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Communications
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Abstract

This paper analyzes the effect of beam misalignment on rate performance in downlink of hybrid

beamforming-based non-orthogonal multiple access (HB-NOMA) systems. First an HB-NOMA frame-

work is designed in multiuser millimeter wave (mmWave) communications. A sum-rate maximization

problem is formulated for HB-NOMA, and an algorithm is introduced to design digital and analog

precoders and efficient power allocation. Then, regarding perfectly aligned line-of-sight (LoS) channels,

a lower bound for the achievable rate is derived. Next, when the users experience misaligned LoS or

non-LoS (NLoS) channels, the impact of beam misalignment is evaluated. To this end, a misalignment

factor is modeled and each misaligned effective channel is described in terms of the perfectly aligned

effective channel parameters and the misalignment factor. Further, a lower bound for the achievable

rate is extracted. We then derive an upper bound for the rate gap expression between the aligned and

misaligned HB-NOMA systems. The analyses reveal that a large misalignment can remarkably degrade

the rate. Extensive numerical simulations are conducted to verify the findings.

Index Terms
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I. INTRODUCTION

Millimeter wave (mmWave) communications has emerged as one of the key solutions for the

fifth-generation (5G) wireless networks. The existence of large unused spectrum at mmWave

band (30-300 GHz) offers the potential for significant throughput gains. Shorter wavelengths of

the mmWave band, on the other hand, allow for the deployment of large numbers of antenna

elements at both the base station (BS) and mobile users, which, in turn, enables mmWave

systems to support higher degrees of multiplexing gain in the multiple-input multiple-output

(MIMO) and multiuser MIMO systems [2]–[5]. To this end, the BS needs to apply some form

of beamforming. This beamforming can be done in the baseband, radio frequency (RF), or a

combination of the two. While baseband beamforming (fully-digital) offers a better control over

the entries of the precoding matrix, it is unlikely with current semiconductor technologies due

to high hardware cost and power consumption. Analog beamforming is an alternative to the

baseband beamforming which controls the phase of the signal transmitted at each antenna using

analog phase-shifters implemented in the RF domain. Fully-analog beamforming which uses one

RF chain, see, e.g. [6], can, however, support only one data stream.

In order to transmit multiple streams and keep the hardware complexity and energy consump-

tion low, by exploiting several RF chains, hybrid analog/digital beamforming mmWave systems

are designed [7], [8]. In [9] and [10], the concept of beamspace MIMO is introduced where

several RF chains are connected to a lens antenna array via switches. Recently, multi-beam lens-

based reconfigurable antenna MIMO systems have been proposed to overcome severe path loss

and shadowing in mmWave frequencies [11], [12]. In the aforementioned systems, each beam

is considered to serve only one user. The works in [13] and [14] show that exploiting hybrid

beamforming in multiuser systems achieves a higher spectral efficiency. Also, [15] enhances

the spectral efficiency by supporting several users through multi-beam reconfigurable antenna.

Nevertheless, the number of served users are far less than the number of users envisioned for

5G networks.

Non-orthogonal multiple access (NOMA) is another enabling technique for 5G networks that

augments the number of users and spectral efficiency in multiuser scenarios [16]–[23]. Unlike

orthogonal multiple access (OMA) techniques, such as time division multiple access (TDMA),

frequency division multiple access (FDMA), and code division multiple access (CDMA) which

can support only one user per time, frequency, or code, respectively, NOMA can support multiple

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at IEEE
Transactions on Communications, published by IEEE. Copyright restrictions may apply. doi: http://dx.doi.org/10.1109/
TCOMM.2019.2904507



3

users in the same time/frequency/code/beam. NOMA can be realized in the code, power, or other

domains [24]. In the power domain, NOMA employs superposition coding at the transmitter.

This technique exploits the channel gain difference between users to multiplex their signal.

Subsequently, successive interference cancellation (SIC) is applied at the receiver such that the

user with better channel first decodes the signal of the user with worse channel and then subtracts

it from the received signal to decode its own signal [16]–[25]. Beside superiority of NOMA

over OMA techniques in terms of number of supported users and spectral efficiency, OMA

techniques may not be a practical option for mmWave communications [26]. As an example,

TDMA, which serves users through orthogonal time slots but the same spectrum, requires precise

and fast timing synchronization. This is because symbol rate in 5G network is far higher than the

current networks. Therefore, employing TDMA in mmWave 5G network might be challenging.

Exploiting FDMA in mmWave 5G network also can bring about implementation issues. In

FDMA, the existing large frequency band is divided into several orthogonal frequency bands.

It is expected that FDMA to serve all users via the orthogonal bands at the same time slot.

However, due to highly directional beams, the current mmWave systems are not able to cover

all users’ locations and only a few users will be supported. Further, frequency band division

causes the allocated bandwidth for each user in a dense mmWave network to become small. So,

mmWave networks may not have enough bandwidth to support the users with the required high

data-rate. The obstacles related to using CDMA in mmWave frequencies have been explained

in [26]. The propagation characteristics of mmWave frequencies are another reason to incorporate

the hybrid beamforming systems and NOMA. Transmission in mmWave band suffers from high

path loss and thus users in different locations may experience very different channel gains. This

implies that mmWave band better suits power domain NOMA which offers a larger spectral

efficiency when the channel gain difference between the users is high. Severe shadowing and

blockage are other factors that make mmWave links vulnerable to outage [2], [3], [5]. Although

the large unused spectrum in mmWave bands is envisioned a promising solution for high data-

rate transmission in 5G networks, high path loss and outage due to shadowing and blockage

make mmWave links prone to temporary shutdowns. Hence, when the link exists, increasing

the spectral efficiency will lead to higher data-rate. This would meet the required unprecedented

throughput of 1000× current networks in 5G networks.

Integration of NOMA into mmWave systems, which allows multiple users to share the same

beam or the same RF chain, has been received considerable research interests [26]–[33]. In [27],
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a random beamforming technique is designed for mmWave NOMA systems where the BS

randomly radiates a directional beam toward paired users. In [28], it is shown that mismatch

between the users’ channel vector and finite resolution analog beamforming1 simplifies utilizing

NOMA in MIMO mmWave systems. In [29], a combination of beamspace MIMO and NOMA

is proposed to ensure that the number of served users is not limited to the number of RF

chains. In [30], NOMA is studied for hybrid mmWave MIMO systems, where a power allocation

algorithm has been provided in order to maximize energy efficiency. In all aforementioned works,

NOMA is combined with mmWave systems assuming only baseband precoders/combiners. The

works in [26], [31]–[33] have recently studied NOMA in hybrid beamforming systems. Ref. [26]

proposes a beam splitting NOMA scheme for hybrid beamforming mmWave systems. In order

to increase the spectral efficiency, some users are served with a common RF chain but the

grated beams. This technique is only proper when the angle of the directional beams serving

the users is large enough. Also, beam grating divides the power of a strong mmWave beam.

Hence, far users cannot capture the required power. In [31], designing beamforming vectors and

allocating power for just two users have been studied. In [32], it is demonstrated that due to the

utilization of HB, the digital precoder of the BS is not perfectly aligned with the user’s effective

channel. Then, a power allocation algorithm that maximizes the sum-rate has been proposed.

Only two users in each beam is considered; moreover, the work fails to study the effect of analog

beamforming on the rate performance. Newly, Zhou et al. have proposed an angle-based user

pairing strategy [33]. The strategy repeatedly switches between NOMA and OMA techniques.

Such that, when beamwidth of mainlobe of BS is not smaller than the angle difference between

two users, they are considered as NOMA users. Otherwise, they are treated as OMA users. Then,

the coverage probability and the sum-rate are evaluated. Regularly switching between NOMA

and OMA will add more hardware complexity to the system. Also, as it is mentioned, OMA

techniques may not be a practical choice for mmWave systems. In mmWave systems, due to

the directional nature of beams in mmWave systems, beam misalignment between the BS and

users is inevitable [34]. Most of the reviewed works consider neither the effect of phase-shifters

employed in the analog beamformer of a HB system nor the effect of beam misalignment.

In this paper, we investigate the impact of exploiting NOMA in multiuser HB systems termed

HB-NOMA. At the outset, it is supposed that HB-NOMA users are paired with respect to their

1Finite resolution analog beamforming is due to the use of a finite number of phase-shifters in the analog beamformer.
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locations and effective channels which is widely adopted by recent research works [26]–[33]. The

achievable rate is evaluated when the BS and users’ beam are aligned and misaligned. Essentially,

the perfect beam alignment is attributed to the existence of LoS channel aligned in the same

direction between the BS and users which allows the users to steer their beam directly toward

the BS. The imperfect beam alignment (misalignment) occurs due to practical phenomena such

as misaligned LoS channels and NLoS channels which are caused by shadowing and blockage.

To the best of authors’ knowledge, this paper is the first research work that studies the effect of

integration of hybrid beamforming and NOMA on the achievable rate in the presence of beam

alignment and misalignment. The contribution of this paper is summarized as follows.

1) We incorporate the 5G enabling technology NOMA and a multiuser HB system studied

in [14]. Since we aim to evaluate the impact of beam misalignment on the downlink of HB-

NOMA systems, a sum-rate expression is formulated. Specifically, we revise the sum-rate

expression in [14] with regard to the NOMA technique. Then, an algorithm is introduced

to maximize the system sum-rate subject to a total power constraint, in three steps. To get

the first and second steps, we design the analog and digital precoders only regarding LoS

channels using the well-known strong effective channel-based effective channel precoder.

The third step is a location-based static power allocation.

2) As the maximized sum-rate directly depends on the effective channels of users, we first

study the rate for perfect beam alignment where all users exploit LoS channels. A lower

bound is derived for the achievable rate of an HB-NOMA user. The bound reveals that

the interference is just due to using NOMA in which SC technique at transmitter and

SIC at the receiver are exploited. That is to say, the interference on a user is caused by

NOMA users located inside the same cluster called intra-cluster interference. Indeed, HB

slightly amplifies the noise term which is led by analog devices used in the beamformer.

The analysis shows that for the perfect alignment, the HB-NOMA users can achieve a rate

which is close to that of NOMA with the fully-digital beamforming systems.

3) We study the achievable rate of the maximized sum-rate for misaligned beams between the

BS and users in the presence of misaligned LoS and NLoS channels. Toward this goal, the

beam misalignment problem is modeled by a beam misalignment factor. Considering the

derived factor, the effective channel of the users with misaligned LoS or NLoS channel is

described in terms of the aligned effective channel parameter and the misalignment factor.
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4) We extract a lower bound for the achievable rate using the effective channel model.

Three terms, i.e., intra-cluster interference, inter-cluster interference, and noise, constrain

the achievable rate. Unfortunately, these terms are directly or indirectly associated with

misalignment factors. It is concluded that in HB-NOMA with the precoder based on the

strongest effective channel the achievable rate of a user depends on both the effective

channel gain and beam alignment issue. This is opposite to the fully-digital NOMA systems

in which only the effective channel gain affects the rate. Then, an upper bound for rate

gap between the aligned and misaligned HB-NOMA user is found.

To confirm the analyses and the derived expressions, numerical simulations are done. Different

HB-NOMA system parameters are evaluated. The simulations indicate that the HB-NOMA

outperforms OMA.

The paper is organized as follows: Section II presents the system model of HB-NOMA

and formulates a sum-rate expression. In Section III, we maximize the sum-rate for perfect

beam alignment then analyze the rate performance. Section IV studies the rate performance for

beam misaligned HB-NOMA. In Section V, we present simulation results investigating the rate

performance of HB-NOMA. Section VI concludes the paper.

Notations: Hereafter, j =
√−1, small letters, bold letters and bold capital letters will designate

scalars, vectors, and matrices, respectively. Superscripts (·)T , (·)∗ and (·)† denote the transpose,

conjugate and transpose-conjugate operators, respectively. Further, | · |, ‖·‖, and ‖·‖2 denote the

absolute value, norm-1 of (·), and norm-2 of vector (·), respectively. Indeed, ‖·‖F denotes the

Frobenius norm of matrix (·). Finally, E[·] denotes the expected value of (·).

II. SYSTEM MODEL AND RATE FORMULATION

A. System Model for HB-NOMA

We assume a narrow band mmWave downlink system composed of a BS and multiple users

as shown in Fig. 1. The BS is equipped with NRF chains and NBS antennas whereas each user

has one RF chain and NU antennas. Each RF chain is connected to the antennas through phase-

shifters. We also assume that the BS communicates with each user via only one stream. This

will be justified later in the present section. In traditional multiuser systems based on the hybrid

beamforming the maximum number of users that can be simultaneously served by the BS equals

the number of BS RF chains [14].
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Fig. 1: HB-NOMA with one BS and huge number of users grouped into N clusters each with Mn NOMA

users. NS, NRF, NBS, and NU are the numbers of multiplexed streams, RF chains, BS antennas, and user antennas,

respectively.

In order to establish a better connectivity in dense areas and further improve the sum-rate,

this paper develops HB-NOMA system. The system is practical and takes the parameters of

the promising hybrid beamforming into account. To achieve this, we utilize NOMA in hybrid

beamforming multiuser systems where each beam is allowed to serve more than one user. The

transmitter simultaneously sends NS streams toward
∑N

n=1 Mn users which are grouped into

N ≤ NRF clusters. Mn denotes the number of users in the nth cluster. The users in each cluster

can be scheduled by using the efficient approaches presented in [35], [36]. Without loss of

generality, we assume NS = N . Hence,
∑N

n=1 Mn � NRF; i.e., an HB-NOMA system can

simultaneously serve
∑N

n=1 Mn users which is much larger than the number of RF chains. In

the following we formulate the transmit and received signals for the HB-NOMA system.

1) Superposition coding: On the downlink of the HB-NOMA system, first, the transmit

symbols are superposition coded at the BS. Let s = [s1, s2, . . . , sN ]
T denote the information

signal vector such that E [sns
∗
n] =

1
N

. Each sn =
∑Mn

m=1

√
Pn,msn,m is the superposition coded

signal performed by NOMA with Pn,m and sn,m being transmit power and transmit information

signal for the mth user in the nth cluster. Then, the hybrid beamforming is done in two stages.

In the first stage, the transmitter applies an N × N baseband precoder FBB using its NRF RF

chains. This stage then is followed by an NBS ×N RF precoder FRF using analog phase-shifters.

Thus, the transmit signal vector after superposition coding is given by

[x1, x2, . . . , xN ]
T = FRFFBB[s1, s2, . . . , sN ]

T , (1)
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where xn denotes the transmit signal toward the nth cluster. Hereafter, Un,m denotes the mth

user in the nth cluster. Since FRF is implemented by using analog phase-shifters it is assumed

that all elements of FRF have an equal norm, i.e., | (FRF)n,m |2 = N−1
BS . Also, the total power of

the hybrid transmitter is limited to
∥∥FRFFBB

∥∥2
F
= N [8], [14].

2) Successive interference cancellation: The received signal at Un,m is given by

rn,m = Hn,mFRFFBBs+ nn,m, (2)

where Hn,m of size NU × NBS denotes the mmWave channel between the BS and Un,m such

that E
[∥∥Hn,m

∥∥2
F

]
= NBSNU. nn,m ∼ CN (0, σ2I) is the additive white Gaussian noise vector

of size NU × 1. Each component of nn,m has zero-mean and σ2 variance. I denotes the identity

matrix of size NU ×NU. At Un,m, the RF combiner is used to process the received vector as

yn,m = w†
n,mHn,mFRFf

n
BB

√
Pn,msn,m︸ ︷︷ ︸

desired signal

+w†
n,mHn,mFRFf

n
BB

M∑
k=1,k �=m

√
Pn,ksn,k

︸ ︷︷ ︸
intra-cluster interference

+w†
n,mHn,m

N∑
�=1,��=n

FRFf
�
BB

M∑
q=1

√
P�,qs�,q

︸ ︷︷ ︸
inter-cluster interference

+w†
n,mnn,m︸ ︷︷ ︸

noise

, (3)

where wn,m ∈ C
NU×1 denotes the combiner at Un,m. After combining, each user decodes the

intended signal by using SIC as follows. The first user of each cluster, which has the highest

channel gain, is allocated the lowest power and the Mnth user, which has the lowest channel

gain, is allocated the highest power. At the receiver side, Un,m decodes the intended signal

of Un,k′ , i.e., sn,k′ , for k′ = m + 1,m + 2, . . . ,Mn and subtracts it from the received signal

yn,m. However, NOMA treats the intended signal of Un,k for k = 1, 2, . . . ,m − 1 as intra-

cluster interference. In this paper, SIC process is assumed to be ideal. When SIC is non-ideal,

the user cannot completely remove the signals of some of Un,k′ for k′ = m1,m + 2, . . . ,Mn

which degrades the performance of the system [37]. The effect of non-ideal SIC on NOMA has

recently been studied in [38]. The effect of non-ideal SIC on HB-NOMA will be evaluated in

the authors’ future work. To this end, the BS should send the order of superposition coding to

all users in the cluster. Usually NOMA users are selected to have very different channel gains,

specially in mmWave frequencies in which path loss is higher that sub-6 GHz frequencies. So,

the order of decoding can be estimated from the user’s distance to the BS or its channel gain,

correspondingly. We note that the order of encoding is related to the channel gain as indicated

in Section III-A.
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3) Channel model: In mmWave communications, the extended Saleh-Valenzuela model as a

multi-path channel (MPC) model has been widely adopted for hybrid beamforming systems [8],

[13], [14]. In this model, each LoS and NLoS path is described by a channel gain and array

steering/response vector at the transmitter/receiver. Here, the number of paths between the BS

and Un,m is defined by An,m. The channel matrix is given by

Hn,m =

√
NBSNU

An,m

An,m∑
α=1

βn,m,αaU(ϑ
Az
n,m,α,ϑ

El
n,m,α)a

†
BS(ϕ

Az
n,m,α,ϕ

El
n,m,α), (4)

where βn,m,α = gn,m,αd
−ν
2

n,m,α with gn,m,α is the complex gain with zero-mean and unit-variance

for the αth MPC, dn,m,α is the distance between the BS and Un,m,α, and ν is the path loss

factor. ϑAz
n,m,α (ϑEl

n,m,α) and ϕAz
n,m,α (ϕEl

n,m,α) are normalized azimuth (elevation) angle of arrival

(AoA) and angle of departure (AoD), respectively. Also, aBS and aU are the antenna array

steering/response vector of the BS/Un,m. In mmWave outdoor communications, to further reduce

the interference, sectorized BSs are likely employed [39]. Mostly, each sector in azimuth domain

is much wider than elevation domain [39]. Reasonably, we assume that the BS separates the

clusters in azimuth domain and considers fixed elevation angles. Hence, the BS implements only

azimuth beamforming and neglects elevation beamforming. In this case, the antenna configuration

is a uniform linear array (ULA) and the superscript El is dropped. For a ULA, the steering vector

is defined as

aBS(ϕn,m,α) =
1√
NBS

[
1, e−jπϕn,m,α , . . . , e−jπ(NBS−1)ϕn,m,α

]T
. (5)

where ϕn,m,α ∈ [−1, 1] is related to the AoD φ ∈ [−π
2
, π
2
] as ϕn,m,α = 2Dsin(φ)

λ
[8], [14]. Note that

D denotes the antenna spacing and λ denotes the wavelength of the propagation. The antenna

array response vector for aU(ϑn,m,α) can be written in a similar fashion.

It is mentioned that transmission at mmWave systems is done through directional beams. Since

the BS is equipped with HB system, the beamforming can be conducted as follows. When both

LoS and NLoS components are available, because LoS component is stronger than NLoS it is

reasonable to steer the beam toward LoS component. When only NLoS channels are available,

the beam would be steered toward the strongest NLoS component. Thus, only one stream is sent

for each cluster. This will also lead to low hardware cost and power consumption due to using

one RF chain per stream. Therefore, with a single path component, i.e., An,m = 1, the MPC

model described in (4) is converted to a single path channel given by

Hn,m =
√

NBSNUβn,maU(ϑn,m)a
†
BS(ϕn,m). (6)
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B. Rate Formulation

In (3), after applying superposition coding at the transmitter, each user experiences two types

of interference. Intra-cluster interference which is due to other users within the cluster and inter-

cluster interference which is due to users within other clusters. Suppressing the intra-cluster

interference directly depends on efficient power allocation and deploying SIC which is discussed

in the previous section. To mitigate the inter-cluster interference, the transmitter needs to design

a proper beamforming matrix which will be discussed in Section III-A. Hence, the rate for Un,m

is expressed as

Rn,m = log2

(
1 +

Pn,m

∣∣w†
n,mHn,mFRFf

n
BB

∣∣2
In,mintra + In,minter + σ2

)
, (7)

where In,mintra is given by

In,mintra =
m−1∑
k=1

Pn,k

∣∣w†
n,mHn,mFRFf

n
BB

∣∣2 , (8)

denotes the intra-cluster. Also, In,minter is defined as

In,minter =
N∑

�=1,��=n

Mn∑
q=1

P�,q

∣∣w†
n,mHn,mFRFf

�
BB

∣∣2 , (9)

denotes the inter-cluster interference.

III. PERFECT BEAM ALIGNMENT: RATE MAXIMIZATION AND ANALYSIS

A. The Maximization Algorithm

To optimize the sum-rate performance, hybrid precoder FRF, and FBB, combiner wn,m and

transmit power Pn,m for m = 1, 2, . . . ,Mn and n = 1, 2, . . . , N should be found from

maximize
FRF,FBB,wn,m, Pn,m

N∑
n=1

Mn∑
m=1

Rn,m (10a)

subject to
∣∣∣(FRF)n,m

∣∣∣2 = N−1
BS , (10b)∥∥FRFFBB

∥∥2
F
= N, (10c)

|wn,m|2 = N−1
U , (10d)

N∑
n=1

Mn∑
m=1

Pn,m ≤ P, (10e)

Pn,m > 0, (10f)
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where P equals to the total transmit power. In the above optimization problem, the constraints (10b)

and (10d) ensure that all elements of FRF and wn have an equal norm. Further, the constraint (10c)

ensures that the total power of the hybrid transmitter is limited to N . The constraint (10e)

guarantees that the total transmit power is limited to P . Finally, (10f) ensures that the allocated

power to Un,m is greater than zero. One would add fairness constrain to the maximization

problem. Ref. [38] discusses a viable solution in this case. In particular, a weighted sum-rate

which considers a special priority for each user is utilized. Also, to ensure that all the users

achieve a predefined minimum rate Rmin, another constrain can be included in the problem (10)

such that Rn,m ≥ Rmin. In this case, an iterative algorithm that properly allocates the power is

required [40]. Without loss of generality, here, we assume that all the users satisfy Rn,m ≥ Rmin.

It is mentioned that transmission in mmWave bands happens through LoS and NLoS channels.

In particular, the users which are located far from the BS will mostly be supported via NLoS

channels [5]. Let first focus on only LoS channels. We assume that all channels are LoS and

the effective channels are perfectly aligned as shown in Fig. 1. By perfect alignment we mean

that aBS(ϕn,m) is identical for all users in the nth cluster, i.e., aBS(ϕn,1) = aBS(ϕn,2) = · · · =
aBS(ϕn,Mn) for n = 1, 2, . . . , N .

In general, there are two extreme cases to design baseband precoder for mmWave-NOMA

systems, strong effective channel-based and singular value decomposition (SVD)-based precoder

methods [29]. The strong effective channel-based is designed for only LoS channels and the SVD-

based precoder is designed for only NLoS channels. Further, to the best of authors’ knowledge,

it is not shown how to design the SVD-based RF precoder for hybrid beamforming system. Here,

in order to understand the behavior of beam misalignment in HB-NOMA systems we choose the

strong effective channel-based precoder which is widely used in the literature [29], [30], [32].

The maximization problem in (10) is non-convex and finding the optimal solution is not trivial.

To ease, we present an efficient and simple algorithm in three steps as described below.

In the first step, the BS and Un,m solve the following problem

maximize
wn,m,fn,m

RF

∣∣w†
n,mHn,mf

n,m
RF

∣∣ subject to (10b) and (10d). (11)

Since the channel Hn,m has only one path, and given the continuous beamsteering capability as-

sumption, in view of (4), wn,m = aU(ϑn,m) and fn,mRF = aBS(ϕn,m), are the optimal solutions [14].

We design the RF (analog) and baseband (digital) precoders using the adopted strong effective

channel-based method. Hence, in order to design the RF precoder, the BS selects the first user
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of each cluster. The RF precoder of the first user of the nth cluster makes the nth column of

the RF precoding matrix, i.e., fn,1RF , gives the RF precoding matrix as

FRF =
[
f1,1RF , f

2,1
RF , . . . , f

N,1
RF

]
. (12)

The first user is determined based on the locations of the user as follows:

|βn,1| ≥ |βn,2| ≥ · · · ≥ |βn,Mn | , for n = 1, 2, . . . , N, (13)

where βn,m is the gain factor defined in (4). To determine the first user, the BS does not need

to know the channel gain of the users. Recall that the channel gain βn,m, defined in (4), mainly

depends on distance between the BS and Un,m (d) and path loss factor (ν). Since the path loss

factor is identical for all users, the first user of each cluster can be determined as the closest

user to the BS such that its channel gain has the highest amplitude among the users in the same

cluster. While the purpose of ordering in (13) is to define the first user, to realize NOMA, another

ordering method based on the effective channel gain is presented in the third step. It should be

stressed that the main reason to design the digital precoder with respect to the strongest channel

is that the strongest user must decode the other users’ signal before its signal. So, the power

of this user’s signal is not affected by other clusters’ signal. More details will be provided in

Section IV.

In the second step, the effective channel for Un,m is expressed as

h†
n,m = w†

n,mHn,mFRF =
√

NBSNUβn,ma
†
BS(ϕn,m)FRF. (14)

Regarding the strongest channel-based method, we write the effective channel matrix as

H =
[
h1,1,h2,1, . . . ,hN,1

]†
, (15)

where hn,1 denotes the effective channel vector of Un,1.

Designing a proper digital precoder FBB can reduce the inter-cluster interference. In brief,

designing the baseband precoder becomes equivalent to solving

minimize
{f �BB}� �=n

In,minter subject to (10c). (16)

where In,minter is defined in (8). We notice that so far we have designed the analog beamformer

and combiner. The only unknown parameter is the digital beamformer. In this paper, we adopt

zero-forcing beamforming (ZFBF) which makes a balance between implementation complexity

and performance [41], [42]. Based on ZFBF, the solution for (16) is obtained as [14]

FBB = H† (HH†)−1
Γ, (17)
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where the diagonal elements of Γ are given by [14]

Γn,n =

√
NBSNU

(F−1)n,n
|βn,1| , for n = 1, 2, . . . , N. (18)

where F = F†
RFFRF. The determined precoder in (17) indicates that inter-cluster interference

on first users is zero, i.e., h†
n,1f

�
BB = 0 for n = 1, 2, . . . , N and 
 	= n. That is, inter-cluster

interference is perfectly eliminated on the first users. This completes our justification about the

orienting the beams toward the first users and choosing their effective channel vector in designing

FBB.

In the third step, the BS first reorders the users then allocates the power. The reordering

process is done based on the effective channel vectors as∥∥hn,1

∥∥ ≥ ∥∥hn,2

∥∥ ≥ · · · ≥ ∥∥hn,Mn

∥∥, for n = 1, 2, . . . , N. (19)

Notice that in (13) we aimed to find the first users based on the large-scale gain. However, in

HB-NOMA the power allocation is conducted based on order of the effective channel gains. It

is not irrational to assume that the BS knows the effective channels. This can be done through

the channel quality indicator (CQI) messages [43]. Each user feeds the effective channel back

to the BS then it sorts the users.

The optimal power allocation in (10) can be done by solving the following problem.

maximize
Pn,m

N∑
n=1

Mn∑
m=1

Rn,m subject to (10e) and (10f). (20)

To solve the problem, we propose a two-stage solution. First the BS divides the power between

the clusters considering their users’ channel gain as follows.

Pn =

Mn∑
m=1

∥∥hn,m

∥∥2
N∑

n=1

Mn∑
m=1

∥∥hn,m

∥∥2P, for n = 1, 2, . . . , N. (21)

Then a fixed power allocation is utilized for the users in each cluster respecting the constraint∑Mn

m=1 Pn,m = Pn. To determine Pn,m, one solution is to allocate a certain amount of power for

each Un,m except the first one that only satisfies Rn,m = Rmin, then the remaining is assigned

to Un,1. This power allocation process is in consist with the concept of NOMA in which, to

achieve higher sum-rate, the stronger user should receive more power [16]–[19]. On the other

hand, recall that mmWave channels are vulnerable to blockage and shadowing. Especially, for
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the weak users which are located far from the BS, this issue becomes worse. So, the weak users

may not be able to achieve the required minimum rate. Another solution is to give priority to

the fairness issue. To this, we need to allocate less power to the strong users and more power to

the weak users. It turns out, fairness works against achieving maximum rate. Thus, our solution

to achieve maximum rate and compensate for the mmWave propagation issues is to assign the

same amount of power for all the users, i.e.,

Pn,1 = Pn,2 = · · · = Pn,Mn . (22)

B. The Achievable Rate Analysis

In this section, the achievable rate of Un,m is evaluated with respect to the designed parameters.

We derive a lower bound which characterizes insightful results on the achievable rate of HB-

NOMA.

Theorem 1. With perfect beam alignment, a lower bound on the achievable rate of Un,m is given

by

Rn,m ≥ log2

⎛
⎜⎜⎜⎜⎝1 +

Pn,mNBSNU |βn,m|2
m−1∑
k=1

Pn,kNBSNU |βn,m|2 + σ2κ−1
min(F)

⎞
⎟⎟⎟⎟⎠ , (23)

κmin(F) denotes the minimum eigenvalue of F.

Proof. Please see Appendix A.

Remark 1. Theorem 1 indicates that when the alignment between the users in each cluster is

perfect, still two terms degrade the sum-rate performance of every HB-NOMA user. The first term∑m−1
k=1 Pn,kNBSNU |βn,m|2 is due to using NOMA scheme which leads to inevitable intra-cluster

interference. The second term κ−1
min(F) is due to realizing the beamforming with digital and

analog components, i.e., hybrid beamforming instead of fully-digital components. It is worth

mentioning that in the fully-digital beamforming the first term exists but the second term is

always one. Therefore, even under perfect beam alignment assumption the hybrid beamforming

intrinsically imposes small loss on the achievable rate.
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Un,1
n,2

n,4

n,3
B1

B2

U

U

UBS
|    -    |n,1 n,2

|    -    |n,1 n,3
|    -    |n,1 n,4

Cluster n

Cluster l |    -    |l,1 n,2

Fig. 2: Beam misalignment in mmWave communications due to the NLoS channels. The NLoS channels are caused

by blockages B1 and B2.

IV. BEAM MISALIGNMENT: MODELING, RATE ANALYSIS, AND RATE GAP

In the previous section we designed the precoders when only LoS channels exist and the users

are perfectly aligned. The precoders are found based on the strongest effective channel. Perfect

alignment is an ideal assumption. In fact, AoDs/AoAs are random variable and with almost surely

the probability of occurring different AoDs/AoAs even in LoS channels is one which leads to

aBS(ϕn,1) 	= aBS(ϕn,2) 	= · · · 	= aBS(ϕn,Mn) for n = 1, 2, . . . , N . On the other hand, recall that in

mmWave frequencies, due to shadowing and blockage, NLoS channels are inevitable [5]. These

channels force the users to indirectly steer their beam toward the BS as illustrated by Fig. 2. So,

the misalignment between the effective channel of the first user and the users with misaligned

LoS and NLoS channel in each cluster causes the digital baseband precoder cannot eliminate

the inter-cluster interference. As a result, the achievable rate is degraded. In this section, first

the misalignment is modeled. Second, using the derived model, a lower bound is found for the

rate. Finally, an upper bound is extracted for the rate gap between the perfect alignment and

misalignment.

Remark 2. While our findings in this section are general and hold for misaligned LoS and NLoS

channels, we only concentrate on NLoS channels. Thus, by LoS channel we mean a perfectly

aligned channel. Also, it is assumed that all users expect the first one in all clusters have NLoS

channels. In order to distinguish effective channel of the users with aligned LoS channels from

NLoS channels, hereafter, we denote hn,m as effective channel of the user with perfect beam

alignment and h̃n,m as effective channel of the user with imperfect beam alignment. Also, Rn,m

and R̃n,m denote the rate of Un,m with LoS and NLoS channel, respectively.
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A. Beam Misalignment Modeling

In what follows, we study the impact of imperfect beam alignment on the rate. Before that,

we calculate the norm of the effective channel defined in (14). Defining∣∣∣a†
BS(ϕn,m)aBS(ϕ�,1)

∣∣∣2 = KNBS
(ϕ�,1 − ϕn,m), (24)

where KNBS
is Fejér kernel of order NBS [44], we get

∥∥h̃n,m

∥∥2 = NBSNU |βn,m|2
N∑
�=1

KNBS
(ϕ�,1 − ϕn,m) . (25)

Now, we model the correlation between the effective channels for Un,m and Un,1 and between

Un,m and U�,1 with 
 	= n by defining them as intra-cluster misalignment factor and inter-cluster

misalignment factor, respectively. Notice that we consider the worst scenario. That is, Un,m for

m = 2, 3, . . . ,Mn receives the signal through NLoS channel, while only Un,1 for n = 1, 2, . . . , N

receives through LoS channel. Assuming LoS channel for the first users is reasonable, since

in mmWave communications the users close to the BS experience LoS channels with high

probability [5].

Lemma 1. The misalignment effective channel of Un,m and Un,1 can be modeled as

ˆ̃hn,m = ρn,m
ˆ̃hn,1 +

√
1− ρ2n,mĝ

−n
BS , (26)

where
ˆ̃hn,m denotes the normalized imperfect effective channel, ρn,m denotes the misalignment

factor obtained as

ρn,m =

N∑
i=1

κi(F)
∣∣∣a†

BS(ϕn,m)v
i
1v

i†
1 aBS(ϕn,1)

∣∣∣√√√√ N∑
�=1

KNBS
(ϕ�,1 − ϕn,m)

√√√√ N∑
�=1

KNBS
(ϕ�,1 − ϕn,1)

, (27)

where κi(F) is the ith eigenvalue of F. ĝ−n
BS is a normalized vector located in the subspace

generated by linear combination of aBS(ϕ�,1) for 
 	= n, such that ĝ−n
BS =

g−n
BS∥∥g−n
BS

∥∥ , where g−n
BS =

√
NBSNUF

†
RF

∑N
�=1,��=n β�,1aBS(ϕ�,1).

Proof. Please see Appendix B.
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B. Rate Analysis

Now we are ready to find a lower bound for the achievable rate of Un,m.

Theorem 2. With imperfect beam alignment, a lower bound on the achievable rate of Un,m, is

given by

R̃n,m ≥ log2

(
1 +

Pn,mρ
2
n,mNBSNU |βn,m|2

ζn,mintra + ζn,minter + ζn,mnoise

)
, (28)

where ζn,mintra =
∑m−1

k=1 Pn,kρ
2
n,mNBSNU |βn,m|2 and ζn,minter =

(
1− ρ2n,m

)
NBSNU |βn,m|2 κmax (S)κ

−1
min(F)×

KNBS,1 in which κmax (S) is the maximum eigenvalue of S = F−n,W
BB F−n,W †

BB , F−n,W
BB denotes the

wieghted FBB after eliminating the nth column where the columns are scaled by P� ∀
 	= n.

Also, for some m we define

KNBS,m =
N∑
�=1

KNBS
(ϕ�,1 − ϕn,m) , (29)

where KNBS
(ϕ�,1 − ϕn,m) denotes the Fejér kernel in (24). Finally, ζn,mnoise is expressed as ζn,mnoise =

σ2κ−1
min(F)KNBS,1K

−1
NBS,m

, where KNBS,m is defined in (29).

Proof. Please see Appendix C.

Remark 3. Since for Un,1 the factor ρn,1 is one, we have hn,1 = h̃n,1. Thus, Theorem 1 is still

valid for these users.

Remark 4. Theorem 2 states that the achievable rate of each user depends on the intra-cluster

and inter-cluster misalignment factors, and a weak alignment reduces the power of the effective

channel of that user. Intra-cluster and inter-cluster power allocation are other parameters that

affect the achievable rate as seen in (28). Further, the bound shows that the maximum eigenvalue

of the baseband precoder is important in maximizing the achievable rate. That is to say, the

effective channel matrix should be designed in a way that the eigenvalues of the baseband

precoder are as close as possible to each other. This is because if eigenvalues are far from each

other, the maximum eigenvalue will be large. This increases the value of ζn,minter which causes less

achievable rate.

To gain some insight into the effect of beam misalignment, we extract a lower bound for the

rate gap when Un,m receives the signal via LoS and NLoS channel.
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Theorem 3. The rate gap between the perfect aligned and misaligned Un,m is given by

ΔRn,m
Δ
= Rn,m − R̃n,m

≤ log2

⎛
⎜⎜⎜⎜⎝1 +

(
1− ρ2n,m

)
κmax (S) + σ2K−1

NBS,m
N−1

BS N
−1
U |βn,m|−2

ρ2n,mK
−1
NBS,1

κmin(F)
m−1∑
k=1

Pn,k

⎞
⎟⎟⎟⎟⎠ . (30)

Proof. Please see Appendix D.

The upper bound in Theorem 3 explicitly shows the effect of the parameters of HB-NOMA

system on the rate performance. A low misalignment factor can substantially increase the rate

gap.

Remark 5. In Section III-A the users are assumed to have LoS channels and to be perfectly

aligned in a same direction. Particularly, Eq. (19) orders the users with respect to the their

effective channel. Actually, these effective channels are the strongest path between the BS and

users. However, when the users are not aligned in the same direction, the effective channels

are not necessarily the strongest. This is because the users have to orient their antenna array

response vector toward the beam direction of the first user rather than the best direction. Hence,

to properly perform SIC, we revise the ordering considering the misalignment effective channel,

i.e., ∥∥h̃n,1

∥∥ ≥ ∥∥h̃n,2

∥∥ ≥ · · · ≥ ∥∥h̃n,Mn

∥∥, for n = 1, 2, . . . , N. (31)

Further, in (21) the aligned effective channel should be replaced by the misaligned effective

channel.

V. NUMERICAL RESULTS

In this section we simulate the HB-NOMA system regarding the various design parameters to

confirm the analytical derivations in Theorems 1-3. For simulations, since large scaling fading

and path loss put more restriction on mmWave systems, the small scale fading is negligible. The

defualt number of antennas NBS NMU for the BS and all users is assumed 32 and 8, respectively,

unless it is mentioned. The misalignment is described as a random variable uniformly distributed

by parameter b, i.e., ϕn,1 − ϕn,m ∈ [−b, b]. We first present the results of the HB-NOMA with

perfect alignment. Then, the effect of misalignment on the rate performance is shown. Finally,

the sum-rate of HB-NOMA with OMA is illustrated.
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Fig. 3: Evaluation of rate performance of the strong channel-based precoder in HB-NOMA with perfect alignment

(LoS channels) in terms of (a) SNR and (b) NBS.

A. Perfect Beam Alignment

Figure 3 studies the performance of the derived bound in Theorem 1 for aligned users. The

users are not affected by the inter-cluster interference from other clusters. It is supposed that

the number of users is two and channel gain of the strong and weak user is 0 and -2 dB,

respectively. Fig. 3(a) reveals that the HB-NOMA approximately achieves the rate the same as

that of fully-digital beamforming (FD beamforming) for a wide range of SNR. In particular, a

small gap between the exact value of HB-NOMA and the lower bound is observed for the strong

user (U1,1). This is because the complicated expression of the noise term in (23) is replaced by a

simple but greater term. For the weak user (U1,2) the bound is very tight due to two reasons. First,

in the SINR of the weak user, the noise term is dominated by the interference term. Therefore,

the effect of noise term is neglected. Second, the interference term is modeled very accurately.

Fig. 3(b) studies the achievable rate for various NBS. For small NBSs, the fully-digital outperforms

the HB-NOMA. When NBS is samll, the RF precoder is not able to steer a highly direct beam

toward the users. By increasing NBS, the beam becomes narrow and the users capture much

more power. Again, for the weak user, the lower bound is accurate at all NBS regions. For the

strong user, the bound does not approach to the exact value but, for NBS > 60, the bound is

approximately the same as to the exact HB-NOMA.
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Fig. 4: Evaluation of the misalignment on the rate performance of HB-NOMA versus (a) SNR, (b) user index, and

(c) number of users per cluster (Mn). Also, (d) demonstrates the rate gap among the different misaligned users.

B. Beam Misalignment

The beam misalignment effect is depicted by Fig. 4. We consider five clusters in which

ϕ1,1 = 10◦, ϕ2,1 = 30◦, ϕ3,1 = 50◦, ϕ4,1 = 65◦, and ϕ5,1 = 80◦. All simulations have been done

for the middle cluster (third cluster) which is likely imposed the same interference from all the

other clusters. Also, the channel gain of the strongest user is 0 dB and the next user’s gain drops

1 dB. For instance, the channel gain of Un,m is −(m− 1) dB. Fig. 4(a), (b), and (d) the number

of users in the third cluster is 10.

In Fig. 4(a) the achievable rate of two misaligned users U3,2 (the strong user) and U3,10 (the

weak user) versus SNR is shown where the channel gains are -1 and -9 dB, respectively. The
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misalignment parameter is assumed b = 3. The number of users in all the other clusters is equal

to five. Two different observations are obtained. Increasing the SNR leads to a larger rate gap

between perfectly aligned and the misaligned HB-NOMA for the strong user, whereas for the

weak users both HB-NOMAs achieve almost the same rate for all SNRs. This demonstrates that

the effect of misalignment on the strong users is greater than the weak users. In other words, the

weak users should deal with the intra-cluster interference while the strong users should deal with

the inter-cluster interference. The other observation is that the lower bound is loose for the strong

users but tight for the weak user. The observation indicates that our derived normalized effective

channel model in Lemma 1 is precise for those users which are intra-cluster interference limited.

That is, our finding is able to exactly model the intra-cluster interference. However, the loose

lower bound for the strong user indicates that the inter-cluster interference is a little inaccurate

which is due to approximating an N − 1 dimensional subspace with one dimensional space

provided in Appendix B.

To gain more details, we have simulated the achievable rate of all the misaligned users for

SNR=15 dB in Fig. 4(b). Also, the number of users in the other clusters is set to 15. The

mentioned two observations can be seen from this figure, too. However, for strong user, the rate

gap between the perfect HB-NOMA and misaligned HB-NOMA is smaller than that of Fig. 4(a).

Another important observation gained form Fig. 4(b) is the impact of the power allocation among

the clusters. Based on the proposed power allocation scheme in (21), to achieve higher rate, more

power is assigned to the other clusters than the third cluster which causes U3,2 to achieve the rate

0.91 bits/s/Hz. Whereas, for the previous scenario more power is allocated to the third cluster

which has more users. Therefore, the rate of U3,2 is 0.88 bits/s/Hz. This shows that due to the

misalignment the strong clusters leads to higher inter-cluster interference.

Fig. 4(c) compares the sum-rate performance of all the misaligned users with the perfectly

aligned HB-NOMA users. Likewise Fig. 4(b), we set SNR=15 dB and 15 users for all the

clusters except the third. The number of users in the third cluster varies from 5 to 35. Notice

that the sum-rate is shown only for the misaligned users, e.g., rate of the first user is neglected.

By increasing the number of users, the allocated power to the cluster increases. In consequence,

the total rate increases. However, the difference between the aligned and misaligned HB-NOMA

becomes worse. Although more users in a cluster means more power is allocated to, the number

of users which have inter-cluster interference limited increases as well. As a result, it brings

about higher rate lost. Indeed, by making the misalignment parameter worse (b=6), the rate lost
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Fig. 5: Sum-rate comparison of the three different systems. The fully-digital and hybrid beamforming systems serve

the users using NOMA. The analog system supports the users by exploiting OMA.

becomes bigger. It can be concluded that to avoid higher rate lost, HB-NOMA needs to schedule

equal number of users per cluster to serve.

The upper bound evaluation for gap rate between the perfect alignment and misalignment is

demonstrated by Fig. 4(d). The number of users in other clusters is 5 or 15. For SNR=30 dB

and b=3, the gap is not substantial and the bound is close to the actual value. When b becomes

larger, the gap between the stronger users is bigger than the weaker users. When number of the

users of the other cluster increases and simultaneously SNR is reduced, only the stronger users’

gap increases. To clarify, for U3,2 to U3,5, the gap becomes larger, while for the remaining users

it is unchanged. The bounds for b=6 are not very close to the exact rate gap curves. The main

reason is that in the deriving process of the bound in the second line of (46) in Appendix D, the

effect of the inter-cluster interference term is skipped. However, for high misalignment values

the interference is considerable. This causes the extracted bound to be less accurate for higher

misalignment.

Our HB-NOMA is compared with the traditional OMA technique in Fig. 5. We choose TDMA

for OMA. To gain some insights, three different mmWave systems is evaluated. These systems

are fully-digital beamforming, hybrid beamforming and analog beamforming. For fully-digital

we assume NBS = NRF=32 which serve 8 clusters. Likewise, for hybrid beamforming we have

NBS=32 but NRF=8. Both fully-digital and hybrid systems support 8 clusters of users. The first

cluster has AoD of 10◦ and AoD of the next clusters increases by 10◦. Further, the users inside

of each clusters are distributed in a way that the maximum channel gain difference between the
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strongest and weakest user is 18 dB. Indeed, the channel gain of the strongest user is 0 dB. The

first cluster contains 4 users and each next cluster serves two users more than the previous cluster.

Totally, thanks to NOMA technique, both systems support 88 users in each time slot. For OMA,

we assume the analog beamforming system equipped with only one RF chain is able to serve

one user per time slot. For Un,m, the achievable rate of OMA is log2(1+P |wn,mHn,mfRF|2/σ2).

As expected fully-digital NOMA system achieves the highest sum-rate performance. The HB-

NOMA with perfect alignment achieves approximately the same rate as the full-digital. For

b=2, the misaligned HB-NOMA shows a very close performance to the perfect HB-NOMA.

By increasing b, the performance slightly decreases. There is a huge rate difference between

HB-NOMA and OMA. We conclude that, even in the presence of misalignment, HB-NOMA

outperforms OMA.

VI. CONCLUSION

A hybrid beamforming-based NOMA has been designed for the downlink of a single-cell

mmWave communication system. To study the achievable rate of an HB-NOMA user, we first

formulated an optimization problem for the sum-rate of all users in the cell and then proposed an

algorithm to solve it in three steps based on the strongest user precoder design. In order to evaluate

the sum-rate, we found a lower bound for the achievable rate of each user under perfect and

imperfect beam alignment between the effective channel of the users in each cluster. The lower

bound analysis demonstrates that perfect HB-NOMA achieves a sum-rate close to that with fully-

digital precoder. For the imperfect correlation, the relationship between the effective channels

of the first user and other users inside a cluster was modeled. The bound for the misalignment

shows that it is highly function of the mislaigned angle. Such that, a large misalignment angle

can cause a significant reduction in the achievable rate. Further, for each user, the rate gap

between the perfect and imperfect alignment is bounded. The simulation results confirmed our

findings.

APPENDIX A

PROOF OF THEOREM 1

Proof. Given the perfect alignment assumption and (14), the effective channel vector for Un,m

becomes

h†
n,m =

√
NBSNUβn,ma

†
BS(ϕn,m)FRF = βn,mβ

−1
n,1h

†
n,1. (32)
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On the other hand, we have

h†
n,1f

�
BB =

⎧⎪⎨
⎪⎩
Γn,n, for n, 
 = 1, 2, . . . , N,

0, for 
 	= n.
(33)

Therefore, using (32) and (33) the numerator in (7) becomes

Pn,m |βn,m|2 |βn,1|−2 Γ2
n,n. (34)

Also, the intra-cluster interference in (8) becomes In,mintra =
∑m−1

k=1 Pn,k |βn,m|2 |βn,1|−2 Γ2
n,n, and

the inter-cluster interference term becomes zero, i.e., In,minter = 0.

Now, substituting (34), and the determined In,mintra and In,minter in (7) gives

Rn,m = log2

⎛
⎜⎜⎜⎜⎝1 +

Pn,m |βn,m|2 |βn,1|−2 Γ2
n,n

m−1∑
k=1

Pn,k |βn,m|2 |βn,1|−2 Γ2
n,n + σ2

⎞
⎟⎟⎟⎟⎠

(a)
= log2

⎛
⎜⎜⎜⎜⎝1 +

Pn,mNBSNU |βn,m|2
m−1∑
k=1

Pn,kNBSNU |βn,m|2 + σ2
(
F−1
)
n,n

⎞
⎟⎟⎟⎟⎠

(b)

≥ log2

⎛
⎜⎜⎜⎜⎝1 +

Pn,mNBSNU |βn,m|2
m−1∑
k=1

Pn,kNBSNU |βn,m|2 + σ2κ−1
min(F)

⎞
⎟⎟⎟⎟⎠ , (35)

(a) follows by plugging (18) into the expression in the first line of (35) and using simple

manipulations. To get (b), we note that FRF is full-rank matrix which means F = FRFF
†
RF is

positive definite. Then, we have (F−1)n,n ≤ κmax (F
−1) = κ−1

min (F) in which κmax(·) and κmin(·)
denote the maximum and minimum eigenvalues of (·).

APPENDIX B

PROOF OF LEMMA 1

Proof. Suppose that the effective channel vectors are fed back by using infinite-resolution

codebooks. Also, let ĥn,m denote the normalized effective channel vector for Un,m, i.e.,

ˆ̃hn,m =
h̃n,m

‖h̃n,m‖
. (36)

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at IEEE
Transactions on Communications, published by IEEE. Copyright restrictions may apply. doi: http://dx.doi.org/10.1109/
TCOMM.2019.2904507



25

The angle between two complex-valued vectors h̃n,m and h̃n,1 ∈ VC, denoted by ΦC, is obtained

as cosΦC
Δ
= ρn,me

jωn,m = ˆ̃h†
n,1

ˆ̃hn,m, where (ρn,m ≤ 1) is equal to ρn,m = cosΦH(
ˆ̃hn,1,

ˆ̃hn,m) =∣∣∣ˆ̃h†
n,1

ˆ̃hn,m

∣∣∣ , in which ΦH(
ˆ̃hn,1,

ˆ̃hn,m), 0 ≤ ΦH ≤ π
2
, is the Hermitian angle between two complex-

valued vectors h̃n,1 and h̃n,m and ωn,m, −π ≤ ωn,m ≤ π, is called their pseudo-angle [45]. The

factor ρn,m describes the angle between the two lines in the complex-valued vector space VC [45].

To ease the analysis, the angle ωn,m is neglected [45]. Hence, we find the angle between two

lines which are defined by the two vectors
ˆ̃hn,1 and

ˆ̃hn,m. Considering these two vectors as two

lines in the space VC would be optimistic. However, the simulation results reveal that the derived

misalignment model is still effective. Such that, the extracted lower bound for the sum-rate using

the misalignment model is close to the exact value of the sum-rate.

For 
 = n, the misalignment factor ρn,m can be calculated as

ρn,m
Δ
=
∣∣∣ˆ̃h†

n,1
ˆ̃hn,m

∣∣∣ (a)= NBSNU

∣∣∣βn,mβn,1a
†
BS(ϕn,m)FRFF

†
RFaBS(ϕn,1)

∣∣∣
‖h̃n,m‖‖h̃n,1‖

(b)
=

NBSNU

∣∣∣βn,mβn,1a
†
BS(ϕn,m)V1Λ1V

†
1aBS(ϕn,1)

∣∣∣
‖h̃n,m‖‖h̃n,1‖

(c)
=

N∑
i=1

κi

∣∣∣a†
BS(ϕn,m)v

i
1v

i†
1 aBS(ϕn,1)

∣∣∣√√√√ N∑
�=1

KNBS
(ϕ�,1 − ϕn,m)

√√√√ N∑
�=1

KNBS
(ϕ�,1 − ϕn,1)

. (37)

To get (a), the expression in (14) is used. To get (b), we apply SVD to the Hermitian matrix

FRFF
†
RF which gives FRFF

†
RF = VΛV† where V of size NBS ×NBS is a unitary matrix and Λ

of size NBS ×NBS is a diagonal matrix of singular values ordered in decreasing order. We then

partition two matrices V and Λ as

V =
[
V1 V2

]
, Λ =

⎡
⎣Λ1 0

0 0

⎤
⎦ , (38)

where V1 is of size NBS ×N and Λ1 and is of size N ×N . We note that rank(FRF)= N . Term

(c) follows from the fact that Λ1 is a diagonal matrix with elements κi for i = 1, 2, . . . , N .

Notice that vi
1 represents the ith column.

For 
 	= n, it is reasonable to assume that
√

1− ρ2n,m percentage of the amplitude of h̃n,m

leakages into the subspace generated by the other first users. To determine the subspace, we start
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with considering the impact of the misalignment imposed by the other first users on Un,m, i.e,
N∑

�=1,� �=n

∣∣∣h̃†
�,1h̃n,m

∣∣∣2. Using the definition of vector norm, we rewrite this expression as following:

N∑
�=1,� �=n

∣∣∣h̃†
�,1h̃n,m

∣∣∣2 = ∥∥∥h̃†
n,m

[
h̃1,1 · · · h̃n−1,1 h̃n+1,1 · · · h̃N,1

]∥∥∥2
(a)
= NBSNU

∥∥∥h̃†
n,mF

†
RF

[
β1,1aBS (ϕ1,1) · · · βn−1,1aBS (ϕn−1,1)

βn+1,1aBS (ϕn+1,1) · · · βN,1aBS (ϕN,1)
]∥∥∥2

(b)
= NBSNU

∥∥∥h̃†
n,mF

†
RFA

−n
BS

∥∥∥2. (39)

To get (a), we replace h̃�,1 by (14). Since aBS (ϕn,1)s are independent vectors, G−n
BS =

√
NBSNUF

†
RFA

−n
BS

determines an N−1 dimensional subspace. We represent the weighted linear combination of
ˆ̃h†
�,1

by a new vector g−n
BS which is located in the subspace G−n

BS . So, we get g−n
BS =

√
NBSNUFRF ×

N∑
�=1,� �=n

√
P�β�,1aBS(ϕ�,1). To get (26), we only need to normalize g−n

BS .

APPENDIX C

PROOF OF THEOREM 2

Proof. Using (26), we obtain the following expressions. First,∣∣∣h̃†
n,mf

n
BB

∣∣∣2 = ρ2n,m

∥∥∥h̃n,m

∥∥∥2 ∣∣∣ˆ̃h†
n,1f

n
BB

∣∣∣2 + (1− ρ2n,m
) ∥∥∥h̃n,m

∥∥∥2 ∣∣∣g−n†
BS fnBB

∣∣∣2
(a)
= ρ2n,m

∥∥∥h̃n,m

∥∥∥2 ∣∣∣ˆ̃h†
n,1f

n
BB

∣∣∣2 (b)
= ρ2n,m

∥∥∥h̃n,m

∥∥∥2∥∥∥h̃n,1

∥∥∥−2

Γ2
n,n, (40)

in which (a) follows since g−n†
BS fnBB = 0 and (b) follows from (33). Second,∣∣∣h̃†

n,mf
�
BB

∣∣∣2 = (1− ρ2n,m
) ∥∥∥h̃n,m

∥∥∥2∣∣∣ĝ−n†
BS f �BB

∣∣∣2, for 
 	= n. (41)

Next, Using (18), (33), (25), (36), and (40), (8) becomes

In,mintra =
m−1∑
k=1

Pn,kρ
2
n,mNBSNU |βn,m|2

(
F−1
)−1

n,n
KNBS,mK

−1
NBS,1

, (42)

where KNBS,1 and KNBS,m are defined in (29). Likewise,using (33), (25), (36), and (41), (9)

becomes

In,minter =
(
1− ρ2n,m

)
NBSNU |βn,m|2

N∑
��=n

P�

∣∣∣ĝ−n†
BS f �BB

∣∣∣2 KNBS,m. (43)
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Further, after substituting (40), (42) and (43) into (7), we get

R̃n,m = log2

(
1 +

Ψ

In,mintra + In,minter + σ2

)
(a)

≥ log2

(
1 +

Ψ

In,mintra + ςn,minter + σ2

)
, (44)

where Ψ = Pn,mρ
2
n,mNBSNU |βn,m|2 (F−1)

−1
n,n KNBS,mK

−1
NBS,1

, and ςn,minter =
(
1− ρ2n,m

)
NBSNU |βn,m|2×

κmax(S)KNBS,m. To get (a), we have the following lemma.

Lemma 2. An upper bound of

N∑
�=1,��=n

P�

∣∣∣ĝ−n†
BS f �BB

∣∣∣2 is the maximum eigenvalue of S, i.e.,

κmax(S).

Proof. We rewrite

N∑
�=1,��=n

P�

∣∣∣ĝ−n†
BS f �BB

∣∣∣2 =
∥∥g−n†

BS F−n,W
BB

∥∥2
2
. Maximizing

∥∥ĝ−n†
BS F−n,W

BB

∥∥2
2

given∥∥ĝ−n
BS

∥∥ = 1 is similar to maximizing a beamforming vector for maximum ratio transmission

systems [46], [47]. Hence, the maximum value of ĝ−n
BS is the dominant right singular vector of

F−n,W
BB [46], [47]. Thus, the maximum of

∥∥ĝ−n†
BS F−n,W

BB

∥∥2
2

is equal to the maximum eigenvalue

of S.

Lemma 2 indicates that In,minter ≤ ςn,minter . After some manipulations

R̃n,m≥log2

(
1 +

Pn,mρ
2
n,mNBSNU |βn,m|2

ζn,mintra + (ςn,minter + σ2) (F−1)n,n K
−1
NBS,m

KNBS,1

)

(a)

≥ log2

(
1 +

Pn,mρ
2
n,mNBSNU |βn,m|2

ζn,mintra + ζn,minter + σ2κ−1
min(F)K

−1
NBS,m

KNBS,1

)
, (45)

where in the first line, ζn,mintra =
m−1∑
k=1

Pn,kρ
2
n,mNBSNU |βn,m|2 and in the second line, ζn,minter =(

1− ρ2n,m
)×NBSNU |βn,m|2 κmax(S)κ

−1
min(F)KNBS,1. To get (a), we note that (F−1)n,n ≤ κ−1

min(F).

APPENDIX D

PROOF OF THEOREM 3

Proof. We start with (7) to define the achievable rate of Un,m for the perfect correlation and the

imperfect correlation, i.e., Rn,m and R̃n,m, respectively. This gives

ΔRn,m
Δ
= Rn,m − R̃n,m

= log2

⎛
⎜⎜⎜⎜⎝1 +

Pn,m

∣∣h†
n,mf

n
BB

∣∣2
m−1∑
k=1

Pn,k

∣∣h†
n,mf

n
BB

∣∣2 + σ2

⎞
⎟⎟⎟⎟⎠−
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log2

⎛
⎜⎜⎜⎜⎜⎝1 +

Pn,m

∣∣∣h̃†
n,mf

n
BB

∣∣∣2
m−1∑
k=1

Pn,k

∣∣∣h̃†
n,mf

n
BB

∣∣∣2 + N∑
�=1,��=n

P�

∣∣∣h̃†
n,mf

�
BB

∣∣∣2 + σ2

⎞
⎟⎟⎟⎟⎟⎠

= log2

⎛
⎜⎜⎜⎜⎝

m∑
k=1

Pn,k

∣∣h†
n,mf

n
BB

∣∣2 + σ2

m−1∑
k=1

Pn,k

∣∣h†
n,mf

n
BB

∣∣2 + σ2

⎞
⎟⎟⎟⎟⎠− log2

⎛
⎜⎜⎜⎜⎜⎝

m∑
k=1

Pn,k

∣∣∣h̃†
n,mf

n
BB

∣∣∣2 + N∑
�=1,��=n

P�

∣∣∣h̃†
n,mf

�
BB

∣∣∣2 + σ2

m−1∑
k=1

Pn,k

∣∣∣h̃†
n,mf

n
BB

∣∣∣2 + N∑
�=1,��=n

P�

∣∣∣h̃†
n,mf

�
BB

∣∣∣2 + σ2

⎞
⎟⎟⎟⎟⎟⎠

(a)

≤ log2

⎛
⎜⎜⎜⎜⎝

m∑
k=1

Pn,k

∣∣h†
n,mf

n
BB

∣∣2 + σ2

m∑
k=1

Pn,k

∣∣∣h̃†
n,mf

n
BB

∣∣∣2 + σ2

⎞
⎟⎟⎟⎟⎠− log2

⎛
⎜⎜⎜⎜⎜⎝

m−1∑
k=1

Pn,k

∣∣h†
n,mf

n
BB

∣∣2 + σ2

m−1∑
k=1

Pn,k

∣∣∣h̃†
n,mf

n
BB

∣∣∣2 + N∑
�=1,��=n

P�

∣∣∣h̃†
n,mf

�
BB

∣∣∣2 + σ2

⎞
⎟⎟⎟⎟⎟⎠

(b)

≤ log2

⎛
⎜⎜⎜⎝
∥∥hn,m

∥∥2 ∣∣∣∣ĥ†
n,mf

n
BB

∣∣∣∣2∥∥h̃n,m

∥∥2 ∣∣∣ˆ̃h†
n,mfnBB

∣∣∣2
⎞
⎟⎟⎟⎠− log2

⎛
⎜⎜⎜⎜⎝
∥∥hn,m

∥∥2 m−1∑
k=1

Pn,k

∣∣∣∣ĥ†
n,mf

n
BB

∣∣∣∣2 + 1

Υ

⎞
⎟⎟⎟⎟⎠ , (46)

where Υ =
∥∥h̃n,m

∥∥2 m−1∑
k=1

Pn,k

∣∣∣ˆ̃h†
n,mf

n
BB

∣∣∣2 +
∥∥h̃n,m

∥∥2 N∑
�=1,��=n

P�

∣∣∣ˆ̃h†
n,mf

�
BB

∣∣∣2 + σ2. To get (a) we

remove positive quantity

N∑
�=1,��=n

P�

∣∣∣h̃†
n,mf

�
BB

∣∣∣2 from the second term. Then, we exchange the

denominator of the first term with the numerator of the second one. (b) follows from the fact

that for u > v, it gives log
(
u
v

)
> log

(
u+c
v+c

)
(c > 0), and applying the normalized vector h̃n,m

defined in (36) for both perfect and imperfect effective channel vectors.

Noting that ĥn,1 = ĥn,m and using (40) it yields

ΔR ≤ log2

( ∥∥hn,m

∥∥2
ρ2n,m

∥∥h̃n,m

∥∥2
)

− log2

(
m−1∑
k=1

Pn,k

∥∥hn,m

∥∥2 ∣∣∣ˆ̃h†
n,1f

n
BB

∣∣∣2 + σ2

)

+ log2

(
m−1∑
k=1

Pn,kρ
2
n,m

∥∥h̃n,m

∥∥2 ∣∣∣ˆ̃h†
n,1f

n
BB

∣∣∣2 + (1− ρ2n,m)
∥∥h̃n,m

∥∥2 N∑
�=1,��=n

P�

∣∣∣ĝ−n†
BS f �BB

∣∣∣2 + σ2

)

(a)
= −log2

(
m−1∑
k=1

Pn,kρ
2
n,m

∣∣∣ˆ̃h†
n,1f

n
BB

∣∣∣2
)

+ log2

(
m−1∑
k=1

Pn,kρ
2
n,m

∣∣∣ˆ̃h†
n,1f

n
BB

∣∣∣2 + (1− ρ2n,m)
N∑

�=1,��=n

P�

∣∣∣ĝ−n†
BS f �BB

∣∣∣2 + σ2∥∥h̃n,m

∥∥2
)
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(b)

≤ log2

⎛
⎜⎜⎜⎜⎝1 +

(
1− ρ2n,m

)
κmax (S) + σ2

∥∥h̃n,m

∥∥−2

ρ2n,mK
−1
NBS,1

(F−1)−1
n,n

m−1∑
k=1

Pn,k

⎞
⎟⎟⎟⎟⎠

(c)

≤ log2

⎛
⎜⎜⎜⎜⎝1 +

(
1− ρ2n,m

)
κmax (S) + σ2K−1

NBS,m
N−1

BS N
−1
U |βn,m|−2

ρ2n,mK
−1
NBS,1

κmin(F)
m−1∑
k=1

Pn,k

⎞
⎟⎟⎟⎟⎠ , (47)

in which (a) follows by rewriting the first term as log2

(
ρ−2
n,m

∥∥hn,m

∥∥2) − log2

(∥∥h̃n,m

∥∥2).

Then, we sum up the expression log2

(
ρ−2
n,m

∥∥hn,m

∥∥2) with the second term and the expression

−log2

(∥∥h̃n,m

∥∥2) with the third term. To get (b), we again sum up the first term with the

second term. We then use Lemma 2 to get κmax(S) and (33) and (18) to get K−1
NBS,1

(F−1)
−1
n,n. To

obtain (c), first we use
∥∥h̃n,m

∥∥2 = KNBS,mNBSNU|βn,m|2. Next we use the inequality (F−1)n,n ≤
κ−1

min(F).
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