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Abstract—Low-density parity check (LDPC) codes have been 
extensively applied in mobile communication systems due to 
their excellent error correcting capabilities. However, their broad 
adoption has been hindered by the high complexity of the LDPC 
decoder. Although to date, dedicated hardware has been used 
to implement low latency LDPC decoders, recent advancements 
in the architecture of mobile processors have made it possible 
to develop software solutions. In this paper, we propose a multi
stream LDPC decoder designed for a mobile device. The proposed 
decoder uses graphics processing unit (GPU) of a mobile device 
to achieve efficient real-time decoding. The proposed solution is 
implemented on an NVIDIA Tegra board as a system on a chip 
(SoC), where our results indicate that we can control the load on 
the central processing units through the multi-stream structure. 

Index Terms—Parallel and Distributed Algorithms, Multipro
cessor Architectures, LDPC Decoder, GPU Processing. 

I. INTRODUCTION 

Low-density parity check (LDPC) codes were originally 

proposed by Robert Gallager in 1962 [1] and rediscovered 

by MacKay and Neal in 1996 [2]. LDPC codes have been 

adopted by a wide range of communication standards such 

as IEEE 802.11n, 10 Gigabit Ethernet (IEEE 802.3an), Long 

Term Evolution (LTE), and DVB-S2. Chung and Richard

son [3] showed that a class of LDPC codes could approach 

the Shannon limit to within 0.0045 dB. However, the error 

correcting strength of LDPC codes comes at the cost of very 

high decoding complexity [4]. Moreover, to date, there are 

no closed-form solutions to determine the performance of 

LDPC codes in various wireless channels and systems. Thus, 

performance evaluation is typically carried out via simulations 

on computers or dedicated hardwares [5]. 

Since LDPC decoders are computationally-intensive and 

need powerful computer architectures to result in low latency 

and high throughput, to date, most LDPC decoders are imple

mented using application-specific integrated circuits (ASIC) or 

field-programmable gate array (FPGA) circuits [6]. However, 

their high speed often comes at a price of high development 

cost and low programming flexibility [7]. Further, it is very 

challenging to design decoder hardware that supports various 

standards and multiple data rates [8]. Decoding of LDPC codes 

is implemented via belief propagation also known as sum-

product algorithm (SPA). One advantage of iterative schemes 

based on the SPA is that it could be parallelized based on 

the architecture of the code graph [3]. In recent years, re

searchers have used multi-core architectures such as CPUs [9], 

[10], graphics processing units (GPUs) [5], [11], [12], and 

advanced RISC machines (ARMs) [10], [13] to develop high 

throughput and low latency software-defined radio (SDR) 

applications. Therefore, designers have recently focused on 

software implementations of LDPC decoders on multi/many

core devices [11] to meet the performance requirements of 

current communication systems. 

In microarchitectures, increasing clock frequencies to obtain 

faster processing performance has reached the limits of silicon

based architectures. Hence, to achieve gains in processing 

performance, other techniques based on parallel processing 

is being investigated [4]. Todays’ multi-core architectures 

support single instruction multiple data (SIMD), single pro

gram multiple data (SPMD), and single instruction multiple 

threads (SIMT). The general purpose multi-core processors 

homogeneously replicate a single core, typically with an x86 

instruction set, and provide shared memory hardware mecha

nisms [11]. Such multi-core structures can be programmed at a 

high level by using different software technologies [14] such 

as Open Multi-Processing (OpenMP) [15] which provides a 

practical and relatively straightforward approach for general-

purpose programming. On the other hand, newer microarchi

tectures are trying to provide larger SIMD units for vector pro

cessing like streaming SIMD extensions (SSE), advanced vec

tor extensions (AVX), and AVX2 [16] on Intel Architectures. 

In [4], the authors have used Intel SSE/AVX2 SIMD units 

to implement a high throughput LDPC decoder efficiently. 

Meanwhile, the power consumption of x86 implementations 

is incompatible with most of the embedded mobile systems, 

which makes them useful for simulation purposes only. 

Over the last decade, the performance of GPUs has signifi

cantly improved mainly due to the demands for visualization 

technology in the gaming industry. Recent GPUs are composed 

of many cores which are driven by considerable memory 

bandwidth. Therefore, they are also being targeted for solv

ing computationally intensive algorithms in a multithreaded 

and highly parallel fashion. Hence, researchers in the high-

performance computing field are applying GPUs to general-

purpose applications (GPGPU). Pertaining to the field of com

munication, researchers have used Compute Unified Device 

Architecture (CUDA) from NVIDIA [5], [8], [12], [17], [18] 

978-1-7281-0554-3/19/$31.002019 IEEE and Open Computing Language (OpenCL) [19] platforms 
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to develop LDPC decoders on GPUs. As an example, the 

authors in [17] have achieved almost 1 Gbps of decoding 

throughput for LDPC codes on GPU devices. Although these 

works can achieve extremely high throughputs, their latency 

beyond seconds, their high power consumption, and their cost 

make them incompatible with embedded mobile devices. The 

devices of the end users usually have limited access to a large 

power source. As such, these devices must operate on limited 

resources as small processors, tiny memory, and low power 

budget. In other words, the limited available resources must 

be used most effectively and efficiently. 

ARM-based SDR systems have been proposed in recent 

years [10], [13] with the goal of developing an SDR based 

LDPC decoder that provides high throughput and low latency 

on a low-power embedded system. The authors in [13] have 

used the ARM processor’s SIMD and SIMT programming 

models to implement an LDPC decoder. This approach al

lows reaching high throughput while maintaining low-latency. 

However, the proposed ARM-based solution in [13] is based 

on the assumption that the ARM processor is solely used for 

LDPC decoding. However, mobile devices need to support 

multiple applications simultaneously, and the processing re

sources cannot be extensively dedicated to the LDPC decoder. 

Moreover, recent works in SDR LDPC embedded systems are 

missing the fact that today’s mobile devices have powerful 

CUDA enabled GPUs which can play a significant role as a 

computing resource in an embedded system. 

This paper proposes a GPU-based LDPC decoder for an 

embedded device. The structure of the proposed decoder is 

based on multiple data streams which first makes it scalable 

to other architectures, and second, the process imposed by 

the decoding can be controlled by choosing the appropriate 

number of data streams that are sent to the GPU device. 

Moreover, since the ARM and GPU of an embedded device 

are collocated on the same die, the latency issues associated 

with a GPU implementation is limited. 

The remainder of the paper is structured as follows. Sec

tion II briefly introduces the LDPC error correcting codes 

and their decoding algorithms. Then the proposed heteroge

neous algorithm on embedded mobile targets is described in 

Section III. Section IV gives experimental results and finally, 

Section V concludes the paper. 

II. LDPC CODES AND THEIR DECODING PROCESSES 

LDPC codes are a class of linear block codes with a sparse 

parity check matrix called H-matrix. Their main advantage is 

that they provide a performance which is close to that of the 

channel capacity for various wireless channels. Furthermore, 

the decoding process of LDPC codes is suited for implementa

tions that make heavy use of parallelism [20]. Here, we present 

a brief background on LDPC codes1

1The reader is referred to [21] for more information. 

. There are two ways 

to represent LDPC codes. Like all linear block codes, they 

can be described by their H-matrix, while they can also be 

represented by a Tanner graph which is a bipartite graph. An 

LDPC graph consists of a set of variable nodes, a set of check 

nodes, and a set of edges E. Each edge connects a variable 

node to a check node. For example, when the (i, j) element of 

an H-matrix is ’1’, the ith check node is connected to the jth 
variable node of the equivalent Tanner graph. Fig. 1 illustrates 

the equivalent Tanner graph for a 10 variable nodes and 5 

check nodes, (10, 5), LDPC code with H-matrix in (1) [20]. 
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Fig. 1: Tanner graph of the H-matrix in (1) 

The general decoding algorithm of LDPC codes is based 

on the standard two-phase message passing (TPMP) principle 

described in [11]. This algorithm works in two phases. In 

the first phase, all the variable nodes send messages to their 

neighboring parity check nodes, and in the second phase, the 

parity check nodes send messages to their neighboring variable 

nodes. One practical variant of message passing algorithms is 

Min-Sum algorithm which is preferred by designers [13]. The 

general steps taken in the Min-Sum algorithm are provided in 

Algorithm 1. In Algorithm 1, LLR stands for log-likelihood 

ratio, CNm and VNn denote the mth check node and the nth 

variable node, respectively. 
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Algorithm 1 Min-Sum algorithm 

1: Loop 1: Initialization 

2: for all t = 1 → (Max Iterations) do 

3: Loop 2: LLR of message CNm to VNn 

4: Loop 3: LLR of message VNn to CNm 

5: Loop 4: Hard decision from soft-values 

6: end for 

One major drawback of Algorithm 1 is that Loops 2 and 

3 are updated by separate processing and passed to each 

other iteratively. It means that the update loop of the variable 

nodes does not start until all check nodes are updated. This 

characteristic affects the efficiency of parallel implementation 

of such an algorithm. 
Due to the poor parallel mapping of the Min-Sum algo

rithm, more efficient schedules, such as horizontal layered-

based decoding algorithm, are proposed which allow updated 

information to be utilized more quickly in the algorithm, thus, 

speeding up decoding [18], [22]. In fact, the H-matrix can be 

viewed as a layered graph that is decoded sequentially. The 

work in [17] has applied a form of layered belief propagation 

to irregular LDPC codes to reach 2 times faster convergence 

for a given error rate. By using this method, the memory 

bits usage is reduced by 45% to 50%. The layered decoding 

algorithm is denoted as Algorithm 2 and can be summarized 

as follows: 

1) All values for the check node computations are com

puted using variable node messages linked to them. 

2) Once, a check node is calculated, the corresponding 

variable nodes are updated immediately after receiving 

messages. 

3) This process is repeated to the maximum number of 

iterations. 

In this paper, we propose a multi-stream structure for im

plementing the layered decoding of LDPC codes on the GPU 

device of a mobile processor with high throughput and low 

latency performance. By using GPU device as the processing 

unit, significantly fewer resources of the ARM processor is 

used for decoding compared to similar work in [13]. Thus, 

the ARM processor gains more processing power for other 

applications running on the device. On the other hand, since 

the GPU and ARM of a mobile device are sitting on the same 

die, the latency issues in [17] are improved. 

III. ALGORITHM MAPPING 

An efficient implementation of the layered decoding al

gorithm is a challenging task. The concerning programming 

drawbacks of this algorithm are as follows: 

1) The number of computations for the number of memory 

access is low. 

2) The data reuse between consecutive computations is low. 

3) It requires a large set of random memory access due to 

the sparse nature of the H-matrix [4]. 

Therefore, a software-based decoder should take advantage of 

different parallelism levels offered by the target architecture to 

achieve high throughput efficiency. In this section, we detail 

the different parallelism levels, target architecture and the 

structure of the proposed algorithm. 

A. Parallelism Levels in the Proposed Algorithm 

To achieve high throughput performance, a software-based 

LDPC decoder has to exploit computational parallelism for 

taking advantage of multi-core architectures. Different par

allelism levels are present in a layered decoding algorithm, 

which include: 

1) First parallelism level is located inside the check node 

computations. Executing such computations in parallel is 

possible. However, this atomic parallelism level is hard 

to exploit due to the low complexity of computations. 

On the other hand, two check node computations can be 

done in parallel if there is no data dependency. Since this 

is rarely true, this level is hard to exploit and inefficient. 

2) Second parallelism level is located at the frame level 

(complete execution of Algorithm 2). The same com

putation sequence is executed over consecutive frames. 

This approach provides an efficient parallel processing 

algorithm. 

Hence, here, we use the SIMD programming model to decode 

F frames in parallel. In subsection III-C the parallel decoding 

of F frames is referred to as kernel 2 for the sake of simplicity. 

B. Data Interleaving/Deinterleaving 

Recall that the implementation of the parallel frame pro

cessing is subject to massive irregular memory access due to 

the structure of H-matrix. To process the same VN
n element 

of the F frames at the same time, non-contiguous memory 

access would affect performance. To solve this issue, a data 

interleaving process has to be performed before and after 

the decoding stage to ensure that each set of F frames 

are reordered to achieve an aligned memory data structure. 

We use the same procedure as in [4] and the reordering is 

shown in Fig. 2. In the proposed structure, interleaving and 

deinterleaving of frames are called kernel 1 and kernel 3. 

Fig. 2: Data interleaving/deinterleaving process [4] 

C. Multi Stream Parallelism 

The SIMT programming model is used to decode W sets 

of F frames concurrently, with W denoting the number of 
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concurrent streams on the GPU device. This multi-core pro

gramming is specified by the CUDA API. Each GPU stream 

is controlled by a pthread called worker on the host machine 

(which is an ARM in this case). Each worker is responsible 

for its own sets of frames. By using stream-based processing, 

the system can decode W × F frames at the same time. The 

whole LDPC decoder system model is shown in Fig. 3. 

Fig. 3: LDCP decoder data flow 

IV. EXPERIMENTAL RESULTS 

The experiments were carried out by decoding LDPC codes 

using NVIDIA Tegra K1 SoCs and various other structures to 

show scalability. The programs were compiled via GCC-4.8 

and CUDA 6.5. The TK1 is composed of 4 Cortex-A15 ARM 

processors and one NVIDIA Kepler ”GK20a” GPU with 192 

SM3.2 CUDA cores. The host platform uses a GNU/Linux 

kernel 3.10.40. 

A. Performance Evaluation of the Proposed Algorithm 

The first set of experiments evaluates the decoding through

put of different LDPC codes. The codes have different frame 

lengths: 576 to 9972. The results are provided in Fig. 5 when 

one or three threads are used to handle one or three GPU 

Fig. 4: Tegra-TK1 development board 

streams. Measurements are performed for LDPC decoders that 

execute 10 layered-base decoding iterations. 

One stream decoding achieves 25 Mbps, while with three 

streams it can be as high as 35 Mbps. For a (4000, 2000) 
LDPC code and one thread, data transfer takes about 2 × 2.4 
ms, interleaving steps need about 2 × 5 ms and decoding 

takes about 150 ms. For the same code with 3 threads, data 

transfer takes approximately 2×2.4 ms, interleaving steps need 

about 2 × 5 ms and decoding takes about 150 ms. Therefore, 

by introducing more streams to GPU device, its performance 

does not degrade. In comparison, the latency, i.e., the time 

for data transfer between the host and GPU device in [17] is 

about 20 ms, is reduced to 4.8 ms because of the architecture 

of the embedded mobile device. On the other hand, with 

introducing three streams to GPU, its processing capacity is 

used more effectively which results to about 30% throughput 

improvement in most of our experiments. 
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Fig. 5: Measured throughputs for 10 layered decoding iter

ations (1 − 7 LDPC codes: 576 × 288, 1024 × 512, 1200 × 

600, 1944 × 722, 4000 × 2000, 8000 × 4000, 9972 × 4086) 

B. Performance Comparison with Related Works 

To demonstrate the efficiency of the proposed ARM de

coder, its throughput was compared to the ARM related work 

in [13]. In [13], ARM SIMD units are used to perform vector 
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data processing in parallel frame decoding. In the experiment, 

the throughput of the proposed decoder is compared to that 

of [13] while using 1 thread for the work in [13] and 3 threads 

in the proposed algorithm. This selection is motivated by the 

fact that the 1 thread from [13] uses a 100% of a core while 

the 3 threads for the proposed algorithm only uses 8% of each 

core resulting in an overall utilization of 24%. 10-iteration 

decoding performed on Tegra-K1 board gives us the results as 

shown in Table I. The work in [13] can achieve much higher 

throughputs by using more threads on the ARM processor, but 

by introducing each thread, the whole capacity of one more 

ARM core is used for decoding. In Table I, it is shown that 

the proposed algorithm can achieve the similar throughput to 

that of [13] when using 24% of ARM processing power and 

using its GPU device. Although, by using more powerful GPU 

device, the algorithm can achieve much higher throughputs 

which has been shown in next subsection. This shows that the 

proposed algorithm is scalable across platforms. 

TABLE I: Throughput (Mbps) Comparison With Related Work 

s

(4000,2000) 35 100% 34.5 24% 

(8000,4000) 34 100% 33 24% 

ARM decoder [13], 1 thread Proposed decoder, 3 thread

code (Mbps) Processes used (Mbps) Processes used

C. Performance Comparison on Different GPU Devices 

GPU devices have different characteristics such as the 

number of stream multiprocessors, CUDA cores, and working 

frequencies. A GPU based algorithm should have the scala

bility to use all the processing capability of a GPU device. 

The proposed algorithm has been executed on multiple GPU 

devices. GT540M and K620 are considered as mid-range and 

GTX680, and TeslaK20 are considered as high power GPU 

devices. The algorithm is executed for three code lengths as 

(576, 288), (2304, 1152) and (4000, 2000). The performance 

is shown for 10 and 5 iterations in two sets of figures in Fig. 6 

and Fig. 7. These figures show that the proposed algorithm can 

achieve up to 230 Mbps performance across devices. In these 

set of experiments, an x86 CPU processor is the host. 
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Fig. 6: 10 iteration experiment
 

V. CONCLUSION 

A stream-based approach for GPU-based LDPC decoding 

on embedded devices was introduced in this paper. This 

algorithm is based on running multiple concurrent kernels on 

GPU devices to utilize their processing capacity and freeing up 

resources on the ARM processor of mobile devices. Our results 

show that this approach helps to achieve higher throughputs on 

embedded mobile devices. Experimental results demonstrate 

that the proposed algorithm is scalable and can achieve high 

throughputs on multiple GPU devices. Moreover, the proposed 

algorithm structure provides a trade-off for the operating sys

tem to choose between performance and resource management 

by selecting various values for the number of streams that are 

used for decoding. 
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Fig. 7: 5 iteration experiment 
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