upper section of DWF#1 is also
composed of lobate and sheet flows (Figure S1), suggesting higher eruption or flow rates (Gregg & Fink,
1995). Further, we observed a prominent collapse crater ~60m in diameter and ~30m deep with fresh, glassy
pillow lava at the rim and exposed cross-sections of the flows contained in this shallower portion of DWF#1
(Figure S2).

Figure 3. (a) TAS diagram and (b–d) selected harker diagrams for DWF glasses (diamonds, squares, and trianges), compared with Geist et al. (2006) dredged glasses
from the DRIFT4 cruise (green, gray, orange circles). Bold line in the TAS diagram represents the boundary between alkalic and tholeiitic compositions (Macdonald &
Katsura, 1964). Geist et al. (2006) samples from the two DWFs are indicated by black “+.” Modeled fractional crystallization lines on harker diagrams (black
lines with white circles) generated from MELTs at 50 and 500 MPa with variable water contents (Ghiorso & Sack, 1995; Smith & Asimow, 2005). White circles indicate
5% crystallization increments on each trend. See text for modeling details. TAS = total alkalis versus silica; DWF = deep-water lava flow; IF = interflow.
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4. Geochemical Methods

Basaltic glass was chipped from the outer edge of each sample, and individual chips were handpicked for
geochemical analyses using a binocular microscope, avoiding phenocrysts and alteration. The chips were
cleaned in an ultrasonicating bath of deionized water three times for 30 min to remove alteration and salt
precipitates. Major element concentrations (Table S1) of glasses were determined using the Cameca SX
Five electron microprobe at Boise State University. The accelerating voltage was 15 kV, beam current was
10 nA, and beam diameter was 10 μm. Count times varied for different elements: S was measured for 60 s;
Al, K, and Mg were measured for 50 s; Si and Ca were measured for 40 s; Ti, Fe, and P were counted for
30 s; and Na and Mn were counted for 20 s. To reduce volatile loss, Na and then K were analyzed first. Five
spots were measured on each glass and averaged. Basalt standard VG-2 and internal standard 2392-9
(Perfit et al., 2012) were run approximately every seven samples to account for instrument drift. Standard
values can be found in the supporting information (Table S1).

All 25 samples were measured for trace element contents using solution inductively coupled plasma mass
spectrometer (ICP-MS) at Boise State University (Table S2). Samples were prepared for analysis following
methods modified from Kelley et al. (2003) and Lytle et al. (2012). Description of modifications to the dissolu-
tion processes can be found in (Schwartz et al., 2018). Trace element concentrations were determined using a

Figure 4. Morphology statistics frommap and digital image analysis. (a) Histogram of seafloor slope along each dive traverse. (b) Histogram of sediment cover along
each dive traverse. (c) Histogram of lava flow morphology along each dive traverse. The head of DWF#1 has a lower sediment cover and a higher number of lobate,
sheet, and hackley flow observations than the other regions despite being composed of similar bathymetric slopes.
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ThermoElectron X-Series II Quadrupole ICP-MS at Boise State University. Each solution was measured three
times and averaged. The internal standard correction 115In was applied to each analysis. Instrument drift
was accounted for by assessing the standards before and after the sample runs. The blank was 8 N HNO3,
and the standards used included BHVO-2, BIR-1, DNC-1, JB-3, and W-2. Standard values can be found in
the supporting information. Radiogenic isotopic ratios were collected on 12 samples at the University of
Florida (Table S4). Samples were prepared following methods of Goss et al. (2010). Pb, Sr, and Nd isotopes
were then measured at the University of Florida using a Nu-Plasma multicollector ICP-MS.

Volatile concentrations were measured on all 25 samples (Table S3) at the Northeast National Ion Microprobe
Facility at the WHOI using a Cameca 1280 secondary ion mass spectrometer, following methods developed
by Hauri et al. (2002). Glass from each sample was chipped, cleaned, and hand-polished using a range of grits
on silica carbide sandpaper. The glass was then mounted in indium and polished using 6-, 3-, and 1-μm dia-
mond suspension followed by 1-μm alumina suspension. The mounts were dried, gold coated, and stored in
vacuum prior to analysis. The measurements were acquired using a 1-nA Cs+ beam over a 30-μm raster size
on vesicle and crystal-free areas. The accuracy and precision for these conditions at WHOI is 10% (2σ).
Counting times of 10 s were used over five acquisition blocks after 2 min of presputtering. Measurements
with >10% standard deviation over the five acquisition blocks or with anomalous 12C intensity during ana-
lysis were interpreted to reflect surface contamination and discarded. Drift was monitored by repeat mea-
surements on basaltic glass 519-4-1 (Hauri et al., 2002). Standard values can be found in the supporting
information (Table S3).

5. Results
5.1. Major and Trace Element Contents

Based on total alkali contents versus silica (Figure 3a), both tholeiitic and alkalic lavas are observed, which
have distinct major (Table S4 and Figures 3b–3d) and trace element contents (Table S2 and Figure 5).
Tholeiitic basalts were sampled from the shallow eastern edge of DWF#1 and between the two DWFs
(IF lavas). The DWF tholeiites are depleted in total alkali contents (Na2O + K2O = 3.28–3.52 wt%) and have
low [La/Sm]N (1.64–1.68), K/Ti (0.21–0.23), and [Sm/Yb]N (2.26–2.32; Figure 5). These lavas are characterized
by relatively high MgO (6.06–6.51 wt%), SiO2 (47.74–48.75 wt%), and CaO (10.68–11.08 wt%) contents and
low K2O (0.48–0.54 wt%) and Al2O3 (14.21–14.93 wt%) contents compared to other DWF lavas (Figures 3
and S3). The IF lavas are also tholeiitic in composition but are more variable in total alkali content
(3.07–4.08 wt%) and other major elements (MgO = 4.88–7.00 wt%, CaO = 9.44–11.66 wt%, and
K2O = 0.38–0.71 wt%), compared to the DWF tholeiites (Figure 3). These lavas also have more variable

Figure 5. Primitive mantle-normalized trace element diagram for DWF glasses (normalized using McDonough & Sun,
1995). Note the difference in REE patterns between the tholeiitic and alkalic samples, where alkalic lavas are more
enriched in LREEs than the tholeiitic lavas. DWF = deep-water lava flow; REE = rare earth element; LREE = light rare earth
element; IF = interflow.

10.1029/2018GC007632Geochemistry, Geophysics, Geosystems

ANDERSON ET AL. 3950



[La/Sm]N (1.40–1.67), K/Ti (0.19–0.25), and [Sm/Yb]N (2.11–2.45; Figure 5). The most extreme trace element
variability in the IF lavas arises from NA064-075 with a distinct trace element pattern (Figure 5).

The western (deeper) basalts from both DWFs have higher total alkalis (Na2O + K2O = 5.18–5.40 wt%)
compared to the tholeiitic samples from the previous groups and are described together due to similarity
in composition. In addition to higher alkali contents, these lavas have higher minor (K/Ti = 0.50–0.54) and
trace element ratios ([La/Sm]N = 2.06–2.12, [Sm/Yb]N = 3.04–3.11). Alkalic lavas, collected from the western
end of both DWFs, have relatively low MgO (4.57–4.87 wt%), SiO2 (46.90–47.42 wt%), and CaO
(8.59–8.84 wt%) and high K2O (1.34–1.45 wt%) and Al2O3 (15.36–16.34 wt%) contents compared to the
tholeiitic lavas (Figure 3).

5.2. Volatile Concentrations

The alkalic lavas display similar dissolved CO2 concentrations (107–136 ppm) and higher dissolved H2O
(1.15–1.65 wt%), F (799–1,323 ppm), Cl (799–1,323 ppm), and S (1,721–1,911 ppm) concentrations than the
tholeiitic lavas from DWF#1 (111–157 ppm CO2; 0.083–1.09 wt% H2O; 515–592 ppm F, 239–280 ppm Cl,
1,271–1,729 ppm S; Figure S4). Excluding CO2, the IF tholeiitic lavas display more variable dissolved volatile
concentrations than tholeiites from DWF#1 (158–171 ppm CO2, 0.60–1.08 wt% H2O, 393–821 ppm F, 234–
272 ppm Cl, and 1,386–1,888 ppm S). Similar to the trace element geochemistry, the variability in the volatile
concentrations of the IF lavas arises from sample NA064-075.

5.3. Radiogenic Isotope Ratios

All of the lavas (including both alkalic and tholeiitic basalts) are isotopically similar (Figure 6), with the
exception of one anomalous sample, NA064-075, compared to the archipelago-wide variations that
have been observed (e.g., Saal et al., 2007). Excluding sample NA064-075, 87Sr/86Sr ratios range from
0.70319 to 0.70324, and 143Nd/144Nd ratios vary from 0.512932 to 0.512971. 206Pb/204Pb ratios range from
19.047 to 19.124, 207Pb/204Pb ratios range from 15.545 to 15.559, and 208Pb/204Pb ratios range from 38.624
to 38.746. Note that the alkalic and tholeiitic samples form tightly clustered and distinct groups in Pb isotope
space and have more depleted thorogenic (208Pb/204Pb) compared to uranogenic Pb isotope ratios
(206Pb/204Pb; Figure 6a). Relative to the other samples from the study, NA064-075 (IF lava) is depleted in all
radiogenic isotope ratios (87Sr/86Sr = 0.702755, 143Nd/144Nd = 0.513042, 206Pb/204Pb = 18.808,
207Pb/204Pb = 15.526, and 208Pb/204Pb = 38.285) and has the most elevated εNd value (7.88 compared
to 5.74–6.50).

5.4. Petrography

The alkalic and tholeiitic DWF and IF lava series are petrographically distinct and contain abundant pheno-
crysts. Based on 500-point counts, tholeiites from the DWF include ~5% olivine (~1 mm) and ~15% plagio-
clase phenocrysts (1–4 mm), in addition to olivine and plagioclase microphenocrysts (<0.5 mm). IF
tholeiites have higher olivine (~10–20%) and lower plagioclase (~5%) phenocryst abundances compared
to the DWF tholeiites and also contain olivine and plagioclase microphenocrysts. The alkalic DWF lavas are
sparsely plagioclase phyric, containing ~3% plagioclase (1–4 mm) and abundant plagioclase micropheno-
crysts. Olivine phenocrysts are not observed in the alkalic lavas. This variability in phenocryst contents relative
to composition is consistent with results from Geist et al. (2006).

6. Discussion
6.1. Comparison to Previous Studies

The normal series tholeiitic lavas previously dredged from the terraces and rift zones west of Fernandina
volcano (Geist et al., 2006) and the tholeiitic DWF lavas in this study are compositionally similar and likely
originate from the same magmatic system. Total alkali (Na2O + K2O) contents of the DWF tholeiites overlap
the normal series (Figure 3a) and fall within the field of normal series lavas in all major element diagrams
(CaO, Al2O3, FeOtotal, SiO2, K2O, Na2O, P2O5; Figures 3 and S3). Trace element contents of the tholeiitic
DWFs are also similar to the dredged normal series basalts (Geist et al., 2006) and radiogenic isotopes fall
within the range observed at Fernandina (Figure 6; e.g., Saal et al., 2007). The DWF alkalic lavas are similar
in composition to previously dredged (evolved) lavas (Geist et al., 2006); however, the alkalic DWFs
have lower total alkalis and silica contents (Figure 3a). The DWF tholeiites exhibit dissolved volatile
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concentrations similar to Fernandina group lavas from Peterson et al. (2017), while the alkalic lavas display
higher dissolved H2O, F, Cl, and S concentrations than previously studied submarine basalts from the
Galapagos (Peterson et al., 2017; Figure S4). Similar to previously studied submarine Galapagos lavas, the
DWF samples range from slightly sulfide undersaturated to sulfide saturated (Peterson et al., 2017; Fortin
et al., 2015) and display dissolved H2O and CO2 concentrations consistent with equilibrium degassing
(Peterson et al., 2017; Dixon et al., 1995; Ghiorso & Gualda, 2015). The H2O/Cl and K/Cl ratios suggest that
the DWF lavas assimilated with a similar brine-seawater mixture to the Fernandina and Sierra Negra group
lavas from Peterson et al. (2017; ~10 wt% brine; Figure S4).

The spatial distributions of DWF lava compositions inferred from in situ sampling (from this study) are rela-
tively consistent with the sparse sampling of the DWFs from previous dredging and rock cores (Geist et al.,
2006). Rock core sample RC-04, collected from the deeper portion of DWF#1, is alkalic, while RC-05, collected
midway up DWF#1, is tholeiitic in composition and similar to the DWF#1 tholeiites (Figure 3). Glass chips from
dredge D-17 are bimodal and may have sampled both the underlying IF tholeiitic lavas and part of alkalic
DWF#1 flow. Interestingly, RC-02, collected from DWF#2 is tholeiitic (Geist et al., 2006), while the ROV samples
from this flow are alkalic (Figure 2). There is also a slight change in reflectivity in the side scan sonar (Figure 2)
south of RC-02 that may indicate a flow boundary; however, without further sampling and observations this
cannot be confirmed. Combined, these observations may indicate that DWF#2 is also composed of multiple
flow units or that the rock core actually missed this flow and sampled the adjacent tholeiitic lavas (naviga-
tional precision of the rock core samples from Geist et al., 2006, was ~250 m).

Figure 6. (a–c) Radiogenic isotope (Pb, Sr, and Nd) ratios and (d) [La/Sm]N-against-Nd ratio for the DWFs. Regional Galápagos basalt fields are provided for compar-
ison as grayscale polygons (Eastern Islands, Isabela, and Fernandina data from Saal et al., 2007; Floreana data from Harpp et al., 2014). Error bars are shown as 2σ.
DWF = deep-water lava flow; IF = interflow.
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These results suggest that what was previously mapped as a single lava flow in Geist et al. (2006) is likely com-
posed of multiple eruptive events, which are required to produce distinct tholeiitic and alkalic compositions.
No samples were collected from themiddle of either flow, and there is no obvious transition between the two
in the side scan sonar data. Therefore, due to a lack of sampling and visual observations, we cannot deter-
mine where the lavas transition from tholeiitic to alkalic. Further, without detailed observations of flow thick-
ness and given uncertainty in preflow bathymetry, we do not attempt to calculate the total volume of either
flow. However, large areal extent of the DWFs in MR-1 side scan data, and the presence of a ~30-m-deep
collapse crater (Figure S2) within the shallow eastern region, is indicative of large volume eruptions, larger
than previously inferred (Geist et al., 2006). Regardless, these studies show that magmas produced at the
leading edge of the Galápagos plume are voluminous and compositionally heterogeneous, producing both
tholeiitic and alkalic lava flows.

6.2. Origin of Tholeiitic Lavas

The DWF tholeiites collected in situ using the ROV and dredged on previous cruises are also compositionally
similar to lavas erupted subaerially on Fernandina volcano (Figure 6), which is dominated by the eruption of
relatively homogeneous tholeiitic basalts (Allan & Simkin, 2000; Geist et al., 2006; McBirney & Williams, 1969;
White et al., 1993). Thermodynamic models indicate that subaerial Fernandina lava compositions are con-
trolled by crystallization at relatively shallow depths (~2 km; Allan & Simkin, 2000). This is consistent with
deformation studies (Geist et al., 2006) that suggest the presence of a shallow crustal magma chamber at
these depths. Thus, the homogeneity of subaerially erupted basalts at Fernandina is attributed to efficient
mixing and homogenization of melts in a shallow magma chamber prior to eruption (Allan & Simkin, 2000;
Geist et al., 2014).

Based on compositional similarities, Geist et al. (2006) suggest that the submarine normal series tholeiitic
lavas pass through Fernandina’s magmatic plumbing system; however, greater phenocryst abundances in
submarine Fernandina northwest rift zone lavas imply they may originate from greater depths within the
Fernandina magma plumbing system (Geist et al., 2006; Geist et al., 2014). To determine if DWF tholeiites
can be formed by crystallization of a mafic normal series basalt (Geist et al., 2006), fractional crystallization
trends were modeled using MELTS version 1.0.1 (Ghiorso & Sack, 1995), via the alphaMELTS front end
(Smith & Asimow, 2005). Calculations were run at 50 MPa, consistent with crystallization pressures estimated
for the dredged normal series lavas (Geist et al., 2006) and the depth of the magma chamber inferred from
deformation studies at Fernandina (~2 km; Allan & Simkin, 2000; Geist et al., 2006). A mafic basalt (NA064-
074) was used as a parent composition for the models; water contents were varied (0.25, 0.5, and 1 wt%) with
a starting oxygen fugacity of Quartz Fayalite Magnetite (QFM) + 0.5 (Peterson et al., 2015). Model runs were
also carried out at QFM + 0.15 and 0.75, which spans the range predicted by Peterson et al. (2015), but there is
nomajor effect on the modeling results (Figure S3). These models suggest that submarine DWF tholeiites can
be formed by ~10% fractional crystallization of olivine, feldspar, and CPX from a mafic normal series basalt,
while <5% crystallization of similar phases accounts for the variability observed within DWF basalts
(Figure 3). Petrologic modeling and lava compositions strongly suggest that the previously identified sub-
marine normal series tholeiites (Geist et al., 2006) and the DWF tholeiites sampled during the ROV dives
are formed from similar petrogenetic processes, perhaps within the same magmatic system.

Plagioclase phenocrysts are common in both the subaerial (Allan & Simkin, 2000) and submarine tholeiitic
lavas, but the submarine lavas also contain large olivine phenocrysts (~5%). Previous studies show that
anorthite contents of the plagioclase and forsterite values of the olivine phenocrysts in the normal series
are not in equilibrium with the host lavas, suggesting that the large phenocrysts in the dredged lavas are
antecrysts that were entrained into the magma during eruption (Geist et al., 2006). The tholeiitic DWFs show
similar phenocryst abundance to the dredged lavas, and there is no evidence for significant plagioclase crys-
tallization in the trace element contents (e.g., no Eu anomaly and a weak negative Sr anomaly; Figure 5). Thus,
our results are consistent with the hypothesis that the phenocryst-rich submarine DWF tholeiites are sourced
from the dense olivine-rich crystal mush lower in the Fernandina magma plumbing system and erupt on the
submarine flanks of the volcano via lateral diking and extrusion of lavas along the submarine rift zones (Geist
et al., 2006).

Interestingly, the major and trace element contents are more variable in the IF tholeiitic lavas compared to
the DWF tholeiites, and they have lower phenocryst abundances. Further, the IF lavas have variable
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radiogenic isotope ratios (Figure 6), and based on sediment cover and lower reflectivity in side scan sonar
data, the IF lavas are presumed older than the DWFs. This suggests that the mantle source feeding the lavas
that erupted on the seafloor west of Fernandina has varied through time.

6.3. Origin of Alkalic Lavas

Alkalic lavas have been identified as a primary rock type erupted at the leading edge of the Hawaiian
plume and are thought to form from lower extents of melting associated with the movement of the Pacific
plate over the Hawaiian hotspot (Clague & Dalrymple, 1987; Coombs et al., 2006; Frey & Clague, 1983;
Garcia et al., 1995; Moore et al., 1982). Similarly, alkalic basalts erupted at the youngest submarine
Galápagos volcano (Roca Redonda; Figure 1) are thought to represent analogous juvenile stage volcanism
on the northwest margin of the Galápagos plume (Standish et al., 1998). These alkalic lavas, which have high
[La/Sm]N and [Sm/Yb]N, are attributed to lower extents of mantle melting compared to tholeiitic lavas that are
produced over the center of mantle upwelling (Standish et al., 1998). However, this is not the only mechanism
that can produce alkalic magmas at ocean islands, including the Galápagos.

In addition to Roca Redonda, alkalic lavas have erupted on most of the Galápagos subaerial volcanoes
(Naumann et al., 2002; White et al., 1993) and are represented in the high-K series lavas dredged from
the seafloor west of Fernandina (Geist et al., 2006). Despite numerous studies, there is no consensus on
how alkalic basalts are formed in the Galápagos; hypotheses include the following: (1) mantle source het-
erogeneity (Geist et al., 1986; Gibson et al., 2012; Harpp et al., 2014; Naumann et al., 2002; Standish et al.,
1998), (2) high-pressure CPX crystallization (Geist et al., 1998; Naumann & Geist, 1999), (3) mixing of
evolved and mafic magmas (Geist et al., 2006), and (4) variations in the extent of melting of a homoge-
neous mantle source (Geist et al., 1986; Naumann et al., 2002; Standish et al., 1998). These studies suggest
that the complex tectonic setting of the Galápagos Islands and the Galápagos Spreading Center (GSC) to
the north allow for a variety of processes to be involved in the formation of alkalic lavas in the Galápagos.
In the following sections we evaluate each of these four mechanisms to determine the petrogenesis of
alkalic DWF lavas.
6.3.1. Mantle Source
The Galápagos mantle plume is compositionally heterogeneous, and there are complex geochemical interac-
tions with the upwelling depleted mantle beneath and nearby the GSC (Harpp & White, 2001; White et al.,
1993). Four mantle sources have been identified in the Galápagos based on Sr, Nd, Pb, and He isotope ratios
and [La/Sm]N ratios: (1) primitive lower mantle (PLUME), (2) depleted upper mantle (DUM), (3) enriched
Floreana mantle (FLO), and (4) Wolf-Darwin lineament mantle (WD; Harpp & White, 2001; Hoernle et al.,
2000). Mixing and melting of these end-member mantle components can account for a wide range of lava
compositions (D. J. Geist et al., 1986; Gibson et al., 2012; Harpp et al., 2014; Harpp & White, 2001; Hemond
et al., 1993; White et al., 1993), including alkalic basalts. For example, radiogenic isotope ratios suggest that
eruption of both alkalic and tholeiitic magmas at Isla Santiago (Gibson et al., 2012) and San Cristobal (Geist
et al., 1986; Figure 1) is at least partially attributed tomelting of a heterogeneous mantle source. In both cases,
alkalic lavas are produced by melting of a mantle source that contains a higher proportion of an enriched
mantle component (PLUME) compared to depleted mantle (DUM), resulting in elevated trace element con-
tents and more enriched radiogenic isotope ratios compared to the tholeiitic lavas, which are dominated
by the DUM source (Geist et al., 1986; Gibson et al., 2012). Similarly, variations in mantle source has been sug-
gested as an explanation for high [La/Sm]N and radiogenic isotope ratios reported at Floreana (Bow & Geist,
1992; Harpp et al., 2014).

These studies show that variations in mantle source may contribute to the formation of both alkalic and tho-
leiitic lavas over short spatial distances; however, unlike Isla Santiago or San Cristobal, the DWF basalts span
very little of the compositional range observed in the Galápagos (Figure 6), with the exception of one IF
tholeiitic sample (NA064-075). This suggests that both alkalic and tholeiitic DWFs are sourced from similar
proportions of mixed mantle components. Based on 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb,
208Pb/204Pb, and [La/Sm]N, the mantle source for the alkalic and tholeiitic DWFs is primarily PLUME and
DGM, nearly identical to the source of Fernandina’s subaerial lavas (Figure 6). There may also be a small
contribution by the FLO or WD component present in a higher proportion in Floreana and Northern
Isabela subaerial lavas, respectively (Figure 6). These observations are consistent with isotopic studies of sub-
aerial Fernandina lavas (Gibson & Geist, 2010; Harpp & White, 2001).
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Trace element ratios can also be affected by mantle source heterogeneity
and variations in melting. At both San Cristobal and Santiago, incompati-
ble trace elements correlate with the isotopic ratios, indicating that the
degree of enrichment is controlled by source composition and variations
in extent of melting (Geist et al., 1986; Gibson et al., 2012). However, the
DWFs show no correlation between trace elements and radiogenic iso-
topes (Figure 6). A theoretical relationship between a global depleted
mantle component (Workman & Hart, 2005) and primitive mantle compo-
nent (Sun & McDonough, 1989) demonstrates the dependence of [La/Sm]

N and
143Nd/144Nd onmantle melting andmantle components (Figure S4).

The lack of correlation between radiogenic isotope and trace element
ratios (e.g., [La/Sm]N and 143Nd/144Nd; Figure 6) indicates that mantle
source heterogeneity does not contribute to the degree of enrichment
in the DWF lavas (Geist et al., 1986; Gibson et al., 2012). Therefore, melts
feeding eruptions of both alkalic and tholeiitic lava on the seafloor west
of Fernandina are not controlled by variations in mantle source.
6.3.2. High-Pressure Fractional Crystallization
The formation of alkalic magmas can also be explained by high-pressure
crystallization of CPX (Geist et al., 1998; Naumann & Geist, 1999; Wanless
et al., 2006; Yoder & Tilley, 1962). At high pressures, the CPX liquidus
expands at the expense of plagioclase and olivine, allowing for crystalliza-
tion of CPX over a wider compositional range (Geist et al., 1998; Yoder &
Tilley, 1962). High-pressure CPX fractionation depletes magmas of CaO,
Sc, and SiO2 while enriching the magma in alkalis, resulting in a decrease
in CaO/Al2O3 ratios and the formation of alkalic compositions.

The submarine DWF alkalic lavas have lower CaO/Al2O3 (Figure 7a) com-
pared to DWF tholeiitic lavas. This may indicate that the alkalic lavas are
formed from high-pressure crystallization of CPX or variations in extents
of melting. To determine if high-pressure crystallization can produce the
alkalic compositions, we model fractional crystallization using the meth-
ods and parameters described in section 6.2 (H2O = 0.5 wt%), varying pres-
sure between 10 and 500 MPa, consistent with those estimated for the
western Galápagos (Geist et al., 2006; Naumann & Geist, 1999). While
high-pressure CPX crystallization can explain several of the major element
trends (Figure 3), and CaO/Al2O3 (Figure 7a), it cannot explain the variation
in total alkali contents (Figure 3a) or K/Ti between the alkalic and tholeiitic
DWF samples (Figure 7b). The elevated incompatible minor element con-

tents (particularly K2O) and ratios are inconsistent with high-pressure CPX crystallization as a mechanism
for the alkali enrichment of the DWFs (Figure 8b).
6.3.3. Magma Mixing
A third mechanism to produce alkalic lavas is by mixing an incompatible element enriched, highly evolved
magma (rhyolite) with a depleted mafic magma (Geist et al., 2006). During crystallization, incompatible ele-
ments become enriched in the liquid phase. Thus, mixing of a highly evolved magma with a mafic magma
can produce a range of intermediate compositions that are enriched in incompatible minor (K2O) and trace
element contents compared to the mafic lavas. Such mixing has been suggested by Geist et al. (2006) to
explain the formation of the Galápagos submarine high-K series lavas dredged during the DRIFT4 cruise.

To determine if mixing can produce the DWF alkalic lavas, we calculate binary mixing trends (Figure 8) using
the modeled fractional crystallization data from section 6.2 (H2O = 0.5 wt%). A best fit mixture was chosen
between two points along the modeled fractional crystallization trend, which best reproduced the K/Ti
and MgO trend of the alkalic DWF and terrace lavas. The K/Ti ratios of the DWF alkalic lavas can be formed
by mixing these mafic and evolved components in proportions of 80:20, respectively (Figure 8a). These
proportions differ from estimates calculated by Geist et al. (2006; 48:52 mafic to evolved magma), which is
consistent with the fact that the DWF alkalic lavas are more evolved (lower MgO contents) than the

Figure 7. Magma evolution diagrams showing the effect of changing pres-
sure on (a) CaO/Al2O3 and (b) total alkalis against MgO. Modeled fractional
crystallization lines (black lines with white circles) generated from MELTs at
10, 50, and 250 MPa. White circles indicate 5% crystallization increments on
each trend. See text for modeling details. DWF = deep-water lava flow;
IF = interflow.
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dredged high-K lavas. However, these proportions are inconsistent for
other major element concentrations and ratios (Figures 8b and S3) and
trace element ratios for elements that have similar compatibilities (e.g.,
[Sm/Yb]N; Figure 9a). Thus, we conclude that it is unlikely that the mixing
of evolved and mafic magmas, melted to the same extent and from the
same source, results in the formation of the alkalic DWF lavas.
6.3.4. Variable Extents of Melting
Varying the extent of mantle melting, without changing the mantle
source, can produce both alkalic and tholeiitic basalts at ocean islands
(Frey et al., 1990, 1991; Geist et al., 1986, 1998; Moore et al., 1982;
Naumann et al., 2002). During melting, highly incompatible elements
(e.g., La) are initially highly enriched in the melt phase compared to less
incompatible elements (e.g., Sm), but as the extent of melting increases,
the highly incompatible trace elements are diluted. Further, deep melt-
ing in the presence of garnet is predicted to produce relatively low
heavy rare earth element contents (i.e., high [Sm/Yb]N; e.g., Gibson and
Geist, 2010), due to the compatibility of heavy rare earths in garnet’s
crystal structure. Similar to [La/Sm]N, high [Sm/Yb]N ratios are diluted
as melting continues beyond the garnet stability field, which over-
whelms the early [Sm/Yb]N enriched melts. Therefore, variations in the
extent of melting of the same mantle source can produce both alkalic
magmas with steep rare earth element patterns and tholeiitic basalts
with flatter trace element patterns.

On the island of Isabela (Figure 1), systematic differences in the extent of
melting of the same mantle source partially accounts for the variability
of lava compositions erupted at Cerro Azul, Alcedo, and Sierra Negra volca-
noes (Geist et al., 1995; Reynolds et al., 1995; Naumann et al., 2002). The
highest [La/Sm]N, indicative of the lowest extent of melting (2–3%), are
found in lavas erupted at Cerro Azul, while Alcedo lavas have the lowest
[La/Sm]N, indicating higher extents of melting (~5%), and Sierra Negra
has erupted lavas with intermediate [La/Sm]N ratios from ~4% melting
(Naumann et al., 2002). Variation in [La/Sm]N ratios and inferred extents
of melting are attributed to ~10–20 °C differences in mantle potential tem-
peratures and lithospheric thickness variations beneath volcanoes on
Isabela (Baker & Stolper, 1994; Gibson & Geist, 2010; Naumann et al.,
2002), with the temperature and extent of melting decreasing (e.g.,
Cerro Azul) with distance from the center of plume upwelling or at greater
lithospheric thicknesses (Gibson & Geist, 2010; Naumann et al., 2002).

To determine if variations in mantle melting can produce the range of
trace element contents observed in the DWFs, we model mantle melting
using pHMELTS (Asimow et al., 2004; Smith & Asimow, 2005). We use a

starting mantle composition of 20% primitive mantle (Jackson & Jellinek, 2013) and 80% depleted mantle
(Workman & Hart, 2005) with water contents of 450 and 140 ppm, respectively (Peterson et al., 2017).
Mixing proportions are taken from studies of subaerial Fernandina lavas due to the similarity in isotopic
compositions (Figure 6) and are based on the volatile budget of the Galápagos mantle plume (Peterson
et al., 2017). Models assume isentropic, polybaric near-fractional melting (0.5% melt retained) starting from
4 GPa and are modeled at mantle potential temperatures of 1460, 1500 and 1560 °C. These temperatures
should correspond with a temperature of 1400–1500 °C using the alphaMELTS algorithm (Ghiorso et al.,
2002) and span the range of what is predicted for the Galápagos mantle plume based on upper mantle
shear wave velocity anomaly inversion (Villagómez et al., 2007). Fractional crystallization trends for trace
element ratios at various extents of melting were modeled using the methods and parameters described
in section 6.2 but using starting mafic alkalic and tholeiitic major element compositions from Geist
et al. (2006).

Figure 8. Effect of mixing and variations in extent of partial melting and frac-
tional crystallization on (a) K/Ti versus MgO and (b) [Sm/Yb]N. Modeled
fractional crystallization lines in top figure (black lines with white circles)
generated from MELTS starting from mafic tholeiite (NA064-074) and 1%
(a and b) melt of Fernandina-like mantle (see text for model details). White
circles indicate 5% crystallization increments on each trend. Black circles in
top and bottom figures show the same hypothetical mixing trend between
an evolved and mafic magma composition that repoduces the range in K/Ti
versus MgO of alkalic DWF samples. See text for modeling details. Trace
elements are modeled using alphaMELTS and the embedded partition
coefficients (Smith & Asimow, 2005). DWF = deep-water lava flow;
IF = interflow.
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Modeling results indicate that the variations between the major and trace
element contents of the DWF alkalic and tholeiitic lavas can be explained
by small variations (1–5%) in the extent of melting of the same mantle
source (Figures 8 and 9). This is similar to other estimates for the formation
of tholeiitic and alkalic magmas in the Galápagos (Naumann et al., 2002). In
particular, the high total alkali contents, F/Nd ratios (Figure S4; Shimizu
et al., 2016), and [Sm/Yb]N, which is not modified by fractional crystalliza-
tion (Figure 8b) can be explained by variations in the extent of melting
of the same mantle source. To reproduce the observed trace element
ratios in the alkalic DWF lavas compared to the tholeiitic ones, extents of
melting must be modulated by a 500-MPa increase to the top of the melt-
ing column (for [Sm/Yb]N) and decrease in mantle potential temperature
by 25–50 °C.

A decrease in mantle potential temperature is expected for melts that
are generated on the periphery of the mantle plume. A shorter melting
column can be explained by a change in lithospheric thickness, incom-
plete mixing of melts from the entire melt column or mantle flow
away from the plume center, which effectively truncates the melting
column. We have made estimates for lithospheric thickness variations
based on the average difference between [Sm/Yb]N between the
DWF and alkalic lavas, which are 59 and 55 km, respectively (equation. 2;
Gibson & Geist, 2010). Although this would explain the variation in
degree of melting, it is unlikely that the lithospheric thickness varies
by 4 km within such a short lateral distance and for lavas that have
essentially erupted coevally. Thus, it is more likely that the alkalic lavas
are produced from incomplete mixing or mantle flow at the edge of
the plume.

6.4. Preferred Model for Origin of Deep-Water Flow Tholeiitic and
Alkalic Lavas

There is no single model for the petrogenesis of alkalic lavas in the
Galápagos. Alkalic lavas have been sampled on almost every major island
(Naumann et al., 2002; White et al., 1993) and have been attributed to
mantle source heterogeneity (Geist et al., 1986; Gibson et al., 2012;
Harpp et al., 2014; Naumann et al., 2002; Standish et al., 1998), high-
pressure CPX crystallization (Geist et al., 1998; Naumann & Geist, 1999),
mixing of evolved and mafic magmas (Geist et al., 2006), and variations
in the extent of melting of a homogeneous mantle source (Geist et al.,
1986; Naumann et al., 2002; Standish et al., 1998). The range of processes
involved in the formation of alkalic basalts is further complicated by the
proximity of the upwelling plume to the GSC, resulting in spatial and tem-
poral variability in the mantle source and lithospheric thickness.

Radiogenic isotope ratios indicate that the tholeiitic and alkalic basalts collected from the DWFs west of
Fernandina are produced by melting of the samemantle source (similar to that of Fernandina; Figure 6); thus,
source variability alone cannot account for the distinct lava compositions. Although there is evidence of high-
pressure CPX crystallization (e.g., lower CaO/Al2O3 ratios; Figure 7), the elevated incompatible minor ele-
ments (e.g., K2O and Na2O) cannot be explained by crystallization from the same mantle source (Figure 7).
Petrologic models show that mixing of a highly evolved rhyolitic magma and amafic magma cannot produce
the range of major or trace element contents observed in the DWF lavas (Figures 8b and 9a). Therefore, we
suggest that the DWF alkalic basalts are formed from lower extents of melting of the Galápagos
mantle source.

The submarine tholeiites are geochemically similar to the subaerial Fernandina tholeiites (e.g., Figure 6; Allan
& Simkin, 2000; Geist et al., 2006), which are thought to form from higher extents of melting associated with

Figure 9. Effect of mixing and variations in extent of partial melting and frac-
tional crystallization on (a) K/Ti versus [Sm/Yb]N and (b) [La/Sm]N. Modeled
fractional crystallization lines in top figure (black lines with white circles)
generated from MELTS starting from mafic tholeiite (NA064-074) and 1%,
2.5%, and 5% melt of Fernandina-like mantle (see text for model details).
White circles indicate 5% crystallization increments on each trend. Black cir-
cles in top and bottom figures show the same hypothetical mixing trend
between an evolved and mafic magma composition that repoduces the
range in K/Ti versus MgO of alkalic DWF samples. Purple lines indicate the
evolution of the aggregated melt from the Fernandina-like mantle source at
various pressures and melted at 1400, 1450, and 1500 °C. See text for mod-
eling details. DWF = deep-water lava flow; IF = interflow.
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the center of the upwellingmantle plume (Figure 10). Abundant antecrysts
suggest that the submarine tholeiites are sourced from or have passed
through the dense crystal-rich mush zone at the bottom of the
Fernandina magma chamber and that plagioclase and olivine crystals
are entrained into the melt during lateral diking beneath Fernandina’s
submarine rift zones (Geist et al., 2006; Geist et al., 2014). Thus, there is
strong evidence that the DWF tholeiites are processed through the deeper
portions of the Fernandina magmatic plumbing system. By contrast, the
DWF alkalic lavas have subtly different Pb isotope ratios from those of
Fernandina’s subaerial lavas and the tholeiitic DWFs (Figure 6). The alkalic
lavas are relatively aphyric compared to the submarine tholeiites, suggest-
ing that they do not pass through the deeper crystal-rich portion of
Fernandina’s magmatic plumbing system during ascent to the seafloor.
Instead, the alkalic magmas are formed from lower extents of melting at
the leading edge of the Galápagos mantle plume, and these magmas
appear to have bypassed the Fernandina magma chamber prior to their
eruption on the seafloor west of the platform (Figure 10). IF tholeiites pos-
sess more chemical and isotopic variability and are less phenocryst rich
than the DWF lavas, indicating that tholeiitic lavas may also periodically
bypass Fernandina’s shallow magmatic system and erupt onto the sea-
floor. The range of compositions and spatial distribution of DWF lavas sug-
gests that tholeiitic and alkalic magmas can be produced and erupted
within relatively short length scales at the leading edge of a mantle plume.

Alkalic basalts are also found at the leading edge of the Hawaiian plume, at
Loihi Seamount, which is thought to represent the preshield stage of
Hawaiian volcanism (Garcia et al., 1995). As the Pacific plate moves over
the Hawaiian hotspot, the earliest eruptions are sourced from low-degree
melts at the edge of the plume; however, as the plate continues to move
over the hotspot, the extent of partial melting increases, resulting in
eruption of tholeiitic lavas (Garcia et al., 1995). The alkalic basalts sampled
from the DWFs west of Fernandina (by both our study and Geist et al.,
2006) and lavas erupted at the youngest submarine volcano (Roca

Redonda; Standish et al., 1998) represent magmas formed by lower degrees of melting at the leading edge
of the Galápagos plume as the Nazca plate moves over the center of upwelling. In this sense, the alkalic DWF
magmas erupted on the seafloor west of the platform are similar to Loihi lavas derived from the preshield
building stage of magmatism produced by low degrees of partial melting at the leading edge of a mantle
plume. However, there is no large volcanic platform associated with the Hawaiian Islands.

Sampling suggests that the bulk of the ~3,000-m-thick Galápagos platform is likely composed of massive tho-
leiitic lava flows that coalesce to form the terraces (Geist et al., 2006, 2008). This is supported by side scan
sonar data and ROV-based visual observations of relatively long (~10–20 km) DWFs and ~30-m-deep collapse
craters (Figure S2). However, we suggest that at the leading edge of the plume, alkalic lavas may also contri-
bute to the initial phases of platform construction. West of the center of plume upwelling, both alkalic and
tholeiitic magmas can be produced contemporaneously and erupt on the relatively flat seafloor forming long
lava flows. These compositionally variable lava flows eventually coalesce to form the terraces. The lack of
alkalic lavas sampled from the platform walls likely reflects burial of the alkalic lavas by repeated eruption
of tholeiitic lavas as the edge of the platform approaches the center of the mantle plume. Thus, both the
alkalic and tholeiitic DWFs erupted at the leading edge of the plume are important components of the
platform-building process in the Galápagos Archipelago.

Conclusion

Basaltic lavas from the DWFs on the seafloor west of Fernandina volcano are both alkalic and tholeiitic in
composition. The alkalic lavas have elevated total alkali contents; high K/Ti, [Sm/Yb]N, and [La/Sm]N

Figure 10. Schematic cartoon (not to scale) depicting the mantle processes
responsible for generating the observed geochemical variations in the DWFs
erupted at the base of the Galápagos platform west of Fernandina volcano.
Radiogenic isotope ratios suggest that the alkalic and tholeiitic DWF lavas are
produced by melting of the same mantle source. Tholeiitic lavas are pro-
duced by higher extents of melting beneath Fernandina. These highly phyric
lavas are sourced from the cumulate-rich portion of the mush zone located
lower in the magma chamber and erupt on the seafloor via lateral diking
through the submarine rift zone. By contrast, the phenocryst-poor alkalic
lavas (and perhaps IF lavas) are produced by lower extents of melting at the
leading edge of the mantle plume and bypass the magma chamber beneath
Fernandina. DWF = deep-water lava flow; IF = interflow.
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ratios; and depleted MgO contents compared to the tholeiitic lavas. However, both the tholeiitic and
alkalic lavas have similar radiogenic isotope ratios, indicating a similar mantle source. Petrologic model-
ing suggests that DWF alkalic magmas likely formed from various extents of partial melting of the same
mantle source.

DWF tholeiitic lavas are likely part of the larger magmatic plumbing system that feeds subaerial eruptions in
the western Galápagos on Fernandina and Isabela. Abundant phenocrysts suggest the tholeiites are sourced
from or pass through the lower portion of the crystal-rich Fernandina magma chamber, as was suggested for
other normal tholeiitic basalts dredged from the region (Geist et al., 2006). By contrast, the alkalic DWF lavas
that are found at the western terminus of the lava flows are compositionally distinct and sparsely phyric,
suggesting that they bypass the larger Fernandina magmatic system. Petrologic modeling suggests that
the alkalic magmas are formed from lower extents of melting (1%) of the same mantle source compared
to the tholeiitic magmas (5%). Eruption of alkalic lavas at the leading edge of the Galápagos mantle plume
is consistent with models of volcanism at other ocean islands, where alkalic magmas are formed from lower
extents of melting at the outer edges of the upwelling plume.

Our results add to the current model for Galápagos platform construction, which suggests that large flows
coalesce into thick terraces that stack to form the Galápagos platform (Geist et al., 2006, 2008). Our data
indicate that the large DWFs on the western edge of the platform are composed of multiple eruptive units,
with variable compositions. We suggest that the alkalic lava flows form from lower extents of melting at
the leading edge of the plume. While individual alkalic flows are relatively voluminous, they are not a primary
lava type within the platform and are buried by much higher volume fluxes of tholeiitic volcanism as the
Nazca plate migrates over the center of plume upwelling.
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