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Abstract. Detailed hydrometeorological data from the rain-to-snow transition zone in mountain regions are
limited. As the climate warms, the transition from rain to snow is moving to higher elevations, and these changes
are altering the timing of downslope water delivery. To understand how these changes impact hydrological and
biological processes in this climatologically sensitive region, detailed observations from the rain-to-snow transi-
tion zone are required. We present a complete hydrometeorological dataset for water years 2004 through 2014 for
a watershed that spans the rain-to-snow transition zone (https://doi.org/10.15482/usda.adc/1402076). The John-
ston Draw watershed (1.8 km2), ranging from 1497 to 1869 m in elevation, is a sub-watershed of the Reynolds
Creek Experimental Watershed (RCEW) in southwestern Idaho, USA. The dataset includes continuous hourly
hydrometeorological variables across a 372 m elevation gradient, on north- and south-facing slopes, including air
temperature, relative humidity, and snow depth from 11 sites in the watershed. Hourly measurements of incom-
ing shortwave radiation, precipitation, wind speed and direction, soil moisture, and soil temperature are available
at selected stations. The dataset includes hourly stream discharge measured at the watershed outlet. These data
provide the scientific community with a unique dataset useful for forcing and validating hydrological models and
will allow for better representation and understanding of the complex processes that occur in the rain-to-snow
transition zone.

1 Introduction

As the climate warms and many mountain regions shift from
snow domination to a mix of rain and snow, we need to un-
derstand how these changes will alter hydrologic response
(Stewart, 2009). Hydrometeorological conditions in the rain-
to-snow transition zone are dynamic, with phase changes

occurring over short distances and durations (Marks et al.,
2013), and while comprehensive datasets are needed, data
availability is limited. We present a detailed, serially com-
plete, hourly hydrometeorological dataset from the rain-to-
snow transition zone to improve understanding of these com-
plex regions.
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The rain-to-snow transition zone in mountainous regions is
the elevation band where precipitation phase varies between
rain, snow, or a mixture of rain and snow throughout the win-
ter season and oftentimes during single storm events (Marks
et al., 2013). In the northwestern US, the elevation of the
rain-to-snow transition zone currently ranges from approxi-
mately 1500 to 1800 m (Nayak et al., 2010), covering ∼ 1 %
of total land area in the region (Nolin and Daly, 2006). This
broad characterization is not stationary in space or time, how-
ever, and its extent varies with climate conditions, latitude,
and distance from the ocean. The precipitation regime in the
current rain-to-snow transition zone in the northwestern US
is expected to shift from a transitional to rain-dominated sys-
tem as the climate warms and the zone moves up in eleva-
tion (Nayak et al., 2010; Klos et al., 2014). Mountain rain-
to-snow transition zones are important to study because they
are particularly sensitive to changes in climate (Klos et al.,
2014). Because these areas frequently experience winter tem-
peratures near 0 ◦C (Mote, 2003; Kormos et al., 2014), small
changes in weather conditions can alter seasonal snow cover,
the timing of melt, the delivery of liquid water to soil and
streams, and, ultimately, the ecosystems they sustain.

Although the rain-to-snow transition zone is recognized
as important on regional and continental scales (e.g., Mote
et al., 2005; Klos et al., 2014; Trujillo and Molotch, 2014;
Lute et al., 2015), it is surprisingly poorly characterized.
Published watershed-scale datasets of precipitation, temper-
ature, humidity, wind, radiation, snow, and resultant stream-
flow representative of an entire basin spanning the rain-to-
snow transition are limited. We conducted a meta-analysis
in order to determine published data availability in the rain-
to-snow transition zone. We did this by searching the key
words “rain-snow transition data” OR “rain snow zone data”
in Web of Science (search date: 5 February 2018). Out of the
91 returns, only 5 publications (5.4 %) had published freely
available hydrometeorological data in the rain-to-snow tran-
sition zone. These five datasets are from (1) a small catch-
ment in the Dry Creek Experimental Watershed (DCEW)
in southwestern Idaho, US (Kormos et al., 2014b), (2) var-
ious small- to medium-sized watersheds in the contiguous
US (Newman et al., 2015), (3) a site in Washington Cas-
cades, US (Wayand et al., 2015), (4) various sub-watersheds
from the Reynolds Creek Experimental Watershed (RCEW)
southwestern Idaho (Marks et al., 2013), and (5) a site in
Davos, Switzerland (WSL Institute for Snow and Avalanche
Research SLF, 2015). The remaining 86 returns either were
conducted in watersheds that did not span the rain-to-snow
transition or the data associated with their research were nei-
ther published nor easily available for public use. It is pos-
sible that additional datasets exist, but were not discovered
using the search terms that we applied (e.g., data from the
H.J. Andrews Long-Term Ecological Research site, Oregon,
USA, and a site at Col de Porte, France; Morin et al., 2012).
Although data presented by Morin et al. (2012), Wayand
et al. (2015), and the WSL Institute for Snow and Avalanche

Research SLF (2015) are useful, our dataset is unique be-
cause it includes basin-wide measurements and stream dis-
charge, which permit hydrologic modeling and a mass bal-
ance approach to validation using soil moisture and stream-
flow records.

In this paper, we present a comprehensive hydrometeoro-
logical dataset for 11 water years (WY, 1 October through
30 September) from WY2004 to WY2014 for the Johnston
Draw (JD) watershed that spans the rain-to-snow transition
zone in southwestern Idaho. The dataset is unique not only
because the site falls within this climatically sensitive zone,
but also because it has instrumentation that encompasses in-
formation on the effects of both elevation and aspect on snow
accumulation and melting, and soil moisture and tempera-
ture. The dataset includes measurements of soil temperature
and moisture that support studies of the interactions between
the atmosphere and the ground surface. The dataset spans
a time period in which conditions were warmer than previ-
ous years of record in the RCEW (Nayak et al., 2010; Kor-
mos et al., 2017), possibly representing what can be expected
as regional climate warming advances. Our objective is to
provide this high spatiotemporal resolution dataset to study
short-term variations at intra-event, intra-annual, and inter-
annual scales, and we plan to continue these observations to
assess long-term climatic trends at the sensitive rain-to-snow
transition zone.

2 Site description

The JD is a 1.8 km2 sub-watershed of the RCEW and is lo-
cated in southwestern Idaho (Fig. 1). The RCEW is man-
aged by the US Department of Agriculture (USDA) Agri-
cultural Research Service (ARS) Northwest Watershed Re-
search Center (NWRC) and is also a National Science Foun-
dation Critical Zone Observatory (CZO). The elevation at the
JD ranges between 1497 and 1869 m, spanning the rain-to-
snow transition zone where the precipitation phase at higher
elevations is snow-dominated, and rain-dominated at lower
elevations. Over the period of record, magnitude-weighted
incoming precipitation was 39 and 53 % snow at the low-
est and highest precipitation gages, respectively. The an-
nual average air temperature is 8.1 ◦C, with precipitation av-
eraging 609 mm annually, based on all measurement sites
(also see Table 1). Vegetation on the north-facing slopes
is characterized by snowberry (Symphoricarpos), big sage-
brush (Artemisia tridentate), aspen (Populus tremuloides)
groves and low sagebrush (Artemisia arbuscula) with wheat-
grass (Elymus trachycaulus), while south-facing slope veg-
etation includes Artemisia arbuscula, Elymus trachycaulus,
mountain mahogany (Cercocarpus ledifolius), and bitter-
brush (Purshia tridentate) (Stephenson, 1970). The dominant
soil texture on both north- and south-facing slopes is classi-
fied as sandy loam and soils are shallower (∼ 50 cm deep)
on south-facing slopes compared to north-facing slopes (∼
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Figure 1. Johnston Draw (JD) with instrumentation location. For
more information on each site, refer to Table 1 and the naming con-
vention file attached to the data.

100 cm deep) (USDA, 2015). North-facing slopes are slightly
steeper with an average slope of 16.8◦, whereas the average
south-facing slopes are 13.9◦ (Patton, 2016). The bedrock
in the watershed consists mainly of granitic rock (79 %),
with some basalt (3 %), and welded tuff (18 %) (Stephenson,
1970).

3 Data description

3.1 Instrumentation overview

The dataset includes data from 11 meteorological stations
and 1 streamflow station (Table 1). Three full meteorological
stations (124, 124b, and 125) measure an extensive suite of
variables, including air temperature, relative humidity, wind
speed and direction, incoming shortwave radiation, precipi-
tation, snow depth, and soil temperature and moisture. The
additional eight meteorological stations (jdt1, jdt2, jdt3, jdt4,
jdt5, jdt2b, jdt3b, and jdt4b) measure select variables for spe-
cific purposes (see Table 1 and below for details). In 2002,
the ARS installed full meteorological stations at the bottom
(site 125) and top (site 124) of the JD, and a weir at the outlet
(site 125b). During 2003–2005, an additional five meteoro-
logical stations (jdt1, jdt2, jdt3, jdt4, and jdt5) were installed
on the north-facing side of the JD to provide measurements
of air temperature (Ta), humidity (RH), wind speed and di-
rection (ws and wd, respectively), and snow depth (zs, equiv-
alent to HS in the International Seasonal Snow Classification
established by Fierz et al., 2009) – so that along with sta-
tions 125 at the bottom and 124 at the top – a measurement
site was established for every 50 m of elevation in the JD
catchment. In 2005, a full meteorological station (site 124b)
was established in an aspen grove near the top of the JD to
provide weather data at a wind-sheltered site. In 2010, three
additional stations (jdt2b, jdt3b, and jdt4b) were installed on
the south-facing side of the JD, at roughly the same eleva-

tions as jdt2, jdt3 and jdt4 on the north-facing side (Fig. 1).
At the same time, instruments to measure soil temperature
(Tg) and moisture (θ ) were added to 8 of the 11 sites (jdt1,
jdt2, jdt3, jdt4, jdt2b, jdt3b, jdt4b, and 124b) starting at 5 cm
depth below the surface and then every ∼ 15 to 50 cm depth.
Sensors were also placed at 75, 90 and 100 cm below the
ground surface wherever possible. The maximum depth at
each site depends on the depth to bedrock because the instru-
ments could not be installed in bedrock or saprolite. Two soil
profiles were installed at 124b due to large vegetation dif-
ferences within a small area: 124ba, which is located in an
aspen grove, and 124bs, which is located in mountain sage-
brush. Details of the sensors used to measure each parameter,
as well as the sensor accuracy, operating range, and temper-
ature dependence are provided with the data.

3.2 Meteorological data

All data presented here were checked for time inconsis-
tencies based on the World Meteorological Organization’s
QA/QC standards (Zahumenský, 2004), using the plausi-
ble instantaneous value ranges and maximum/minimum step
changes outlined therein. The data were corrected and gap-
filled using linear interpolation for gaps of less than 3 h or
multiple linear regression for longer gaps from published
measurements of the same variable at nearby long-term
Reynolds Creek stations 144 and 145. Because additional
sites were added during the period of record, sometimes gaps
were filled by different neighboring sites during different pe-
riods; during the periods reported as active for each station in
Table 1, up to ∼ 1 % of records were gap-filled or corrected.
All observations were recorded on an hourly time step with
varying start dates for each station (Table 1). We have con-
densed the relatively large amount of data into summaries to
convey conditions within the watershed. For this purpose, we
chose two representative WYs; WY2011 was a cool and wet
year, and WY2014 a warm and dry year (see Fig. 3 for the
range of conditions). These WYs were selected to illustrate
subsequent figures and analyses because we assumed these
two years represent the range and diversity of conditions dur-
ing the 11-WY time period.

3.2.1 Temperature and relative humidity

Ta and RH were measured continuously in the JD from
WY2004 to WY2014. Water vapor pressure (ea) and dew-
point temperature (Td) were calculated using measured Ta,
RH, and software tools from the Image Processing Work-
bench (IPW) (Frew, 1990; Marks et al., 1999b). The IPW
tools are optimized for temperatures near 0 ◦C, providing
greater accuracy for ea and Td as Ta approaches 0 ◦C. This ac-
curacy is critical for the determination of precipitation phase
in the rain-to-snow transition zone.

We define a storm as a period of time during which there
are no more than 2 consecutive hours without measurable
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Table 1. Stations within Johnston Draw watershed, their elevations, and available parameters at each station. Although data presented in
this dataset are limited to the end of WY2014 (30 September 2014), data from all stations continue further than WY2014 as all stations
are currently maintained. Full station names used by the USDA ARS and recorded in the published dataset include the prefix “rc.tg.dc.jd-”
before each abbreviated station name recorded in the first column of this table; however, for simplicity, these abbreviated station names are
used throughout this paper. A full naming convention is provided in the Naming Convention file with the published dataset. Because Td was
calculated based on RH (see text for details), RH is not summarized here, but is available at all stations except 125b (streamflow station).
Start date is presented as DD-mmm-YYYY. Ta – air temperature (◦C), Td – dewpoint temperature (◦C), ws – wind speed (ms−1), wd –
wind direction (0–359◦, 0= north; 180= south), ppta – wind-corrected precipitation (mm), zs – snow depth (mm), Tg – soil temperature
at 20 cm depth (◦C), θ – soil water or moisture at 20 cm depth (m3 m−3), Si – incoming solar radiation (MJm−2 day−1), Q – streamflow
(mm), WY=mean WY value, S =mean storm value, and NS=mean non-storm value. WY for Tg and θ at 124b were calculated based on
the two subsurface measurement locations at this site (see text for details). Note that Si and Q units have been converted from the database
to the units reported here for comparison across parameters and sites. Snow depth is averaged over WY2011–2014 for all sites to facilitate
meaningful comparisons.

Station Elevation Aspect Start date Duration Ta Td ws wd ppta zs Tg θ Si Q

(m) (WY) WY S NS WY S NS WY S NS WY S NS WY WY WY WY WY

125b 1496 NE 10 Jan 2003 11 114
125 1508 SE 10 Jan 2003 11 8.1 3.7 9.1 −1.6 −0.2 −1.9 1.8 2.2 1.7 195 213 191 564 21 14.9
jdt1 1552 N 11 May 2005 9 8.6 3.2 9.9 −2 −0.7 −2.3 41 8.8 0.12
jdt2b 1611 S 4 Mar 2011 4 9.1 4.0 10.3 −1.8 −0.3 −2.2 2.8 3.7 2.6 211 212 210 5 12.3 0.23
jdt2 1613 N 5 Nov 2005 9 8.4 2.9 9.7 −2.6 −1.3 −2.9 31 7.2 0.12
jdt3 1655 N 21 Sep 2005 9 8.2 2.6 9.5 −2.6 −1.3 −3.0 2.7 2.9 2.7 206 237 198 71 7.4 0.14
jdt3b 1659 S 13 Dec 2010 4 8.4 3.3 9.6 −2.0 −0.5 −2.5 3.1 3.8 2.9 208 214 207 12 12.7 0.15
jdt4b 1704 S 4 Mar 2011 4 8.8 3.4 10.1 −2.2 −0.6 −2.6 2.9 4.0 2.6 225 228 224 14 12.5 0.15
jdt4 1706 N 2 Nov 2005 9 8.0 2.2 9.5 −2.6 −1.3 −3.0 113 6.6 0.12
jdt5 1757 N 2 Nov 2005 9 7.4 1.9 8.7 −2.7 −1.5 −3.0 38
124b 1778 SE 11 Nov 2006 8 6.9 1.8 8.2 −2.1 −1.1 −2.4 1.8 2.4 1.7 217 232 213 700 70 8.2 0.21 16.9
124 1804 NE 1 Oct 2003 11 7.0 1.5 8.4 −2.6 −1.6 −2.8 4.5 6.7 3.9 218 240 213 563 20 16.7

Average 8.1 2.8 9.4 −2.3 −1.0 −2.6 2.8 3.7 2.6 211 225 208 609 40 9.5 0.2 16.2 114

precipitation. Ta during storms is 6.6 ◦C cooler than Ta during
non-storms, reflecting seasonal regional precipitation pat-
terns and the dominance of winter storm events, whereas Td
during storms is 1.7 ◦C warmer than Td during non-storms.
Figure 2 shows the average monthly temperatures for Ta and
Td for non-storms (Fig. 2a and c) and storms (Fig. 2b and d)
in WY2011 and WY2014. For both non-storm and storm pe-
riods, the mean Ta and Td are also close to 0 ◦C for roughly
8 months out of the year (October–May), whereas during
summer months (June–September), these temperatures are
significantly warmer than 0 ◦C. These mean values demon-
strate the sensitivity of the JD to climate warming, as changes
in temperature and humidity are likely to strongly impact the
precipitation phase at this location (Nayak et al., 2010).

3.2.2 Radiation

Incoming shortwave radiation (280–2800 nm) (Si) was mea-
sured continuously at three elevations (stations 125, 124b,
and 124). Station 124 Si had to be occasionally gap-filled be-
cause ∼ 0.5 % of the time series was missing. Only night-
time hours were missing, so gaps were replaced with ze-
ros, matching the other two stations. Sites were selected
to minimize effects of topographic and vegetation shading,
which only affect the sites briefly at very low sun angles.
The WY averages for sites 125, 124b, and 124 are 172.5,
195.6, and 193.6 Wm−2, which equates to 14.9, 16.9, and
16.7 MJm−2 day−1. Peak daily incoming shortwave radia-
tion occurs over a much broader period during the summer:

Figure 2. Monthly average Ta (white) and Td (grey) during non-
storm (a, c) and storm (b, d) periods for WY2011 and WY2014
based on data from all stations. The legend in (b) applies to all pan-
els; boxes depict the interquartile range and longest whiskers indi-
cate the 5th and 95th percentiles of data.
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peak Si typically occurs from ∼ 10:00 to 16:00 (Mountain
Standard Time (MST)) during summer, and from ∼ 12:00 to
14:00 (MST) during winter.

Longwave radiation is important in many energy balance
applications, such as simulating snowmelt and evapotranspi-
ration (Flerchinger et al., 2009), and Raleigh et al. (2016)
show that lack of longwave radiation data can limit model
performance when assessing snowmelt timing, peak snow
water equivalent, and snow surface temperatures. However,
many measurement networks, including the JD, lack instru-
mentation to measure this variable and it is thus not reported
in our dataset. Nonetheless, longwave radiation is measured
within the RCEW at a slightly higher elevation (2034 m) at
site 176 approximately 3 km to the SE of the JD (Reba et al.,
2011) and this instrumentation may be added to the JD in
the future. Alternately, clear-sky longwave radiation can be
accurately calculated (Flerchinger et al., 2009) based on Ta,
ea, or precipitable water, using methods by Ångström (1918),
Prata (1996), or Dilley and O’Brien (1998). New work (Bair
et al., 2018) suggests that some of these calculations may be
sensitive to elevation and should be calibrated against nearby
measurements, if possible.

3.2.3 Wind

Wind speed (ws) and direction (wd) were continuously mea-
sured at seven sites at ∼ 3 m above the ground surface. Six
of those sites are representative of surrounding wind condi-
tions, and site 124b was deliberately established in a wind-
sheltered aspen grove to better characterize snow accumula-
tions in the upper portions of the basin. Ranging from 0.4
(the instrument threshold) to 24.2 ms−1 for all sites, ws is
greatest at 124 because this site is heavily exposed to wind
(Table 1). In fact, ws at the exposed 124 site is on average
twice that of all other sites at 4.5 ms−1 compared to 2.8 ms−1

for all the sites. During storms, wind speeds are on aver-
age 1.4 times faster than during non-storms. During winter
storms, wd ranges from 180 to 220◦ (measured clockwise
from north), whereas wd usually ranges between 135 and
225◦. These values agree with the relatively consistent wind
directions of 175 to 230◦ observed in other sub-watersheds of
the RCEW and in the nearby DCEW (Winstral et al., 2013;
Kormos et al., 2014).

3.2.4 Precipitation

The dataset includes wind-corrected (ppta) precipitation
measurements for three sites in the JD (125, 124, 124b) and
the percentage of precipitation that is in the form of rain,
snow, or a mixture of rain and snow. The latter were calcu-
lated using the humidity-based methods developed by Marks
et al. (1999a, b, 2013), where Td values below −0.5 ◦C are
considered all snow and above +0.5 ◦C are considered all
rain, with a linear ratio of mixed rain/snow between these
thresholds. The precipitation data for stations 125 and 124

were wind-corrected using a dual-gage correction method
developed at the RCEW (Hamon et al., 1973; Hanson et al.,
2004), whereby wind-corrected precipitation is an empiri-
cal function of the ratio between unshielded and shielded
gage catch. Because the 124b site has only a single gage,
the dual gage correction methods cannot be applied to this
site. Instead the shielded data for 124b were wind-corrected
using WMO (2008) methods, where the corrected precipita-
tion mass is a function of the wind speed and precipitation
phase. Wind exposure at the upper measurement site 124 re-
sults in roughly the same corrected precipitation as at the
lower elevation site 125. Precipitation catch at the sheltered
site 124b is on average 1.2 times greater than at the wind-
exposed site 124 (Table 1). Based on water balance methods,
we believe that the wind-exposed values are anomalously
low and that measurements at the sheltered sites are more
representative of other high-elevation sites in the JD. Thus,
we suggest that an orographic lapse rate using only sites 125
and 124b better represents the true precipitation lapse rate.
We approximated precipitation for site 124b for WY2004–
2007 via multiple linear regression using nearby precipita-
tion measurement sites, which were within 1 km horizontally
and within 100 m of the same elevation. Mean cumulative
ppta for the 11 WYs for stations 124, 124b, and 125 was
563, 700, and 564 mm, respectively (Table 1).

3.3 Stream, snow, and soil data

3.3.1 Stream discharge

Stream discharge was measured continuously with a stage
recorder using a drop box weir at the watershed outlet (Pier-
son et al., 2001). The intermittent stream draining the JD
typically starts flowing in early November as winter sea-
sonal precipitation resumes and ceases to flow around mid-
July. Stage height was converted to stream discharge using
a rating curve (Pierson and Cram, 1998) and frequent field
measurements to ensure high-quality flow records (Pierson
et al., 2001). Average stream discharge over the period of
record is approximately 0.007 m3 s−1, with the largest dis-
charge of 1.63 m3 s−1 on 14 February 2014 during a rain-on-
snow event. Total annual runoff for each WY is shown in
Fig. 3.

3.3.2 Snow depths

Instantaneous snow depths were collected at all 11 sites on
an hourly basis for all periods when each Judd Communi-
cations depth sensor was installed. Raw snow depths from
all stations were processed in a multi-step fashion analogous
to methods evaluated by Ryan et al. (2008). We first defined
the start and end of the snow-covered period for each WY,
the peak snow depth, and a smoothing window for each sen-
sor (usually 8 h, but under specific circumstances extended
to 40 h as detailed below). Because JD snow cover is often
ephemeral, the start of the snow-covered period was defined

www.earth-syst-sci-data.net/10/1207/2018/ Earth Syst. Sci. Data, 10, 1207–1216, 2018



1212 S. E. Godsey et al.: Eleven years of mountain weather, snow, soil moisture and streamflow data

Figure 3. (a) Cumulative annual precipitation from sites 125, 124b, and 125 and cumulative runoff (q) as measured at the JD outlet and
mean annual temperature (MAT) based on stations 124 and 125 which are collecting data over the entire 11 WY. That the three precipitation
sites are similar in WY2005 and WY2011 suggests warmer, less windy conditions. Streamflow (q) is specific discharge, or total volumetric
streamflow (Q) normalized by catchment area. (b–g) Snow depth in the JD for WY2011 (b–d) and WY2014 (e–g). Panels (b, e) show snow
depth from sites on the south-facing slopes in red colors, (c, f) show snow depth on the north-facing slopes in blue colors, and (d, g) show
snow depth from 125, 124b, and 124 in grayscale. Each legend shows sites ordered from the lowest to highest elevations, with brighter tones
at lower elevations. Snow depths increase inconsistently with increasing elevations due to wind scour from exposed sites and accumulation
in sheltered areas. Gaps due to instrument failure are seen as breaks in the continuous time series line in some subplots.

as the first day with a positive snow depth after the start of the
new water year, and the end of the snow-covered period was
the last day with positive snow depth during that water year.
Thus, the snow-covered period may include periods without
snow cover if ephemeral snowpacks melted, especially dur-
ing the fall and spring. Furthermore, because the snow depth
sensor is unreliable during storms due to the ultrasonic sig-
nal reflecting from hydrometeors, these values were filtered
and removed. If the gaps that this created were longer than
the specified smoothing window, they were not filled. There
were 127 unfilled gaps for all stations and years. If gaps
were shorter than the smoothing window, then missing data
were interpolated. This smoothed dataset was further quality-
checked by visually comparing cumulative precipitation and
changes in snow depth. If snow depth increased while pre-
cipitation was zero, we extended the typical 8 h smoothing
window to 40 h to minimize incorrectly interpreting noise as
the snow depth signal. Thus, if snow depth decreased during
a storm due to compaction, these data were smoothed and

preserved. Mean snow depths can be found in Table 1. As
expected, north-facing slopes and sheltered sites have deeper
snowpacks that last longer throughout the snow season com-
pared to south-facing slopes and wind-exposed sites (Fig. 3),
primarily due to shortwave radiation and scour differences.
Wind redistribution of blowing snow is known to affect the
nearby Reynolds Mountain East (RME) catchment (Winstral
et al., 2013) and may also be important at times in the JD;
this dataset facilitates further exploration of wind effects at
the rain–snow transition on melt patterns and runoff genera-
tion.

Although this dataset does not include snow water equiva-
lent (SWE) or snow density measurements, which comple-
ment snow depths, it appears likely that methods of con-
verting lidar-derived snow depth to SWE may soon allow
conversion of the 11 continuous snow depth measurements
(Kirchner et al., 2014) to SWE, and some snow models (e.g.,
SNOWPACK, Lehning et al., 1999) can utilize snow depth
measurements to simulate SWE as part of avalanche haz-
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Figure 4. Soil water storage (a, c) and ground temperatures at 20 cm (b, d) on both north- and south-facing slopes, up to depths of 100 and
50 cm, respectively, in WY2011 (a–b) and WY2014 (c–d). The legend in (b) applies to all panels. Water storage and temperatures for north-
facing slopes were calculated based on jdt1, jdt2, jdt3, and jdt4, and for south-facing slopes, these values were calculated based on jdt2b,
jdt3b, and jdt4b. During October–January of WY2011 (a), no soil temperature or moisture data on the south-facing slopes were collected
due to the soil moisture sensors not yet being installed.

ard assessment. We expect that an improved understanding
of snowmelt and soil frost may build on these observed snow
depth, and soil moisture and temperature measurements.

3.3.3 Soil moisture and temperature

Soil moisture probes were installed at 8 of the 11 sites at vari-
ous depths (Table 1) in 2010 to measure soil temperature (Tg)
and moisture (θ ). Mean WY soil temperatures reflect distinct
aspect differences (Fig. 4) with mean soil temperatures of
7.7 ◦C on north-facing slopes and 12.2 ◦C on south-facing
slopes at a depth of 20 cm.

Processing of the soil moisture data included correcting
extremely dry measurements resulting from sensors with bad
components. The faulty equipment was not immediately ap-
parent because errors are only expressed when water con-
tents are very low. Thus, the reported values are accurate
for all the hydrologically active periods. During the sum-
mer dry down and winter freezing events, once a value of
about 0.08 m3 m−3 is reached, the data drop rapidly to un-
realistic values, and when water contents rise due to precip-
itation inputs or thawing, they return to accurate values. In
order to make a continuous estimate of water content and
storage, we replaced the faulty values using continuous val-
ues from adjacent functional sensors. From these corrected
values, we calculated the average water storage (Fig. 4) for
the north-facing slopes using a soil depth of 100 cm and for
south-facing slopes using a depth of 50 cm, based on the typ-
ical depths to which the sensors could be installed. For both

WYs, water storage on north-facing slopes is on average 1.4
times greater and lasts longer than on south-facing slopes.

4 Mass balance analysis

We estimated evapotranspiration using a mass balance ap-
proach based on measured precipitation and stream discharge
to ensure that the measurements were reasonable when inte-
grated at a watershed scale. We assumed that net ground-
water fluxes and annual changes in storage were negligi-
ble, which is supported by soil moisture data. We approx-
imated the annual precipitation of the JD by arithmetically
averaging the annual precipitation from 125 and 124b (as
described in Sect. 3.2.4, site 124 is located on a very wind
exposed ridge, and is therefore not representative of the gen-
eral precipitation lapse rate in the catchment). WY precipi-
tation was estimated to be 765± 78 and 548± 69 mmyr−1

for WY2011 and WY2014, respectively, with uncertain-
ties based on the reported instrument error. We converted
annual stream discharge to specific discharge by normal-
izing the annual stream discharge to the watershed area
(181.35 ha). These values were estimated to be 309± 37 and
89±11 mmyr−1 for WY2011 and WY2014, respectively, as-
suming up to a 12 % annual discharge uncertainty. Uncer-
tainty in the individual discharge or precipitation measure-
ments was propagated to the annual discharge and precipita-
tion estimates via a simple sum or average (following Mor-
gan and Henrion, 1990). We then used the hydrological mass
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balance equation to estimate evapotranspiration (ET= P −
Q+1 storage), which was approximated to be 456±86 and
459± 69 mmyr−1 for WY2011 and WY2014, respectively.
These estimates agree closely with the value of 425 mmyr−1

measured in the nearby Reynolds Mountain East catchment
using eddy covariance techniques (Flerchinger et al., 2010).

5 Data availability

All data presented in this paper are available from the
USDA National Agricultural Library (see Godsey et al.,
2016, https://doi.org/10.15482/usda.adc/1402076). The di-
rectory includes a readme file in PDF format listing the con-
tents within each directory with a detailed data description,
naming conventions, instruments used, contact information
for additional inquiries, a watershed digital elevation model,
and shapefiles of the watershed boundary and the station lo-
cations. The readme file defines the formats for the 3 precip-
itation files, 11 meteorological data files, 1 stream discharge
file, 1 snow depth file, and 8 soil temperature and moisture
files. Header descriptions in the associated files indicate sub-
scripts used throughout this paper, with the _ symbol appear-
ing before subscripted characters.

6 Conclusions

To our knowledge, the dataset presented is the most com-
plete and comprehensive available to date from the rain–
snow transition zone. It includes 11 water years (2004–2014)
of continuous hourly meteorological data, including air and
dewpoint temperature, relative humidity, vapor pressure, pre-
cipitation, wind speed and direction, and shortwave radia-
tion at 50 m elevation intervals spanning the JD catchment.
Other data include snow depth, stream discharge, and soil
temperature and moisture. Data continue to be collected at
the sites described here, and updated datasets will be pub-
lished based on available resources. The dataset is impor-
tant for a variety of scientific questions because it (1) cap-
tures complex atmosphere–surface–subsurface dynamics in
the rain-to-snow transition zone, (2) represents hydrometeo-
rological differences along both an elevational gradient and
between aspects, and (3) provides all the necessary data re-
quired for applying a variety of hydrometeorological mod-
els. It is our intention that this dataset will be used by sci-
entists to improve understanding of the basin-scale interac-
tions and responses for a mountain watershed transitioning
from snow- to rain-dominated. High-resolution hydrometeo-
rological datasets can offer researchers opportunities for in-
terdisciplinary studies at the watershed scale. For example,
future studies might leverage these data to better understand
how (1) changes in precipitation magnitude and temperature
impact water storage and movement, and the average an-
nual snowline, (2) soil temperature and moisture respond to
changes in energy and water fluxes, and (3) variability in me-

teorological conditions impacts subniveal biogeochemistry
beneath transient snowpacks at the rain–snow transition.
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