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Social networks are a platform for individuals and organizations to connect with each other and inform,
advertise, spread ideas, and ultimately influence opinions. These platforms have been known to propel misin-
formation. We argue that this could be compounded by the recommender algorithms that these platforms use
to suggest items potentially of interest to their users, given the known biases and filter bubbles issues affecting
recommender systems. While much has been studied about misinformation on social networks, the potential
exacerbation that could result from recommender algorithms in this environment is in its infancy. In this man-
uscript, we present the result of an in-depth analysis conducted on two datasets (Politifact FakeNewsNet
dataset and HealthStory FakeHealth dataset) in order to deepen our understanding of the intercon-
nection between recommender algorithms and misinformation spread on Twitter. In particular, we explore
the degree to which well-known recommendation algorithms are prone to be impacted by misinformation.
Via simulation, we also study misinformation diffusion on social networks, as triggered by suggestions pro-
duced by these recommendation algorithms. Outcomes from this work evidence that misinformation does not
equally affect all recommendation algorithms. Popularity-based and network-based recommender algorithms
contribute the most to misinformation diffusion. Users who are known to be superspreaders are known to
directly impact algorithmic performance and misinformation spread in specific scenarios. Findings emerging
from our exploration result in a number of implications for researchers and practitioners to consider when
designing and deploying recommender algorithms in social networks.
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1 INTRODUCTION

Misinformation1 spread in social networks has drastically increased, from the 2016 U.S. Presiden-
tial Election to the current Covid-19 pandemic [4, 9], with consequences that have impacted health,
politics, economy, and response to natural disasters [22, 35, 52, 96]. Misinformation spread has
compromised people’s ability to access correct information and have informed opinions. It has
also led to people reprimanding individuals and corporations for broadcasting, amplifying, and
disseminating untrustworthy, inaccurate, and misleading information. Nevertheless, the reach of
misinformation remains prevalent, and the impact of misinformation spread, particularly on social
networks, is non-trivial.

Misinformation spread in social networks is influenced by various factors: (i) content consumers
(or users) and their behaviors (e.g., engagement with misinformation through tweets and retweets),
(ii) content creators who present and construct the information, (iii) the users’ adaptive behavior,
personality, values, emotions, and susceptibility, (iv) bots and malicious accounts, and (v) recom-
mendation algorithms that the social networks use to present information to their users [21, 76].
Recent research endeavors have addressed bot detection and features that characterize users, con-
tent, and context as means to identify misinformation in social networks and countermeasure the
first four factors that cause the misinformation to spread in social networks [10, 97]. However,
there is a lack of work centered on investigating and understanding the impact that recommen-

dation algorithms (RAs) can have on misinformation spread in social networks. With social
networking sites being prone to influence users’ perspectives as a consequence of echo chambers
and filter bubbles2 [27, 86], exacerbated by RAs being “powerful tools that are inserted in most
social platforms, they could also involuntarily spread unwanted content and other types of online
harm” [84], deepening research in this area becomes a must.

In their vast majority, RAs leverage users’ historical data–from the content and topics of the
stories they have read to other factors related to engagement like clicking on an item or sharing
stories [67, 94]. In their quest for personalization, and given the dynamic nature of user modeling
(as users can alter their preferences over time), RAs must maintain up-to-date recommendation
models that cater to users’ latest interests [89]. Excessive personalization, however, can lead
to filter bubbles with an exaggeration of misinformation diffusion as one of the unintended
consequences [6, 13, 15, 19, 81]. This outcome can be difficult to correct as RAs are not designed
to keep users informed; rather, their primary intent is to keep users engaged and satisfied [98].
Such selective exposure could foster cognitive bias [61], popularity and demographic biases [18],
confirmation bias [59] and possibly create a fertile ground for misinformation recommendation
and propagation [21, 78]. Despite researchers recognizing that RAs can have some responsibilities
for misinformation diffusion in social networks [84], there is not any available framework–
considering both user and RA behavior–to study and quantify the impact of RAs in spreading
misinformation.

In this manuscript, we investigate how RAs could contribute to misinformation recommenda-
tion and propagation in social networks and propose a new framework to measure the impacts
of RAs on misinformation diffusion. To control scope, we focus on Twitter, fake news, and

1Misinformation is incorrect or misleading information that can be shared accidentally, causing different levels of harm.
Misinformation comes in many forms, such as satire, propaganda, hoax, rumor, conspiracy, and fake news. This latter in
particular, explicitly implies false or misleading information spread deliberately to deceive and is one form of misinfor-
mation [55]. Although they can have slightly different connotations in specific contexts, misinformation and fake news
are often used interchangeably in popular discourse. In this manuscript, we use the terms synonymously to refer to the
dissemination of false or misleading news.
2As discussed in [24, 86], echo chambers refer to users’ consumption of resources aligned with their views, whereas filter
bubbles are deemed “personalization traps” as users are presented only with similar content.
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commonly-used RAs and information diffusion models. With our work, we address the following
research questions:

RQ1: How do different types of RAs contribute towards misinformation recommendation? Is this
influenced by how users engage with misinformation?

RQ2: Which RAs contribute the most to misinformation propagation in social networks? Does
user behavior pertaining to engagement with misinformation impact the propagation of
misinformation?

We build upon the seminal work of Fernández et al. [21] and expand their analysis of collaborative-
based RAs to also consider additional RAs, content- and social network-based, and analyze trade-
offs between RAs’ performance and misinformation recommendations. We use two datasets, which
differ from the one considered in [21]: the Politifact FakeNewsNet dataset [74] and Health-
Story FakeHealth dataset [11]. Both datasets contain explicit information on user-news item
shares (for both real and fake news) and user follower-following relationships. More importantly,
we study what happens after recommendations are sent out to the platform users and simulate

how misinformation diffuses, i.e., how people that are recommended some fake news items are
able to propagate it to their friends, friends of friends, and so on. This is the novelty of our work.

To the best of our knowledge, we present the first work examining the role of RAs in the mis-
information recommendation and propagation process by also coupling it with users’ behavior in
the presence of misinformation. Our research bridges social network analysis and recommender
systems communities, whereas the findings derived from our study contribute to the definition of
guidelines for researchers and practitioners to consider when designing RAs that need to work in
the presence of misinformation and users who spread a huge amount of misinformation.

In the rest of this manuscript, we first discuss related literature informing our work (Section 2).
We then describe the experimental setup, including datasets, metrics, and RAs, which we use in
the empirical explorations conducted to answer our two RQs (Section 3). This is followed by an
in-depth analysis of produced results (Section 4). Lastly, we offer concluding remarks, limitations,
and open directions for future work (Section 5).

2 BACKGROUND AND RELATED WORK

This section presents the background and related literature that informs our work. We first dis-
cuss the connection between recommender systems and misinformation (Section 2.1). After that,
we bring attention to fundamental work in the context of social networks pertaining to misinfor-
mation diffusion (Section 2.2).

2.1 Recommender Algorithms and Misinformation

Literature about recommender systems is prolific [66]. It addresses not only novel algorithms that
enable the recommendation of products and services to a broad range of users in various domains
but also considers the consequences of interactions between the users and the recommender sys-
tems themselves. In the case of the latter, salient discussions revolve around topics like shilling
attacks, filter bubbles, and biases (e.g., popularity bias amplification) [16, 23, 42, 49, 50, 56, 72, 80].
Shrestha et al. [72] examine the robustness of RAs to shilling attacks; that is the impact of mali-
cious users who insert fake reviews or ratings to manipulate the recommendations process. Edizel
et al. [16] bring attention to the fact that data used for training RAs can be biased and, in turn,
it is likely that the RA will be presented with biased suggestions, creating a “self-perpetuating
loop which progressively strengthens the filter bubbles we live in”. In the context of recommender
and filtering algorithms, filter bubbles are known to lead users to be “over-exposed to ideas that
conform with their preexisting perceptions and beliefs, prompting intellectual isolation” [42, 61].
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At the same time, filter bubbles are not always caused by RAs. As reported by Möller et al. [56],
user interactions with recommender items can, in turn, cause RAs to narrow down the item set
considered for recommendation purposes. These are just some examples that spotlight the power
of and influence of RAs in a real-world scenario.

RAs do not exist in isolation; instead, they are trained or model data that might be non-
representative or already model biases existing “in the wild.” External factors undoubtedly impact
the performance of RAs (malicious users, but also conflicting requirements/goals for the recom-
mendations [3, 28, 41, 72]). Moreover, with RAs relying on ongoing user-system interactions (likes,
shares, follows) to modify presented suggestions, their reach is far beyond individual users (i.e.,
they have a “transformative impact on society” [53]). Researchers and industry practitioners have
increasingly allocated efforts to study the impact of the issues mentioned above on the RAs them-
selves and their user bases as well as mitigate these issues. Nevertheless, the study of a particular
topic remains in its infancy: misinformation. Specifically, there is a gap in the literature regarding
understanding the implications of misinformation–amplification of the spread of false and mis-
leading information–inherent to RAs, which is the focus of this work.

Given that recommender systems’ users are exposed to resources selected by RAs [61], their con-
sumption of items deemed to be misinformation could “strengthen the further presence of such
content in recommendations” [82]. Furthermore, as previously stated, the performance of RAs is
often impacted by popularity biases and filter bubbles, which can make “users more vulnerable
to misinformation” [21]. For these reasons, it becomes imperative to deepen our understanding of
the impact RAs have on propagating misinformation. Elahi et al. [19] emphasize that, while unin-
tentionally, RAs can contribute to both misinformation and disinformation; in turn, this menaces
the communities that each RA serves. To date, misinformation has attracted the attention of the
recommender system community. This is evidenced by the emergence of workshops like Online

Misinformation-and Harm-Aware Recommender Systems (OHARS) [83, 84], which shine a
light and build a community around this important topic; along with the availability of datasets [51,
60, 74] that enable further studying the impact that misinformation has on recommender systems.

Among research specifically focused on misinformation and recommender systems, we find, for
instance, the works by Lo et al. [43, 44], which describe intervention models meant to augment
recommender system functionality to mitigate the impact of misinformation. Hussein et al. [31]
introduce audit experiments that can be conducted to investigate different dimensions (e.g., age,
gender) that can contribute towards amplifying misinformation on YouTube. Other authors instead
propose tackling misinformation in social media platforms by directly focusing on the culprits:
misinformation spreaders [87], or misinformation items themselves [34, 90].

Bellogín and Deldjoo [5] bring to the attention of researchers and industry practitioners the
fact that simulation enables explorations of diverse conditions (e.g., profile size, misinformation
seeds)–beyond those captured at data collection time–to advance understanding of the influence
of misinformation propagation have on RA. This is echoed by Tommasel and Menczer [85] who
depend upon simulations to explore different scenarios that enable understanding of recommender
systems in social networks and their effect on misinformation spreading behavior. Perhaps the
work most closely related to ours is the empirical exploration conducted by Fernández et al.
[21]. The authors survey existing work related to the different dimensions of the misinformation
ecosystem (e.g., users, content, platforms, and algorithms) and describe the (dis)advantages of
existing datasets that can be used to enable research in this area. They also introduce a novel
dataset consisting of 2,921 Twitter users, approximately a million tweets, more than a million in-
teractions, and misinformation labels, i.e., false claims related to COVID-19 included in the tweets.
Using this novel dataset, they perform an in-depth analysis of how well-known RAs contribute to
the amplification of misinformation. Reported findings reveal that the popularity-based algorithm
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is the most prone to spread misinformation. Other salient insights emerging from simulations
of recommendation generation under different conditions (i.e., varied ratios of misinformation
items) include the fact that a small number of misinformation items get popular very quickly,
methods based on neighbors tend to spread less misinformation, and, in general, the number of
factors or neighbors do not seem to impact misinformation spread significantly.

With our work, we built upon the work of Fernández et al. [21] by considering two other datasets,
expanding the RAs examined, and exploring the propagation of misinformation as a result of gen-
erated recommendations via simulation. We do not, however, directly compare our findings with
those reported in [21], as they probe RAs by simulating the recommendation process with varied
ratios of misinformation items. Instead, we consider misinformation as originally captured in the
datasets.

2.2 Social Networks and Misinformation

In studying misinformation diffusion in social networks, several existing studies have focused
on modeling rumor propagation [100], while few have modeled the diffusion of fake news. The
proposed models for misinformation diffusion address the problem as the spread of infectious
disease among a group of people with social connection (epidemiological models) [36, 73, 79] or
as a Hawkes process [58]. The main drawback of these models is that they assume the social
network to be implicit, i.e., the connections among individuals are unknown. As a consequence,
these models are more suitable for studying global patterns, such as trends and ratios of people
sharing a given fake news story, but they cannot work with local node-to-node diffusion patterns.
Conversely, classical information diffusion models such as the Independent Cascade and the Linear
Threshold models can also be used to model fake news spread [39]. As these models work by
explicitly considering how users are connected in the social network (explicit network), they can
be combined with RAs that provide individual recommendations. Specifically, we can establish
which users get recommended with a given fake news item and, starting from them, we can study
how the fake news item gets propagated to their friends, friends of friends, and so on, and know, at
the end of the diffusion process, which nodes have been infected. Suppose we instead use a model
using an implicit network. In that case, we can only simulate, given a percentage of users that get
recommended a given fake news item, the percentage of nodes in the network that will also be
influenced by the fake news item.

Beyond studying information diffusion, other works in the social network and social science
domains have addressed the problem of studying fake news spreading and characteristics of peo-
ple keen to spread misinformation and used findings to tackle the problem of detecting fake news
spreaders [69]. Vosoughi et al. [91] found out that the profile of fake news spreaders deviates from
one of the other users as the former have, on average, significantly fewer followers, followed sig-
nificantly fewer people, and were significantly less active on Twitter. They also showed that, with
respect to the social media platform Twitter, although bots also contribute to spreading fake news,
the dissemination of fake news on Twitter is mainly caused by human activity. Similar findings
have also been shown by Shu et al. [75], who also reported that, on average, users who share fake
news tend to be registered for a shorter time than the ones who share real news. Furthermore, real
news spreaders are more likely to be more popular than fake news spreaders, and older people
and females are more likely to spread fake news.

Guess et al. [29] analyzed user demographics as predictors of fake news sharing behavior on
Facebook and found political orientation, age, and social media usage to be the most relevant. The
researchers found that users who leaned to the political right were more likely to share those fake
news items, perhaps because the majority of fake news items included for analysis were from 2016
and pro-Trump. Additionally, they observed that seniors tended to share more fake news, probably
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because this age group has lower digital media literacy skills necessary to assess the veracity of
online news. Finally, the researchers found that the more news people post on social media, the
less likely they are to share fake news, which can be the case because those users would be more
familiar with the platform and what they share.

Recently, the author profiling shared task at the PAN 2020 conference focused on determining
whether or not the author of a Twitter feed was keen to spread fake news [63]. Here, participants
addressed the problem by considering different linguistic features, including (a) n-grams, (b) writ-
ing style, (c) personality and emotions expressed in users’ timeline tweets, and (d) word embed-
dings. Using the Politifact FakeNewsNet dataset considered in this manuscript, Shrestha and
Spezzano [71] showed that user personality traits, emotions, and writing style are strong predic-
tors of fake news spreaders, and that, in combination with demographics, behavioral, and network
features, can be used to classify fake news spreaders. This approach also outperforms the best
models proposed at PAN 2020 fake news spreaders profiling shared task. Similarly, recent work
by Giachanou et al. [25, 26] has shown how user psycholinguistic characteristics are useful in dif-
ferentiating between fake news spreaders and fact-checkers and the importance of considering
emotional signals for news claim credibility assessment.

We can see common insights from the literature: newly registered accounts are more likely to
be involved in misinformation spread; user-based features such as demographics (age, gender, and
political ideology) are essential predictors of fake news detection. Similarly, user emotional signals
(positive and negative emotions) such as happiness, joy, anger, fear, sadness, and disgust are strong
features to distinguish fake news spreaders.

3 EXPERIMENTAL FRAMEWORK

In this section, we discuss the datasets, the RAs, the information diffusion models, and the metrics
we consider to carry out our study. In addition, we describe the experimental protocol we defined
to measure the impact of RAs on misinformation diffusion in social networks and answer the
research questions presented in Section 1.

3.1 Datasets

In our exploration, we use two datasets: Politifact FakeNewsNet dataset and HealthStory
FakeHealth dataset. The FakeNewsNet dataset [74] consists of two datasets, PolitiFact and
GossipCop, from two different domains, i.e., politics and entertainment gossip, respectively. Each
of these datasets contains details about news content, publisher, social engagement information
(news sharing extracted from Twitter), and the users’ social network (who follows whom on Twit-
ter). GossipCop focuses on gossip, which is related to a different form of misinformation. As the
scope of our work is on fake news, we only use the PolitiFact dataset, which consists of news items
with known ground truth labels collected from the fact-checking website PolitiFact3 where jour-
nalists and domain experts fact-checked the news items as fake or real. Overall, the Politifact
FakeNewsNet dataset contains 295,469 users (after removing self-claimed bot accounts) sharing
701 news items via tweets and retweets. However, to have enough user information to train RAs,
we considered only users who shared at least eight news for our analysis. It results in 1,028 unique
Twitter users, 3,021 following relationships (network edges) among users, 542 unique news (322
fake and 220 real), and 20,265 user-news interactions (11,442 with fake news items and 8,823 with
real news items), i.e., news items shared by the users in their tweets.

The FakeHealth [11] consists of two datasets, HealthStory and HealthRelease. HealthStory con-
tains news stories reported by news media like Reuters Health. HealthRelease corresponds to news

3https://www.politifact.com/
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releases from various institutes, including universities, research centers, and companies. Each of
these datasets contains details about news contents (with newstext, source publishers, and image
links), news reviews, social engagements, user networks, and ground truth (a rating score ranging
from 0 to 5 where news pieces whose scores lower than 3 are considered misinformation or fake
news). HealthRelease does not contain enough user-item interactions after excluding users who
shared less than eight news (only 659 users). Consequently, we only used HealthStory. This results
in the FakeHealth HealthStory dataset, which includes 5,406 unique Twitter users, 1,690 unique
news (472 fake and 1,218 real), 4,102 following relationships among users, and 120,124 user-news
interactions (29,726 with fake news items and 90,398 with real news items).

To the best of our knowledge, these two are the only publicly available datasets containing infor-
mation about user-item interaction (user-news sharing) and user following. The latter is needed to
simulate misinformation dissemination on the social network. Note that we considered including
in our analysis other datasets, such as ReCOVery[99]. However, we ultimately excluded them from
our experiments due to their lack of enough user-item interactions (only 568 users shared at least
eight news items).

3.2 Recommendation Algorithms

Inspired by Fernández et al. [21], in our exploration we consider RAs in different categories. In
addition to baselines and common collaborative filtering algorithms (implemented using LensKit
[17]), we also probe content-based and network-based RAs (implemented as detailed below). We
operated each RA in implicit feedback mode. Overall, our study considers a sample of classical
RAs that are common nowadays in the literature focused on misinformation [1, 20, 85]. Also, it is
important to note that classical algorithms, particularly those based on collaborative filtering [21],
are well-studied in the literature and they are common one-commerce platforms, given that these
methods can be “applied to any domain, only requiring user-item interactions, not needing addi-
tional item features or metadata” [20]. Content-based algorithms are also of interest since they have
the ability to “consider the content of the items and adapt in more detail to the domain at hand.”
Lastly, network-based strategies were also chosen given the context of our work (social network
platforms like Twitter). Recall that our focus is not to explore state-of-the-art RAs’ performance
but instead scrutinize tradeoffs of performance with respect to misinformation recommendation,
as well as misinformation spread (the latter being one of the main contributions of this work).

Collaborative-filtering RAs:

UU User-based collaborative filtering algorithm [65] exploits similar-minded users to produce
recommendations (neighborhood size = 10; affinity based on cosine similarity).

II Item-based collaborative filtering [14, 70] utilizes an item-item matrix to determine the sim-
ilarity between the target item and other items (neighborhood size = 10; affinity based on
cosine similarity).

ALS This matrix factorization-based algorithm has been designed to improve RAs’ performance
in large-scale collaborative filtering problems [30](latent factors = 40; damping factors = 5;
150 iterations).

Content-based RA:

CB This content-based RA models user profiles based on the content of items known to be of
interest to the corresponding user [45]. In particular, we use the TF-IDF vector representa-
tions of user profiles and news items (with news content tokenized, lowercased, stopwords
removed, and stemmed) and cosine similarity as a similarity measure to identify news
suggestions.

ACM Transactions on the Web, Vol. 17, No. 4, Article 35. Publication date: October 2023.
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Non-personalized RA baselines:

Rnd The Random Item RA disregards the interactions between users and items and instead ran-
domly selects items to recommend [8].

Pop This non-personalized RA suggests the most frequently-consumed items [33]. In our case,
we use Lenskit’s TopN algorithm, which recommends the most-shared news items (popular-
ity=“quantile”).

Notably, these two non-personalized RAs continue to be deemed suitable baselines on recent stud-
ies analyzing RAs [2].

Network-based RA:

SMF This trust-based matrix factorization RA leverages a network of trust relationships among
users [32]. SMF learns the latent feature vectors of users and items so that each feature vector
is dependent on the feature vectors of direct neighbors in the social network. SMF handles
the transitivity of trust and trust propagation, which is not captured by the other trust-based
RA, such as the STE Model [47]. In our case, we follow the implementation described in the
article where the algorithm was originally introduced [32], with K = 10, λU = λV = 0.1, and
λT = 5.

3.3 Information Diffusion Models

An information diffusion model describes the process by which a piece of information (a fake news
item in our case) is spread and reaches users through interactions. In a social network, users typi-
cally re-share content shared by other users, usually their friends (or users they follow in the case
of Twitter). Initially, a set of users initiate the diffusion process by sharing a piece of information
in the network for the first time. These users are called the seed users. Next, the followers of the
seed users have the possibility to re-share the same piece of information, followed by the followers
of seed users’ followers, and so on until no one else is further sharing the piece of information and
the diffusion process stops. We consider three widely-used models of information diffusion (imple-
mented as in [68]). We chose the Independent Cascade model (ICM), the Linear Threshold

model (LTM), and the Node Profile Threshold model (NPTM) to model the diffusion of fake
news in social networks because they explicitly use social network information and can be easily
combined with individual recommendations as explained in Section 2.2.

The ICM is a stochastic information diffusion model [39]. In this case, nodes can have two states:
active, meaning that the node is already influenced by the information in diffusion, and inactive

when the node is unaware of the information or not influenced by the information in diffusion.
At each step, a newly active node u has the chance to influence an inactive neighbor v according
to an influence probability puv . Each probability puv is independent of the others. Usually, these
probabilities are set as puv = 1/|Nin (v ) |), where Nin (v ) = {w |(w,v ) ∈ E} is the set ofv’s incoming
neighbors [40].

In the LTM each edge (u,v ) is associated with a weight buv and each node u has a threshold
value τu [39]. Threshold values in a [0,1] interval are often assigned uniformly at random. At each
step i , a nodev will become active if

∑
u ∈Nin (v ),u ∈Ai−1

buv ≥ τv , whereE is the set of edges in the net-
work, Nin (v ) is the set ofv’s incoming neighbors, andAi−1 is the set of nodes that are active in the
previous step. Edge weights buv are typically set to be the inverse of the in-degree of node v [40].

The NPTM supports the mixed behaviors of the classical LTM and the Node Profile model [54].
Each node v has a profile γv , which describes the likelihood of spreading content similar to the
ones they had already spread in the past. At each step i , for each node v , there is an evaluation if∑

u ∈Nin (v ),u ∈Ai−1
buv ≥ τv , as in the LTM. If the above evaluation is satisfied, the model evaluates

ACM Transactions on the Web, Vol. 17, No. 4, Article 35. Publication date: October 2023.
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the node profile, i.e., a random value q in [0,1] is extracted, and if q ≥ γv , the node adopts the
content; otherwise, the node refuses to adopt. In our case, the node profile (γv ) for each node v is
computed as the average cosine similarity between the news article shared by the node v in the
test set and a news article shared by v in the training set. Also, at every iteration, δ percentage
(adopter rate) of nodes spontaneously become infected due to endogenous effects. We used δ =
0.001 in our implementation.

Neighbors’ influence, user preference, or endogenous effects are all realistic assumptions to con-
sider in modeling information diffusion. In our experiments, we used the implementation provided
by Rossetti et al. [68] for both LTM and NPTM where the condition

∑
u ∈Nin (v ),u ∈Ai−1

buv ≥ τv is
implemented as checking whether the percentage ofv’s neighbors that are active is greater than τv .

3.4 Metrics

In our empirical exploration, we turn to metrics that capture RA performance as well as the impact
of misinformation.

Given that we examine Top-N RAs, much like in the recent analysis of Top-N RAs undertaken
by Anelli et al. [2], we use Mean Reciprocal Rank (MRR), a common assessment metric, to
quantify RA performance. MRR reflects the average ranking of the first relevant recommendation
in the Top-10 list produced by each RA under study.

To quantify the amount of misinformation recommended by a RA, we use Misinformation

Count (MC) and Misinformation Ratio Difference (MRD). MC measures the count of misin-
formation items recommended to each user [21]. In other words, MC is the proportion of recom-
mended items known to be misinformation over the length of the recommendation list. In our case,
we examine the top-10 recommendations produced by each RA under study. MC values range be-
tween 0 and 1; the closer to 1, the more misinformation items are included among the generated
recommendations. MRD (in Equation (1)) measures the average difference between the misinfor-
mation ratios in the train and recommendation list across all the users [21].

MRD@N =
1

T

T∑

u=1

Mu
t −Mu

r , (1)

where Mu
t is the ratio of misinformation items for the user u with respect to what is observed in

training, Mu
r is the ratio of misinformation items present within the top-N recommendations for

the user u (N = 10 in our case), and T is the total number of users. MRD values range between −1
and 1. A negative MRD value indicates the ratio of misinformation is larger in the recommendation
list; a positive MRD value indicates the ratio of misinformation is larger in the training set.

To quantify the effect of misinformation on the whole social network, Twitter in our case, we
use the Expected Spread (ESpr ead ). Given a social network, a diffusion model, and a piece of
information n, the spread is defined as the percentage of infected nodes (users who shared n) at
the end of the diffusion process [39]. Because the diffusion models we consider have a random
component (the influence probabilities for ICM and the node threshold values for LTM and NPTM),
these models are usually run many times, and an expected spread is computed, i.e., the average
spread among all the runs. In our experiments, we ran each model 100 times. The seed nodes are
counted when the (expected) spread is computed.

To characterize vertices that are influential in diffusing fake news in the social network, we rely
on the concept of diffusion centrality [38]. The diffusion centrality measures how well a node
(or a set of nodes) can diffuse a property p, in our case a given fake news item, given the structure
of the social network and a diffusion model for the property p. The diffusion centrality of a node
w (or a set of nodesW ) is computed as the expected spread achieved when the node w (or a set of
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Fig. 1. Scenario for misinformation during recommendation and propagation.

nodesW ) is included in the initial set of seeds minus the expected spread achieved when the node
w (or a set of nodesW ) is not included in the initial set of seeds.

3.5 Experimental Protocol

We conduct two experiments to study how RAs contribute to misinformation recommendation
and dissemination in social networks. These experiments are designed to answer the research
questions presented in the Introduction.

Experiment 1. While the performance of RAs is not the primary focus of our study, in the first
experiment, we study the potential connection between RAs and their propensity to enable misin-
formation as a result of the generated recommendations, as shown in Figure 1. To do so, we used a
temporal leave-one-out strategy to split the dataset into training and test set4 and compute MRR,
MC, and MRD based on the top-10 recommendations generated for each user in the Politifact
FakeNewsNet dataset and the HealthStory FakeHealth dataset, respectively.

Experiment 2. We study how each considered RAs contributes to the diffusion of fake news on
Twitter based on the recommendation lists produced for each RA in Experiment 1. The dissemina-
tion usually happens after a RA recommends a news item to its users, and each user shares (likes,
tweets, retweets, comments) the news items in the social network, causing the propagation of news
items suggested by the RA (see Figure 1). This is measured by the expected spread generated after
some users are initially recommended a given news item by the considered RA. More specifically,
given a RA R and a fake news item n, we let the R trigger the diffusion of n by computing the
seed users as those whose top-10 recommendations include n. Then, we let the diffusion model
simulate the diffusion of the fake news item among the remaining users (i.e., the ones who are not
originally suggested n, but can share it because they are influenced by the people they follow). We
consider the fake news items present in the test set and treat them as a single piece of information

4We select the user-item interaction with the latest timestamp for each of the 1,028 unique users in the Politifact Fak-
eNewsNet dataset and each of the 5,406 individual users in the HealthStory FakeHealth dataset as the test set for
each dataset, i.e., ground truth; the remaining user-item interactions comprise the training set.
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that diffuses in the Twitter social network. We then simulate its diffusion in the network by using
the independent cascade, the linear threshold, and the node profile threshold models. We want to
emphasize that we aim at replicating a real deployed system and understanding the propagation
of misinformation as a result of the latest recommendation presented to a user in a low-latency
system such as Twitter. Hence, we used the fake news items present in the test set, which are
the latest timestamped news items. It is worth noting that this simulation can be carried out for
each RA independently of whether they use or not social network information to compute the
recommendation list. In fact, each RA is used to determine the seed users to pass to the diffusion
model.

User types. We are interested in understanding whether users’ aptitude towards misinforma-
tion impact RA performance and users’ likelihood of spreading misinformation. For this reason,
we extend Experiments 1 and 2 by juxtaposing results generated by different user groups: super-
spreader and non-superspreader users. Given a threshold value θ , we define a user as a super-

spreader if the percentage of shared fake news items in the training set is at least θ , and performed
our experiments for different values of θ in the set {50%, 60%, 70%, 80%, 90%, 100%}. We report in
Section 4 the experiment results corresponding to the representative threshold of θ = 60% and dis-
cuss whether trends generalize across all the considered thresholds. We include detailed results for
all the threshold values, along with the number of superspreaders corresponding to the respective
value for the threshold θ (Table 1) 5 in the Online Appendix [62].

When a superspreader is a user whose percentage of shared fake news items in the training
set is at least 60%, we have 636 distinct users who are superspreaders and 392 distinct users
who are non-superspreaders in the Politifact FakeNewsNet dataset. Similarly, we have 92
distinct users who are superspreaders and 5,314 distinct users who are non-superspreaders in
HealthStory FakeHealth dataset. This results in two different scenarios, one where there is
a balance between superspreader and non-superspreader (Politifact FakeNewsNet dataset),
and another where the superspreaders are highly unbalanced as compared to non-superspreaders
(HealthStory FakeHealth dataset).

As discussed in Section 2, previous research has characterized users who are keen to spread fake
news as likely to have fewer followers, to be more leaned to the political right and to be somewhat
older. We do not have information regarding the political leaning or the age of the users in our
considered datasets, but we were able to examine their number of followers. As reported in Tables
2 and 3 in the Online Appendix [62], the number of followers is generally higher for the users
we defined as superspreaders than the other group of users, with differences being statistically
significant in the Politifact FakeNewsNet dataset for all the threshold values except for θ =
90%.6 It is worth noting that this finding does not contradict previous work where fake news
spreaders are often considered as users who spread at least one fake news item, so it is possible
to have many inactive or inexperienced users (i.e., they have few connections or they are more
senior) who spread some news items by mistake. In our work, we are trying to capture more
active or experienced fake news spreaders who intentionally spread fake news.

4 RESULTS AND DISCUSSION

In this section, we present the experiments’ results to address the research questions driving our
study. We use results from Experiment 1 to answer RQ1 and outcomes from Experiment 2 to answer

5Note that there are no superspreaders for thresholds θ = 90% and θ = 100% in the HealthStory FakeHealth dataset.
6We do not have a representative number of superspreaders as compared to the number of non-superspreaders in the
HealthStory FakeHealth dataset to check whether the differences in the number of followers are statistically signifi-
cant also in this dataset.
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Fig. 2. Average MRR, Average MC, and MRD for each of RA, for all users, superspreaders (defined byθ = 60%),

and non-superspreaders in the Politifact FakeNewsNet dataset.

RQ2. We also discuss potential implications emerging from our findings regarding the real-world
design and deployment of RAs for social networks in the presence of misinformation.

Whenever we say significant, this is based on a paired t-test when comparing RAs within the
same user group (with Bonferroni correction,n = 7) and a non-paired t-test when comparing across
user groups, and a p-value less than 0.05.

4.1 Experiment 1: RAs, Performance, and Misinformation

4.1.1 All Users Represented in the Respective Datasets. When we look at the general user group,
we see from Figures 2 and 3 that regardless of the dataset examined, collaborative-filtering RAs
(and Pop in the case of Politifact FakeNewsNet dataset) are the ones that fare best based on
MRR, i.e., include higher within the top-10 suggestions items that are relevant to their users. MRR
is significantly lower for CB and SMF than that computed for collaborative-filtering RAs. The fact
that CB underperforms–compared to collaborative-filtering counterparts–is not unexpected, as
other works have also reported similar outcomes in the news domains [46]. When looking at the
prominence of fake news within the top-10 recommendations, we see that in both datasets the
average MC is significantly higher for UU, II, and ALS than Pop, CB, and SMF. In practice, this
means that collaborative-filtering RAs tend to include more misinformation among their recom-
mendations generally. Fernández et al. [21] reported on a similar pattern but on the COVID-19
dataset. Noticeable, MC score for Rnd is comparable to those of collaborative filtering RAs, which
we attribute to the random nature of the produced recommendations. Furthermore, we posit that
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Fig. 3. Average MRR, Average MC, and MRD for each of RA, for all users, superspreaders (defined byθ = 60%),

and non-superspreaders in the HealthStory FakeHealth dataset.

the significantly lower MC score produced by CB is due to how recommendations are generated,
i.e., based on content matching. Based on MRD, we see that scores for UU, II, ALS, and Rnd remain
close to 0 (akin to results reported in Fernández et al. [21]), indicating that the ratio of misinfor-
mation remains fairly stable across training and recommendation lists. CB yields the highest MRD
score, closely followed by SMF (although visibly more prominent in Politifact FakeNewsNet
dataset than HealthStory FakeHealth dataset); this indicates that the ratio of misinforma-
tion is larger in training lists than in recommendation lists. These results seem to demonstrate that
CB and SMF are less prone to recommending misinformation, in the sense that items known to be
fake news appear less among recommended items, even if present in users’ historical interactions
prompting the recommendations.

It emerges from Figures 2 and 3 that trends observed for Pop in Politifact FakeNewsNet
dataset and HealthStory FakeHealth dataset are not alike. A closer look at the item distri-
butions in these two datasets could explain these disparities. In the case of MRR, the number of
unique items that serve as candidate recommendations is larger for HealthStory FakeHealth
dataset (1,690 news items) than the Politifact FakeNewsNet dataset (542 news items). The
reduced number in candidate items makes it so that the recommendation task for the former is
inherently more difficult given the potentially broad range of options that might be relevant and
yet not explicitly noted as so by users. In the case of MC and MRD, we attribute disparities to the
noticeable difference in ratios of fake items in both datasets and the proportion of popular mis-
information items this algorithm presents its users in the top-10 recommendation list (3.42% for
Politifact FakeNewsNet dataset, decreasing to 1.5% for its counterpart dataset).
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Simultaneously examining MRR, MC, and MRD lead us to conclude that CB and SMF are the
best RA alternatives if the emphasis is on curtailing misinformation. Their MRR is indeed signif-
icantly lower than collaborative-filtering counterparts. MC scores are significantly lower for CB
and SMF than for other RAs and their proportion of suggested items that are deemed fake news
are less impacted by users’ historical interactions, indicating that they are less likely to suggest
misinformation (i.e., items known to be fake news in our case).

4.1.2 The Impact of Superspreaders. We are interested in exploring whether users’ aptitude to-
wards misinformation (i.e., sharing tweets spreading fake news) impacts RAs’ performance and
their likelihood of contributing to misinformation. For this, we compare and contrast MRR, MC,
and MRD computed for superspreaders and non-superspreaders in both the considered datasets,
which correspond to two different scenarios: one represented by the Politifact FakeNewsNet
dataset where superspreaders and non-superspreaders are closer in number (for instance, we
have 636 superspreaders and 392 non-superspreaders for threshold θ = 60%), and the one rep-
resented by the HealthStory FakeHealth dataset where the ratio of superspreaders vs. non-
superspreaders in approximately 1:100.

Regarding the first case, i.e., the Politifact FakeNewsNet dataset, we see in Figure 2 (for
superspreaders defined by θ = 60%) and Figures 9, and 11–14 in the Online Appendix [62] (for
superspreaders defined by other threshold values) that trends observed for superspreaders deviate
from those seen for non-superspreaders.7 Among the non-superspreaders, UU, II, ALS, and SMF
yield the highest MRR across all the considered thresholds. Furthermore, MRD for UU, II, and
ALS remains close to 0 for all the considered thresholds. This is also true for SMF up to threshold
θ = 80%, while it becomes larger and positive for thresholds θ = 90% and θ = 100% (which means
that the amount of recommended misinformation is lower in the test than in the training set).
The MC scores are low, i.e., up to around 0.3 for all but thresholds θ = 90% and θ = 100% where
the values increase up to around 0.5 for UU, II, and ALS. Differing from the findings reported
in the prior section for all users, it becomes apparent that when superspreaders are excluded,
UU, II, ALS, and SMF are able to present relevant items higher in the recommendation list more
often while minimizing the presentation of fake news (compared to a content-based RA) and
keeping the ratio between misinformation considered for user modeling vs. predictions (training
vs. testing sets) fairly unchanged or lower than the one in the training set. Given the tradeoff
between user satisfaction (higher MRR) and less misinformation (lower MC and MRD close to
0), we argue that collaborative-filtering RAs and SMF generally suit non-superspreaders better.
Instead, among superspreaders (and across all the considered thresholds), user satisfaction is
high for UU, II, ALS, and SMF but so is the average number of fake news present on top-10
recommendations for collaborative-based RAs, which we attribute to the high number of fake
news items in their user profiles. SMF and CB are, in turn, more resilient to users known to be
superspreaders from the perspective of misinformation (both have lower MC scores and positive
MRD), at the cost of user satisfaction (lower MRR for CB). Regarding the general trend for the
behavior of Pop across all the considered thresholds, we observe that its MRR and MC are higher
for non-superspreaders, while MRD is higher for superspreaders. This could be explained by the
likelihood of similar news items being part of superspreaders’ user models (i.e., shared items),
decreasing the chances of users being exposed to novel fake news as a result of recommendations.

In the case of the HealthStory FakeHealth dataset, trends observed for superspreaders and
non-superspreaders are similar. Figure 3 refers to the case when superspreaders are defined by

7In the Politifact FakeNewsNet dataset, differences in MRD and MC scores between superspreaders and non-
superspreaders are significant. So are differences in MRR for UU, II, ALS, and CB.
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θ = 60% and illustrate that UU, II, and ALS yield the highest MRR and MC for both superspreaders
and non-superspreaders. Hence, CB is the preferred RA in this scenario as its MC is among the
lowest values and its MRR is higher than Pop and SMF, which have comparable MC. MRD values
are positive for superspreaders and close to zero for non-superspreaders. All the above trends
remain true regardless of the threshold used to define superspreaders (cf. Tables 15–18 in the
Online Appendix [62]).

Overall, the differences in performance we have observed in the two considered datasets for
superspreaders and non-superspreaders could be attributed to the different distribution of these
two user types between the two datasets.

4.2 Experiment 2: Study of Misinformation Diffusion in the Social Network After

Recommendations

4.2.1 All Users Represented in the Respective Datasets. Figures 4 and 5 show the average ex-
pected spread8 for each of the examined RAs and diffusion models when we look at the general
user group. We observe that both Pop and SMF are highly prone to disseminate misinformation
in the user network. Looking at Politifact FakeNewsNet dataset, Pop achieves the highest
average expected spread with all the three considered diffusion models (52.36% with LTM, 73.31%
with ICM, and 69.78% with NPTM). This is not unexpected, given the prevalence of fake news in
this dataset, along with the fact that user-item interactions (sharing of tweets) involving fake news
comprise more than half of our dataset. As popularity-based RAs naturally leverage sharing rates
in their recommendation strategy, the amplification of misinformation is anticipated. Notably, the
volume of fake news on this dataset aligns with that often seen on real-world news sites and social
network sites like Twitter. For example, volume News9 reported that false news stories are more
popular, and they are 70% more likely to be retweeted than true stories. When considering results
computed using HealthStory FakeHealth dataset, Pop achieves the second highest average
expected spread with all three considered diffusion models (28.04% with LTM, 46.03% with ICM,
and 54.51% with NPTM). Recall that the volume of fake news in this dataset is lower than in the
Politifact FakeNewsNet dataset.

Among non-baseline algorithms, SMF contributes to the highest average expected spread
(36.02% with LTM, 64.34% with ICM, and 60.53% with NPTM) in Politifact FakeNewsNet
dataset, and 99% in HealthStory FakeHealth dataset,10 followed by collaborative-based RAs
(UU, II, and ALS) and CB. This trend is observed in all of the diffusion models considered, even if
more prominent with LTM than ICM and NPTM. This is evident due to the nature of trust-based
RAs like SMF. In SMF, a user’s latent feature vector is dependent on the direct neighbors’ latent
feature vectors; hence there is a high likelihood that a node and its neighbors are suggested the
same news items, resulting in more seeds at the beginning and higher overall spread in the social
network [32].

Looking at Politifact FakeNewsNet dataset, there is an average expected spread of 14.94%
with ALS, 13.86% with UU, 11.97% with II, and 7.25% with CB when the information diffusion is sim-
ulated with the LTM. Moreover, when the information diffusion is simulated with the ICM, there
is an average expected spread of 56.34% with ALS, 54.57% with UU, 52.44% with II and 48.02% with
CB. If instead NPTM is used, then there is an average expected spread of 51.27% with ALS, 51.62%

8Since we treated each fake news item as an individual property that spreads through the social network, we report the
average expected spread across all the fake news items in the test set.
9https://www.volumenews.com/health/health-news/fake-news-lies-spread-faster-social-media-truth-does-n854896/
10Of note, news articles recommended by SMF are the most popular ones in the HealthStory FakeHealth dataset. It
is then unsurprising that they are suggested to almost all the users in their top-10 list of recommended items.
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Fig. 4. Average expected spread for each of RA, for all users, superspreaders (defined by θ = 60%), and non-

superspreaders in the Politifact FakeNewsNet dataset according to the Linear Threshold model (LTM—

top row), Independent Cascade model (ICM—middle row), and the Node Profile Threshold Model (NPTM—

bottom row).

with UU, 50.89% with II, and 50.29% with CB. In the case of HealthStory FakeHealth dataset,
there is an average expected spread of 1.87% with ALS, 1.82% with UU, 1.84% with II, and 1.66%
with CB when the information diffusion is simulated with the LTM, an average expected spread
of 40.83% with ALS, 41.59% with UU, 38.35% with II and 36.73% with CB when the information
diffusion is simulated with the ICM, and an average expected spread of 38.14% with ALS, 38.20%
with UU, 38.18% with II, and 38.12% with CB when the information diffusion is simulated with
the NPTM. Recall that the percentage of expected spread also depends on the number of seeds.
As we can see in Figure 6, Pop presents at least one fake news item to 417 users in their recom-
mendation lists in Politifact FakeNewsNet dataset, and 1,437 users in their recommendation
lists in HealthStory FakeHealth dataset, SMF to 188 and 5,256 users, respectively, followed
by collaborative-based RAs, CB, and Rnd. The higher the number of seeds, the higher the expected
spread. Much like for CB, misinformation spread is also low for Rnd, regardless of the dataset
considered. Nevertheless, Rnd is merely studied as a baseline, i.e., as another way to contextualize
findings, not as a RA prominently used on social networks. This is because Rnd disregards interac-
tions between users and items in producing recommendations and instead arbitrarily selects items
from within the candidate item set.

When the diffusion of fake news in the network is simulated with ICM a higher spread is
achieved as compared to LTM and NPTM, regardless of the dataset. This is due to the fact that
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Fig. 5. Average expected spread for each of RA, for all users, superspreaders (defined by θ = 60%), and non-

superspreaders in the HealthStory FakeHealth dataset according to the Linear Threshold model (LTM—

top row), Independent Cascade model (ICM—middle row), and the Node Profile Threshold Model (NPTM—

bottom row).

Fig. 6. Average number of seeds as determined by different RAs in Politifact FakeNewsNet dataset (left)

and HealthStory FakeHealth dataset (right)

in the ICM, each node can be independently influenced by each of its incoming neighbors (hence
has more chances of being infected), while in the linear and node profile threshold models,
each node becomes infected if the percentage of infected incoming neighbors is above the node
threshold.
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Fig. 7. Average Diffusion Centrality for different user types in the Politifact FakeNewsNet dataset. Super-

spreaders are defined by θ = 60%.

Fig. 8. Average Diffusion Centrality for different user types in the HealthStory FakeHealth dataset. Super-

spreaders are defined by θ = 60%.

4.2.2 The Impact of Superspreaders. We extended our analysis by studying the impact of
superspreaders in the diffusion process and computed and compared the diffusion centrality of
superspreader seeds vs. the diffusion centrality of non-superspreader seeds. Here, the diffusion
centrality of the set of superspreader seeds is computed as the expected spread achieved when
all the seeds are considered (both super- and non-superspreaders) minus the expected spread
achieved when only non-superspreader seeds are considered (i.e., superspreader seeds are
removed from the set of seeds). Similarly, the diffusion centrality of the set of non-superspreader
seeds is computed as the expected spread achieved when all the seeds are considered (both super-
and non-superspreaders) minus the expected spread achieved when only superspreader seeds are
considered (i.e., non-superspreader seeds are removed from the set of seeds).

In Figures 7 and 8, we compare the average diffusion centrality (across all the fake news items in
the test set) of superspreader (defined by the threshold θ = 60%) seeds vs. non-superspreader seeds.
The average diffusion centrality of both superspreaders and non-super-spreaders seeds is positive
in all the cases,11 meaning that both user types have an impact on spreading misinformation on the
social network. Moreover, the seeds generated by SMF and Pop in the Politifact FakeNewsNet
dataset and SMF in the HealthStory FakeHealth dataset yield the highest values of diffusion
centrality for both user types; as shown in Figures 29–31 in the Online Appendix [62], this holds
true regardless of the threshold used to define superspreaders.

It is evident from Figure 7 that, in the case of Politifact FakeNewsNet dataset, the average
diffusion centrality of superspreader seeds is significantly higher than the average diffusion cen-
trality of non-superspreader seeds (and this trend remains up to threshold θ = 80%– cf. Figures
29 and 30 in the Online Appendix [62]). This indicates that in a setting where the two user types

11With the exception of II with non-superspreader seeds and ICM in Politifact FakeNewsNet dataset. This holds true
for all the other considered thresholds in the Politifact FakeNewsNet dataset except θ = 80% (cf. Figures 29 and 30 in
the Online Appendix [62]).
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are almost balanced, superspreaders have more responsibility in diffusing misinformation among
social network users. This also translates into a higher average expected spread achieved by su-
perspreaders as compared to non-superspreaders for all thresholds up to threshold θ = 80% (cf.
Figures 19–24 in the Online Appendix [62]). For instance, when we consider non-baseline RAs,
Figure 4 shows that the average expected spread increment for threshold θ = 60% ranges from
5.1% with CB to 11.2% with SMF when the LTM is considered, from 1.4% with CB to 5.1% with
SMF when the ICM is considered, and from 1.15% with II to 4.59% with SMF when the NPTM is
considered. Furthermore, for both user types, the trend of average expected spread is the same as
the trend reported for all users. It is important to note that not all superspreaders are malicious.
People may spread misinformation on social media platforms unintentionally because of several
factors, including having difficulties at discerning news veracity [77] and not being familiar with
the platform features [29]. On the other end, users may want to intentionally spread fake news
because it is “funny” and generates engagement among their friends [95].

Looking at Figure 8, which depicts the case where superspreaders are defined by threshold
θ = 60% in the HealthStory FakeHealth dataset, we see that the average diffusion centrality
of non-superspreaders seeds is significantly higher than the average diffusion centrality of super-
spreaders seeds, indicating that non-superspreaders have more responsibility in diffusing misin-
formation among the social network users. This is understandable as in the scenario represented
by the HealthStory FakeHealth dataset, the ratio of superspreaders to non-superspreaders
is close to 1:100.12 This also translates into a higher average expected spread achieved by non-
superspreaders as compared to superspreaders for each RAs as reported in Figure 5 for θ = 60%.
As shown in Figures 25–28 in the Online Appendix [62], these trends generally remain true re-
gardless of the threshold used to define superspreaders. Moreover, similar results emerge on the
Politifact FakeNewsNet dataset when we define superspreaders using θ ∈ {90%, 100%} (cf.
Figures 23 and 24 in the Online Appendix [62]) as the number of non-superspreaders starts to
become bigger than the number of superspreaders.

Overall, the results reported in this section highlight that the user group containing most users
has a higher influence on fake news spread. Also, experiments show that the diffusion patterns are
similar regardless of the dataset and diffusion model considered or threshold chosen to define the
superspreaders. Specifically, Pop and SMF lead to the maximum misinformation spread, while CB
leads to the least misinformation spread. Hence, we conclude that misinformation spread is mainly
influenced by the RA chosen rather than the diffusion model or definition of superspreader.

4.3 Practical Implications of Our Study

Findings resulting from the experiments and analysis presented in Sections 4.1 and 4.2 reveal im-
plications related to misinformation and fake news recommendations on social networks such as
Twitter. We argue that these implications serve as lessons learned to inform researchers and prac-
titioners’ understanding of the connection between misinformation and the use of recommender
systems in social networks.

When prioritizing user satisfaction, collaborative filtering alternatives are to be favored. This,
however, is at the cost of misinformation amplification at the user and network levels, i.e., these
strategies are more prone to recommend more fake news and propagate it in the social network
by generating a high expected spread–particularly when fake news diffusion is described by ICM.

12Due to the high imbalance between superspreaders and non-superspreaders in the HealthStory FakeHealth dataset,
we also computed the normalized diffusion centrality (the diffusion centrality for each user type is divided by the number of
users of that type) for this dataset. We observed trends that align with those pertaining to diffusion centrality, as reported in
Figures 8 and 31 in the Online Appendix [62], i.e., non-superspreaders have higher diffusion centrality than superspreaders.
Hence, we decided to keep the original figures in the article.
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If the priority is instead to lessen the impact of misinformation, then the most favorable RAs
appear to be SMF and CB. The latter, in particular, since misinformation propagation is relatively
controlled at the user- and network- level (in terms of MC, MRD, and E(Spread), respectively).

We posit that the most useful scenario is when user satisfaction and misinformation are simul-

taneously accounted for. In the case of the Politifact FakeNewsNet dataset where most news
items are fake, non-personalized RAs–explicitly Pop–arose as the preferred alternative. Pop re-
sulted in high MRR, and it best-contained misinformation in the immediate (user) range (high and
positive MRD and low MC w.r.t. collaborative-filtering counterparts). Unfortunately, this comes
at a cost in the long-term: Pop negatively impacts the social network regarding misinformation
spread. Based on the outcomes emerging from the HealthStory FakeHealth dataset, where
the fake news items are fewer than the real ones, CB is the preferred RA as it offers more rele-
vant recommendations to its users while simultaneously lessening the impact of misinformation
recommendations.

Perhaps the most unexpected takeaway shines a light on user behavior. When superspreader and
non-superspreader volumes are comparable, as in the case of Politifact FakeNewsNet dataset,
non-superspreaders are best served by collaborative-filtering strategies. In this case, a social net-
work platform would not only increase user satisfaction while minimizing misinformation rec-
ommendations among their non-superspreader users, but it would also ensure that long-range
misinformation diffusion across the social network is contained. On the other end, superspreaders
are best served by CB as their trends are more similar to the ones discussed above for all users.
Hence, if it is possible to discern among users based on their misinformation behavior, then using
different RAs is the best choice. In this case, we argue that social network platforms should com-
bine recommendation strategies with detection algorithms that are able to identify superspreader
users from others [63, 71]. Instead, when the number of superspreaders is very low, as in the case
of HealthStory FakeHealth dataset, both user types are best served by CB.

The main goal of a RA is user satisfaction which can lead to recommending misinformation
to the users. Hence, there are always tradeoffs between user satisfaction and misinformation
recommendation. The current literature only presents intervention models on top of RAs to in-
crease user exposure rate towards diverse verified news and change user beliefs to mitigate
misinformation[43, 44]. Wang et al. [93] proposed a model, Rec4Mit, that uses a news veracity
classifier to recommend only true news to the users. However, in their experiments, the authors
only used a test set composed of users that interacted with real news, so it is unclear how much
users that interacted with fake news may be satisfied by this solution. More generally, researchers
and industry practitioners should direct their efforts to develop RAs that are explicitly designed
to prevent and mitigate fake news recommendations (and later its dissemination in the network).

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this manuscript, we investigated the strength of the connection between misinformation and
RAs. For this, we first examined performance vs. misinformation recommendation tradeoffs.
Among all the considered RAs, we saw that CB, followed by SMF, is the least prone to misinforma-
tion during recommendation, regardless of user behavior, but at the expense of user satisfaction.
Conversely, collaborative filtering approaches (UU, II, ALS) are better alternatives for prioritizing
user satisfaction, but at the cost of misinformation recommendations. Next, we studied the mis-
information spread triggered by RAs by simulating misinformation propagation via well-known
information diffusion models. We discovered that SMF and Pop are the most prone to contribute
to misinformation diffusion in social networks, while CB results the least prone.

Along the way, we scrutinized users and how their habits (i.e., sharing fake news in their tweets)
could potentially influence RA outcomes and further contribute to misinformation spread. With

ACM Transactions on the Web, Vol. 17, No. 4, Article 35. Publication date: October 2023.



Misinformation, Dissemination, and Recommendation Algorithms 35:21

this in mind, we compared and contrasted trends emerging from users deemed superspreaders and
non-superspreaders. Overall, we saw that both superspreaders and non-superspreaders are respon-
sible for spreading misinformation. At the same time, when there is a balance in superspreaders
and non-superspreaders, like in Politifact FakeNewsNet dataset, superspreaders have more
responsibility in diffusing misinformation among social network users. Hence, we also showed
the benefits of using different RAs for different user types. However, when superspreaders are not
prominent in the social network (as in the case of HealthStory FakeHealth dataset), then
inevitably, non-superspreaders take more accountability in disseminating misinformation. Find-
ings from our study suggest that RAs and user engagement with misinformation are responsible
for misinformation propagation in social networks. Our conclusions can directly impact the news
domain, so prominent in the literature nowadays [64, 88, 92]. For instance, news sites like CNN
and NBC can empower the strength of popularity based (and their modifications) recommendation
strategies for news diffusion to many users. Especially among the non-superspreaders, Pop brings
the right balance in tradeoffs between performance and misinformation recommendation. On the
other hand, the presence of misinformation in real life is noticeable. Thus, our work brings to the
attention of the RecSys community the need to redesign news RAs to be attentive to the perils of
misinformation and proper profiling of superspreaders’ and non-superspreaders’ presence.

Our study is not free from limitations. First of all, it has been conducted on only two datasets
of limited size, but, to the best of our knowledge, the Politifact FakeNewsNet dataset and
HealthStory FakeHealth dataset are the only publicly available datasets containing all the in-
formation and sufficient number of user-news interactions needed to carry out our study. Second,
the independent cascade, the linear threshold, and the node profile threshold models are widely
used to model information diffusion and are easy to apply. Still, they may not be the best models
to use to model misinformation spread. Other studies have highlighted how only considering net-
work information is not enough, but user and news characteristics should also be considered when
modeling misinformation spread in social networks [37, 48]. Given the limited information avail-
able in the considered datasets, we incorporated the user profile in the news sharing process via
the Node Profile Threshold Model. However, if available, many other news and user characteristics
should be considered, e.g., the emotions contained in the news [91]. Furthermore, even though the
RAs considered in our study expand upon those initially studied in the seminal work by Fernán-
dez et al. [21], the list is not comprehensive. Much like we did for diffusion models, we selected
well-known yet baselines RAs. In the future, we plan to extend our analysis to other hybrid [7, 57]
and deep-learning-based RAs [12]; we will also consider state-of-the-art diffusion models [37].

The study of the connections between social networks, misinformation, and RAs is just the
beginning. We have investigated a foundational aspect of misinformation in social networks by
looking at the contribution to misinformation propagation due to RAs used by social network plat-
forms. Important questions remain unanswered and thus prompt new research paths to explore.
These include redesigning RAs to explicitly account for misinformation and developing new evalu-
ation metrics that treat misinformation as a dimension to assess recommender systems and could
help characterize, detect, and mitigate misinformation diffusion in social media platforms. Rec-
ommender systems are not the only information access platforms via which users are exposed
to misinformation. Consequently, extending research in this area to further probe and contain
misinformation in search engine responses is also critical.
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