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Abstract

The purpose of this work is to lower the computational cost of predicting charge

mobilities in organic semiconductors, which will benefit the screening of candidates

for inexpensive solar power generation. We characterize efforts to minimize the num-

ber of expensive quantum chemical calculations we perform by training machines to

predict electronic couplings between monomers of poly-(3-hexylthiophene). We test

five machine learning techniques and identify random forests as the most accurate,

information-dense, and easy-to-implement approach for this problem, achieving

mean-absolute-error of 0.02 [× 1.6 × 10−19 J], R2 = 0.986, predicting electronic cou-

plings 390 times faster than quantum chemical calculations, and informing zero-field

hole mobilities within 5% of prior work. We discuss strategies for identifying small

effective training sets. In sum, we demonstrate an example problem where machine

learning techniques provide an effective reduction in computational costs while help-

ing to understand underlying structure–property relationships in a materials system

with broad applicability.

K E YWORD S

machine learning, molecular simulation, organic photovoltaics

1 | INTRODUCTION

Finding a needle in a haystack is hard because of all the hay:

Inspecting each straight, pointy object drawn from a large haystack

rarely reveals needles and it is impractical to inspect all the pointy

objects. Searching haystacks is analogous to finding optima in large

problem spaces—such as the identification of the best ingredients for

high-efficiency, low-cost organic photovoltaics (OPVs) for sustainable

power generation, in which, progress is hindered by the experimental

and computational expense of enumerating the combination of fac-

tors that govern a candidate's viability. Replacing experiments with

computer simulations increases the rate of candidate inspection, as

computer simulations can be performed at a lower cost and in less

time, but does not wholly alleviate the time burden. Here we focus on

strategies for further increasing the rate at which candidates can be

inspected by lowering the computational cost of connecting OPV

structure to its performance.

OPVs are a focus of sustainable energy development because

devices with 15% power conversion efficiency (PCE) are theorized as

sufficient for one-day energy-pay-back times,1 which would circum-

vent economic barriers to widespread deployment. A key difficulty in

mass-producing high PCE devices is controlling the self-assembled

active-layer morphology (the spontaneously forming microstructure

within the electricity generating portion of the device). The majority
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of active layers are primarily composed of two components: An

electron-donating and an electron-accepting species, and the micro-

structural order of these two components determine the device's

overall efficiency.2 Recent developments in new OPV ingredients

have demonstrated power conversion efficiencies in excess of 15%,3,4

however mass-produced OPVs still fall below the efficiencies required

for widespread commercial viability, and the precise origins of the

higher efficiencies are not fully understood. To make OPVs with one-

day payback times a reality, a fundamental understanding of how

ingredient chemistry and processing determines the active layer mor-

phology and how the resulting features influence PCE is needed.

Here we describe machine learning (ML) efforts toward speeding

calculations linking OPV morphology to the mobility of charges

through it, which in turn determines the fill factor and PCE 5 of OPV

devices. To validate our approach, we focus on the benchmark donor

polymer poly-(3-hexylthiophene) (P3HT), which is the archetype for

linking the self-assembled morphology to efficiency 6,7 due to its solu-

tion processability and history in breakthrough (in 2006, 5% PCE)

OPVs.8 In P3HT devices, faster charge movement (which corresponds

to better PCE) can be obtained by creating devices that maximize the

degree of crystalline order, 9 which can be accomplished by using high

regioregularity 10 and shorter polymer chains.11,12 Time-of-flight mea-

surements of hole mobility in P3HT experiments range from

μ = 1 × 10−5 to 1 × 10−3 cm2/Vs.13-16 Computational work has hel-

ped to explain the role of thiophene ring orientation on charge

transport,17 and kinetic Monte Carlo (KMC) simulations of charge

transport have predicted mobilities ranging from μ = 1 × 10−4 to

0.6 cm2/Vs,18-22 depending on the degree of ordering in of the P3HT

morphologies. These experimental and computational predictions of

mobility provide references for validation: Calculated hole mobilities

in P3HT should fall between μ = 1 × 10−4 to 0.6 cm2/Vs and increase

with increasing P3HT crystallinity.

In our own prior work, we predict charge transport through P3HT

by first predicting P3HT morphologies at �350 processing state

points 23 (Supporting Information Section 1), then calculating charge

mobility through �100 of these structures21 using KMC simulations.

Doing so requires hopping rates between P3HT chromophores, which

we calculate with Marcus semi-classical hopping theory24 using quan-

tum chemical ZINDO/S 25,26 calculations to obtain the electronic

transfer integrals between chromophores (couplings, Ji,j), which

describe the amount of frontier molecular orbital overlap between

pairs chromophores. Completely connecting all the neighbors in a rep-

resentative system requires �2 × 105 ZINDO/S calculations per mor-

phology, corresponding to about 26 CPU hours of computation time.

We aim to determine the efficacy of using ML to predict Ji,j and

bypass the numerous, expensive ZINDO/S calculations required to

characterize the charge transport properties of a morphology. We

take inspiration from recent studies in which ML based on first-

principle calculations has been used to accelerate the development of

organic light-emitting diodes,27 OPV candidate compounds,28 and

electronic predictions based on coarse-grained sites.29 The use of ML

to accelerate materials discovery has grown recently due to advances

in enabling hardware, algorithms, and open-source libraries.30-32 The

Ji,j prediction problem approached here is well-suited to supervised

learning algorithms where ample data can inform classification or

regression schemes relating inputs features to output properties,

especially if discerning these relations would be difficult or tedious for

a human.33-36

2 | METHODS

We compare two ways of generating electronic transfer integrals (Ji,j)

in P3HT; the control case of quantum chemical ZINDO/S calculations

using ORCA,37 as in Reference 19, and the present test case of

machine learning methods trained to predict transfer integrals. Trans-

fer integral generation is required to link morphologies to mobility.

1. Sample OPV morphologies using molecular simulations.

2. Generate transfer integrals between chromophores in each mor-

phologies (with ORCA as in Reference 19 and ML here).

3. Predict charge mobilities from transfer integrals using KMC simulations.

In prior work, we describe combining these steps into the

MorphCT 38 software pipeline, the details of said implementation,19

and applications to P3HT.21

To determine charge mobilities with kinetic Monte Carlo (KMC)

simulations, morphologies are treated as a weighted network in which

each P3HT monomer is considered an electronically active chromo-

phore and charges may hop to neighboring chromophores as defined

by neighboring cells from a Voronoi tessellation of thiophene ring cen-

ters of mass. We calculate electronic transfer integrals between chro-

mophores using the energy-splitting-in-dimer method (ESD):39,40

Ji, j =
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EHOMO−EHOMO-1ð Þ2− ΔEi, j

� �2q
, ð1Þ

where the magnitude of the splitting of the highest occupied molecu-

lar orbital to a new EHOMO and EHOMO-1 in the dimer state is com-

pared to the difference in HOMO level of the isolated, individual

chromophores:

ΔEi, j = EHOMO, j−EHOMO, i: ð2Þ

ZINDO/S requires atom positions and types of each chromophore

to calculate (EHOMO − EHOMO-1) and ΔEi,j.

The rate at which a charge is able to hop from chromophore i to

j is given by an adaptation of the semi-classical Marcus theory:24

ki, j =
Ji, j
�� ��2
ℏ

ffiffiffiffiffiffiffiffiffiffi
π

λkBT

r
exp

ri, j
α

� �
exp −

ΔEi, j−λ
� �2
4λkBT

 !
, ð3Þ

where ri,j is the center-of-mass distance between chromophore thio-

phene rings, ℏ Planck's reduced constant, λ is the reorganization

energy, kB is Boltzmann's constant, and T = 293 K is the temperature

of the KMC simulation, which is chosen for room temperature. We
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also include an additional exponential term in the hopping rate equa-

tion originating from Mott's variable range hopping theory, which is

often used in polymers, with α = 0.2 nm here. The material-specific

reorganization energy, λ, the energy required to polarize and depolar-

ize a single monomer of P3HT in response to a charge hopping from

i to j, is a constant at 0.306 (× 1.6 × 10−19 J).41

KMC proceeds by stochastically generating a sequence of events

and tracking total elapsed time by summing the times associated with

the event sequence. In the case of charge motion on P3HT networks

considered here, this is implemented by considering the hopping rates

ki,j for a located on chromophore i, where j is the index of a neighboring

chromophore. A uniformly distributed random number x is generated

on [0,1) for each possible hop, and is used to calculate hopping times

τi, j =
− ln xð Þ
ki, j

, ð4Þ

from which the fastest event is selected and performed. Note that this

amounts to an importance sampling of possible hops for each event,

not a naïve sampling of largest ki,j.

By iterating millions of hopping events, a charge's trajectory

through the morphology can be followed and the total displacement

determined. The systems utilized in this investigation are cubic with a

side of length �15 nm. However, we use periodic boundary conditions

to allow the charge to move through the same morphology many times,

resulting in a total displacement of hundreds of nanometers. Carriers

are permitted to hop for a simulation run time, t, at which point the

mean squared displacement (MSD) is calculated, and the charge is

removed from the system. A new charge is then triggered at a random-

ized start location and a new trajectory determined. The MSDs are

averaged over 10,000 carriers with 1 ns < t < 10 ns. The gradient of the

MSD as a function of t provides the carrier diffusivity, D:

D=
1
2n

�dMSD
dt

, ð5Þ

where n = 3 is the number of dimensions. D can then be related to the

mobility, μ, through the three-dimensional Einstein–Smoluchowki

relation:

μ0 =
qD
kBT

, ð6Þ

where q is the unit charge. The relation shown in Equation 5 is com-

monly employed in charge transport studies, and provides an upper-

bound for charge carrier diffusivity in the absence of an external driving

force. We treat our charges as being isolated, that is, no Coulombic

interactions with other charges or electric fields. The mobilities reported,

therefore, represent the “best case” zero-field charge mobilities, μ0, and

are analogous to experimental time-of-flight measurements.

2.1 | Machine learning

To predict Ji,j using any machine learning approach we select input

features that are then related to Ji,j calculated by ZINDO/S. Because

ZINDO/S requires only atom types and positions, we select nine spa-

tial features that we expect to be predictors of Ji,J between P3HT

monomers.

1. Whether the monomers are chemically bonded to each other

(“Bonded”).

2. The distance between their thiophene ring centers of mass

(COM–COM).

3. The relative “pitch” between thiophene rings (Figure 1, Y-rot).

4. The relative “roll” between thiophene rings (X-rot).

5. The distance between sulfur atoms on the thiophene rings (S–S).

6. The x-component of the thiophene ring center separations

(X-dist).

7. The y-component of the thiophene ring center separations

(Y-dist).

8. The z-component of the thiophene ring center separations (Z-dist).

9. Energy difference between the chromophores ΔEi,j.

Note that the “yaw” angle about the thiophene's local z-axis is

missing from this list of features as preliminary work has shown that

its effect on the transfer integral is negligible. This is expected as the

electron density is delocalized above and below the plane of the thio-

phene ring, so rotations around the local z-axis do not affect the

amount of molecular orbital overlap. We aim to limit the chemical

specificity of the features used here, and look toward other machine

learning techniques that might help automate feature identification in

the future.31 We test ordinary least squares (OLS), support vector

machines (SVM), K-nearest neighbors (KNN), artificial neural networks

(ANN), and random forests (RF) as machine learning implementations

for predicting Ji,j from the above nine features. The review article of

Reference 31 provides a comprehensive overview of ML techniques

in soft matter, and is a recommended starting place for understanding

the taxonomy of ML techniques. Briefly, OLS determines coefficients

for linear combinations of input features by minimizing error on a

training data set; SVM classifies possible outcomes based on hyper-

planes dividing the feature space of a training set; KNN uses deter-

mines “proximity” in feature-space between elements of a training set

and predicts Ji,j based on members of clusters that emerge from this

grouping. ANN are composed of “layer” matrices that transform inputs

into outputs through matrix multiplication, with iterative re-weighting

F IGURE 1 Reference thiophene ring and local coordinate axes
used to determine relative spatial features between P3HT monomers.
The thiophene ring center of mass is used as the origin of the local
coordinates. A thiophene ring's rotation about its local y-axis relative
to another thiophene ring in the reference frame is used to calculate
“pitch.” A thiophene's rotation about its local x-axis relative to the
reference ring defines “roll” [Color figure can be viewed at
wileyonlinelibrary.com]
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matrix elements performed by gradient descent optimization using a

training set of known features and Ji,j. The ANN is implemented in the

Python package Tensorflow 42 (version 1.9.0, see Supporting Informa-

tion Section 2 for ANN details), and all other methods are conducted

with the package Scikit-Learn (version 0.19.1) with the default argu-

ment values.43 The code used in this study is available at Reference

44 and the data set at Reference 45.

We explain RFs in more detail, due to their focus in the discussion

that follows. RFs are an ensemble technique in which the prediction

from many decision trees are combined into an output. A decision

tree operates by partitioning the data, based on the features and their

values, into progressively smaller subgroups to determine an average

outcome (�y) for the group. The decision tree implementation in Scikit-

Learn 43 is based on the classification and regression tree (CART) algo-

rithm, which creates a binary split based on a threshold (tf) for a fea-

ture (f ) at a “leaf,” creating two “branches”:

dfx =
Left Branch if fx < tf
Right Branch if fx ≥ tf

�
, ð7Þ

in which dfx signifies the branch decision for sample x. The threshold

tf is determined by minimizing the cost function:

C dfð Þ= nleft
N

Eleft dfð Þ+ nright
N

Eright dfð Þ, ð8Þ

where nleft and nright are the number of samples on each branch (based

on the decision df), N is the total number samples on the leaf, and Eleft,

right(df) is the error from assigning the samples to the left and right bra-

nches. This error is measured as the mean-squared error:

E dfð Þ= 1
nm

Xnm
i

yi−�yð Þ2, ð9Þ

where yi is the true output and nm is the number of samples in the left

or right branch. This process is repeated further with additional cut-offs,

thereby growing the tree and partitioning the data into smaller and

smaller partitions, reducing the error on each leaf, until a stopping

criteria (such as a maximum depth) is met. RFs avoid over-fitting by pro-

viding each tree with a different subset of the total training data, then

taking the ensemble average over each tree “voting” on the outcome.

Here we draw training set chromophore pairs from one

“disordered,” one “semi-crystalline,” and one “crystalline” morphology

from prior work.21 The degree of crystallinity is reported using ψ 0 as in

Reference 21, with “disordered,” “semi-crystalline,” and “crystalline”

corresponding to ψ 0 of 0.17, 0.25, and 0.33, respectively. ψ 0 is a quan-

tification of fraction of thiophene rings composed into “large” clusters

and the deviations in the aliphatic bond lengths. A description of the

origins and implementation of ψ 0 is included in Supporting Information

Section 5 and References 21 and 23. Each morphology is composed

of 15,000 P3HT repeat units, giving about 230,000 chromophore

pairs (as defined by the Voronoi tessellation around thiophene cen-

ters). The ML techniques are trained against some or all of these

700,000 chromophore pairs and their associated ZINDO/S calcula-

tions of Ji,j. The ML techniques are tested against 6.48 million chromo-

phore pairs from 9 additional “disordered,” 9 “semi-crystalline,” and

9 “crystalline” morphologies.

3 | RESULTS AND DISCUSSION

In this section, we first summarize the accuracy of five machine learn-

ing techniques for correlating our nine chosen structural features with

Ji,j calculated using ZINDO/S. We show that Random Forests are the

optimal choice here for their ease of implementation and accuracy.

We then evaluate the KMC charge mobility calculations from the RF-

predicted Ji,j. We discuss the time saved through using RFs in place of

ZINDO/S. Finally, we determine which features matter most for Ji,j

and investigate the relationship between the training set population

and RF's prediction capabilities to understand the minimal information

needed for accurate RF training.

3.1 | Comparison of ML techniques

Prediction accuracies of OLS, KNN, SVM, ANN, and RF techniques

are shown in Figure 2. We orient the reader to two regions in each

accuracy plot: There is a cluster of bonded chromophore pairs with

0.6 < Ji,j < 1.1 and a cluster of nonbonded pairs with Ji,j < 0.5. The

more test pairs that are not on the diagonal line indicating perfect

agreement between predicted and actual Ji,j, and the further their dis-

tance from the diagonal line of agreement, the worse the method. The

poor predictive capabilities of OLS (Figure 2a), despite the surprisingly

high R2 = 0.96, suggests nonlinear relationships between features

determines Ji,j. SVM accurately predicts bonded Ji,j but fails when the

chromophores are nonbonded (yellow region near [Actual = 0,

Predicted = 0.4]). This results in a large number of Ji,j � 0.4 [×

1.6 × 10−19 J] predictions for hops that should have zero coupling,

leading to a low R2 value and high mean-absolute-error (MAE). KNN

provides predictions that are more accurate than OLS and SVMs and

with better predictions of nonbonded pairs, but with over-prediction

of bonded interactions, which can be seen as a “tail” extending

above the perfect match diagonal around (Actual = 0.6,

Predicted = 0.8 × 1.6 × 10−19 J). Both the RF and the ANN

outperform the aforementioned techniques, with RF slightly

outperforming ANN. Because the ANN has a larger number of hyper-

parameters to tune (number of hidden layers, neurons per layer, acti-

vation function type, optimization method [See Supporting Informa-

tion]) and is less accurate than RF, we focus on RFs henceforth.

3.2 | Mobility predictions

The predicted Ji,j's from the random forest closely track the actual

values, with an R2 value of 0.986 and a MAE of 0.020 (×

1.6 × 10−19 J), though there exist outliers (Figure 2e). For example,

the predicted average nonbonded Ji,j value is slightly higher (0.0015

[× 1.6 × 10−19 J]) than the actual mean (<0.001 [× 1.6 × 10−19 J]) (see
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Supporting Information Section 3). With the ultimate goal of deter-

mining the efficacy of ML in predicting overall charge carrier mobil-

ities through a morphology, we test the significance of these

deviations by using predicted Ji,j values in KMC simulations to calcu-

late the final hole mobility for the system (Figure 2f). The mobilities

calculated from the RF predictions are slightly higher than those

determined with ZINDO/S for the disordered system. We hypothe-

size this over-prediction stems from our features incompletely

describing structural perturbations that occur more frequently in dis-

ordered systems. For example, it is known that the dihedral angle

between two chromophores will affect the charge transport along the

chain,17 so trying out explicit dihedral angle features rather than the

present combinations of rotations may provide marginal accuracy

gains. Despite the small over-prediction of disordered P3HT mobility,

the resultant mobilities are close (within 5% of ZINDO/S-informed

mobilities), and follow the expected trend of increasing mobility with

increasing crystallinity. These agreements are encouraging, as mobil-

ities can vary by several orders-of-magnitude for different chemistries

and processing conditions, and suggest that RF-predicted transfer

integrals are an effective replacement for the relatively expensive

ZINDO/S calculations.

3.3 | Performance benefit

To quantify the computational burden alleviated by using random for-

ests we consider representative times for training the RF, generating

Ji,j with ZINDO/S for one morphology, and the frequency of calculat-

ing Ji,j for multiple morphologies. Applying a trained RF to a represen-

tative system of �200,000 chromophore pairs (with unknown energy

levels and transfer integrals) requires 4 min on an Intel Haswell CPU,

compared to �26 CPU hours using Intel Xeon CPUs with ZINDO/S

calculations. This factor of 390× speedup for a single simulation snap-

shot is multiplied in ensemble sampling studies: It is gained for each of

the independent samples in an equilibrated simulation trajectory. This

transferability of RFs trained across disordered, semi-crystalline and

crystalline P3HT demonstrates that a single RF can be used to accu-

rately infer ensemble charge mobilities across hundreds of state

points, each with hundreds of morphology snapshots. Using RFs,

therefore, enables such screening studies, replacing 1.08 × 104 CPU-

days of ZINDO/S calculations with 28 CPU-days of RF lookups.

3.4 | RF training requirements

We consider here the minimal training set (the fewest ZINDO/S cal-

culations) needed for accurate RF prediction of Ji,j, helping to gauge

what “plenty of data to train against” means for the present problem.

We evaluate the performance of several RFs, calibrated with different

sizes of training data. In each case, the number of samples was

selected randomly from the complete database of �700,000 samples.

Figure 3a shows that R2 and MAE converge exponentially to high and

low values, respectively, with as few as 100 training samples. The fast

convergence is due to the algorithm quickly learning that bonded

F IGURE 2 Accuracy of predictions of ZINDO/S Ji,j from (a) OLS, (b) KNN, (c) SVM, (d) ANN, and (e) RF. The x-axes of each plot describe Ji,j
calculated with ZINDO/S and the y-axis corresponds to the predicted Ji,j for a ML technique, with each chromophore pair from the training set
occupying one pixel on these axes. The number of chromophore pairs at a particular location is represented by the purple-to-yellow color bar. (f)
The mobilities from RF Ji,j are commensurate with those using ZINDO/S Ji,j. In the disordered morphology case, the RF-informed mobilities are
�5% higher than ZINDO/S-informed mobilities. Error bars show the standard error of the mobility calculations [Color figure can be viewed at
wileyonlinelibrary.com]
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chromophores typically result in high Ji,j (>0.7 [× 1.6 × 10−19 J]) and

nonbonded chromophores resulting in low Ji,j (<0.3 [× 1.6 × 10−19 J]).

Although convergence to a fairly accurate prediction (R2 � 0.977)

is quickly achieved based on bonded/nonbonded chromophores, it

can be seen in Figure 3 that with 1 × 103 samples, the distribution

between bonded/nonbonded transfer integrals is bimodal, with high

nonbonded Ji,j and low bonded Ji,j that occur in the range (0.4, 0.7) (×

1.6 × 10−19 J) being missed. When 1 × 104 samples are used, the (0.4,

0.7) (× 1.6 × 10−19 J) gap begins to fill in (Figure 3c), but it is not until

1 × 105 samples are used that the high/low nonbonded/bonded are

correctly captured by the RF (Figure 3d). Extracting and training on

these features from a simulation takes a negligible amount of time

(�2 min for extracting, 14 s for training on 1 × 105 samples). The most

expensive part of the process will be conducting the ZINDO/S calcu-

lations to train on these 1 × 105 samples (�13 hr).

3.5 | Feature comparison

We compare the relative importance of the nine features we currently

use in predicting Ji,j, relying on the RF's advantage of feature transpar-

ency. Specifically, we use permutation importance, which compares

the accuracy of the RF (R2 value) on a validation set with true values

and when the features’ values have been shuffled. The importance is

then the difference in R2 caused by permuting that feature. The per-

mutation mechanism is more computationally expensive than the

mean decrease in impurity (or Gini importance) which is built into

Scikit-Learn's RF algorithm but is more reliable. We note that the X, Y,

and Z displacements are permuted in aggregate, that is, in testing

the X, Y, and Z importances, all three columns are permuted at the

same time so that their importance relative the COM-COM feature

can be better distinguished. The calculated feature importances, nor-

malized to sum to one, are shown in Figure 4. By far, the most impor-

tant feature in predicting Ji,j is whether or not two chromophores are

directly bonded to each other. This is due to charges being delocalized

over neighboring chromophores, which result in very high Ji,j values.

When the “bonded” feature is missing, many low, bonded Ji,j are over-

predicted and high nonbonded Ji,j are under-predicted.

In Figure 5, we summarize the prediction accuracies of RFs

trained, but with select features omitted from the training sets. The

biggest deviation from champion accuracy (R2 = 0.9858) is observed

when the bonded feature is omitted, as expected. Removing the

COM–COM feature results in an over-prediction of the “bonded” Ji,j

values–transfer integrals in the 0.8–1.0 (× 1.6 × 10−19 J) region are

shifted closer to 1.0 (× 1.6 × 10−19 J) (Figure 5b). The importance of

having close chromophores is somewhat unsurprising as the transfer

integrals decrease rapidly as the two chromophores move away from

each other.17,39,46,47 We note that the COM-COM feature is directly

dependent on the X, Y, and Z displacements as it is the square-root of

the squared-sums of the X, Y, and Z offsets. Although it is a composite

feature, explicitly training on the COM-COM distance is very impor-

tant for predicting the Ji,j. The individual X-, Y-, and Z-dist features

have negligible feature importance, even when permuted in aggregate

(Figure 4). This is likely to be due to the small size and relative symme-

try of the thiophene ring, and the nonlinear relationship between the

individual features and the aggregate COM-COM feature. If larger or

asymmetric chromophores were used, such as a coronene or a

perylene derivative, the displacements along the different axes are

likely to dominate and increase relative feature importance (see

Figure 5c).47

Relative rotation around the Y-axis (“pitch”) is the third most

important feature, and is more important than rotation around the X-

axis (“roll”; Figure 5d). This is likely because rotations around Y move

the sulfur atom in the ring, as opposed to rotations around X in which

the sulfur is stationary. The importance of the relative sulfur positions

is further highlighted by the S–S distance being the fourth most

F IGURE 3 (a) Dependence of the R2 and MAE on number of training examples shows that prediction accuracy converges around tens-of-
thousands of pairs. (b–d) Despite relatively “good” R2 and MAE values, significant deviations from the diagonal of perfect prediction are seen
below �100,000 training samples [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 The feature importances for the RF algorithm. The X,
Y, and Z distances are all combined into one feature importance
[Color figure can be viewed at wileyonlinelibrary.com]

6 of 10 MILLER ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


important feature, and this feature is responsible for obtaining correct

predictions for high nonbonded Ji,j and low bonded Ji,j (Figure 5e). This

indicates that in order to have high Ji,j, electronegative atoms within

the chromophores must be proximal in order to act as bridges

between the two chromophores.

The ΔEi,j feature in this experiment is unimportant for predicting

Ji,j. This unimportance is not surprising as the MD simulations repre-

sent the thiophene ring with a rigid-body, which means the relative

positions of all the atoms in the ring are fixed throughout the simula-

tion. With this model, differences in energies can only arise based on

conformational differences of the aliphatic tails. The effect of these

tails on energy is likely to be small, and many studies omit the tails as

a way to reduce computational burden and still obtain correct results.

Consequently, if ΔEi,j is small compared to the HOMO and HOMO-1

splitting in Equation 1, it becomes negligible for Ji,j. If flexible thio-

phene rings were used, the importance of the ΔEi,j feature would

increase (although thiophene ring perturbations are still likely to be

small because of the aromatic structure of the ring). Despite the insig-

nificance of ΔEi,j in predicting Ji,j, we do not argue that ΔEi,j will be

unimportant for predicting mobility values as Equation 3 explicitly

considers ΔEi,j within an exponential and it will likely still have non-

negligible effects on the hopping rate. Here, we show that omitting

the X–Y–Z displacements and ΔEi,j features entirely has a negligible

effect on the accuracy of only our Ji,j predictions (Figure 5f).

3.6 | Curating a training set

Here we consider the possibility of curating a “universal” training set of

chromophore pairs that inform an RF with predictive capabilities for

P3HT morphologies with disparate degrees of order. This experiment is

motivated by (a) the above observation that only 104–105 sufficient for

the present work, and (b) knowing that ML methods excel when there is

an abundance of training data. So, is it possible to curate a minimal set

of chromophore pairs that will work on the present morphologies, be

transferable to other morphologies with different distributions of chro-

mophore positions, and be straightforward to create? If it is possible,

then generating libraries of chromophore positions could be a general

strategy for speeding the calculation of mobilities in new materials:

Quantum chemical calculations on monomers can be performed once

and used in novel blends of materials, and transfer integrals usable for

many morphologies can be calculated before the first MD simulation is

performed, saving time. To curate the training data, we duplicate a chro-

mophore (parent) to create a child chromophore, resulting in all ΔE

values being 0. The child chromophore is then moved along each axis (≤

0.5 nm) and rotated around the x- and y-axes (≤ π) resulting in 1 × 104

training pairs. The child movement and rotation is done in two ways: At

distinct steps, for example, steps of 0, 0.1, 0.2 nm and uniformly distrib-

uted over the range (shown in Figure 6). For each offset, we apply the

constraint that the COM–COM distance must be greater than 0.3 nm,

as COM–COM distances shorter than this are unphysical. With this uni-

form sampling of positions and orientations, close packings and large

separations observed in simulations are underrepresented (Figure 6a),

as are aligned and anti-aligned orientations of thiophene rings

(Figure 6b). We expect that the undersampling of pi-stacked configura-

tions will most negatively impact accuracy, as Ji,j is negligible for large

separations. This data curation generates COM–COM and S–S distribu-

tions similar in shape around 0.5 nm, though missing pairs separated at

larger distances that are observed in simulations (Figure 6c and d).

F IGURE 5 (a) Removing the bonded feature results in a high number of outliers as both bonded and nonbonded Ji,j values are under and over
predicted. (b) Removing the COM–COM constraint results in a flattening and broadening of the “bonded” Ji,j distribution. (c) If both the COM–
COM and S–S distances are removed (and therefore only the displacements along the X, Y, and Z axes are considered) the distribution of Ji,j is
much more split between “bonded” and “nonbonded.” (d, e) Removing the rotation around Y and the S–S distance create more noise. (f) The X, Y,
and Z displacements and the ΔEi,j can all be omitted in training and result in high accuracies [Color figure can be viewed at wileyonlinelibrary.com]
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Though these larger spacings are prevalent in the simulated structures,

we find they contribute negligibly to charge transport.

We train the RF using this curated training set and validate it against

the simulation produced Ji,j. As is seen in Figure 6e, the RF trained on the

curated set does a poor job of predicting Ji,j. The largest error in the pre-

dictions arises from the over-prediction of the low (≤0.2 [× 1.6 × 10−19 J])

Ji,j in the system. This error can be reduced somewhat by considering

only chromophore pairs that lie within the range of the curated dataset

(within 0.5 nm along each axis). This restriction of the validation data

improves the R2 value (0.5 ! 0.7) while the MAE decreases slightly (both

�0.2 [× 1.6 × 10−19 J]), however, will come at the cost of missing long-

range pairs or inflating/diluting the training set with pairs that are likely

to be negligibly small. Despite the small improvement, these curated data

provide low predictive utility (Figure 6f). This failure of the curated set

serves as a reminder that equilibrium simulations efficiently perform

importance samplings of configurations, and that a uniform sampling of

configurations in a similar range is an insufficient proxy for those configu-

rations that matter most. Related, if training samples are selected from

only a single simulation snapshot, it is best here to select them from crys-

talline morphologies because the relative absence of high Ji,j in other

morphologies disproportionately lowers the RF prediction accuracy

(Supporting Information Section 4).

4 | CONCLUSION

The expensive quantum chemical calculation of electronic couplings (Ji,j)

between P3HT chromophores need not be repeated if a representative

training set of chromophores is used to train a machine to infer the

couplings from chromophore features. We have shown that artificial

neural networks and random forests are sufficiently predictive of Ji,j,

resulting in expected charge mobilities. Here, random forests are rec-

ommended over artificial neural networks because we begin with a

physical intuition for the features salient to Ji,j, so the RF ability to trans-

parently rank feature importances and the ease of implementing RFs in

Scikit-Learn give benefits at no added cost. We show that Ji,j is obtained

�390× faster when the RF is used to look up ZINDO/S calculations,

and we identify chromophore bonding, distance, “pitch,” and sulfur-

separation between chromophores to be the strongest predictors. Two

conclusions arose from our investigations into minimal training sets:

(a) The failure to accurately predict Ji,j from a training set curated on

chromophore separations and rotations informed by the ranked feature

importance highlights the importance of drawing training data from a

thermodynamic simulation method in which importance samplings of

configurations are performed, and (b) Training sets as small as 1 × 105

chromophore pairs are sufficient to generate Ji,j and resultant mobilities

in agreement with prior work.21 In sum, this work demonstrates one

example of where significant computational speedups can be gained in

exchange for a small amount of machine learning tuning. In future work,

we look toward identifying other bottlenecks where RFs and ANNs will

provide similar speedups, toward the automatic identification of molec-

ular descriptors that allow the prediction of ΔEi,j, and extending this

work to additional chemistries.
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