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ABSTRACT
Spiking neural networks are biologically plausible counter-
parts of the artificial neural networks, artificial neural net-
works are usually trained with stochastic gradient descent
and spiking neural networks are trained with spike timing
dependant plasticity. Training deep convolutional neural
networks is a memory and power intensive job. Spiking net-
works could potentially help in reducing the power usage.
There is a large pool of tools for one to chose to train artificial
neural networks of any size, on the other hand all the avail-
able tools to simulate spiking neural networks are geared
towards computational neuroscience applications and they
are not suitable for real life applications. In this work we
focus on implementing a spiking CNN using Tensorflow to
examine behaviour of the network and study catastrophic for-
getting in the spiking CNN and weight initialization problem
in R-STDP using MNIST data set. We also report classifica-
tion accuracies that are achieved using N-MNIST and MNIST
data sets.

CCS CONCEPTS
•Computingmethodologies→Machine learning;Ma-
chine learning approaches; Bio-inspired approaches;

KEYWORDS
datasets, neural networks, feature extraction, STDP, R-STDP,
catastrophic forgetting

1 INTRODUCTION
Deep learning, i.e., the use of deep (multi layer) convolu-
tional neural networks (DCNN ), is a powerful tool for pat-
tern recognition (image classification) and natural language
(speech) processing [32][27]. They have been used to classify
the large data set, Imagenet, [15] with an accuracy of 96.6%
[1]. In this work, deep spiking networks are considered[29].
This is a new paradigm for implementing artificial neural net-
works using mechanisms that incorporate spike-timing de-
pendent plasticity which is a learning algorithm discovered
by neuroscientists [9] [21]. The promise of spiking networks
is that they are less computationally intensive and much

more energy efficient as the spiking algorithms can be imple-
mented on a neuromorphic chip such as Intel’s LOIHI chip
[3] (operates at low power because it runs asynchronously us-
ing spikes) and other neuromorphic chips [40] [39] [41] [31].
Our work is based on the work of Masquelier and Thorpe
[23] [22], and Kheradpisheh et al. [14] [13]. In particular a
study is done of how such networks classify MNIST image
data [17] and N-MNIST spiking data [28]. The networks used
in [14] [13] consist of multiple convolution/pooling layers of
spiking neurons trained using spike timing dependent plas-
ticity (STDP [33]) and a final classification layer done using
a support vector machine (SVM). Spike timing dependant
plasticity (STDP) [20] has been shown to be able to detect
hidden (in noise) patterns in spiking data [22]. Specifically,
we used a simplified STDP model as in [14] given as

wi ← wi+∆wi , ∆wi =

{
+a+wi (1 −wi ), if tout − ti ≤ 0
−a−wi (1 −wi ), if tout − ti > 0.

Here ti and tout are the spike times of the pre-synaptic (input)
and the post-synaptic (output) neuron, respectively. That
is, if the ith input neuron spikes before the output neu-
ron spikes then the weight wi is increased otherwise the
weight is decreased.1 Learning refers to the change ∆wi in
the (synaptic) weights with a+ and a− denoting the learning
rate constants. These rate constants are initialized with low
values (0.004, 0.003) and are typically increased as learning
progresses. This STDP rule is considered simplified because
the amount of weight change doesn’t depend on the time
duration between pre-synaptic and post-synaptic spikes.
2 BACKGROUND
In 1951 Hubel and Wiesel [10] showed that a cat’s neurons
in primary visual cortex are tuned to simple features and
the inner regions of the cortex combined these simple fea-
tures to represent complex features. The neocognitron model
was proposed in 1980 by Fukushima to explain this behavior
[8]. This model didn’t require a "teacher" (unsupervised) to
learn the inherent features in the input, akin to the brain.

1The input neuron is assumed to have spiked after the output neuron spiked.
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The neocognitron model is a forerunner to the spiking con-
volutional neural networks considered in this work. These
convolutional layers are arranged in layers to extract features
in the input data. However, the deep CNNs used in industry
(Google, Facebook, etc.) are fundamentally different in that
they are trained using supervision (back propagation of a
cost function). Here our interest is to return to the neocogni-
tron model using spiking convolutional layers in which all
but the output layer is trained without supervision.

Unsupervised networks
A network equipped with STDP [20] and lateral inhibition
was shown to develop orientation selectivity similar to the
visual frontal cortex in a cat’s brain [4]. It has been shown
that deeper layers combine the features learned in the ear-
lier layers in order to represent advanced features, but at
the same time sparsity of the network spiking activity is
maintained [14] [13] [6] [23] [37] [36] [35]. In [5] a fully
connected networks trained using unsupervised STDP and
homeostasis achieved a 95.6% classification accuracy on the
MNIST data set.

Reward modulated STDP
Mozafari et al. [24] [25] proposed reward modulated STDP
(R-STDP) to avoid using a support vector machine (SVM) as
a classifier. It has been shown that the STDP learning rule
can find spiking patterns embedded in noise [22]. That is,
after unsupervised training, the output neuron spikes if the
spiking pattern is input to it. A problem with this unsuper-
vised STDP approach is that as this training proceeds the
output neuron will spike when just the first few milliseconds
of the pattern have been presented. Mozafari et al showed
in [25] that R-STDP helps to alleviate this problem.
When unsupervised training methods are used, the fea-

tures learned in the last layer are used as input to an SVM
classifier [13][14] or a simple two or three layer back prop-
agation classifier [34]. In contrast, R-STDP uses a reward
or punishment signal (depending upon if the prediction is
correct or not) to update the weights in the final layer of a
multi-layer (deep) network. Spiking convolutional networks
are successful in extracting features [25][13][14]. Because
R-STDP is a supervised learning rule, the extracted features
(reconstructed weights) more closely resemble the object
they detect and thus can (e.g.,) more easily differentiate be-
tween a digit “1” and a digit "7" compared to STDP. That is,
reward modulated STDP seems to compensate for the inabil-
ity of the STDP to differentiate between features that closely
resemble each other [7] [24]. It is also reported in [24] that
R-STDP is more computationally efficient. However, R-STDP
is prone to over fitting, which is alleviated to some degree by
scaling the rewards and punishments (e.g., receiving higher
punishment for a false positive and a lower reward for a

true positive) [24] [25]. In more detail, the reward modulated
STDP learning rule is:
If a reward signal is generated then the weights are up-

dated according to

{
∆wi j = +

Nmiss
N a+rwi j (1 −wi j ) if tj − ti ≤ 0

∆wi j = −
Nmiss
N a−rwi j (1 −wi j ) if tj − ti > 0.

If a punishment signal is generated then the weights are
updated according to

{
∆wi j = −

Nhit
N a+pwi j (1 −wi j ) if tj − ti ≤ 0

∆wi j = +
Nhit
N a−pwi j (1 −wi j ) if tj − ti > 0.

Here tj and ti are the pre- and post-synaptic times, respec-
tively. For every N input images, Nmiss and Nhit are number
of misclassified and correctly classified samples. Note that
Nmiss + Nhit = N , if the decision of the network is based
on the maximum potential of the network, if the decision of
the network is based on the early spike Nmiss + Nhit ≤ N
because there might be no spikes for some inputs. Others
have proposed error back propagation through all layers in
spiking networks [18] [26], but this work focuses on using
classifiers like a simple two layer back propagation, SVM,
R-STDP.

Spike encoding
Spikes are either rate coded or latency coded. Rate coding
refers to the information encoded by the number of spikes
per second (more spikes per time carries more information)
In this case the spike rate is determined by the mean rate of a
Poisson process. Latency encoding refers to the information
encoded in the time of arrival of a spike (earlier spikes carry
more information). The spiking networks use this spatio
temporal information to extract features in the input data.

Realtime spikes
Image sensors (silicon retinas) such as ATIS [30] and eDVS
[2] provide (latency encoded) spikes as their output. These
sensors detect changes in pixel intensities. If the pixel value at
location (u,v) increases then an ON-center spike is produced
while if the pixel value decreased an OFF-center spike is
produced. Finally, if the pixel value does not change, no
spike is produced. The spike data from an image sensor is
packed using an address event representation (AER [11])
protocol and can be accessed using serial communication
ports. A recorded version of spikes from eDVS sensor was
introduced in [19] and a similar data set of MNIST images
recorded with ATIS sensor was introduced in [28].
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3 NETWORK

Figure 1: A deep spiking convolutional network architecture
for classification of the MNIST and the N-MNIST data sets.

Wehave a similar network as in [14][13].We let sL1(t ,k,u,v)
denote the spike signal at time t emanating from the (u,v)
neuron of spiking image k where k = 0 (ON center) or k = 1
(OFF center). The L2 layers consists of 30 maps with each
map having its own convolution kernel (weights) of the form

WC1(w,k, i, j) ∈ R
2×5×5 for w = 0, 1, 2, ..., 29 (1)

The “membrane potential” of the (u,v) neuron of map w
(w = 0, 1, 2, ..., 29) of L2 at time t is given by the valid mode
convolution

VL2(t ,w,u,v) =
t∑

τ=0

(
1∑

k=0

4∑
i=0

4∑
i=0

sL1(τ ,k,u + i,v + j)WC1(w,k, i, j)

)
for(0, 0) ≤ (u,v) ≤ (22, 22) (2)

If at time t the potential

VL2(t ,w,u,v) > γ = 15 (3)

then the neuron at (w,u,v) emits a unit spike.
Lateral Inhibition. To explain lateral inhibition, suppose

at the location (u,v) there were potentials VL2(t ,w,u,v)
in different maps w at time t that exceeded the threshold
γ Then the neuron in the map with the highest potential
VL2(t ,w,u,v) at (u,v) inhibits the neurons in all the other
maps at the location (u,v) from spiking till the end of the
present image (even if their potential exceeded the thresh-
old). Figure 3 shows the accumulated spikes (from an MNIST
image of “5”) from all 30 maps at each location (u,v) with
lateral inhibition not being imposed. For example, at loca-
tion (19,14) in Figure 3 the color code is yellow indicating in
excess of 20 spikes, i.e., more than 20 of the maps produced
a spike at that location.

Figure 2: Accumulation of spikes in L2 without lateral inhi-
bition. Spikes are summed across maps and time.

STDP Competition. After lateral inhibition, we consider
each map that had one or more neurons whose potential
V exceeded γ . Let these maps be wk1,wk2, ...,wkm where2
0 ≤ k1 < k2 < · · · < km ≤ 29. Then in each map wki we
locate the neuron in that map that has the maximum po-
tential value. Let (uk1,vk1), (uk2,vk2), ..., (ukm ,vkm) be the
location of these maximum potential neurons in each map.
Then neuron (uki ,vki ) inhibits all other neurons in mapwki
from spiking for the remainder of the time steps of that spik-
ing image. Further, thesem neurons can inhibit each other
depending on their relative location as we now explain. Sup-
pose neuron (uki ,vki ) of mapwki has the highest potential
of thesem neurons. Then, in an 11 × 11 area centered about
(uki ,vki ), this neuron inhibits all neurons of all the other
maps in the same 11×11 area. Next, suppose neuron (uk j ,vk j )
of mapwk j has the second highest potential of the remaining
m − 1 neurons. If the location (uk j ,vk j ) of this neuron was
within the 11 × 11 area centered on neuron (uki ,vki ) of map
wki , then it is inhibited. Otherwise, this neuron at (uk j ,vk j )
inhibits all neurons of all the other maps in a 11 × 11 area
centered on it. This process is continued for the remaining
m − 2 neurons. In summary, there can be no more than one
neuron that spikes in the same 11 × 11 area of all the maps.
Figure 3 shows the spike accumulation after both lateral

inhibition and STDP competition have been imposed. The
figure shows that there is at most one spike from all the maps
in any 11 × 11 area.

Figure 3: Accumulation of spikes with both lateral inhibi-
tion and STDP competition imposed. Spikes are summed
across maps and time.

Max Pooling
A pooling layer is a way to down sample the spikes from
the previous convolution layer to reduce the computational
effort. After the synapses (convolution kernels or weights)
from L1 to L2 have been learned (unsupervised STDP learn-
ing is over3), they are fixed, but lateral inhibition continues
to be enforced in L2. Spikes from the maps of the convo-
lution layer L2 are now passed on to layer L3 using max
pooling. Pooling kernel is set to 2 × 2. Thus each map of L3
has 11×11 (down sampled) neurons. This process is repeated

2The other maps did not have any neurons whose membrane potential
crossed the threshold and therefore cannot spike.
3And therefore STDP competition is no longer enforced.
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for all the maps of L2 to obtain the corresponding maps of
L3. Lateral inhibition is not applied in a pooling layer. There
is no learning done in the pooling layer, it is just a way to
decrease the amount of data to reduce the computational ef-
fort. After training the L2 convolution layer, we then passed
60,000 MNIST digits through the network and recorded the
spikes from the L3 pooling layer. This is shown in Figure
4. For example, in the upper left-hand corner of Figure 4 is
shown the number spikes coming out of the first map of the
pooling layer L3 for each of the 10 MNIST digits. It shows
that the digit “3” produced over 100, 000 spikes when the
60,000 MNIST digits were passed through the network while
the digit “1” produced almost no spikes. That is, the spikes
coming from digit “1” do not correlate with the convolution
kernel (see the inset) to produce a spike. On the other hand,
the digit "3" almost certainly causes a spike in the first map
of the L3 pooling layer. In the bar graphs of Figure 4 the
red bars are the five MNIST digits that produced the most
spikes in the L3 pooling layer while the blue bars are the five
MNIST digits that produced the least.

Figure 4: Spikes per map per digit. Headings for each of the
sub-plots indicate the dominant (most spiking) digit for re-
spective features. This figure shows only six out of 30 maps
in the L2 layer. Inset shows the feature learned by the corre-
sponding map.
4 CLASSIFICATION OF MNIST DATA SETS
In the following subsections we considered a network ar-
chitectures having a convolution/pool layers with different
classifiers for the MNIST data set.
Classification with a Single Convolution/Pool Layer
The architecture shown in Figure 1 has a single convolu-
tional/pooling layer with 30×11×11 = 3630 pooled neurons
in L3. These neurons are fully connected to L4 layer of 3630
neurons. However, the neurons in L4 are in 1-1 correspon-
dence with the L3 neurons (flatten). Further, each neuron in
L4 simply sums the spikes coming into it from its correspond-
ing neuron in L3. The L4 neurons are fully connected (with
trainable weights) to 10 output neurons. This final layer of
weights are then trained using backprop only on this output
layer, i.e., only backprop to L4. The gradient of a quadratic
cost C =

∑n0ut
i=1 (y − a

L4)2 gives the error from the last layer
as

δL4 =
∂C

∂aL4
σ ′(zL4) (4)

aL is the activation of the neurons in the output layer, σ is the
activation function and z is the net input to the output layer.
The weights and biases of the last layer (L4) are updated as
follows:

∂C

∂bLj
= δL4j (5)

∂C

∂W L4
jk

= aL3k δL4j (6)

(See Lee at al. [18]where the error is back propagated through
all the layers and reported an accuracy of 99.3%). Inhibition
settings are same as in the above experiment.The first row of
Table 3 shows a 98.4% test accuracy using back propagation
on the output layer (2 Layer FCN). The second and third rows
give the classification accuracy using an SVM trained on the
L4 neurons (their spike counts). The feature extraction that
takes place in the L2 layer (and passed through the pooling
layer) results in greater than 98% accuracy with a two layer
conventional FCNN output classifier. A conventional FC two
layer NN (i.e., no hidden layer) with the 28 × 28 images
of the MNIST data set as input has only been reported to
achieve 88% accuracy without pre-processed and 91.6% with
pre-processed data [16]. This result strengthens our view
that the unsupervised STDP appears to convert the MNIST
classes into classes in a higher space that are separable. We
also tried the same experiment in a network with two con-
volution/pool layers but found that the accuracy decreased.
This decrease may be due to that reduced number of spikes
in the output neurons compared to have only one convolu-
tion/pool layer. We then hardwired the convolution kernels
of L2 layer that were trained with MNIST data set and then
passed the spikes from N-MNIST data set for classification.
Accuracies are reported in the Table 1. Jin et al reported an
accuracy of 98.84% by using a modification of error back
propagation (all layers) algorithm [12] for the N-MNIST data
set. Stromatias et al reported an accuracy of 97.23% accu-
racy by using artificially generated features for the kernels
of the first convolutional layer and training a 3 layer fully
connected neural network classifier on spikes collected at
the 1st pooling layer [34] with the N-MNIST data set.

Classifier Test Acc. Val Acc. Data set

2 layer FCN 98.4% 98.5% MNIST
SVM (RBF) 98.8% 98.87% MNIST
SVM (linear) 98.41% 98.31% MNIST
2 layer FCN 97.45% 97.62% N-MNIST
SVM (RBF) 98.32% 98.40% N-MNIST
SVM (linear) 97.64% 97.71% N-MNIST

Table 1: Classification accuracy on the MNIST and the N-
MNIST data sets. Two layer FCN and SVM were trained on
spike count vectors extracted at layer L3.
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5 CATASTROPHIC FORGETTING
Catastrophic forgetting is a problematic issue in deep convo-
lutional neural networks. In the context of the MNIST data
set this refers to training the network to learn the digits
0,1,2,3,4 and, after this is done, training on the digits 5,6,7,8,9
is carried on. The catastrophic part refers to the problem
that the network is no longer able to classify the first set of
digits 0,1,2,3,4. A conventional (non-spiking) neural network
with one convolution layer & one pool layer followed by a
fully connected softmax output with only 10 outputs was
first trained only on the digits 0,1,2,3,4 back propagating the
error (computed from all 10 outputs) to the input (convo-
lution) layer. This training used approximately 2000 digits
per class and was done for 75 epochs. Before training the
network on the digits 5,6,7,8,9 we initialized the weights and
biases of the convolution and fully connected layer with the
saved weights of the previous training. For the training with
the digits 5,6,7,8,9 we fixed the weights and biases of the
convolution layer with their initial values. The network was
then trained, but only the weights of fully connected layer
were updated. (I.e., the error was only back propagated from
the 10 output neurons to the previous layer (flattened pooled
neurons). This training also used approximately 2000 digits
per class and was done for 75 epochs. While the network
was being trained on the second set of digits, we computed
the validation accuracy on all 10 digits at the end of each
epochs. We plotted these accuracies in Figure 5. The solid
red line in Figure 5 are the accuracies versus epoch on the
first set of digits {0,1,2,3,4} while the solid blue line gives
the accuracies on the second set of digits {5,6,7,8,9} versus
epoch. These plots also show the validation accuracy results
when the second set of training data modified to include a
fraction of data from the first set of training digits {0,1,2,3,4}.
For example, the dashed red line is the validation accuracy
on the first set of digits when the network was trained with
2000 digits per class of {5,6,7,8,9} along with 200 (10%) digits
per class of {0,1,2,3,4}. Similarly this was done with 15%, 25%,
27.5%, and 30% of the first set of digits included in the train-
ing set of the second set of digits. The solid red line shows
that after training with the second set of digits for a single
epoch the validation accuracy on first set goes down to 10%
(random accuracy). The solid blue line shows a validation
accuracy of over 97% on the second set of digits after the
first epoch. Thus the network has now learned the second
set of digits but has catastrophically forgotten the first set of
digits shown by solid red line. For more details on this topic,
refer [38].

Figure 5: Catastrophic forgetting in a convolutional network
while revising a fraction of the previously trained classes.
Note that epoch -1 indicates that the network was tested
for validation accuracy before training of the classes 5-9
started. Brackets in the legend shows the fraction of previ-
ously trained classes that were used to revise the weights
from the previous classes.
Forgetting In Spiking Networks
For comparison we tested forgetting in our spiking network
of Section in Figure 1. The network was trained in the same
fashion as we did in the non-spiking case except that STDP
was used for training the L1 to L2 synapses. The solid red
line in Figure 5 shows that after training with the second set
of digits for a single epoch the validation accuracy on first
set goes down to 77% (compared to the 10% accuracy of a
non-spiking CNN). The solid blue line shows a validation
accuracy of about 95% on the second set of digits after the
first epoch. Thus the network has now learned the second
set of digits but has not catastrophically forgotten the first
set of digits shown by solid red line.

Figure 6: Catastrophic forgetting in a spiking convolutional
network while revising a fraction of the previously trained
classes. For more details on this topic, refer [38]

.
As another approach we first trained on the set {0,1,2,3,4}
exactly as just describe above. However, we then took a
different approach to training on the set {5,6,7,8,9}. Specifi-
cally we trained on 500 random digits chosen from {5,6,7,8,9}
(approximately 50 from each class) and then compute the
validation accuracy on all ten digits. We repeated this for
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every additional 250 images with the results shown in Figure
7. Interestingly this shows that if we stop after training on
1000 digits from {5,6,7,8,9} we retain a validation accuracy of
91.1% and 90.71% test accuracy on all 10 digits.

Figure 7: Note that as the number of training images for the
classes 5-9 increases the total accuracy drops.
6 OVER TRAINING
We used the network similar to that of in [14] [13] (by adding
an extra convolution layer to the network in the Figure 1).
The first row of Figure 8 shows the reconstruction of the
features from the convolution kernels of the L3 to L4 layer
after training with just 13500 images. In contrast, the second
row of the Figure 8 shows the reconstruction of the features
from the convolution kernels of the L3 to L4 layer after
training with 60,000 MNIST images for 4 epochs. This shows
that more training results in individual kernel weights (wi j )
saturating to 1 or 0 (i.e., the reconstructions in the second
row are sharper), but the features become less complex. We
suspect that it occurs because of STDP trying to learn the
dominant first few msecs in a recurrent spatio temporal
pattern.

Figure 8: Reduction in the complexity of learnt features be-
cause of over training. First row of this Figure shows re-
construction of L3→L4 synapses after training for 15.5k im-
ages and second row shows the reconstruction of L3→L4
synapses after training for 240k images (4 epochs)

Figure 8 shows that we need a mechanism to stop training.
To this end, we looked at the difference in weights during
training.

W (n)C2 = {w
(n)(z, i, j,k)} ∈ R500×30×5×5 (7)

whereW (n)C2 is kernelWC2 after the nth training is image has
passed. The L3L4 (red) plot of Figure 9 is a plot of

∑499
z=0

∑29
i=0

∑4
j=0

∑4
k=0

(
w (n∗150)(z, i, j,k) −w ((n+1)∗150)(z, i, j,k)

)
375000

(8)
for n = 0, 1, ..., 130 (9)

where 375000 = 500 × 30 × 5 × 5. Similarly the L1L2 (blue)
plot was done forW (n)C1 = {w

(n)(z, i, j,k)} ∈ R30×2×5×5.
The L3L4 the weights dramatically change between n =
80 and n = 100. Multiple experiments indicated that over
training ofWC2 kernels starts after n = 100. If the network
was trained further, we found that the final classification
accuracy drops by ∼2%.

Figure 9: Plot shows the difference of successive samples
of synapses, Sum(Weiдhtst−Weiдhtst−1)

no .Of .Synapses . If the difference ap-
proaches zero it means that weights are not changing hence
features learnt by a neuron also remain the same. Notice the
sudden jump in difference between 80-100 samples.

Kheradpisheh et al [14] proposed a convergence factor given
by∑499

z=0
∑29

i=0
∑4

j=0
∑4

k=0
(
w (n∗150)(z, i, j,k)(1 −w (n∗150)(z, i, j,k))

)
375000

(10)
for n = 0, 1, ..., 130. (11)

The training was stopped when the convergence factor is
between 0.01 and 0.02. We found that using this criteria
there was a bit of over training resulting in 1%-2% decrease
in testing accuracy.

Figure 10: Plot shows the fashion of convergence for the
synapses. Note that the convergence factor dips sharply be-
tween the samples 80-100.
7 WEIGHT INITIALIZATION PROBLEM IN R-STDP
MNIST data set was split into 20000 training, 40000 test and
10000 validation images. Last layer in Figure 1 was trained
using R-STDP instead of simple two layer backprop. We
achieved an accuracy of 90.1% on the testing data. Mozafari
et al. [25][24] got around this poor performance by having
250 neurons in the output layer and assigning 25 output
neurons per class. They reported 97.2 % test accuracy while
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training on 60,000 images and testing on 10,000 images.We
were concerned with the poor performance using an R-STDP
as a classifier . In particular, perhaps the weight initialization
plays a role in that the R-STDP rule can get stuck in a local
minimum. To study this in more detail the network in Figure
1 was initialized with a set of weight that are known to give
an accuracy of 96.8% on validation data (trained using two
layer backprop). As these weights are both positive and neg-
ative, they were shifted to be all positive. This was done by
first finding the minimum valuewmin (< 0) of these weights
and simply adding −wmin > 0 to them so that they are all
positive. Then this new set of weights were re-scaled to be
between 0 and 1 by dividing them all by their maximum
value (positive). These shifted and scaled weights were then
used to initialize the weights of the R-STDP classifier. The
parameters a+r ,a−r ,a+p ,a−p were initialized to be 0.004, 0.003,
0.0005, 0.004 respectively. With the final layer of the network
in Figure 1 initialized by these weights, further training was
carried on with R-STDP. Nmiss/N and Nhit/N were updated
after every image using the most recent N images and were
initialized with 0.03 and 0.97 respectively. The network was
trained for 1000 epochs and the corresponding training and
validation acccuracies are plotted in the Figure 11. Surpris-
ingly, training and validation accuracies settled around 90%.
When the same network was trained with randomly initial-
ized weights from N (0.8, 0.02), training and classification
accuracies increased till they reached 90% and remained con-
stant. For more details on this topic, refer [38].

Figure 11: Plot of accuracies versus epochswhen theweights
were initialized with backprop trained weights.
8 CONCLUSION
We have studied the effects of lateral inhibition and over
training in spiking convolutional networks. We reported
above that using a single convolution/pool layer gives 98.4%
accuracy on the MNIST data set using a two layer backprop
neural network, which is a linear classifier. An accuracy of
98.8% accuracy on the MNIST data set was obtained when an
SVM was used to classify the extracted features. The same
experiments with the same network were carried out on
the N-MNIST data set giving a 97.45% accuracy with a two
layer backprop and a 98.32% accuracy using an SVM. We
have demonstrated that R-STDP is sensitive to the weight
initialization and a two layer error back propagation (avoids

weight transport problem) showed better performance com-
pared to the R-STDP classifier. We have also shown that
catastrophic forgetting is not a severe problem in spiking
convolutional neural networks compared to standard (non
spiking) convolution networks (The spiking network still for-
gets, but not catastrophically!). Our spiking CNNs retained a
total classification accuracy of 90.71% when trained on two
disjoint sets and up to 95.1% when retrained using 10% of
data from the previously trained data set.
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