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A B S T R A C T   

Coherent vibrational oscillations in femtosecond transient-absorption spectra have been interpreted since the 1990s using a model based on Gaussian wavepacket 
dynamics. The oscillations are often studied using probe-wavelength dependent plots of the oscillation amplitude and phase that are known as vibrational coherence 
spectra. Here we show that restricting the basis of the wavepacket to a small number of eigenstates clarifies several features in vibrational coherence spectra. 
Improving the understanding of vibrational coherence signatures will help distinguish them from signatures of electronic coherence that arise from measurements of 
strongly coupled excitonic states in molecular aggregates and light-harvesting proteins.  

1. Introduction 

A femtosecond laser pulse can excite a nonstationary vibrational 
wavepacket on the electronic states of molecules. The coherent oscil
lations of such a wavepacket produce oscillations of the nonlinear op
tical signal as the delay time between the pump and probe pulses is 
varied in a time-resolved spectroscopy measurement [1]. In transient- 
absorption spectroscopy, the amplitude and phase of the observed os
cillations vary with probe wavelength, and these features of the oscil
lations began to be studied intently in the late 1980s [2]. The oscilla
tions were observed in transient-absorption measurements of 
conjugated laser-dye molecules and pigment–protein complexes 
throughout the 1990s [3–13], and the effects of pulse chirp on the os
cillations were explored [14,15]. Subsequently, Champion and cow
orkers developed a theoretical framework to model coherent vibra
tional oscillations in systems having nonradiative decay mechanisms 
such as nonadiabatic transfer [16]. More recently, researchers have 
gained a renewed interest in using the coherent wavepackets to resolve 
the dynamic Stokes shift in pigment–protein complexes and molecules  
[17–20], to explore coherence in electron-transfer reactions [21], to 
quantify ultrafast protein solvation dynamics [22], to search for sig
natures of nonadiabatic dynamics [23,24], to study the excited-state 
dynamics of a molecule used for the medical application of photo
dynamic therapy [25], and to characterize the evolution of vibrational 
coherence in isomerization reactions and electronic internal conversion  
[26–30]. Other theoretical explorations included broadening the ap
plication of the doorway–window approach [31,32] and studying wa
vepacket dynamics under intense pumping [33]. Cina and coworkers 
recently presented an edifying theoretical description of the coherent 
vibrational oscillations in transient–absorption spectra [34]. In these 

studies, researchers often analyze the probe-wavelength dependence of 
the coherent wavepacket dynamics in the frequency domain, see Fig. 
(1), where a Fourier transformation of the oscillatory signal yields a 
vibrational coherence spectrum composed of both amplitude, A ( ), and 
phase, ( ), profiles. One appealing aspect of this analysis method is 
that it isolates the coherent oscillations at a single frequency even when 
the pump pulse excites multiple Franck–Condon active vibrational 
modes. 

These foundational works revealed two characteristic signatures of 
coherent vibrational wavepacket dynamics that are readily apparent in 
a vibrational coherence spectrum. There is an abrupt phase shift of the 
oscillations as a function of probe wavelength, and the phase shift is 
accompanied by an amplitude node. These two characteristic features 
typically appear at the probe wavelength that corresponds to the 
maximum signal in a steady-state fluorescence spectrum. In previous 
works, the coherent oscillations were interpreted through a model of 
coherent wavepacket dynamics [2,4,7,35]. In this de
scription—depicted in the left panel of Fig. (2)—the pump pulse pro
motes a Gaussian wavepacket to the displaced excited electronic state. 
The wavepacket then evolves in phase space, oscillating on the excited- 
state potential energy surface. The probe pulse returns the wavepacket 
to the ground electronic state resulting in the stimulated emission of a 
photon. For a conceptual interpretation, this transition is often treated 
in the classical limit where the emitted photon must have energy equal 
to the instantaneous gap between the excited and ground electronic 
states [36,35]. For displaced harmonic oscillator potentials, the energy 
gap is proportional to the internuclear displacement, q. As the wave
packet evolves, the probe wavelength resolved oscillation spectrum 
essentially follows the wavepacket: The probe signal increases when the 
wavepacket is at an internuclear displacement value with a peak at that 
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probe energy and decreases when the wavepacket moves to another 
internuclear displacement value. Considering the wavepacket dynamics 
from the perspective of a single probe wavelength, as the wavepacket 
moves in and out of the vicinity of that internuclear displacement value, 
the signal will increase and decrease. On either side of the minimum of 
the potential, the wavepacket—because it has some width—will pass 
through once per oscillation period, yielding an oscillation frequency 
that matches the vibrational oscillation. At the minimum of the po
tential, the wavepacket is observed twice per cycle—once passing in 
each direction—and the stimulated emission signal oscillates at twice 
the vibrational frequency. Cina and coworkers recently presented a 
related, qualitative interpretation of the phase flip based on a schematic 
illustration of the two-dimensional dynamics of a multi-mode vibra
tional wavepacket in Fig. (11) of Ref. [34]. In particular, their work 
emphasizes that it is not necessary for the wavepacket to pass through 
the absolute minimum of the excited state potential during its evolution 
as the multi-dimensional surface for a molecule with multiple 
Franck–Condon active vibrational modes contains a locus of points 
where the potential energy difference is equal to the fluorescence 
maximum. 

While the predictions arising from the full Gaussian wavepacket 
model are somewhat—but not completely—consistent with laboratory 
measurements, certain aspects can be difficult to conceptualize. Here 
we use a basis-set truncation method to offer a complementary ex
planation of the features in a vibrational coherence spectrum. In par
ticular, we discuss: (i) The presence of a node in the oscillation am
plitude. (ii) The presence of an abrupt change in the oscillation phase. 
(iii) Both the node and phase shift occur at the wavelength corre
sponding to the maximum of the steady-state fluorescence spectrum. 
(iv) The presence of small variations in the phase of the oscillations 
near—but not at—the amplitude node. (v) Modest asymmetry of the 
two peak amplitudes. 

2. Theory 

Here we seek to understand a transient–absorption spectroscopy 
measurement conducted with broadband laser pulses, in which the 
pump pulse creates a wavepacket on the excited-state potential energy 
surface that is a superposition of vibrational eigenfunctions. We choose 
to use the eigenfunctions of the conventional quantum harmonic os
cillator, and, as shown in Fig. (2), we focus on the wavepacket that is on 
the excited electronic state, = c e n| ,n n , plotted as a function of 
the displacement, q. Following the Franck–Condon principle, for small 
displacements, the most significant contributions to the wavepacket 
will be the two lowest-energy eigenfunctions, n {0, 1}. The two 

eigenfunctions will interfere, and the superposition will evolve at the 
fundamental frequency of the mode, 0. The two eigenfunctions cannot 
interfere where one has zero amplitude, and therefore there will be a 
node in the interference where the q e, 1 function has zero amplitude. 
The abrupt phase change in the oscillations is a consequence of the 
sign change in q e, 1 . Both the node and phase shift occur at the 
minimum of the excited-state potential, qmin. Below we expand on this 
swift visual interpretation of the wavepacket in a truncated basis and 
show how it is consistent with additional features observed in the 
measured spectra and provides physical insight. 

We consider the doorway-window approach [37] for vibrationally 
abrupt pulses and focus on stimulated emission because the excitation 
pulse in many measurements has sufficient bandwidth to select pri
marily for oscillations on the excited electronic state [4,17,20]. This 
approximation is appropriate when the transition–dipole moment is 
independent of internuclear displacement value and the pump pulse has 
a spectrum that encompasses the absorption spectrum [35,34]. We treat 
the doorway function as the state prepared on the excited electronic 
state by the pump pulse [36,35] and follow a Franck–Condon approach 
to calculate a distribution of vibrational eigenfunctions in the electronic 
excited state due to the instantaneous promotion of a portion of the 
ground-state eigenfunction to the excited electronic state. We then 
propagate the wavepacket in the field-free excited-state potential. For 
convenience and to emphasize the shape, we assume that (1) the system 
can be represented as a pure state, (2) use a temperature of 0 K, and (3) 
use a classical window function. We address the quantized window 
function in Appendix A. 

We identify the two electronic states as g and e , each with a 
progression of vibrational eigenfunctions. We represent the ground 
state—the lowest-energy vibrational eigenfunction of the ground elec
tronic state—at time zero as g, 0 and the nth vibrational level of the 
excited state as e n, . The density matrix of the ground state in the basis 
of the displaced excited-state potential at time =t 0 when the pump 
pulse excites the molecule is given by 

= c c e n e n(0) , , ,
n n

n n
,

0 0
(1) 

where the coefficients =c e a g b, ,ab give the amplitude of each vi
brational eigenstate in the excited electronic state. We reserve indices n 
(m) for the excited (ground) state. The system then evolves on the ex
cited electronic state for time , and the density matrix in the q basis is 
then given by 

= +
=

q q iH iH q
c c i E E q q q q

( ; ) exp (0)exp
exp ( ) ( ) ( ),

e e

n n
n n n n n n

,
0 0 min min

(2) 

where He is the nuclear Hamiltonian on the excited electronic state, En
is the energy of the nth vibrational eigenstate above the minimum of the 
excited state potential, and the q( ) are the vibrational eigenfunctions. 
In practice, when analyzing coherent vibrational dynamics in a mea
sured transient–absorption spectrum, researchers typically subtract the 
static and slowly varying signals and then fast Fourier transform the 
residual oscillations to produce the vibrational coherence spectrum. 
Hence we focus on the Fourier transform of the density matrix over 
and find 

F=
=

q q
c c q q q q E E

( ; ) { ( ; )}
( ) ( ) ( ( )).

n n
n n n n n n

,
0 0 min min

(3)  

This predicts a progression of frequencies for each vibrational mode 
where the oscillation amplitude and phase are defined at each inter
nuclear displacement value and are determined by sums of products of 
the time-independent eigenfunctions. To clarify the discussion, we in
itially treat the ground and excited electronic states as displaced har
monic oscillators, where the energy gap between eigenstates, 

Fig. 1. (bottom) Illustration of oscillatory signals commonly observed in tran
sient-absorption spectroscopy measurements conducted with broadband laser 
pulses. (top) A vibrational coherence spectrum displays the amplitude and phase 
profiles of the signal at a selected oscillation frequency, which, respectively, 
reveal the characteristic amplitude node and abrupt phase shift. 
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=E E n n( )n n 0, is constant, where 0 is the fundamental fre
quency of the vibrational mode and = 1. Second harmonic oscillations 
have been observed in gas-phase transient-absorption measurements of 
molecular I2 [35], and were observed to contribute very weakly in a 
measurement of a condensed-phase sample [25]. Therefore we focus on 
positive frequency terms that oscillate at the fundamental fre
quency—meaning only the =n n 1 terms—and identify the oscilla
tion amplitude for the fundamental frequency, M q( )HO , as 

=
=

M q c c q q q q( ) ( ) ( ).
n

n n n n
HO

1
0 1,0 min 1 min

(4)  

Vibrational coherence spectra are displayed as a function of probe 
wavelength, , and therefore we transform q to using the potential- 
energy difference between the two states, V q V q( ) ( )e g . For the har
monic oscillator, the probe frequency, , becomes 

= = +

=

V q V q q q q q

q q

( ) ( ) ( )

excited state

( ( ))

ground state
2 ( ),

e g ge x x

F x

1
2 min

2 1
2 min

2

1
2 min

0

0
2

0

0
2

0

0
2

(5) 

where the classical turning point of the =n 0 state is 
=x m m1/ ,0 eff 0 eff is the effective mass of the mode, and we have 

substituted the peak of the fluorescence spectrum as the frequency at 
the minimum of the excited-state potential, =F ge x

1
2

20

0
2 . In the 

simplest case in which only the two lowest-energy vibrational levels are 
excited on the electronic excited state, we can write the amplitude of 
the oscillations as a function of probe wavelength, M ( )01

HO as 

M c x( ) 1 1 1 exp 4 1 1
F F

0,1
HO

0

2 2
0
2

0
2 2

2

(6)  

The amplitude and phase profiles of the vibrational coherence 
spectrum as depicted in Fig. (1) are then written as 

=A M( ) | ( )| (7a)  

= M( ) Im{ln( ( ))}. (7b)  

3. Results and discussion 

A key insight of this work is that the node and phase shift observed 
in the vibrational coherence spectrum can be understood swiftly using a 
visual inspection of the two lowest-energy vibrational eigenfunctions of 
the excited electronic state. As an initial assessment of the validity of 
this basis-set truncation method, we compare the dynamics of the wa
vepacket projected into either the complete basis or a truncated basis in  
Fig. (3). We chose a displacement of =x/ 0.50 as a representative 
example. Normalizing the displacement to the classical turning point 
yields results that are independent of the oscillator’s frequency. We 

compare the wavepacket in the full and two-eigenstate bases in the left 
(“full”) and middle (“ =n {0, 1}”) panels, respectively. Visually, the 
wavepacket dynamics in the two bases are quite similar. Upon closer 
inspection, the full wavepacket simulation shows smooth transitions 
between the turning points; in contrast, the two-eigenstate wavepacket 
has a more choppy oscillation character. The difference between the 
two—amplified by a factor of 5 in the right panel—demonstrates that 
the primary missing contribution is the =n 2 eigenstate. Inspection of 
the central panel reveals that, indeed, along =q x/ 0.50 in this example 
the amplitude is a constant as a function of time, which will produce the 
node in the amplitude profile of the vibrational coherence spectrum. 
The phase difference can be observed by identifying the cosinusoidal 
character of the time trace for =q x/ 00 and the sinusoidal character of 
the time trace at =q x/ 10 , as example. This difference gives rise to the 
phase shift in the vibrational coherence spectrum. Finally, the node and 
change in phase occur both at =q , which is qmin in Fig. (2) the 
minimum of the excited-state potential and will be the maximum of the 
steady-state fluorescence spectra in this model. 

Next we quantify the projection of the wavepacket into various 
bases. For the full basis, we confirmed that the projection is unity for all 
values of x/ 0. Fig. (4) shows that even for a relatively large displace
ment value of =x/ 10 , the projection of the wavepacket into the basis 
of the two lowest-energy eigenfunctions is greater than 0.9. For dis
placement values of x/ 20 , it would be slightly better to use a wa
vepacket composed of the =n 1 and =n 2 eigenstates rather than the 

=n 0 and =n 1 eigenstates, indicating that the coefficients arising from 
the projection of the ground state onto the excited-state manifold 
switch in relative amplitude, >c c| | | |2

2
0

2, for this range of displacement 

Fig. 2. Wavepacket models. (left) Conventional 
model is based on evolution of Gaussian wavepacket 
in the excited state implicitly composed of an infinite 
number of vibrational eigenfunctions. (right) 
Trunctating the basis to a limited number of excited- 
state vibrational eigenfunctions reveals the origin of 
the amplitude node and phase shift arise in largely 
from the node and sign change in the =n 1 eigen
state. Frequencies A and F are the absorption and 
fluorescence maxima, respectively, and ge is the 
frequency corresponding to the vertical shift of the 
excited-state potential. Vibrational frequency 0
characterizes the oscillator, and is the displace
ment. 

Fig. 3. Comparison of Gaussian wavepacket dynamics in the (left) full and 
(middle) two-eigenstate bases for =x/ 0.50 . The structure of the residual in the 
difference plot (right) strongly resembles the =n 2 eigenstate. 
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values. This small advantage exists again for the pair of =n {2, 3} and 
so forth as the displacement value increased further. 

These basic evaluations demonstrate that the key features of the full 
wavepacket dynamics are reproduced effectively using the lowest two- 
eigenstate basis, and therefore we next produce and evaluate the vi
brational coherence spectra. Specifically we will compare the overall 
amplitude and width of the oscillations between the two models. Fig. 
(5) contains a representative example and presents the oscillation 

amplitude and width of the peak of the vibrational coherence spectrum 
as functions of x/ 0. 

Fig. (5) presents the vibrational coherence spectrum for =x/ 10 for 
both the full model and the two-eigenstate model. At the large dis
placement of =x/ 10 , modest quantitative discrepancies between the 
two models appear. As the displacement increases, the vibrational co
herence spectrum is increasingly composed of higher-energy eigen
states, and therefore the peak amplitude (peak of A ( )) of the two- 
eigenstate model is lower than the infinite eigenstate model. The 
higher-energy eigenstates have a broader spatial extent, and the width 
of the two-eigenstate model is visibly smaller. However, the shape is 
qualitatively similar, and in particular the location of the node and 
phase change are identical. At the fundamental vibrational frequency, 
the vibrational coherence spectrum is composed of a sum of pairwise 
combinations of eigenstates of the harmonic oscillator ( +n n 1) and the 
combined even–odd parity gives a node at =q qmin for every term in the 
sum. High-energy pairs (for example {1,2}, {2,3}) have additional 
nodes in the product eigenstates, but summing over all pairs as shown 
in Eq. (4) leaves only the one common node at =q qmin. 

In the remainder of Fig. (5) we investigate the primary dis
tinctions—the peak value and the width—between the full wavepacket 
model and the two-eigenstate wavepacket model. We use Eq. (4) to sum 
the pairwise contributions where the amplitudes cn of each state are 
determined by the overlap integral between the ground state vibra
tional eigenfunction with the eigenfunctions in the displaced excited 
state potential. For the two-eigenstate model, we truncate the sum at 

=n 1, for the full model, we use sufficient eigenstates to ensure we 
preserve the norm of the excited state wavefunction. We normalize the 
peak value in each case by the maximum reached in the full eigenstate 
case. The interference terms ( +n n 1) require a significant amplitude in 
each eigenstate, and therefore the vibrational coherence spectrum peak 
value grows for small displacement as the =n 1 state increases in am
plitude. Near =x/ 10 the peak amplitude reaches a maximum as the 
amplitude is spread over many eigenstates. We emphasize that for 

<x/ 0.80 the two models make nearly identical quantitative predic
tions. Our metric of x/ 0 is closely related to the Huang–Rhys factor, 

=S S x, (1/2)( / )0
2. Hence the cut-off value of x/ ~10 corresponds to 

S~0.5. Using that relation, we compared the results of a joint theory/ 
measurement study [38] and found that of the 25 modes analyzed in 
their Table S1, most modes had S~0.02 and the largest was S~0.28. This 
supports the notion that the truncated basis approximation has at least 
moderate utility in the analysis of laboratory measurements of mole
cular samples. 

Separately, we performed a calculation consistent with the semi- 
classical Gaussian wavepacket model. We created a Gaussian wave
packet composed of 105 point masses with normally distributed initial 
position and momenta and propagated each classically on the excited- 
state potential. A fast Fourier transform of the time-dependent wave
packet dynamics produced a peak oscillation amplitude as a function of 
the initial displacement of the wavepacket. The results (not shown) are 
identical to the full-eigenstate model shown in Fig. (5). 

Next we quantify the width of this unusually shaped amplitude 
profile. We define the width as =2 2 2 and calculate 

=
N

A d A d1 ( ) ( ) ,2
2

(8) 

where =N A d( ) is a normalization. This expression is analytic 
in the two-eigenstate harmonic oscillator basis, and we find 

= x/0,1
HO

0 0. In Fig. (5) we observe the anticipated behavior for the 
width of the two-eigenstate model. At large x/ 0 the width of the full- 
eigenstate model increases at a faster rate than the two-eigenstate 
model. 

Short pump pulses typically excite several Franck–Condon active 
modes in a molecule, where most of this work has considered only a 
single active mode. In a recent article, Cina and colleagues described 
how the excitation of several Franck–Condon modes with small 

Fig. 4. The projection of the wavepacket onto various two-eigenstate bases. The 
projection into the =n {0, 1} basis is greater than 0.9 until x/ ~10 . 

Fig. 5. Vibrational coherence spectra from the wavepacket in the two-eigen
state and full bases. (a) Representative vibrational coherence spectrum for a 
displacement =x/ 10 , fluorescence peak F = 600 nm, and 0 corresponding 
to a 10 THz (300 cm−1) mode. The amplitude profile A ( ) is plotted for full 
model (blue) and two-eigenstate model (orange). The phase profile ( ) (green) 
is identical for both calculations, (b) Peak amplitude and width of the vibra
tional coherence spectrum as a function of the displacement for full-eigenstate 
model (blue) and for the two lowest-energy eigenstate model (or- ange). 
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displacements contributes to the overall out-of-phase oscillations on 
either side of the fluorescence peak observed in the time dependence of 
transient–transmittance measurements [34]. In Appendix B we analyze 
the case of an electronic excited state with two Frack–Condon active 
vibrational modes. We find that the node and phase shift are un
changed, however we find that additional modes increase the width of 
the amplitude profiles of the vibrational coherence spectra. 

In many measurements the amplitude profile of a vibrational co
herence spectrum is asymmetric, meaning that the peak on one side of 
the node has more amplitude than the peak on the other side of the 
node. Often it is the case that the higher-energy side has more ampli
tude than the lower-energy side [16,26,17,18,21,22]. This result was 
not reproduced by any simulations using the harmonic oscillator ei
genfunctions. Therefore we hypothesized that an anharmonic oscillator 
may reproduce the measured asymmetry, as well as, perhaps, the gra
dual slopes that are oftentimes observed in the phase profiles. We chose 
to use the Morse oscillator because there are analytic expressions for its 
eigenfunctions [39] 1 For a diatomic molecule, the Morse oscillator 
successfully captures the sharp rise in energy at small internuclear se
parations and the asymptote at large internuclear separations, and this 
model is harmonic near the equilibrium distance, re, and use this to 
quantify the potential via an effective classical turning point for the 
lowest-energy state, x0. 

In Fig. (6) we present the two lowest-energy vibrational eigen
functions, the wavepacket dynamics in the two-eigenstate and full 
bases, as well as their vibrational coherence spectra. The parameters of 
this example system were set such that there were 34 bound vibrational 
eigenstates. Panel (a) shows that the =n 1 eigenstate is visually 
asymmetric as a function of q, and therefore we expect some type of 
asymmetry to the vibrational coherence spectra. The time-domain plots 
of the wavepacket in the full and two-eigenstate bases in panel (b) re
veal—just like the model using harmonic oscillator—that the major 
factor missing from the dynamics of the two-eigenstate model is the 
two-node character of the =n 2 eigenstate. Yet the same overall qua
litative aspects remain for the Morse oscillator model that existed for 
the harmonic oscillator model: overall the dynamics are well-re
produced even when the basis is restricted to two eigenstates, the phase 
shift will arise due to the cosinusoidal and sinusoidal sides of the wa
vepacket oscillations, and the amplitude node will arise because the 
equilibrium internuclear displacement value has no oscillation ampli
tude. Finally, panel (c) displays the vibrational coherence spectra for 
both the full and two-eigenstate wavepackets. Unlike the analytic so
lution used to study the harmonic oscillator, here we performed a direct 
fast Fourier transformation of wavepacket oscillations to produce the 
vibrational coherence spectra. Both amplitude profiles are asymmetric 
in width—which primarily arises due to the inversion required to 
transform from the frequency variable to the wavelength variable—as 
well as in height—which is far more interesting and results from the 
anharmonic nature of the potential. To explore the relation between the 
peak height ratio and the anharmonicity further, we ran a series of si
mulations at varying amounts of anharmonicity. The data revealed two 
key results. First, as anharmonicity increased, the relative peak-height 
difference increased, supporting our conclusion that anharmonicity 
leads to the difference in peak heights. Second, the vibrational co
herence spectra that result from the full and truncated bases began to 
diverge very slightly as anharmonicity increased. For example, in the 
case of 66 bound states, the agreement was nearly perfect, whereas for 
the case of only 7 bound states, minor quantitative differences were 
visible. 

Finally, in Fig. 6, the phase profile of the two-eigenstate wavepacket 
is flat on either side of the phase shift, which is identical to that of the 
harmonic oscillator model. In contrast, the phase profile of the 

wavepacket in the full basis has some gradual phase changes on either 
side of the node. These gradual phase changes arise from an indirect 
effect of the anharmonic potential. The anharmonic potential yields an 
unequal spacing of energy levels, which leads to a distribution of os
cillation frequencies of the wavepacket. Because the oscillations de
cay—both in the simulation and in molecules measured in the labor
atory—the peaks in the frequency domain have non-zero widths and 
can overlap. This interference yields the gradual phase changes. In a 
measurement, the gradual phase change could indicate interference 
from two distinct modes that have similar frequencies or from a single 
mode that is anharmonic, such as the one modeled here. 

The results from the harmonic and Morse oscillator models show 
that restricting the basis set of the wavepacket to the two lowest-energy 
eigenfunctions clarifies the origin of the amplitude node and phase shift 
that are commonly observed in measured vibrational coherence 
spectra. The models are based on certain approximations, and therefore 
a few limitations warrant discussion. First, if the bandwidth of the 

Fig. 6. Results from Morse oscillator for representative set of parameters with 
34 bound eigenstates. (a) Two lowest-energy eigenstates of the Morse oscillator 
reveal asymmetry as function of q, (b) Dynamics of the wavepacket in the full 
and two-eigenstate bases for =x/ 0.50 , (c) Vibrational coherence spectra re
veal asymmetric heights in the amplitude proles and a gradual slope to the 
phase as it approaches the shift for the full wavepacket. 

1 The expression of the normalization constant, N n( , ), in Eq. (41) of Ref.  
[39] needs an additional factor of . 

D.B. Turner and P.C. Arpin   Chemical Physics 539 (2020) 110948

5



pump pulse does not encompass the absorption profile, coherent wa
vepackets will be launched on both the excited and ground electronic 
states. The two wavepackets will both produce coherent oscillations in 
transient–absorption spectra and likely lead to nodes at both the ab
sorption and fluorescence maxima, with additional phase shifts. The 
same effects would be observed if the pump pulse were not well-com
pressed or if the transition–dipole moment were not independent of the 
internuclear separation, such as Herzberg–Teller coupling [40,41]. 
Second, we have not addressed more complicated potential energy 
surfaces, such as those with barriers to photoproduct intermediates  
[22] or those that induce nonadiabatic transitions resulting from 
avoided crossings or conical intersections in photochemical reactions  
[16,42]. Third, the simulations excluded damping arising from a dis
sipative system–bath interaction [1]. Damping would primarily serve to 
broaden the peaks along the frequency axis that arise from Fourier 
transformation of the time-delay variable. For any particular mode, the 
influence on a vibrational coherence spectrum—which arises typically 
from a slice at the peak of the amplitude along this frequency axis—is 
likely to be negligible. However, if a sample had two or more modes of 
very similar frequencies, damping may cause overlap and interference 
among the features. 

4. Conclusions 

We have evaluated the amplitude and phase profiles of vibrational 
coherence spectra observed in transient absorption spectroscopy, fo
cusing on insights gleaned by truncating the basis of vibrational ei
genstates. This description yielded an intuitive picture of the source of 
the shape of the amplitude and phase profiles, particularly when fo
cusing on only the two lowest-energy vibrational eigenstates. Using 
anharmonic potentials produced vibrational coherence spectra that 
were asymmetric in relative peak amplitude, which is a common oc
currence in measured spectra. In addition, the models led to predictions 
about the shape of the vibrational coherence spectrum that could be 
compared with experimental measurements. These details are a key 
method by which one can distinguish vibrational coherences from 
electronic coherences arising from strongly coupled excitonic states in 

molecular aggregates. This distinction is critical for studies of electronic 
energy transfer mechanisms in molecular aggregates and photo
synthetic light-harvesting proteins. 

An ideal molecular sample to which these predictions can be com
pared would have a high fluorescence quantum yield with minimal 
photactivity and a large Stokes shift to distinguish clearly the ground- 
state wavepackets from those on the excited state. Finally, it would be 
convenient for the molecule to have a limited number of dominant 
vibrational modes so that excessive post-processing of the dataset is not 
necessary. Creating a significant signal from excited-state wavepackets 
and suppressing wavepacket oscillations on the ground state requires a 
laser pulse shorter than the vibrational period [35], hence an ideal 
molecule would have an absorption peak and a fluorescence peak in a 
wavelength range where few-cycle laser pulses are readily produced, 
typically 500 nm to 800 nm. 
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Appendix A. Window in a vibrational eigenstate basis 

In posing this model, we have used the doorway-window approach in which we have treated the doorway and time evolution in a vibrational 
eigenstate basis, but we treated the window classically. We assumed that projecting the wavepacket back into the ground electronic state requires 
only that the laser energy match the instantaneous energy gap between the ground and excited state potential at the internuclear displacement value 
of the wavepacket. In other words, we chose a convenient, analytic route for the transformation to Eqns. (7b) because we aimed to study not the full 
nonlinear optical spectroscopy measurement but rather a key conceptual interpretation. 

To provide a more complete model of a transient–absorption spectroscopy measurement, in this Appendix we consider projecting the excited- 
state wavepacket to the ground electronic state using a window operator represented in a vibrational eigenstate basis. Without line broadening, this 
leaves only transitions at discrete energies = E En m n m, . The q dependence becomes obscured because the Franck–Condon factor for the transition 
between any two states is a constant, independent of time. The laser frequency dependence then arises from the sum of, potentially, many con
tributing e n g m, , transitions with distinct amplitudes and phases. 

We can rewrite the time-dependent density matrix ( ) from Eq. (2) to exclude the q basis 

= c c i n n e n e n( ) exp{ ( ) } , , ,
n n

n n
,

0 0 0
(A.1) 

where we assume harmonic oscillator eigenstates. 
We follow prior work—specifically Eq. (3.8a) in Ref. [37]—and assume that the laser pulse duration is short compared to the nuclear oscillations 

but long compared to the dephasing of the electronic transition; we calculate a bare window operator of the form 

=

× +

W e n e n

c c

( ) , ,

,

n n

m nm n m i i

,

1
/ 2

1
/ 2n m n m, , (A.2) 

where is the dephasing rate of the electronic transition. Up to overall constants, the spectrally resolved signal is given by 

S ( ; ) Tr[W( ) ( )], (A.3) 
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where Tr …[ ] is the trace evaluated here in a basis of the vibrational eigenstates on the excited electronic state. We find 

× +

S c c c c i n n( ; ) exp[ ( ) ]

.

n n m
nm n m n n

i i

, ,
0 0 0

1
/ 2

1
/ 2n m n m, , (A.4)  

We choose to focus on the terms oscillating at the fundamental vibrational frequency ( = +n n 1). In this case, the vibrational coherence 
spectrum is given by 

=
++ +

+
M c c c c

i i
( ) 1

/2
1

/2
.

n m
nm n m n n

n m n m,
1, 1,0 0

1, , (A.5)  

This is a sum of Lorentzian lines centered on the e n g m, , transition energies with various amplitudes and phases. The amplitudes are 
dominated by the overlap integrals cnm. 

We compared the calculated vibrational coherence spectrum for the purely vibronic model with the classical window model and found that at 
large displacements the two spectra overlap very well and at small displacements the classical model predicts a much narrower width. This highlights 
one of the limitations of any classical interpretation of wavepacket dynamics. For small displacements, the relative variation in = V q V q( ) ( )e g
over the full motion of the wavepacket is less than 0, however, from the vibrational eigenstates perspective, the transitions are discrete and, for the 
harmonic oscillator, are spaced by 0. 

Appendix B. Two-mode analysis 

We consider two vibrational modes on the excited electronic state which lead to a two-dimensional wavepacket on the excited electronic state. In 
addition to oscillations at the fundamental frequency and overtones of each mode, the wavepacket now includes combination bands composed of 
sums and differences of the two frequencies, as has been observed in prior multi-mode analyses [43,25]. While the combination bands merit further 
investigation, we focus the discussion here on the fundamental frequencies to be consistent with the remainder of this work. 

The wavefunction is composed of a product of the basis functions of the eigenstates q( )n
s

s
( ) , where we label the different vibrational eigen

functions and modes with =s 1 or 2. While the wavefunctions are independent in an internuclear displacement basis, the difference potential V Ve g
depends on both modes. For a given value of the laser frequency there are many combinations of q1 and q2 where =V Ve g that must be 
accounted for to calculate the full contribution to the vibrational coherence spectrum. For the harmonic oscillator case, these points make a straight 
line through the two-dimensional space so for this case we perform a Radon transform [44] to project the q dependent amplitude profiles along lines 
of constant . As an example we calculate the mode amplitude profile at the fundamental frequency 1 of the =s 1 mode as a function of laser 
frequency assuming that only the lowest energy vibrational eigenstates needed to create the coherence contribute to the signal and find 

+ +

×
+

( ) ( )M ( ) 1 1

( )exp ( ) ,

x
x
x

F F

2 2 3/2

1
( ) ( )

2

1 1

2
2

2
2 2

1 1 2
2 2 1

1 1
2 2

2 2 2
1 1 2 (B.1) 

where s and xs are the fundamental frequency and classical turning point of the s vibrational mode and the normalized displacement = x/s s s is 
defined for convenience. We highlight that the general form of the equation is unchanged, but the width of the vibrational coherence spectrum is 
increased due to the additional mode. A more thorough treatment could consider the details of the shape as additional eigenstates are included.  
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