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Abstract: The biochemical traits of plant canopies are important predictors of photosynthetic
capacity and nutrient cycling. However, remote sensing of biochemical traits in shrub species
in dryland ecosystems has been limited mainly due to the sparse vegetation cover, manifold
shrub structures, and complex light interaction between the land surface and canopy. In order
to examine the performance of airborne imaging spectroscopy for retrieving biochemical traits
in shrub species, we collected Airborne Visible Infrared Imaging Spectrometer—Next Generation
(AVIRIS-NG) images and surveyed four foliar biochemical traits (leaf mass per area, water content,
nitrogen content and carbon) of sagebrush (Artemesia tridentata) and bitterbrush (Purshia tridentata)
in the Great Basin semi-desert ecoregion, USA, in October 2014 and May 2015. We examined the
correlations between biochemical traits and developed partial least square regression (PLSR) models
to compare spectral correlations with biochemical traits at canopy and plot levels. PLSR models
for sagebrush showed comparable performance between calibration (R2: LMA = 0.66, water = 0.7,
nitrogen = 0.42, carbon = 0.6) and validation (R2: LMA = 0.52, water = 0.41, nitrogen = 0.23,
carbon = 0.57), while prediction for bitterbrush remained a challenge. Our results demonstrate
the potential for airborne imaging spectroscopy to measure shrub biochemical traits over large
shrubland regions. We also highlight challenges when estimating biochemical traits with airborne
imaging spectroscopy data.

Keywords: imaging spectroscopy; biochemical traits; dryland ecosystem; shrub species; AVIRIS-NG

1. Introduction

The biochemical traits of plant foliage provide important information to study photosynthetic
capacity and biogeochemical cycling in ecosystems [1–5]. Among widely-studied biochemical traits are
leaf mass per area, water content, nitrogen content, and carbon content. Variations in leaf mass per area
(LMA, ratio of leaf dry mass to leaf area) correspond to the fundamental tradeoffs in leaf construction
costs vs. light-intercepting surface area and are driven by a range of environmental controls [6,7].
While foliage gains carbon and builds structure, LMA corresponds to several biochemical and
structural compounds in the plant including (positive correlation) cellulose and lignin, and (negative
correlation) protein. These relate to physiological processes of photosynthesis, primary production
and leaf decomposition [8,9]. Water is one of the most important factors regulating plant growth
and development in ecosystems [10]. Leaf water content is an important parameter for assessing
drought and predicting susceptibility of wildfire. Nitrogen content is a fundamental component of
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light-harvesting pigments and photosynthetic machinery, and it is closely related to the maximum
photosynthetic rate [11,12].

Remote sensing provides an opportunity to assess plant biochemical traits across large areas
compared to field sampling methods. Multispectral satellite sensors like MODIS and Landsat have
been used to monitor vegetation properties, and airborne imaging spectrometers have proven useful
for mapping variation in the spatial distribution of plant biochemical traits mainly attributed to narrow
spectral bands, fine spatial resolution and continuous reflectance measurement in solar spectra [13,14].
Relationships between canopy biochemical traits and airborne imaging spectroscopy have been
demonstrated in a variety of ecosystems, such as tropical forests [15,16], northern temperate and boreal
tree species [17,18], Mediterranean species in California [19,20], and northwest [21] and northeast
forests [22] in the U.S. Although previous studies have demonstrated the potential for measuring
plant biochemical traits from reflectance spectra, there are still shortages and challenges in the remote
sensing of biochemical traits in dryland ecosystems.

First, spectral determination of biochemical traits of shrub species in dryland ecosystems has been
difficult mainly due to the complex variation in vegetation structure from pixel to landscape levels [23].
Dryland ecosystems usually have low-stature; sparse vegetation cover; an abundance of targets
with high albedo [24,25]; and complex spectral mixing functions between visible, near-infrared and
shortwave infrared wavelengths [26]. Although various statistical methods have been used to estimate
traits with reflectance spectra [15,27–29], there is a need for a more comprehensive examination of
spectral correlation with traits in regression models.

Second, although there are previous studies examining imaging spectroscopy instruments for
measuring certain traits in shrub species, limited studies have investigated the performance of new
imaging spectroscopy instruments to assess a series of vegetation traits. Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) data in the USA have shown the potential to derive water content [30,
31] and nitrogen content [19]. Mirik et al. [32] investigated 1-m resolution PROBE-1 hyperspectral
imagery system (Earth Search Sciences Inc. Kalispell, MT, USA) to estimate nitrogen, phosphorus and
neutral detergent fiber in a range of shrub species in Yellowstone National Park. Mitchell et al. [33]
examined HyMap sensor data (HyVista, Inc., Sydney, Australia) to estimate foliar and canopy nitrogen
content in sagebrush. Airborne Visible Infrared Imaging Spectrometer Next Generation (AVIRIS-NG)
has been developed to replace the AVIRIS instrument that has been flying since 1986. Similarly,
the National Ecological Observatory Network (NEON, http://www.neonscience.org/, last accessed
in August 2018) integrates an AVIRIS-NG sensor and field sites to measure numerous vegetation
metrics across eco-climatic domains in the U.S. The increased availability and sensor characteristics of
platforms such as AVIRIS-NG have the potential to more broadly examine shrub biochemical traits
and monitor long-term changes in dryland ecosystems.

Third, dryland ecosystems account for roughly 41% of the Earth’s surface and support 38% of
the world’s current population [34]. The Great Basin, a semi-arid ecoregion, is representative of
the dryland ecosystem in the western U.S. It has experienced multiyear drought accompanied with
concerns that include long term aridity, biodiversity loss, and increased regional fire activity [35,36].
The 2012–2015 drought has left severe canopy water loss in California and substantial future forest
change [37]. Xue et al. [38] indicated that annual total precipitation and extreme precipitation days
showed a significant positive trend in the eastern Great Basin during 1951–2013, while the western
basin experienced significant negative trends. The western Great Basin might experience a drier and
sparser shrub community if the trend continues. Great Basin sagebrush (Artemisia tridentata) and
bitterbrush (Purshia tridentata), two widely distributed species in Great Basin ecoregion, play critical
roles in the hydrologic cycle and in sustaining wildlife and livestock. Examining biochemical traits
in these species will provide insights to study plant productivity and biogeochemical cycling in the
Great Basin.

The primary objective of this research is to investigate imaging spectroscopy approaches for
estimating key biochemical traits in shrub species in the Great Basin. We aim to examine three specific
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aspects: (i) The variation and correlation of biochemical traits within and between shrub species, (ii) the
performance of airborne imaging spectrometer AVIRIS-NG for measuring biochemical traits, and (iii)
the modeling complexity at canopy and plot levels. To answer these questions we collected shrub
samples for biochemical traits in representative sagebrush and bitterbrush communities concurrent
with AVIRIS-NG flights. Then we examined the correlation between traits and developed partial least
square regression (PLSR) models to evaluate spectral correlation at canopy and plot levels.

2. Materials and Data

2.1. Stuty Sites

We selected two sites on the eastern slopes of the Sierra Nevada Mountains, in Owens Valley, CA,
USA (Figure 1a). One site was located on large depositional fans (bajadas) out of the Sierra Nevada
Mountains and represents the southern extent of sagebrush communities in the region. The other
site was farther south and is near the southern end of a long ecotone that transitions into the Mojave
Desert ecosystem. The two sites span a geographic region approximately 57 km2 at elevations between
1215 m and 1892 m. The study areas are within the rain shadow of the Sierra Nevada Mountains and
consist of a diverse mixture of semiarid vegetation communities. The continental climate has cold
winters with hot summers, with a precipitation regime dominated by winter storms. The total annual
precipitation was about 9.6 cm in 2014 and 6.9 cm in 2015.
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Figure 1. (a) Location of two research sites in California, USA; (b) examples of plots (red boxes) overlaid
on top of AVIRIS-NG true color images; (c) field sampling scheme in 10 × 10 m plots. Blue strips
represent spaces between line transects, and red dots represent sampled shrubs between intersects.

The vegetation community in our study area is complex due to heterogeneous soil types, rocks,
and disturbances including grazing, wildfires, and the regional drought in years 2012–2016. Most of
the Sierra Nevada fan vegetation is a mix of Great Basin sagebrush (Artemisia tridentata) semi-desert
ecosystem type and bitterbrush (Purshia tridentata) and Blackbrush (Coleogyne ramosissima) transitional
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type, while the valley floor is dominated by alkali grasslands (Distichlis spicata, Sporobolus airoides) and
saltbush (Atriplex sp., Sarcobatus vermiculatus) communities.

2.2. Field Data Collection

We established 10 × 10 m plots (north-south orientation) in October 2014 and revisited them
in May 2015 (Figure 1b). These plots represented relatively homogenous patches of sagebrush and
bitterbrush. Within each plot we set up 10-m-long line transects at 1, 3, 5, 7, 9 m intervals (Figure 1c),
then we recorded shrub species; shrub canopy coverage length along each transect; calculated the
percentage of shrub cover on each transect by dividing the coverage length by 10 m; and then averaged
shrub covers of five transects as the plot shrub cover (%). We randomly chose one shrub between each
transect if a shrub was present. We recorded the GPS locations of chosen shrubs and the four corners
of each plot with a Trimble GeoExplorer® 7 series GPS. For every chosen shrub we measured the major
(widest) canopy width, minor (narrowest) canopy width (in meter), and leaf area index (LAI) with a
LI-COR plant canopy analyzer (LAI-2200 model); then we randomly collected four branch tips (3–5 cm)
from the canopy. All samples were immediately stored in sealed plastic bags in a cooler with ice and
transported to the laboratory to carry out biochemical analysis. In total, we sampled 17 sagebrush
plots (99 shrubs) and 12 bitterbrush plots (50 shrubs) in 2014, 18 sagebrush plots (95 shrubs) and
12 bitterbrush plots (24 shrubs) due to shrub mortality in 2015.

2.3. Biochemical Measurements

Within 12 h after sample collection we removed the leaves from the sampled branch tips and
weighed the fresh leaf mass. Four branch tips from each shrub were mixed to represent one sample
for that shrub. Then we laid the leaves on a flat-bed scanner and recorded grayscale scanned images.
The leaf area (cm2) was calculated as the ratio of the number of black pixels to the total number of
pixels. The leaves were dried in a convection oven for 24 h at 60 degree centigrade and re-weighed
to determine dry mass. Water mass was calculated as the difference between fresh leaf mass and dry
mass. Foliar LMA (mg/cm2) was determined by dividing dry leaf mass by leaf area, and water content
(mg/cm2) was calculated as the ratio of water mass to leaf area. Then the dried leaves were ground
to measure nitrogen and carbon percentage (% of dry mass) using combustion-gas chromatography
(Costech ECS 4010).

2.4. Remote Sensing Data

On 9 October 2014, and 13 June 2015, the AVIRIS-NG collected images of our study area with
a nominal pixel resolution of 2.6 m. The AVIRIS-NG instrument measures the spectral radiance at
the wavelength range from 380 nm and 2510 nm with 5 nm sampling [39]. The raw images were
orthocorrected, calibrated to radiance, and atmospherically corrected to surface reflectance based
on Atmosphere Removal Algorithm (ATREM) program [40]. The individual shrub canopy-level
spectra were extracted from pixels at the GPS locations on the imagery after removal of the following
wavebands due to noise and water vapor absorptions: 346–391 nm, 1348–1428 nm, 1778–1949 nm,
2485–2510 nm. The plot-level spectra were averaged spectra of pixels within each 10 × 10 m plot area.

2.5. Data Analysis

We pooled foliar biochemical traits and shrub spectra from 2 years. Then we calculated correlation
coefficients between pairs of biochemical traits in each species to analyze correlations between traits.
Partial least squares regression (PLSR) is a widely used multivariate statistical method in chemometrics
and near-infrared spectroscopy for analyzing quantitative relationships between multiple predictor and
response variables [41]. PLSR has been a valuable method in spectroscopy for analyzing quantitative
relationships between reflectance data and vegetation biochemical traits [15,17,33,42]. We implemented
a bootstrap method to develop a single response PLSR model between each biochemical trait and
spectra by species. In each species dataset, we first used the Kennard-Stone algorithm to divide the
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dataset into 80% training and 20% for validation [43]. The Kennard-Stone algorithm uses a uniform
mapping method to ensure both training and validation datasets provide uniform coverage of the
entire dataset [43]. We further implemented 500 iterations by randomly selecting 80% of the calibration
dataset to build a PLSR model with leave-one-out validation. The optimal number of PLSR components
was determined when the prediction residual sum of squares (PRESS) was minimized, and successive
PLSR components did not improve the root mean square error in prediction (RMSEP) as assessed using
a t-test [44]. Lastly, we applied 500 PLSR models from the calibration dataset with the determined
number of components on the validation dataset. To enable comparison between models, we calculated
the mean and standard deviation of R-square (R2) and relative root mean square error (divide RMSE
by the range of observation values) to measure modeling accuracy in the calibration and validation
models. We also calculated the mean of variable importance in the projection (VIP) metric to identify
regions of the reflectance spectra that were significant in the 500 calibration models. VIP is a weighted
sum of squares of the PLSR weights with the weights calculated from the amount of variance in
response variables of each PLSR component. Higher absolute VIP values indicate great importance
for wavelengths in projecting traits. Generally, the wavelengths with VIP values larger than 1 are
considered important [45]. In plot-level models, we calculated biochemical traits as the mean leaf traits
of sampled shrubs within each plot, and then we implemented the same PLSR analytic workflow as
the canopy-level models.

3. Results

3.1. Variation in Biochemical Traits and Reflectance

The biochemical traits showed variation between years and species (Table 1). In general, foliar
traits showed higher LMA and carbon content, and lower water and nitrogen content in October
2014 than in May 2015. LMA and water in sagebrush presented smaller means than bitterbrush.
Two species had similar canopy measurements including LAI, major and minor widths. Correlation
analyses showed correlation coefficients between pairs of canopy biochemical traits (Table 2). While
most correlations were not significant, LMA and water content showed positive correlation in the
sagebrush, and LMA and carbon content showed positive correlation in the bitterbrush.

Table 1. Mean and standard deviation (in parenthesis) of foliar biochemical traits, leaf area index,
major width, minor width, and vegetation cover of sagebrush and bitterbrush.

Sagebrush Bitterbrush

2014 2015 2014 2015

LMA (mg/cm2) 13.36 (3.24) 8.67 (1.82) 21.52 (3.92) 18.22 (2.26)
Water (mg/cm2) 9.24 (3.59) 9.79 (2.49) 14.73 (2.91) 14.82 (2.38)

Nitrogen (%) 2.09 (0.27) 2.43 (0.28) 1.49 (0.13) 1.56 (0.16)
Carbon (%) 51.56 (1.51) 49 (1.27) 50.27 (1.43) 50.24 (1.12)

LAI 1.91 (0.46) 1.98 (0.49) 1.99 (0.43) 1.91 (0.59)
Major Width (m) 1.68 (0.71) 1.25 (0.46) 1.47 (0.94) 1.40 (0.57)
Minor Width (m) 1.24 (0.54) 1.13 (1.49) 1.39 (1.33) 1.17 (0.51)
Vegetation Cover 0.34 (0.13) 0.33 (0.17) 0.14 (0.12) 0.13 (0.1)

Table 2. Correlation coefficients between pairs of canopy biochemical traits.

Water LMA Nitrogen Carbon

Water 1.00 (1.00)
LMA 0.60 * (−0.01) 1.00 (1.00)

Nitrogen 0.19 (−0.01) −0.13 (0.08) 1.00 (1.00)
Carbon −0.20 (−0.15) −0.05 (0.31 *) −0.03 (−0.14) 1.00 (1.00)

Note: Coefficients outside parenthesis are from sagebrush, and inside are from bitterbrush. Asterisks denote
significant level of 0.05.
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The reflectance spectra varied in association with the biochemical traits at both shrub canopy and
plot levels (Figure 2). The extracted spectra were from pixels mixed with features like background soil
and dry grass. In contrast with typical mesic green leaf spectra, shrubs did not show a strong pattern
of pigment absorption in the visible wavelengths. High reflectance in the near infrared and shortwave
infrared wavelengths indicated the water-stressed vegetation, abundant dry biomass in stems and
litter and bright soils in the background.
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Figure 2. The mean, minimum and maximum reflectance spectra of sagebrush and bitterbrush at
canopy level and 10 × 10 m plots of two species.

3.2. PLSR Analysis

PLSR models of sagebrush produced comparable accuracy between calibration and validation in
all biochemical traits at the canopy level (Table 3). The R2 values in the calibration models were above
0.4 for all traits. Validation models generally showed smaller R2 and larger rRMSE in comparable
ranges as calibration models (Figure 3). For bitterbrush, calibration models in LMA and nitrogen could
not predict the validation dataset, and R2 in the water validation model was small. PLSR models
also identified high VIP values (larger than 1) at spectral regions associated with biochemical traits
(Figure 4).

Table 3. Results of PLSR canopy-level biochemical traits in sagebrush and bitterbrush.

Calibration Validation

R2 (S.D.) rRMSE (S.D.) R2 (S.D.) rRMSE (S.D.)

Sagebrush
(n = 194)

LMA 0.66 (0.04) 3.28 (0.39) 0.52 (0.01) 2.69 (0.01)
Water 0.70 (0.03) 3.98 (0.37) 0.41 (0.06) 8.24 (0.08)

Nitrogen 0.42 (0.04) 1.57 (0.02) 0.23 (0.05) 1.76 (0.01)
Carbon 0.60 (0.03) 1.10 (0.01) 0.57 (0.02) 1.09 (0.01)

Bitterbrush
(n = 74)

LMA 0.86 (0.04) 1.72 (0.11) - -
Water 0.51 (0.06) 2.04 (0.18) 0.06 (0.17) 2.34 (0.03)

Nitrogen 0.04 (0.04) 1.49 (0.05) - -
Carbon 0.17 (0.06) 1.09 (0.01) 0.27 (0.06) 1.07 (0.01)

Note: R-square (R2), relative root mean square error (rRMSE), and standard deviation (S.D.) are from the calibration
and validation models respectively. Dash lines denote results that are not significant.
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The plot-level PLSR models showed that the reflectance spectra could model biochemical traits
(Table 4). PLSR calibration data generally produced higher or comparable R2 and smaller rRMSE
values than validation data in sagebrush plots. The rRMSE of nitrogen and water models were larger
than values of LMA and water models. In bitterbrush plots, only water content could be modeled in
comparable accuracy between calibration and validation data.

Table 4. Results of PLSR plot-level biochemical traits in sagebrush and bitterbrush.

Calibration Validation

R2 (S.D.) rRMSE (S.D.) R2 (S.D.) rRMSE (S.D.)

Sagebrush
(n = 35)

LMA 0.73 (0.09) 1.31 (0.11) 0.67 (0.06) 1.32 (0.01)
Water 0.67 (0.07) 1.19 (0.11) 0.1 (0.11) 1.49 (0.02)

Nitrogen 0.66 (0.08) 3.04 (0.24) 0.52 (0.04) 2.75 (0.01)
Carbon 0.7 (0.06) 9.26 (1.16) 0.38 (0.04) 9.17 (0.01)

Bitterbrush
(n = 24)

LMA 0.81 (0.05) 2.07 (0.18) 0.08 (0.05) 1.94 (0.02)
Water 0.81 (0.08) 2.47 (0.58) 0.68 (0.13) 2.74 (0.01)

Nitrogen 0.12 (0.11) 2.94 (0.83) – –
Carbon 0.8 (0.1) 13.97 (2.26) – –

Note: R-square (R2), relative root mean square error (rRMSE), and standard deviation (S.D.) are from the calibration
and validation models respectively. Dash lines denote results that are not significant.

4. Discussion

Our study sites represent a typical sagebrush and bitterbrush dominant community in the Great
Basin, albeit sites are at the extreme southwest boundary of this vegetation type, into the ecotone
transition with the warmer and drier Mojave Desert ecosystem. Our sampling dates were long after
the rainy season ended in both 2014 and 2015, and the severe drought in California had significantly
stressed forests and rangelands throughout southern Sierra Nevada, to produce extensive mortality [37].
Leaf water content changes seasonally between 75% and 45% of fresh weight in shrub species [42],
but water in our samples averaged about 46% by fresh weight in sagebrush and 42% in bitterbrush.
These low values of leaf water content are consistent with the drought conditions during both years of
this project, indicating a high degree of water stress on the plants [46]. The variation in foliar traits
across years represented a seasonal variation in the plant physiological process and environment.
As shrubs grew from spring to fall, foliar LMA and carbon content increased, but water and nitrogen
content decreased. Shrubs utilized nitrogen to construct the foliar structure, likely resulting in higher
LMA, and water resource scarcity during the summer led to the lower water content.

Given the complexity of the environmental conditions, the spectroscopic analysis was still able
to demonstrate the potential to predict biochemical traits. Our model accuracy of four traits in
sagebrush was comparable to or higher than previous studies of nitrogen content [33]. At canopy
level, only validation models of LMA and carbon content showed R-square values above 0.5 and
comparable rRMSE values to calibration models. In comparison, canopy-level PLSR models of
bitterbrush showed much lower prediction ability than sagebrush. Bitterbrush leaves are about 1cm
long (Jepson eFlora, http://ucjeps.berkeley.edu/eflora/, last accessed in August 2018), but our samples
showed significantly smaller leaf sizes and fragmented shape. The complex canopy structure and
especially small leaves in bitterbrush makes it more difficult to spectrally estimate traits. Various
methods have been used to minimize noise and resolve overlapping absorption features such as
difference and logarithm transformation in reflectance [47,48]. We tested the difference and logarithm
transformation and found no significant improvement for prediction (results not reported).

Our PLSR models identified high VIP values in spectral regions significantly correlated with
biochemical trait variation. High VIP values in LMA models were generally located in near-infrared
and short-wave infrared [13,49–51], which was associated to leaf structure and dry matter such as
cellulose and lignin. Significant spectral regions in short-wave infrared were also shown in the models
of carbon which was the major component in dry matter. VIP values of water models showed some
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high values near 1450 and 2300 nm as identified in previous studies [52], and smaller values in spectral
regions associated with dry matter. Nitrogen is a relatively small component of leaf dry matter content,
with an average 1.5% in bitterbrush and 2.3% in sagebrush from our leaf samples. Kokaly [53] identified
two absorption features at 2055 and 2172 nm on the shoulders of 2100 nm corresponding to absorption
features of proteins. Our nitrogen models showed high VIP values in this spectral region. VIP values
of four vegetation traits covered common dry matter-related wavelengths in short-wave infrared,
which demonstrated that the main spectral signatures of water-stressed shrubs in this ecoregion were
attributed to dry matter.

Plot-level LMA models in sagebrush showed higher R-square values and lower rRMSE values
than canopy-level models. The nitrogen content model showed higher R-square value but rRMSE
value increased as well. Results of water and carbon content were poorer than canopy-level models.
Compared to study sites in a wetter section of the Great Basin [33], our sagebrush had a much lower
nitrogen content, and shrub vegetation cover in our plots was also much lower. Many of our surveyed
shrub canopies had canopy diameters that were smaller than the AVIRIS-NG data pixel size of 2.6 m.
This study showed significant effects of canopy structure for remote sensing of traits. Knyazikhin
et al. [54] argued the canopy structure’s important role in canopy radiative transfer and spectral
determination of nitrogen content in closed canopy environments. Several papers have investigated
the practical limits on sparse vegetation cover discrimination in dryland environments [25], and several
methods have been proposed to estimate vegetation structure and cover such as spectral unmixing
and data fusion of passive and active remote sensing data [55–60]. We suggest future research should
examine whether the combining airborne imaging spectrometer with a high-resolution multispectral
camera or lidar sensor can better predict shrub biochemical traits over large landscapes.

5. Conclusions

The characterization of plant biochemical traits is important for understanding dryland
ecosystems and their response to environmental change. To summarize our findings, this study
demonstrated the performance of airborne imaging spectrometer AVIRIS-NG to estimate biochemical
traits of sagebrush and bitterbrush in the Great Basin ecoregion, including leaf mass per area,
water content, nitrogen content and carbon content. Sparse vegetation cover, complex canopy structure
and small foliage size made the spectral estimation more challenging. The spectral regions identified
by VIP values in PLSR models displayed significant distinctions in specific wavelengths corresponding
to known biochemical absorption features, including those related to foliar lignin, cellulose, nitrogen,
and water. A regional remote sensing estimation of vegetation canopy structure will facilitate a more
robust prediction of vegetation traits. A future step will be to combine similar data sets from other
shrub species to refine and standardize both data and methods as a basis to operationally estimating
foliar traits in dryland ecosystems with the NEON airborne observation platform, NASA’s proposed
space-borne Hyperspectral Infrared Imager (HyspIRI), and German EnMAP mission.
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