
Boise State University
ScholarWorks
Electrical and Computer Engineering Faculty
Publications and Presentations

Department of Electrical and Computer
Engineering

1-1-2019

Multi-Stream LDPC Decoder on GPU of Mobile
Devices
Roohollah Amiri
Boise State University

Hani Mehrpouyan
Boise State University

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. doi: 10.1109/CCWC.2019.8666615

https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical
https://scholarworks.boisestate.edu/electrical
http://dx.doi.org/10.1109/CCWC.2019.8666615

Multi-Stream LDPC Decoder on GPU of Mobile

Devices

Roohollah Amiri

Electrical and Computer Engineering

Boise State University, Idaho, USA

roohollahamiri@u.boisestate.edu

Hani Mehrpouyan

Electrical and Computer Engineering

Boise State University, Idaho, USA

hanimehrpouyan@boisestate.edu

Abstract—Low-density parity check (LDPC) codes have been
extensively applied in mobile communication systems due to
their excellent error correcting capabilities. However, their broad
adoption has been hindered by the high complexity of the LDPC
decoder. Although to date, dedicated hardware has been used
to implement low latency LDPC decoders, recent advancements
in the architecture of mobile processors have made it possible
to develop software solutions. In this paper, we propose a multi
stream LDPC decoder designed for a mobile device. The proposed
decoder uses graphics processing unit (GPU) of a mobile device
to achieve efficient real-time decoding. The proposed solution is
implemented on an NVIDIA Tegra board as a system on a chip
(SoC), where our results indicate that we can control the load on
the central processing units through the multi-stream structure.

Index Terms—Parallel and Distributed Algorithms, Multipro
cessor Architectures, LDPC Decoder, GPU Processing.

I. INTRODUCTION

Low-density parity check (LDPC) codes were originally

proposed by Robert Gallager in 1962 [1] and rediscovered

by MacKay and Neal in 1996 [2]. LDPC codes have been

adopted by a wide range of communication standards such

as IEEE 802.11n, 10 Gigabit Ethernet (IEEE 802.3an), Long

Term Evolution (LTE), and DVB-S2. Chung and Richard

son [3] showed that a class of LDPC codes could approach

the Shannon limit to within 0.0045 dB. However, the error

correcting strength of LDPC codes comes at the cost of very

high decoding complexity [4]. Moreover, to date, there are

no closed-form solutions to determine the performance of

LDPC codes in various wireless channels and systems. Thus,

performance evaluation is typically carried out via simulations

on computers or dedicated hardwares [5].

Since LDPC decoders are computationally-intensive and

need powerful computer architectures to result in low latency

and high throughput, to date, most LDPC decoders are imple

mented using application-specific integrated circuits (ASIC) or

field-programmable gate array (FPGA) circuits [6]. However,

their high speed often comes at a price of high development

cost and low programming flexibility [7]. Further, it is very

challenging to design decoder hardware that supports various

standards and multiple data rates [8]. Decoding of LDPC codes

is implemented via belief propagation also known as sum-

product algorithm (SPA). One advantage of iterative schemes

based on the SPA is that it could be parallelized based on

the architecture of the code graph [3]. In recent years, re

searchers have used multi-core architectures such as CPUs [9],

[10], graphics processing units (GPUs) [5], [11], [12], and

advanced RISC machines (ARMs) [10], [13] to develop high

throughput and low latency software-defined radio (SDR)

applications. Therefore, designers have recently focused on

software implementations of LDPC decoders on multi/many

core devices [11] to meet the performance requirements of

current communication systems.

In microarchitectures, increasing clock frequencies to obtain

faster processing performance has reached the limits of silicon

based architectures. Hence, to achieve gains in processing

performance, other techniques based on parallel processing

is being investigated [4]. Todays’ multi-core architectures

support single instruction multiple data (SIMD), single pro

gram multiple data (SPMD), and single instruction multiple

threads (SIMT). The general purpose multi-core processors

homogeneously replicate a single core, typically with an x86

instruction set, and provide shared memory hardware mecha

nisms [11]. Such multi-core structures can be programmed at a

high level by using different software technologies [14] such

as Open Multi-Processing (OpenMP) [15] which provides a

practical and relatively straightforward approach for general-

purpose programming. On the other hand, newer microarchi

tectures are trying to provide larger SIMD units for vector pro

cessing like streaming SIMD extensions (SSE), advanced vec

tor extensions (AVX), and AVX2 [16] on Intel Architectures.

In [4], the authors have used Intel SSE/AVX2 SIMD units

to implement a high throughput LDPC decoder efficiently.

Meanwhile, the power consumption of x86 implementations

is incompatible with most of the embedded mobile systems,

which makes them useful for simulation purposes only.

Over the last decade, the performance of GPUs has signifi

cantly improved mainly due to the demands for visualization

technology in the gaming industry. Recent GPUs are composed

of many cores which are driven by considerable memory

bandwidth. Therefore, they are also being targeted for solv

ing computationally intensive algorithms in a multithreaded

and highly parallel fashion. Hence, researchers in the high-

performance computing field are applying GPUs to general-

purpose applications (GPGPU). Pertaining to the field of com

munication, researchers have used Compute Unified Device

Architecture (CUDA) from NVIDIA [5], [8], [12], [17], [18]

978-1-7281-0554-3/19/$31.002019 IEEE and Open Computing Language (OpenCL) [19] platforms

kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 9th Annual Computing and Communication Workshop and Conference (CCWC), published by IEEE. Copyright restrictions may apply. doi: 10.1109/CCWC.2019.8666615

mailto:hanimehrpouyan@boisestate.edu
mailto:roohollahamiri@u.boisestate.edu

to develop LDPC decoders on GPUs. As an example, the

authors in [17] have achieved almost 1 Gbps of decoding

throughput for LDPC codes on GPU devices. Although these

works can achieve extremely high throughputs, their latency

beyond seconds, their high power consumption, and their cost

make them incompatible with embedded mobile devices. The

devices of the end users usually have limited access to a large

power source. As such, these devices must operate on limited

resources as small processors, tiny memory, and low power

budget. In other words, the limited available resources must

be used most effectively and efficiently.

ARM-based SDR systems have been proposed in recent

years [10], [13] with the goal of developing an SDR based

LDPC decoder that provides high throughput and low latency

on a low-power embedded system. The authors in [13] have

used the ARM processor’s SIMD and SIMT programming

models to implement an LDPC decoder. This approach al

lows reaching high throughput while maintaining low-latency.

However, the proposed ARM-based solution in [13] is based

on the assumption that the ARM processor is solely used for

LDPC decoding. However, mobile devices need to support

multiple applications simultaneously, and the processing re

sources cannot be extensively dedicated to the LDPC decoder.

Moreover, recent works in SDR LDPC embedded systems are

missing the fact that today’s mobile devices have powerful

CUDA enabled GPUs which can play a significant role as a

computing resource in an embedded system.

This paper proposes a GPU-based LDPC decoder for an

embedded device. The structure of the proposed decoder is

based on multiple data streams which first makes it scalable

to other architectures, and second, the process imposed by

the decoding can be controlled by choosing the appropriate

number of data streams that are sent to the GPU device.

Moreover, since the ARM and GPU of an embedded device

are collocated on the same die, the latency issues associated

with a GPU implementation is limited.

The remainder of the paper is structured as follows. Sec

tion II briefly introduces the LDPC error correcting codes

and their decoding algorithms. Then the proposed heteroge

neous algorithm on embedded mobile targets is described in

Section III. Section IV gives experimental results and finally,

Section V concludes the paper.

II. LDPC CODES AND THEIR DECODING PROCESSES

LDPC codes are a class of linear block codes with a sparse

parity check matrix called H-matrix. Their main advantage is

that they provide a performance which is close to that of the

channel capacity for various wireless channels. Furthermore,

the decoding process of LDPC codes is suited for implementa

tions that make heavy use of parallelism [20]. Here, we present

a brief background on LDPC codes1

1The reader is referred to [21] for more information.

. There are two ways

to represent LDPC codes. Like all linear block codes, they

can be described by their H-matrix, while they can also be

represented by a Tanner graph which is a bipartite graph. An

LDPC graph consists of a set of variable nodes, a set of check

nodes, and a set of edges E. Each edge connects a variable

node to a check node. For example, when the (i, j) element of

an H-matrix is ’1’, the ith check node is connected to the jth
variable node of the equivalent Tanner graph. Fig. 1 illustrates

the equivalent Tanner graph for a 10 variable nodes and 5

check nodes, (10, 5), LDPC code with H-matrix in (1) [20].

⎡

1 1 1 1 0 0 0 0 0 0
⎤

⎢1 0 0 0 1 1 1 0 0 0⎥

H =
⎢
⎢
⎢
⎣
0
0

1
0

0
1

0
0

1
0

0
1

0
0

1
1

1
0

0
1

⎥
⎥
⎥
⎦

0 0 0 1 0 0 1 0 1 1

(1)

V0

V1

V2

V3

V4

V5

V6

V7

V8

V9

C0

C1

C2

C3

C4

Variable Check

Nodes Nodes

Fig. 1: Tanner graph of the H-matrix in (1)

The general decoding algorithm of LDPC codes is based

on the standard two-phase message passing (TPMP) principle

described in [11]. This algorithm works in two phases. In

the first phase, all the variable nodes send messages to their

neighboring parity check nodes, and in the second phase, the

parity check nodes send messages to their neighboring variable

nodes. One practical variant of message passing algorithms is

Min-Sum algorithm which is preferred by designers [13]. The

general steps taken in the Min-Sum algorithm are provided in

Algorithm 1. In Algorithm 1, LLR stands for log-likelihood

ratio, CNm and VNn denote the mth check node and the nth

variable node, respectively.

kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 9th Annual Computing and Communication Workshop and Conference (CCWC), published by IEEE. Copyright restrictions may apply. doi: 10.1109/CCWC.2019.8666615

Algorithm 1 Min-Sum algorithm

1: Loop 1: Initialization

2: for all t = 1 → (Max Iterations) do

3: Loop 2: LLR of message CNm to VNn

4: Loop 3: LLR of message VNn to CNm

5: Loop 4: Hard decision from soft-values

6: end for

One major drawback of Algorithm 1 is that Loops 2 and

3 are updated by separate processing and passed to each

other iteratively. It means that the update loop of the variable

nodes does not start until all check nodes are updated. This

characteristic affects the efficiency of parallel implementation

of such an algorithm.
Due to the poor parallel mapping of the Min-Sum algo

rithm, more efficient schedules, such as horizontal layered-

based decoding algorithm, are proposed which allow updated

information to be utilized more quickly in the algorithm, thus,

speeding up decoding [18], [22]. In fact, the H-matrix can be

viewed as a layered graph that is decoded sequentially. The

work in [17] has applied a form of layered belief propagation

to irregular LDPC codes to reach 2 times faster convergence

for a given error rate. By using this method, the memory

bits usage is reduced by 45% to 50%. The layered decoding

algorithm is denoted as Algorithm 2 and can be summarized

as follows:

1) All values for the check node computations are com

puted using variable node messages linked to them.

2) Once, a check node is calculated, the corresponding

variable nodes are updated immediately after receiving

messages.

3) This process is repeated to the maximum number of

iterations.

In this paper, we propose a multi-stream structure for im

plementing the layered decoding of LDPC codes on the GPU

device of a mobile processor with high throughput and low

latency performance. By using GPU device as the processing

unit, significantly fewer resources of the ARM processor is

used for decoding compared to similar work in [13]. Thus,

the ARM processor gains more processing power for other

applications running on the device. On the other hand, since

the GPU and ARM of a mobile device are sitting on the same

die, the latency issues in [17] are improved.

III. ALGORITHM MAPPING

An efficient implementation of the layered decoding al

gorithm is a challenging task. The concerning programming

drawbacks of this algorithm are as follows:

1) The number of computations for the number of memory

access is low.

2) The data reuse between consecutive computations is low.

3) It requires a large set of random memory access due to

the sparse nature of the H-matrix [4].

Therefore, a software-based decoder should take advantage of

different parallelism levels offered by the target architecture to

achieve high throughput efficiency. In this section, we detail

the different parallelism levels, target architecture and the

structure of the proposed algorithm.

A. Parallelism Levels in the Proposed Algorithm

To achieve high throughput performance, a software-based

LDPC decoder has to exploit computational parallelism for

taking advantage of multi-core architectures. Different par

allelism levels are present in a layered decoding algorithm,

which include:

1) First parallelism level is located inside the check node

computations. Executing such computations in parallel is

possible. However, this atomic parallelism level is hard

to exploit due to the low complexity of computations.

On the other hand, two check node computations can be

done in parallel if there is no data dependency. Since this

is rarely true, this level is hard to exploit and inefficient.

2) Second parallelism level is located at the frame level

(complete execution of Algorithm 2). The same com

putation sequence is executed over consecutive frames.

This approach provides an efficient parallel processing

algorithm.

Hence, here, we use the SIMD programming model to decode

F frames in parallel. In subsection III-C the parallel decoding

of F frames is referred to as kernel 2 for the sake of simplicity.

B. Data Interleaving/Deinterleaving

Recall that the implementation of the parallel frame pro

cessing is subject to massive irregular memory access due to

the structure of H-matrix. To process the same VN
n element

of the F frames at the same time, non-contiguous memory

access would affect performance. To solve this issue, a data

interleaving process has to be performed before and after

the decoding stage to ensure that each set of F frames

are reordered to achieve an aligned memory data structure.

We use the same procedure as in [4] and the reordering is

shown in Fig. 2. In the proposed structure, interleaving and

deinterleaving of frames are called kernel 1 and kernel 3.

Fig. 2: Data interleaving/deinterleaving process [4]

C. Multi Stream Parallelism

The SIMT programming model is used to decode W sets

of F frames concurrently, with W denoting the number of

kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 9th Annual Computing and Communication Workshop and Conference (CCWC), published by IEEE. Copyright restrictions may apply. doi: 10.1109/CCWC.2019.8666615

http:framesinparallel.In

concurrent streams on the GPU device. This multi-core pro

gramming is specified by the CUDA API. Each GPU stream

is controlled by a pthread called worker on the host machine

(which is an ARM in this case). Each worker is responsible

for its own sets of frames. By using stream-based processing,

the system can decode W × F frames at the same time. The

whole LDPC decoder system model is shown in Fig. 3.

Fig. 3: LDCP decoder data flow

IV. EXPERIMENTAL RESULTS

The experiments were carried out by decoding LDPC codes

using NVIDIA Tegra K1 SoCs and various other structures to

show scalability. The programs were compiled via GCC-4.8

and CUDA 6.5. The TK1 is composed of 4 Cortex-A15 ARM

processors and one NVIDIA Kepler ”GK20a” GPU with 192

SM3.2 CUDA cores. The host platform uses a GNU/Linux

kernel 3.10.40.

A. Performance Evaluation of the Proposed Algorithm

The first set of experiments evaluates the decoding through

put of different LDPC codes. The codes have different frame

lengths: 576 to 9972. The results are provided in Fig. 5 when

one or three threads are used to handle one or three GPU

Fig. 4: Tegra-TK1 development board

streams. Measurements are performed for LDPC decoders that

execute 10 layered-base decoding iterations.

One stream decoding achieves 25 Mbps, while with three

streams it can be as high as 35 Mbps. For a (4000, 2000)
LDPC code and one thread, data transfer takes about 2 × 2.4
ms, interleaving steps need about 2 × 5 ms and decoding

takes about 150 ms. For the same code with 3 threads, data

transfer takes approximately 2×2.4 ms, interleaving steps need

about 2 × 5 ms and decoding takes about 150 ms. Therefore,

by introducing more streams to GPU device, its performance

does not degrade. In comparison, the latency, i.e., the time

for data transfer between the host and GPU device in [17] is

about 20 ms, is reduced to 4.8 ms because of the architecture

of the embedded mobile device. On the other hand, with

introducing three streams to GPU, its processing capacity is

used more effectively which results to about 30% throughput

improvement in most of our experiments.

1 2 3 4 5 6 7
10

15

20

25

30

35

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

1-Thread

3-Threads

LDPC codes

Fig. 5: Measured throughputs for 10 layered decoding iter

ations (1 − 7 LDPC codes: 576 × 288, 1024 × 512, 1200 ×

600, 1944 × 722, 4000 × 2000, 8000 × 4000, 9972 × 4086)

B. Performance Comparison with Related Works

To demonstrate the efficiency of the proposed ARM de

coder, its throughput was compared to the ARM related work

in [13]. In [13], ARM SIMD units are used to perform vector

kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 9th Annual Computing and Communication Workshop and Conference (CCWC), published by IEEE. Copyright restrictions may apply. doi: 10.1109/CCWC.2019.8666615

data processing in parallel frame decoding. In the experiment,

the throughput of the proposed decoder is compared to that

of [13] while using 1 thread for the work in [13] and 3 threads

in the proposed algorithm. This selection is motivated by the

fact that the 1 thread from [13] uses a 100% of a core while

the 3 threads for the proposed algorithm only uses 8% of each

core resulting in an overall utilization of 24%. 10-iteration

decoding performed on Tegra-K1 board gives us the results as

shown in Table I. The work in [13] can achieve much higher

throughputs by using more threads on the ARM processor, but

by introducing each thread, the whole capacity of one more

ARM core is used for decoding. In Table I, it is shown that

the proposed algorithm can achieve the similar throughput to

that of [13] when using 24% of ARM processing power and

using its GPU device. Although, by using more powerful GPU

device, the algorithm can achieve much higher throughputs

which has been shown in next subsection. This shows that the

proposed algorithm is scalable across platforms.

TABLE I: Throughput (Mbps) Comparison With Related Work

s

(4000,2000) 35 100% 34.5 24%

(8000,4000) 34 100% 33 24%

ARM decoder [13], 1 thread Proposed decoder, 3 thread

code (Mbps) Processes used (Mbps) Processes used

C. Performance Comparison on Different GPU Devices

GPU devices have different characteristics such as the

number of stream multiprocessors, CUDA cores, and working

frequencies. A GPU based algorithm should have the scala

bility to use all the processing capability of a GPU device.

The proposed algorithm has been executed on multiple GPU

devices. GT540M and K620 are considered as mid-range and

GTX680, and TeslaK20 are considered as high power GPU

devices. The algorithm is executed for three code lengths as

(576, 288), (2304, 1152) and (4000, 2000). The performance

is shown for 10 and 5 iterations in two sets of figures in Fig. 6

and Fig. 7. These figures show that the proposed algorithm can

achieve up to 230 Mbps performance across devices. In these

set of experiments, an x86 CPU processor is the host.

T
h
ro

u
g
h
p
u
t(

M
b
p
s
)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

100

140

120

100

80

60

40

20

0

140

120

80

60

40

20

0

140

120

100

80

60

40

20

0

1-Thread

3-Threads

K620 GT540M TeslaK20 GTX680

(a) code=(576,288)

1-Thread

3-Threads

K620 GT540M TeslaK20 GTX680

(b) code=(2304,1152)

1-Thread

3-Threads

K620 GT540M TeslaK20 GTX680

(c) code=(4000,2000)

Fig. 6: 10 iteration experiment

V. CONCLUSION

A stream-based approach for GPU-based LDPC decoding

on embedded devices was introduced in this paper. This

algorithm is based on running multiple concurrent kernels on

GPU devices to utilize their processing capacity and freeing up

resources on the ARM processor of mobile devices. Our results

show that this approach helps to achieve higher throughputs on

embedded mobile devices. Experimental results demonstrate

that the proposed algorithm is scalable and can achieve high

throughputs on multiple GPU devices. Moreover, the proposed

algorithm structure provides a trade-off for the operating sys

tem to choose between performance and resource management

by selecting various values for the number of streams that are

used for decoding.

kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 9th Annual Computing and Communication Workshop and Conference (CCWC), published by IEEE. Copyright restrictions may apply. doi: 10.1109/CCWC.2019.8666615

0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t(

M
b
p
s
)

1-Thread

3-Threads

K620 GT540M TeslaK20 GTX680

(a) code=(576,288)

0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t(

M
b
p
s
)

1-Thread

3-Threads

K620 GT540M TeslaK20 GTX680

(b) code=(2304,1152)

0

50

100

150

200

250

T
h
ro

u
g
h
p
u
t(

M
b
p
s
)

1-Thread

3-Threads

K620 GT540M TeslaK20 GTX680

(c) code=(4000,2000)

Fig. 7: 5 iteration experiment

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inform.
Theory, vol. 8, no. 1, pp. 21–28, Jan 1962.

[2] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of
low density parity check codes,” Electronics Letters, vol. 33, no. 6, pp.
457–458, Mar 1997.

[3] S.-Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045 db of the
Shannon limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb 2001.

[4] B. L. Gal and C. Jego, “High-throughput multi-core LDPC decoders
based on x86 processor,” IEEE Trans. Parallel Distrib. Syst., vol. PP,
no. 99, pp. 1–1, May 2015.

[5] S. Kang and J. Moon, “Parallel LDPC decoder implementation on GPU
based on unbalanced memory coalescing,” in Communications (ICC),
2012 IEEE International Conference on Proc, June 2012, pp. 3692–
3697.

[6] J. Andrade, G. Falcao, and V. Silva, “Flexible design of wide-pipeline
based WiMAX QC-LDPC decoder architectures on FPGAs using high
level synthesis,” Electronics Letters, vol. 50, no. 11, pp. 839–840, May
2014.

[7] Y. Hou, R. Liu, H. Peng, and L. Zhao, “High throughput pipeline decoder
for LDPC convolutional codes on GPU,” IEEE Commun. Lett., vol. 19,
no. 12, pp. 2066–2069, Dec 2015.

[8] J.-Y. Park and K.-S. Chung, “Parallel LDPC decoding using CUDA and
OpenMP,” EURASIP JWCN, vol. 2011, no. 1, pp. 1–8, Nov. 2011.

[9] S. Grönroos, K. Nybom, and J. Björkqvist, “Efficient GPU and
cpu-based LDPC decoders for long codewords,” Analog Integrated
Circuits and Signal Processing, vol. 73, no. 2, pp. 583–595, 2012.
[Online]. Available: http://dx.doi.org/10.1007/s10470-012-9895-7

[10] S. Grnroos and J. Bjrkqvist, “Performance evaluation of LDPC decoding
on a general purpose mobile cpu,” in Proc. IEEE GlobalSIP, pp. 1278–
1281, Dec 2013.

[11] G. Falcao, L. Sousa, and V. Silva, “Massively LDPC decoding on
multicore architectures,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 2, pp. 309–322, Feb 2011.

[12] G. Wang, M. Wu, B. Yin, and J. R. Cavallaro, “High throughput
low latency LDPC decoding on GPU for SDR systems,” in Global
Conference on Signal and Information Processing (GlobalSIP), 2013
IEEE, Dec 2013, pp. 1258–1261.

[13] B. L. Gal and C. Jego, “High-throughput LDPC decoder on low-power
embedded processors,” IEEE Commun. Lett., vol. 19, no. 11, pp. 1861–
1864, Nov 2015.

[14] H. Kim and R. Bond, “Multicore software technologies,” IEEE Signal
Processing Mag., vol. 26, no. 6, pp. 80–89, November 2009.

[15] B. Chapman, G. Jost, and R. v. d. Pas, Using OpenMP: Portable Shared
Memory Parallel Programming. The MIT Press, 2007.

[16] M. Deilmann, “A guide to auto-vectorization with intel c++ compilers,”
Intel Corporation, April 2012.

[17] B. L. Gal, C. Jego, and J. Crenne, “A high throughput efficient approach
for decoding LDPC codes onto GPU devices,” IEEE Embedded Systems
Letters, vol. 6, no. 2, pp. 29–32, June 2014.

[18] B. L. Gal and C. Jego, “Gpu-like on-chip system for decoding LDPC
codes,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 4, pp. 95:1–
95:19, Mar. 2014.

[19] G. Falcao, V. Silva, L. Sousa, and J. Andrade, “Portable LDPC de
coding on multicores using opencl [applications corner],” IEEE Signal
Processing Magazine, vol. 29, no. 4, pp. 81–109, July 2012.

[20] D. J. Costello Jr, “An introduction to low-density parity check codes,”
2009.

[21] W. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge
University Press, 2009.

[22] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in Proc. IEEE SiPS, pp. 107–112, Oct 2004.

http://dx.doi.org/10.1007/s10470-012-9895-7
kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 9th Annual Computing and Communication Workshop and Conference (CCWC), published by IEEE. Copyright restrictions may apply. doi: 10.1109/CCWC.2019.8666615

	Boise State University
	ScholarWorks
	1-1-2019

	Multi-Stream LDPC Decoder on GPU of Mobile Devices
	Roohollah Amiri
	Hani Mehrpouyan

	I Introduction
	II LDPC codes and their Decoding Processes
	III Algorithm Mapping
	III-A Parallelism Levels in the Proposed Algorithm
	III-B Data Interleaving/Deinterleaving
	III-C Multi Stream Parallelism

	IV Experimental Results
	IV-A Performance Evaluation of the Proposed Algorithm
	IV-B Performance Comparison with Related Works
	IV-C Performance Comparison on Different GPU Devices

	V Conclusion
	References

