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ABSTRACT

Material characterization techniques are widely used to characterize the physical and chemical properties of materials at the nanoscale and, thus,
play central roles in material scientific discoveries. However, the large and complex datasets generated by these techniques often require significant
human effort to interpret and extract meaningful physicochemical insights. Artificial intelligence (AI) techniques such as machine learning (ML)
have the potential to improve the efficiency and accuracy of surface analysis by automating data analysis and interpretation. In this perspective
paper, we review the current role of AI in surface analysis and discuss its future potential to accelerate discoveries in surface science, materials
science, and interface science. We highlight several applications where AI has already been used to analyze surface analysis data, including the
identification of crystal structures from XRD data, analysis of XPS spectra for surface composition, and the interpretation of TEM and SEM
images for particle morphology and size. We also discuss the challenges and opportunities associated with the integration of AI into surface anal-
ysis workflows. These include the need for large and diverse datasets for training ML models, the importance of feature selection and representa-
tion, and the potential for ML to enable new insights and discoveries by identifying patterns and relationships in complex datasets. Most
importantly, AI analyzed data must not just find the best mathematical description of the data, but it must find the most physical and chemically
meaningful results. In addition, the need for reproducibility in scientific research has become increasingly important in recent years. The advance-
ment of AI, including both conventional and the increasing popular deep learning, is showing promise in addressing those challenges by enabling
the execution and verification of scientific progress. By training models on large experimental datasets and providing automated analysis and data
interpretation, AI can help to ensure that scientific results are reproducible and reliable. Although integration of knowledge and AI models must
be considered for the transparency and interpretability of models, the incorporation of AI into the data collection and processing workflow will
significantly enhance the efficiency and accuracy of various surface analysis techniques and deepen our understanding at an accelerated pace.

Published under an exclusive license by the AVS. https://doi.org/10.1116/6.0002809

I. INTRODUCTION

Following the remarkable success of artificial intelligence (AI)
within the past few decades, there has been rapid advancement of
AI being applied to different fields, such as in natural language

processing,1–4 robotics,5,6 and many others. In materials science, we
are just beginning to see the use of AI in the analysis of material
characterization data from techniques such as x-ray photoelectron
spectroscopy (XPS), extended x-ray absorption fine structure
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(EXAFS), and other material characterization techniques. The AI
methods in material characterization can help in designing future
experiments and in analyzing collected data, thereby allowing
experimenters to better understand material properties and behav-
ior under different conditions or to discover the optimal conditions
for material synthesis. AI methods enable material scientists to
analyze the large and diverse datasets generated by modern charac-
terization techniques and/or models. The purpose of this paper
specifically is to review the role and the future potential of various
AI techniques in materials characterization. We will start by review-
ing common AI methods and the current challenges of AI imple-
mentation (including assuring that the results are both physically
and chemically relevant). We will finish with a discussion on the
application of AI to materials characterization.

AI is the broad concept of computers and/or instruments con-
taining computers being able to carry out tasks in ways that could be
considered “intelligent.” It is the science of making machines
perform tasks that historically would have required the intelligence
of humans to have been completed in the past. AI includes a range
of technologies and methods, such as traditional rule-based systems,
expert systems, machine learning, and more. Typical methods of AI
include nearest neighbors,7 Bayesian method,8 symbolic program-
ming,9 and others. Alternatively, machine learning (ML) is defined
as a subset of AI, which utilizes mathematical models to transform
data into knowledge10 without sending a computer direct instruction
to learn. The input for a learning algorithm consists of training data,
while the output comprises knowledge like guidelines for identifying
cats in pictures. Typically, this knowledge is represented as a com-
puter program capable of executing specific tasks. Deep learning
(DL) is a subset of ML. It is a technique for implementing ML that
is based on the structure and function of the brain (specifically, it
mimics the workings of the human neural network using multiple
layers of neurons). DL has attracted the most attention in the past
decade due to applications in image recognition and language pro-
cessing.11,12 It utilizes artificial neural networks (NNs) of multiple
layers, forming deep neural networks (DNNs), as a crucial manifesta-
tion13 to discover disentangled representations in high-dimensional
data,14 enabling the software to learn new tasks autonomously
instead of relying solely on programmers to create hand-crafted
rules. AI, ML, and DL can be differentiated as follows: AI encom-
passes a board range of intelligence systems, whereas ML is a subset

of AI that uses algorithms to learn from data and make intelligence
predictions and decisions, while DL is a subset of ML that uses
DNNs to mimic the human brain and achieve advanced pattern rec-
ognition tasks. These relationships are shown in Fig. 1, which high-
lights the major distinctions among them.

Implementation of the process of ML typically requires several
key steps: (1) data selection and retrieval, (2) data cleaning and
feature engineering, (3) model training and evaluation, and (4)
model validation and deployment. Figure 2 shows those steps
which will be discussed below.

Data collection. A suitable collected dataset representing a
problem of interest needs to be curated. ML relies heavily on data
to learn and make predictions, so the quality and relevance of the
data can have a significant impact on the accuracy and effectiveness
of the system. In order to identify appropriate and reliable data
sources, it is paramount for the user to understand and define the
problem that the ML system is intended to solve and the types of
data that will be needed to address the problem. The retrieved raw
datasets may not be able to be directly applied without eliminating
possible data bias or errors. This step involves operations like clean-
ing and transforming the data, dealing with missing or inconsistent
(e.g., unphysical) values, and handling outliers. The cleaning and
identifying of each dataset will ensure that the data are suitable for
use in ML models and that the data are actually a proper represen-
tative of the model. Additionally, the curation of the dataset might
need to be performed multiple times in order to have a complete
enough dataset to reach the desired model performance and
accuracy.

Model training and evaluation. A mathematical model can be
trained using the previously constructed dataset. One must care-
fully select a model representative of their problem, such as a classi-
fication model for images or a regression model for predictions.
During training, the user must actively monitor the training
process by tracking the model’s metrics, such as loss, accuracy, and
performance; and then analyze any trends that may emerge to
make necessary adjustments to improve the model. It is also
required to tune a large amount of hyperparameters that exist in
many models in order to obtain accurate results. One must
perform experiments on/with the optimal hyperparameter values
to test them. These steps can be repeated multiple times until a sat-
isfactory result is obtained.

FIG. 1. Distinctions between AI, ML, and DL: AI encompasses all intelligent systems, ML is a subset of AI that uses algorithms to learn from data and make predictions, while
DL is a subset of ML that uses DNNs to mimic the human brain and achieve advanced pattern recognition tasks. Examples include support vector machine and regression as
AI; recurrent neural network as ML; and CNN, long short-term memory (LSTM), recurrent neural networks, and generative adversarial networks (GNNs) as DL.

REVIEW pubs.aip.org/avs/jva

J. Vac. Sci. Technol. A 41(6) Nov/Dec 2023; doi: 10.1116/6.0002809 41, 060801-2

Published under an exclusive license by the AVS

https://pubs.aip.org/avs/jva


Model deployment. Finally, the trained model needs to be
deployed into standard use. To obtain meaningful results and
retain the model’s high quality of performance, accuracy, and effi-
ciency, the model must be continually trained, tested, and vali-
dated. The trained model needs to be continually refined during
deployment.

An example of this ML development process is shown in
Fig. 2. As the model would likely be put into practice by users with
limited knowledge of the model, multiple metrics need to be moni-
tored to ensure there is no drop in accuracy or performance while
in operation. Finally, if new data become available or if the perfor-
mance of the model deteriorates, the developer must retrain using
the new data and deploy the new model. The model may be evalu-
ated15 using the standard computer science techniques of cross-
validation, R-squared (R2), mean absolute percentage error, root
mean square error (RMSE), and performance analysis.

A. Challenges to implementation

There are several challenges in the AI and ML-facilitated sci-
entific discovery process. First, the quality and quantity of the avail-
able datasets influence the understanding of physicochemical
processes that can be explained by the characterization data.

One of the key challenges that must be overcome to enable
more use of AI tools is data quality and bias. While AI systems rely
heavily on data to learn and make predictions, if the data are
incomplete, inaccurate, or biased, it can cause system predictions to
be inaccurate.16 Additionally, most modern AI models can be
complex and difficult to interpret, making it extremely challenging
to understand how the system is making decisions. This effectively
turning the system into a blackbox.17 Other challenges include
overfitting and generalization, which can lead to poor performance
on new data, as well as the need for significant computing
resources to train and run some AI models. Overall, these chal-
lenges highlight the need for careful planning, evaluation, and
monitoring when using AI methods. In addition, AI does have the
added complication of there being ongoing efforts to address
ethical and societal concerns related to these technologies.

A number of techniques have been developed to address the
issues of data quality and bias. These techniques do take different
approaches to address the need for high quality, training data.
Data augmentation18 creates new training data by applying trans-
formations to existing data. Imputation19 can fill in missing
values with estimated values based on the available data. Transfer
learning uses a pretrained model on a related task20 to improve
the model performance. Ensemble methods combine multiple
models to reduce the impact of missing data. Active learning
selects the most informative data points for labeling by a human
expert to improve model performance.21 Finally, Bayesian
methods22 incorporate prior knowledge into the model to reduce
the impact of missing data.

Second, data imbalance is a problem in classification tasks
where there is an unequal distribution of instances across classes
of interests. Several techniques are employed to address this chal-
lenge. For example, the resampling method aims to obtain a
balanced dataset via either oversampling the minority class,
undersampling the majority class, or a combination of both.
Oversampling involves creating duplicates of the minority class
instances, while undersampling involves removing instances from
the majority class. However, both of these techniques can lead to
cases of overfitting or underfitting, respectively. Synthetic data
generation methods23 can also be used to create additional
instances of the minority class, such as Synthetic Minority
Over-Sampling Technique,24 which creates synthetic instances by
interpolating between existing instances in the minority class.
Cost-sensitive learning25 assigns different costs to different classes
to adjust the bias of the model with respect to the minority class.
This can be done by increasing the cost of misclassifying the
minority class or decreasing the cost of misclassifying the major-
ity class. Ensemble methods26 combine multiple models to
improve the overall performance of the model. The models can be
trained on different subsets of the data or with different algo-
rithms. Anomaly detection techniques27 can be used to identify
the minority class as an anomaly and classify the data accordingly
and can be done using techniques such as one-class support
vector machine (SVM) or isolation forests.

FIG. 2. Flow chart of ML in scientific discovery. In data collection, scientific data from experiments are processed, cleaned, and selected for the next step. In model
development, the data are trained depending on the data and desired output (i.e., prediction of material properties will be regression, crystal structure identification will be
classification). After sufficient model development, the model will need to be validated and deployed for prediction. See the text for description of acronyms.
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B. Challenges to the scientific community:
Reproducibility

Two of the major issues affecting the scientific community
include the lack of reproducibility28 and the large amount of exper-
imental data being produced by modern characterization tools.29 In
materials characterization, both of these issues limit the utility of
the data collected during the experiments such as during the opera-
tion of user facilities such as synchrotron radiation facilities. This
hurts the scientific community as there is a possibility that impor-
tant science is lost. Whether data are lost due to inactivity or were
improperly analyzed, the knowledge that is lost cannot be used to
improve our understanding of the physical world. At worst, time is
wasted trying to replicate incorrect conclusions.30

Recent reviews of the scientific literature have attempted to
quantify the size of the reproducibility problem.31–33 These reviews
have examined the quality of the XPS analyses in three upper tier
journals that emphasize next-generation materials synthesis and
characterization. They reviewed published data for accuracy and
completeness. They found that ca. 30% of the XPS analyses in these
journals were incorrect or interpreted wrongly. Based on other
reports, it is not uncommon to similarly find that 20%–30% of the
analyses of data from other materials characterization techniques
are also incorrect.34,35 However, the actual problem is probably
even more severe than these numbers suggest. Given the prolifera-
tion of incorrect analyses appearing in the literature,30,32,34–36 it
appears that experts in the synthesis and/or development of a par-
ticular type of material may not always possess a detailed under-
standing of all the analytical methods that may have been used to
characterize them. Thus, the structure, traditions, constraints, and
pressures of the current scientific endeavor often lead to the publi-
cation of faulty or misleading data analysis.36,37

Increasing the use of AI can make significant contributions
toward addressing the reproducibility problem in a number of
ways. First, AI-based automated experiment replication can facili-
tate analyzing datasets to identify the necessary steps, parameters,
and conditions required to reproduce an experiment accurately. By
automating this process, researchers can verify and validate previ-
ous findings, enhancing reproducibility. Second, AI can provide
insights into the decision-making process of very complex models.
By combining theory and characterization, AI can improve our
understanding of materials synthesis. For instance, in synchrotron
studies, it is crucial to employ autonomous data processing and
data fitting techniques. By combining data fitting with predictive
simulations, researchers can gain deeper insights into the three-
dimensional structure of materials.38 This integrated approach
accelerates the development of predictive simulations by incorpo-
rating new theories, algorithms, and information. The ultimate goal
is to establish a close connection between predictive theory and
experiment, reducing the need for trial-and-error measurements
and expediting the pace of discovery and understanding.

C. Challenges to the scientific community: Data
quantity

Further complicating these issues is the fact that advances in
instrumentation have made it possible to acquire data orders of
magnitude more rapidly than it can be analyzed.29,39 It is now

possible to collect data in real time during a chemical reaction on
the surface of a catalyst or in a battery cell, or to monitor the depo-
sition of a thin film or catalyst with multiple techniques. In many
cases, thousands of spectra characterizing the chemical reactions or
thin film depositions must be analyzed. The increasingly sophisti-
cated imaging modes of many instruments, e.g., time-of-flight sec-
ondary ion mass spectrometry (ToF-SIMS), have similarly led to an
enormous increase in the amount of data collected on samples. A
standard ToF-SIMS image of a surface can easily contain 10 000
mass spectra. This number then increases substantially when this
technique is used for depth profiling. These vast quantities of data
greatly increase the likelihood that novice users of the characteriza-
tion tools are employed to analyze the data. This increases the like-
lihood of making a mistake that enters into and then propagates
through the literature.

D. Role of artificial intelligence

There are three key AI research pathways that must be
addressed for AI techniques to have significant impact in address-
ing the aforementioned challenges. AI techniques need significant
improvement in the areas of (i) content and reliability analysis of
the scientific literature; (ii) automated analysis and interpretation of
results of characterization experiments; and preferably, (iii) auto-
mated experimental design for reliable materials characterization.
The remainder of this section outlines the components of these
pathways and their interrelationships.

The first pathway involves extracting experimental parameters
and results from the peer-reviewed literature and assessing the
validity and self-consistency of the information in each individual
paper. Because of the amount of incorrect data within the literature,
it will be necessary to continually assess the database and reevaluate
the interpretation of the individual papers used to populate a data-
base of accurate characterization results. Once the database is popu-
lated, information can be pulled from the database to improve and
automate the collection and analysis of characterization of these
new materials.

The second pathway for automated characterization analysis
of experimental results requires one to develop strong combinato-
rial search methods among all possible combinations of experimen-
tal parameters to find the one(s) that most likely produced the
observed signal. This often requires two stages: (a) a prefilter to
determine a relatively small set of potential components to narrow
the phase or parameter space that must be considered, and then (b)
intelligent combinatorial search among them for the set of compo-
nents giving rise to the observed signal.

For the third pathway of automated experimental design, we
expect that artificial intelligence tools will need to try multiple
complementary approaches. A knowledge-based approach can
extract experimental design concepts and rules from subject matter
experts that can be used to choose appropriate characterization
techniques and parameters for a given case. A case-based approach
will find similar cases in Materials Characterization Databases and
suggest similar experimental parameters.

Unfortunately, at this time, our review indicates that none of
the available tools fully reach the level of meeting the goals of all
three pathways that we see being necessary for full AI automated
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analysis. Hence, the goal of this review is to highlight the current
applications of ML in various materials characterization methods
and to assess whether the current AI methods are suitable for
addressing the reproducibility issues currently plaguing scientific
progress. The use of AI techniques needs to prevent the unwanted
result of conclusions based upon unsatisfactory analysis being
propagate throughout the literature and to enhance the peer-review
process that helps advance science. This review paper is organized
as follows: Section II introduces several materials characterization
techniques. Section III reviews ML applications to those techniques.
Finally, Sec. IV presents our discussion and conclusion.

II. MATERIAL CHARACTERIZATION TECHNIQUES

We selected the following set of materials characterization tech-
niques for this review of AI analysis applications: XPS, x-ray absorp-
tion near edge structure (XANES), EXAFS, x-ray diffraction (XRD),
x-ray emission spectroscopy (XES), nanoindentation, scanning elec-
tron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS),
transmission electron microscopy (TEM), grazing-incidence small-
angle x-ray scattering (GISAXS), grazing-incidence wide-angle x-ray
scattering (GIWAXS), and neutron scattering. These techniques are
widely utilized in the characterization of solid, liquid, and gaseous
reaction products and share the base analysis process of fitting mea-
sured spectra with theoretically informed line shapes. This process
makes them amenable to analysis with a combinatorial search in
physically allowed parameter space. Remember that the goal of mate-
rials characterization analysis is to determine the best chemically rel-
evant fit and not necessarily the best mathematical fit.

A. XPS

In conventional photoemission (XPS), x rays of known energy
are directed onto a sample and the ejected electrons are detected.
One of the most fundamental equations of XPS is a restatement of
the principle of conservation of energy,

hν ¼ EB þ Ek þ fspectrometer, (1)

where hν is the energy of incident x ray, EB is the binding energy of
the electron, Ek is the kinetic energy of the electron, and
fspectrometer is the work function of the spectrometer. In core level
photoemission, the last term is usually relatively small (about
4.5 eV) compared to the EB and Ek. One of two types of XPS scans
is usually acquired: a survey (broad) scan over ca. 1000 eV or a
narrow (detail) scan over ca. 20 eV. The survey scan is useful for
identifying the elements in the sample. Narrow scans are important
for obtaining chemical information from the material. That is,
while the peak positions (EB) of XPS peaks identify the elements in
a sample, finer energy shifts (usually about 1–4 eV), known as
chemical shifts, encode physicochemical information within the
measurement. In many problems, these chemical shifts are initial
state effects that result from the oxidation state of the element in
question.40 In general, peak fitting is required in XPS data analysis
because the fundamental widths of XPS peaks are comparable to
their chemical shifts and first principles theory has not been suffi-
cient to calculate the spectra.41 Multiple software packages have
been developed to facilitate the XPS fitting process, such as

CASAXPS,42 AVANTAGE,43 FITXPS,44 AANALYZER,45 XPS MULTIQUANT,46 and
XPS VIEWER.47

B. XAS: XANES and EXAFS

The x-ray absorption spectra (XAS) of a material typically
consist of two distinct regions: (1) the XANES region and (2) the
EXAFS region. The XANES region measures the absorption just
below and just above the edge in a range of 50 eV. As a result,
XANES is used primarily for analysis of the formal oxidation state
and coordination chemistry.48–50 The EXAFS region is used to
understand the local atomic structure of materials. It has been used
to study materials from a myriad of applications.49 These include
materials synthesis and design of batteries,51 assessment of material
performance for energy materials,52 and evaluation of radiation
damage for nuclear energy applications.53 An XAS experiment
measures the photon absorption as a function of photon energy in
the x-ray region of the electromagnetic spectrum. At the energies
of typical XAS experiments, the measured spectrum is dominated
by the photoabsorption component.53–55 However, when the absorb-
ing atom has other atoms located around it, the x-ray absorption
spectrum has additional oscillations beyond the edge.53,55 These
additional oscillations are called the fine structure. The fine structure
in the EXAFS region encodes the local atomic structure around the
absorbing atom of chemical compounds being measured.

EXAFS data is an excellent candidate for structural refinement
using AI methods because small changes in the path parameters
result in large changes in the theoretical path model.
Unfortunately, there is some art in this analysis and it can result in
a complicated fitting process. Manual fitting of XANES/EXAFS is
challenging and requires a good understanding of the theory and
practice of XANES/EXAFS analysis. The three most commonly
used theoretical programs for calculating XAS are FEFF (Full
Multiple Scattering),56 GNXAS (N-body Green’s function),57 and
EXCURVE (Exact Curved Wave).58,59 First, the analyst must decide
which of the relevant x-ray physics must be included. Second, they
need to initialize basic parameters and apply material dependency
constraints. Third, an optimization process is required, such as,
least-squared; cubic splines least squared; splines smoothing;60,61 or
nonlinear optimization such as Levenberg-Marquardt.62 There are
multiple software suites exist and can be used in the fitting process,
such as ATHENA,63 WINXAS,64 IFEFFIT,56 and LARCH.65 Lastly, the fitted
result still needs to be validated against other methods and the rele-
vant statistics need to be analyzed to ensure the spectra are well
fitted and are consistent with the proposed model.

C. XES

XES is a materials characterization technique used to study
the electronic structure and chemical states of elements in materi-
als. It is similar to XAS but instead it focuses on analyzing the
emission of characteristic x-ray photons by the elements in a
sample. XES is a relaxation process after excitation.50,66

The x-ray photons that are detected are generated from the
refilling of a core hole by one of the outer-shell electrons of the
atoms in the sample. From the emitted x ray, information about
the chemical states and electronic structure of the sample can be
obtained. The energy of the emitted x-ray photons directly
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corresponds to the difference in energy levels of the electrons
involved in the transitions, which depend on the specific elements
present in the sample and the surrounding chemical
environment.67

XES can provide valuable insights into the oxidation states,
coordination environments, and electronic configurations of atoms
in a material. By analyzing the energy and intensity of the emitted
x rays, researchers can determine the materials’ chemical composi-
tion, bonding, and electronic properties. XES spectra are often fit
using more generic programs designed for fitting other data types.

D. XRD

XRD is used primary for phase identification of crystalline
materials. It is based on the principles of crystallography, which
relate the diffraction of x rays to the arrangement of atoms in a
crystal lattice. The mechanism of XRD is a beam of x rays impinges
upon a sample, and one measures the outgoing pattern of x rays
scattered by the atoms in the sample. By analyzing the positions
and intensities of the peaks, information about the crystal structure,
lattice parameters, and atomic positions of the material can be
obtained.

XRD is widely used in many fields, including materials science,
chemistry, geology, and biology to analyze a wide range of materials,
including metals, ceramics, polymers, and pharmaceuticals.68–72 In
addition to determining the crystal structure of materials, XRD can
also be used to quantify the amount or concentration of different
components in a sample. This is achieved by comparing the intensity
of the diffraction peaks to a calibration curve or reference standard.73

Typical analysis software for XRD involves shape fitting of
each excitation peak, which corresponds to an element or
compound. There exist a large variety of software analysis packages
for XRD, such as FULLPROF,74 X’PERT HIGHSCORE PLUS,75 TOPAS,76 and
GSAS II.77 Peak libraries are typically included in each software,
which contains diffraction patterns for common materials. The pat-
terns are generated using theoretical calculations or experimental
measurements and represent the diffraction behavior of the materi-
als under specific XRD conditions.

E. Nanoindentation

Nanoindentation is a materials characterization technique
commonly used to probe mechanical properties by extracting infor-
mation from very shallow regions of a sample on the order of
micrometers.78 It uses an indenter with a known material hardness
and performs many indents on one sample to retrieve a statistical
mean of the hardness and elastic modulus values from that region
of the sample. These values can be calculated using the material
stiffness extracted from fitting the unloading curve using the
Oliver–Pharr method,79 or by analyzing oscillations of the tip
during loading by continuous stiffness measurement.80 When a
material undergoes nanoindentation, two types of material defor-
mation occurs: plastic and elastic. During elastic deformation, the
material is able to fully recover its original shape (for sufficiently
small indents) resulting in an unloading curve that closely traces
the loading curve. At the other extreme, a completely plastic defor-
mation results in an unloading curve that is nearly vertical as the
material fails to recover leaving a large residual indent.

Nanoindentation is useful for characterizing the mechanical
properties of materials such as thin films, irradiated materials, coat-
ings, and composites, where traditional mechanical testing methods
may not be suitable.81–83 It is also used to study the effect of differ-
ent processing parameters on a material’s mechanical properties.84

F. SEM

SEM is used primarily to provide information on the surface
topology and thereby uncover its crystalline structure, chemical
composition, and electrical properties.85,86 The relatively low
energy of the electron (2–40 keV) only allows observations of the
top 1 μm. A common technique for microstructural characteriza-
tion in the SEM is electron backscatter diffraction (EBSD). It gener-
ates a diffraction pattern (DP) from a sample surface tilted at
�20�–30� away from the electron beam to reduce the path length
and increase the number of detected electrons undergoing diffrac-
tion.87,88 This restricts the sampled volume to around 20 nm in
depth from the surface. In addition, EBSD measures the microtex-
ture of the material with a spatial resolution of 100 (Ref. 89) to
500 nm87 depending on factors such as accelerating voltage and
probe current as well as material properties.88 The most commonly
extracted information from these EBSD measurements is phase
identification and orientation mapping, which help to understand
grain sizes, crystal structures, and grain orientation. Another
common technique in SEM analysis is EDS, which is used exten-
sively for analyzing the atomic composition of samples for concen-
trations as low as 250 PPM for many elements.90

The obtained SEM images can be analyzed through software91 to
extract features about the material. For example, DIGITALMICROGRAPH

92

is commonly used in analysis if EDS is involved; AVIZO93 or ZEISS ZEN
94

is used for 3D SEM results. ASTROEBSD95 is a good package for analysis
of EBSD data.

G. TEM

TEM is a powerful technique used to study the structure and
composition of materials at the nanoscale level. TEM operates by
firing an electron beam through a sufficiently thin sample
(,100 nm).85 The electrons are focused by a series of electromag-
netic lenses, and the resulting image is formed by the electrons that
pass through the sample and focused onto a fluorescent screen or a
digital detector.96 Due to the interactions of the electrons with the
atoms in the crystal, a visual image of the internal structure of the
crystal is obtained.

TEM provides much greater magnification than does SEM,
allowing examination of the sample’s crystal structure, defects, and
chemical composition of materials with much greater spatial preci-
sion. TEM is widely used in materials science, biology, and other
fields to investigate the structure and properties of a wide range of
materials, including metals, semiconductors, ceramics, polymers,
and biological materials.97–102 TEM is also used to study the behav-
ior of materials under different conditions, such as high tempera-
tures or high pressures,103,104 and to understand the mechanisms of
various physical and chemical processes. Techniques such as
selected area electron diffraction (SAED) and high resolution elec-
tron microscopy (HREM) enable site specific examination of a
material’s microstructure. SAED allows for the determination of
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lattice spacing and crystal orientation from regions smaller than
500 nm across.105 The crystal lattice planes of the same region of
interest can be directly imaged using HREM for identification of
defect structures and determination of their concentrations.106,107

There are many software packages108 used to facilitate the analysis
of TEM, such as IMAGE PLUS PRO,109 AVIZO,93 DIGITALMICROGRAPH,110

EMAN2,111 and IMOD.112

H. GISAXS/GIWAXS

GISAXS (Refs. 113–115) and GIWAXS (Refs. 114 and 116)
are noninvasive surface-sensitive techniques that use x-ray scatter-
ing to probe nanoscale structures at surfaces and interfaces. The
incident angle is what separates GISAS and GIWAS apart and dic-
tates what kind of material information can be obtained. In
GISAXS, a monochromatic x-ray beam is incident on the sample
surface at a very shallow angle (,0:5�). This ensures that the pene-
tration depth remains small, probing only the top surface layer of
the sample. In GIWAS, the incident angle is set at much wider
(typically 0.5�–5�), and it is typically used to study a more bulk-
representative crystal structure. GISAXS is highly sensitive to lateral
density fluctuations and roughness at surfaces and interfaces, and
therefore special care must be taken during sample preparation.
The result is that GISAXS can characterize nanoscale features like
roughness, domains, particles, and lamellae. GIWAXS usually
requires much less preparation and care when preparing the
sample.

The GISAXS diffraction pattern contains a wealth of structural
information that can be extracted through analysis and modeling.
The analysis can use the measured peak positions, intensities, and
widths to extract important structural parameters such as domain
sizes, roughness, and crystalline phases. GISAXS can probe samples
in different environments (air, liquid) and under external stimuli
(heating, shear flow). The use of GISAXS has been used to character-
ize the structure of thin films,117 semiconductors,118 solar cells,119

polymers,120 biological materials,121 and nanoparticle growth.122,123

GIWAXS is used for studying the crystal structure of thin
films, fibers, and other materials that have a preferred orientation
or alignment. It can provide information about the degree of crys-
tallinity, the size and shape of individual crystals or domains, the
orientation and texture of the crystal lattice, and the presence of
defects or disorder in the crystal structure. Like GISAXS, GIWAXS
is also sensitive to changes in the crystal structure that occur as a
result of external stimuli, such as temperature, pressure, or chemical
reactions.

GISAXS provides quantitative insights into roughness, pattern-
ing, and particle distributions. It provides insight at surfaces, inter-
faces, and buried interfaces for studying surface chemistry. GIWAXS
provide insights into crystalline and crystal orientation. In addition,
these method are typically use in conjunction to other surface tech-
niques to further understand and verify the material. Software pack-
ages used for this diffraction pattern analysis include BORNAGAIN,124

GISAGUI,125 FIT2D,126 MCSAS,127 PYFAI,128 and CRYSTFEL.129

I. Neutron scattering

Neutron scattering is a powerful technique used in the field of
materials science to study the structure and properties of materials

at the atomic and molecular level.130–132 It involves directing a
beam of neutrons at a sample and analyzing the energy, intensity,
and direction from which neutrons are scattered by the material.

Neutron scattering has a wide range of applications in materi-
als research, including the study of metals,133 polymers,134 ceram-
ics,135 and biological materials.136 Neutron scattering is a valuable
tool for advancing our understanding of the fundamental proper-
ties of matter and for developing new technologies that benefit
society. Neutron scattering has numerous advantages that make it a
valuable tool for studying the structure and properties of materials.
For example, the wavelength of thermal neutrons is comparable to
the interatomic spacing in materials, which allows for a detailed
analysis of the atomic structure. Additionally, neutrons have a
kinetic energy comparable to that of atoms in a solid, which makes
them sensitive to the motions and vibrations of atoms within a
material.

Another advantage of neutron scattering is that neutrons are
highly penetrating, allowing experiments to provide insight into the
bulk materials’ properties. This also allows the sample to be con-
tained, making it useful for studying hazardous or radioactive
materials. Furthermore, the weak interaction between neutrons and
matter aids in the interpretation of scattering data. Neutron scatter-
ing also has isotopic sensitivity, which allows for contrast variation
in materials, making it easier to distinguish between different ele-
ments. Additionally, the neutron magnetic moment couples to the
magnetic field, allowing neutrons to “see” unpaired electron spins.

However, there are also some disadvantages to using neutron
scattering. One major disadvantage is that neutron interactions are
weak, which results in low signals and the need for large samples.
Additionally, some elements, such as cadmium, boron, and gado-
linium, absorb neutrons strongly, which limits the materials that
can be studied.132 Finally, there are kinematic restrictions that
prevent access to all energy and momentum transfers, which can
limit the range of materials and phenomena that can be studied
using neutron scattering. Popular software for the analysis of
neutron scattering data include FULLPROF

74 and GSAS II.77

III. AI APPLICATIONS IN MATERIALS
CHARACTERIZATION

The adoption of AI methods by the materials characterization
community has enabled us to rapidly identify patterns and make
predictions based on the input data.137 Specifically, users can
analyze large and increasing amounts of data and extract relevant
features or properties that may be too difficult or time-consuming
to identify manually. Given the increase in productivity, ML has
the potential to revolutionize materials characterization by enabling
faster and more accurate analysis of complex datasets. This is par-
ticularly important in the big data era when data are produced
orders of magnitude more rapidly than it can be analyzed
manually.

A. XPS

AI methods can accelerate the identification of the potential
components that exist in the XPS spectrum with the least amount
of human intervention. Many early attempts use the fitting of the
raw spectrum combined with various basic line shape functions,
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i.e., Gaussian and Lorentzian, to automate the fitting process, or by
comparing data against quantitative results. However, recent
attempts have applied DNNs to fit XPS spectra.

Drera et al.139 demonstrated the use of a DNN in identifying
and quantifying XPS survey spectra. They employed a convolu-
tional neural network (CNN) to analyze the chemical composition
of multicomponent XPS by surveying data from a spectral library
and performing model training on synthetic spectra. The training
data consisted of approximately 100 000 XPS spectra, and model
training used electron scattering theory in the transport approxima-
tion, which generalized well to about 500 well-characterized experi-
mental examples. Although their work was based on synthetic
spectra, the technique demonstrated the potential future where it is
possible to directly fit intricate experiential spectra.

Aarva et al.140,141 used open source data available from XAS/
XPS database to construct an interatomic potential mirroring
density functional theory (DFT). They then applied AI data cluster-
ing algorithms to atomic motifs for quantifying spectral analysis for
fingerprinting the spectrum. Clustering algorithms are a type of
unsupervised learning for pattern identification.142 The database
from which they obtained the training data contained a total of 240
samples containing differing amounts of oxygen in the range from
10 to 20 at. %. They ran multiple AI trials using the clustering algo-
rithm, which results in the multiple predicted spectra shown for
each sample in Fig. 3.

Similarly, Park et al.143also proposed the use of CNN to
perform human-free analyses of one-dimensional spectroscopic
data, such as data in the frequency domain. In this study, a modi-
fied novel network model was applied to experimental XPS of gra-
phene, MoS2, and WS2. Six different network architectures were
trained and compared, with the proposed “squeeze-and-excitation”
network structure (SENet) having demonstrating the best perfor-
mance in material property predictions. The study also examined
the ideal relationship between training performance and the choice
of loss function.

Golze et al.138 applied ML algorithms to XPS data and devel-
oped a predictive model for carbon-based material. Two
CHO-(carbon, hydrogen, oxygen) based structure databases were
created for XPS training purposes: one for large CHO materials
and one for small CHO-containing molecules. Using the libraries,
multiple ML methods such as principal component analysis (PCA)
and partial least squares regression (PLSR) were used to analyze the
XPS data and develop a predictive model. PCA (see Chatterjee
et al.144 for more on PCA) was first used to reduce the dimension-
ality of the XPS data into their basic components, and afterward
PLSR was applied to develop a model that could predict the thick-
ness and composition of the carbon-based material. To validate the
model’s accuracy, cross-validation was applied to the model, and
the model was able to successfully predict binding energy. It was
also capable of generating synthetic XPS spectra for CHO from the
model, enabling rapid analysis.

Figure 3 shows the comparison between the computational
and ML prediction models for XPS predictions of C 1S spectra of
rGO. The top panel represents predictions based on a starting pre-
cursor with COOH-rich graphene oxide (GO), and the bottom
panel shows predictions based on a starting precursor with
OH-rich GO. Series 1(a) and Series 2(b) demonstrate, respectively,

the variations in predictions based on the different precursor com-
positions. Currently, it is not clear what the best AI methodology
for fitting XPS spectra will be. XPS may be the most difficult of the
material characterization tools for AI analysis to handle due to all
the potential complications of the physics of the measurement. AI
analysis of XPS will need to be able to address spin–orbit splitting,
Coster–Kronig broadening,145 and multiple types of inelastic scat-
tering. We are not surprised that majority of the AI work done on
XPS to date has focused on simpler 1s based analysis.

B. EXAFS

The objective of EXAFS analysis is to account for the changes
in the absorption spectrum from the scattering of electrons from
near-neighbor atoms, this in turn provides details about the sur-
rounding crystal structure, such as coordination numbers and
Debye–Waller factors.146 The main challenge in analyzing EXAFS
spectra comes about from trying to understand all of the potential
physical differences in the structure that can effect these scattering
events, which can make it difficult to extract accurate structural
information.147 Another challenge is the availability of data com-
pared to other material characterization techniques. EXAFS data
can be difficult and time-consuming to acquire. Historically, it
required the use of a synchrotron facility, and this has limited the
amount of data that is available for ML training. However, recent
advances in data sharing and open science have led to the availabil-
ity of large and diverse datasets that can be used for ML applica-
tions.148 Manual modeling of EXAFS spectrum is typically
performed with small numbers of short-distance scattering paths.
However, there have been many attempts in accelerating the analy-
sis process via the use of AI techniques to enable rapid analysis of
EXAFS spectra using high-throughput pipeline.

Terry et al.149 demonstrated the use of a genetic algorithm
(GA) based software, EXAFS NEO, to quantify EXAFS data. The
GA-based technique has also been applied to large scale sets of
EXAFS spectra to examine in situ structural changes. This has
included applying the analysis pipeline to Li-ion batteries where it
was used to observe the process of Li insertion and extraction
during the cycling process. This analysis pipeline was also able to
identify patterns and extract meaningful material structural data
from extreme noisy data. A surface plot of SnS2 of Li-Sn scattering
path batteries as a k-space and time is shown in Fig. 4 to demon-
strate the changes in phase amplitude as the battery cycles.

Timoshenko et al.150 have applied DL techniques to construct
an NN to extract EXAFS parameters for metals and oxide materi-
als. The model was applied to tackle the challenging problem of
monitoring the catalyst structure and composition under operando
conditions. The usage of an NN can allow for the processing of a
large number of experimental spectra and make possible time sen-
sitive analysis such as the time-dependent evolution of the local
structure around the catalytic active species.

Additionally, Martini et al.151 examined the use of an inverse
AI method to study the photoelectron backscattering phases and
extract the amplitudes of single and multiple scattering paths. The
AI model was developed based on the method of Timoshenko
et al.150 and has been extended for use in the EXAFS case and gen-
eralized for different configurations. The result has been applied to
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KAu(Cn2) and [RuCl2(CO)3]2 and demonstrated the ability to
extract theoretical phases, amplitude, and electron free paths based
on the input geometry alone. The inverse method presented in this
paper was separated into two sections: (1) identifying the set of
paths with the highest impact to the total EXAFS signal and (2)
generating a set of nonlinear functions to approximate the contri-
bution of each path. Once the most significant paths are selected,
the fitting with the signal parameters is performed via minimizing
the sum of squares between theory and signal data. Figure 5 shows

an example using the inverse method for the difference between
the experimental fits and the best fit. This shows (a) the modulus
without phase correction and (b) the imaginary component of both
the experimental and best fit EXAFS spectra for KAu(CN)2. These
results demonstrate the efficacy of AI in accurately fitting experi-
mental data. Additionally, the lower part displays the specific con-
tributions from each scattering path.

Finally, Kido et al.152 have developed an automatic collection
and visualization pipeline of EXAFS analysis and applied the

FIG. 3. XPS predictions of C 1s spectra of rGO (reduced graphene oxide) between computational and ML prediction model (Ref. 138). The top and bottom panels repre-
sent different starting precursors. Series 1(a) was generated from COOH-rich GO and series 2(b) was from OH-rich GO. Reprinted from Aarva et al., Chem. Mater. 31,
9243 (2019). Copyright 2019 Chemistry of Materials, licensed under a Creative Commons license.
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pipeline to MoO3 analysis. This analysis utilized “Thorough
Search,” which examines all possible rational structure bounded by
the limits of the experiments. The specific AI method utilizes both
K-mean and PCA to perform unsupervised learning. The pipeline
has the potential to be applied on other materials.

C. XANES

Compared to EXAFS, XANES only focuses on the region of
the XAS spectra just below and above the rising edge when the
atom is excited during the x-ray photoabsorption process. There
have been many methods with potential to utilize AI algorithms to
accelerate the analysis process.

Rankine et al.153 used DNNs to estimate XANES edge position
and peak intensities. It has been applied primarily to iron by scrap-
ing datasets from the Materials Project.154 The resulting fitted
DNN generates predictions in the order of seconds and the accu-
racy of peak positions is within sub-eV resolution.

Furthermore, Liu et al.155 utilized NNs to uncover the rela-
tionship between the XANES spectra and the structural parameters.

The NN was fed using synthetic data, and the resulting model has
been applied to copper oxide system. The fitted NN has demon-
strated the capability of obtaining material parameters, such as
average particle size and oxidation state.

Mizoguchi and Kiyohara156 applied multiple ML techniques
to characterize and extract material structure and properties from
XANES spectra. Hierarchical clustering was first used to categorize
the spectra, and then a decision tree was applied to create labeled
training data. A feed-forward NN was then constructed from the
training data for material prediction. It has demonstrated accurate
prediction of upward of six material properties such as bond
length, angle, and Voroni volume.

To address the lack of XANES data, Torrisi et al.157 applied
random forest techniques to create XANES-based descriptors. It
obtained XANES datasets from the Materials Project154 and Open
Quantum Materials Database.158 Their work has been successful at
determining two material related properties (Bader charge and
Nearest-neighbor distance).

Kiyohara and Mizoguchi159 mapped the XANES spectrum to
a radial distribution function (RDF) before applying it in an NN.
The conversion to RDF can help reduce the significant experimen-
tal noise inherent in XANES spectra. It has been applied to silicon
oxides and used to estimate parameters such as bond length and
coordination number.

Similarly, Khan et al.160 utilized PYFITIT
161 to generate synthetic

spectra of transition metals. Martini et al.161 developed PYFITIT
161 for

quantitative analysis of XANES spectra. PYFITIT is an upgraded
version of FITIT.162 The new version contains many improvements in
analysis such as PCA and spectral unmixing. It also incorporates ML
algorithms such as ridge regression, Extra Trees, and LightGBM. The
new version is written in PYTHON and contains a built-in graphical
user interface and additional accessibility features.

Guda et al.163 utilized PCA on XANES spectra, and their algo-
rithm attempted to establish various relationships between edge
position, intensity, and minima and maxima of the curvature.
Using PCA, they concluded that good fits were obtained using
linear basis functions and second order polynomials.

Finally, Trejo et al.164 developed a pipeline for rapid analysis
of XANES spectra using experiments and ab initio simulations/
modeling. The data from experiment feed into an ML model of
random forest and NN to gain insights into the evolution of ZnS
under atomic layer deposition (ALD).

Figure 6 shows an example of such a framework. It highlights
the XANES fitting analysis pipeline described by Trejo et al.164

This pipeline involved collecting data from both experimental mea-
surements and an existing database, which were utilized to create
ab initio simulations for training purposes. The results were then
used to construct the dataset. This workflow or pipeline enables
swift analysis of XANES spectra while requiring minimal user
input. This combination of high-throughput experiments, model-
ing, and ML can be adapted to other systems for rapid analysis.

D. XES

The fitting of XES spectra involves fitting measured data with
conventional line shapes such as Gaussian, Lorentzian, and Voigt.

FIG. 4. (a) Single snapshot of the GA automatically fitted model (solid line) and
raw spectra of SnS2 (dashed line) at approximately 125 min of a battery cycle.
(b) Surface plot of SnS2 battery during in situ measurement from Terry et al.
(Ref. 149). The x axis is K space and y axis is cycling time. A battery cycling
can be observed as the Li ion is being depleted (highest regions) and inserted
(minimum regions).
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The resulting fitting can be used to deduce the physical oxidation
state information.

Tetef et al.165 presented a comprehensive computational study
on the application of unsupervised machine learning techniques for

extracting chemically relevant information from XANES and
valence-to-core x-ray emission spectroscopy (VtC-XES) data. This
study focused primarily on the classification of a diverse ensemble
of organic sulfur molecules. By progressively reducing the

FIG. 5. (a) Phase uncorrected modulus and (b) imaginary part of the experimental and best fit EXAFS spectra for KAu(CN)2. The result demonstrates the power of the AI
in fitting the experimental data. The bottom is the corresponding individual contributions of single and multiple scattering paths. Reprinted with permission from Martini
et al., J. Phys. Chem. A 125, 7080 (2021). Copyright 2023 American Chemical Society.

FIG. 6. Analysis pipeline of XANES fits from Trejo et al. (Ref. 164). The data were collected from both experiments and existing databases, which were used to construct
the ab initio simulations used for training purposes. This workflow/pipeline allows for rapid analysis of XANES spectra with minimal input from the user. Reprinted
(adapted) with permission from Trejo et al., Chem. Mater. 31, 8937 (2019). Copyright 2023 American Chemical Society.
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constraining assumptions of the unsupervised ML algorithm from
PCA to variational autoencoder (VAE) and t-distributed stochastic
neighbor embedding (t-SNE), they were able to improve sensitivity
while refining chemical state information. Even when reducing the
embedding dimensionality to 2, t-SNE demonstrates the ability to
distinguish not only oxidation state and general sulfur bonding
environment but also the aromaticity of the bonding radical group.
The overall accuracy of the t-SNE was 87%. In addition, this method
was able to identify finer details in the electronic structure within aro-
matic or aliphatic subclasses. Overall, t-SNE demonstrated excellent
potential in superior classification and also able to find new chemically
relevant clusters not observed by other methods. This allow for the
differentiation of different sulfur subclasses.

Penfold and Rankine166 extended XANESNET
153,167 DNN to

predict the line shape of VtC-XES spectra for first-row transition
metal using the K-edge. It demonstrated that despite the strong
sensitivity of VtC-XES to the electronic structure of the system
under investigation, DNN is capable of replicating the principal
spectral features using only the local coordination geometry of the
transition metal complexes. This was achieved by representing the
coordination geometry as a feature vector encoded with weighted
atom-centered symmetry functions.

Furthermore, three methods were implemented and evaluated
for assessing uncertainty in the predictions made by the VtC-DNN:
(1) deep ensembles, (2) Monte-Carlo (MC) dropout, and (3) boot-
strap resampling. The results indicated that bootstrap resampling
yielded the best performance when evaluated on separate testing
data. The developed models achieved an average accuracy of around
20% in predicting K-edge VtC-XES spectral intensities within the
selected windows, which was higher than previous reports for
K-edge XANES spectra.167 The higher percentage error was partly
due to regions in the VtC-XES spectrum where near-zero target
intensities can result in significant errors. Unlike XANES spectra,
VtC-XES is dominated by electronic transitions, making the direct
link between local atomic structure and the measured spectrum less
straightforward. The Bootstrap approach effectively estimated uncer-
tainty between measured and predicted spectra, showing a stronger
association compared to other methods. This suggested that uncer-
tainty arose from the composition of the reference dataset. The
uncertainty metric also enabled active learning, where structures can
be selectively added to the training set based on prediction uncer-
tainty. Additionally, a strong correlation was observed between the
uncertainty predicted by bootstrap resampling and the error between
the target and predicted VtC-XES spectra.

Hwang et al.168 presented a methodology for analyzing 3d tran-
sition metal XES using a user-friendly program called AXEAP2.
Their research aimed to address the challenges associated with data
analysis in XES and to improve the efficiency of parameter optimiza-
tion. The methodology involved three main steps. First, the XES cal-
culation was performed using the CTM4XAS169 code, which is widely
used for calculating x-ray absorption and emission spectra, and used
here to provide the initial theoretical spectra. Next, a convolution
process was applied to the calculated XES spectra, which modified
the spectra by applying a broadening function to account for instru-
mental effects and other experimental factors. This helped to better
match the calculated spectra with the experimental data. Lastly, to
optimize the parameters in the spectral simulations, a GA was

employed which efficiently explored multiple parameter spaces to
find optimized values that best fit the experimental data.

To aid in result interpretation, a viewer function was devel-
oped, enabling users to visualize and analyze the obtained spectra
and parameter values. This feature enhanced the user-friendliness
of the program and facilitated a better understanding of the analy-
sis results. The performance of the methodology was evaluated and
applied to manganese (Mn), cobalt (Co), and nickel (Ni) oxides. In
total, six spectra were used to evaluate the performance and capa-
bilities of AXEAP2, which does not provide uncertainty on the
parameters used as a gene. A comparison method based on the
relationship between RMSE and material parameter was used, and
theoretical spectra were generated within physical/chemical bound-
aries. Acceptable values for reduction factor of 3d � 3d electrons
Coulomb force (Fdd), crystal field energy (10Dq), and reduction
factor of 3p3d electrons exchange force (Gpd) were found, whereas
spin–orbital coupling reduction factor (SO), reduction factor of
3p3d electrons Coulomb force (Fpd), and splitting point to apply
different broadening (SP) did not have a significant effect on the
data and were not determined. The spin state was determined by
comparing the spin pairing energy with the optimized Fdd and
10Dq values based on atomic multiple theory and crystal field
theory. While some samples had low RMSE 10Dq values that were
similar to values calculated or used in the previous literature,
AXEAP2 reported a range of acceptable values from 0.5 to 2.5 eV
and the lowest RMSE value of 2.2–2.5 eV. The Gpd value was found
to be the most sensitive compared to other parameters, suggesting
that the 3p3d exchange force played a key role in contributing to
the energy difference between Kβ1,3 and Kβ} even in MnO and
MnCO3 spectra with the same electron number and configuration.
AXEAP2 demonstrates the capabilities to numerically estimate the
spin state, 3d3p electron exchange force, and the broadening effect
that arises from the core-hole lifetime.

E. XRD

XRD has similar peak fitting and parameterization require-
ments as XPS. The positions of the peaks in a powder diffraction
pattern are determined by the lattice constants (unit cell parameters),
and the peak intensities are determined by the atomic positions in
the unit cell.170 The powder pattern is, thus, a characteristic finger-
print of the material and used for phase identification. Many algo-
rithms for such phase identification are included in commercial
software and in the Powder Diffraction File database.171

Suzuki et al.172 have applied similar work to μ-XRD and nano-
XRD using random forest techniques for classifying space group.
The dataset contained over 180 K XRD patterns from the Inorganic
Crystal Structure Database (ICSD), and the resulting model yielded a
prediction accuracy of 83.62% on space group prediction (230 class)
and 93.07% on crystal system prediction (7 class) using only ten 2θ
positions. The analysis pipeline demonstrated the possibility of accel-
erated materials characterization by combining high-throughput
experiments and real-time analysis.

In another study, Suzuki et al.173 demonstrated the capability
of data-driven results for classification of space-group and crystal
system in ML using XRD data. They included over 170 000 XRD
spectra from the Materials Project.154 They examined various ML
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models such as logistic regression, k-nearest neighbors (KNN),
decision tree, random forest, and extremely randomized tree. The
tree-ensemble based model resulted in around 92% accuracy for
system classification.

Similarly, Iwasaki et al.174 proposed a high-throughput analy-
sis pipeline using ab initio calculation and nonsupervised ML
method. The method has been applied to a set of FeCoNi alloys
with data from scanning microbeam XRD. The model utilized non-
negative matrix factorization to decompose the XRD data into sin-
gular structural XRD spectra, from which structural rate can then
be uncovered. The result demonstrated mappings of material
parameters such as Kerr rotation and magnetic moment as a func-
tion of FeCoNi composition.

Sivaraman et al.175 incorporated simulation and ML to amor-
phous transition metal oxides for use-cases in fuel cell, catalytic,
ceramic, and thermal exchange applications. Their methodology
combined XRD and simulation methods, using pair distribution
function measurements and ML based Gaussian approximation
potential (GAP) method, to extract atomic structures and property
information on bonding, density, diffusion, and conductivity. The
main factor was the use of ML interatomic potentials to bridge the
gap between classical interatomic potentials and ab initio molecular
dynamics simulations by fitting directly to DFT reference datasets.
The interatomic GAP is constructed through an active learning and
fitting process that was initialized by configuration sampling of
experimental data, with total energy written as a sum of local ener-
gies given by two-body and many-body terms. Finally, it utilized ab
initio DFT to fit the XRD spectra.

Figure 7 shows an example of the pipeline, which involves the
construction of interatomic fits. In this pipeline, two main compo-
nents were identified. First, XRD data were utilized to gather informa-
tion about the arrangement of atoms in a material, then ML
techniques are employed to develop models that accurately describe
the interatomic interactions. This combination of experimental and
computational methods enables the creation of reliable interatomic
fits. Second, the modeling of ML data workflow plays a crucial role in
developing GAP from diffraction data. ML algorithms are employed
to analyze the collected diffraction data and extract meaningful fea-
tures that capture the interatomic interactions. These features are then
used to train the underlying ML models. This ML-based workflow
provides a powerful tool for understanding and predicting the behav-
ior of materials based on their interatomic interactions.

Lee et al.176 used a different approach to develop a novel NN
architecture using a CNN with transformer encoder and variational
autoencoder to identify symmetry (crystal systems and space-
group) and property prediction (such as band gap and formation
energy). The resulting fully convolutional network (FCN) contains
over 1.3 million parameters and requires training for both weight,
bias, and hyperparameters. The predictions with the ICSD dataset
using the VAE-FCN (92.12%) outperform the baseline contextually
guided CNN (82.17%) in crystal system identification.

Finally, Venderley et al.177 developed a unsupervised ML pipe-
line, x-ray diffraction temperature clustering (X-TEC) for XRD
analysis. It was used to extract charge density wave ordering and
intraunit cell ordering from temperature fluctuation. The pipeline
allowed for automatic analysis for XRD by performing preprocess-
ing, X-TEC, and visualization.

F. Nanoindentation

The nanoindentation parameter can be optimized using a
combination of algorithmic method (least square) and functional
fitting. However, the fitting process is largely material dependent.

Konstantopoulos et al.178 demonstrated the viability of using
NN for analysis of nanoindentation data for fiber-matrix material
such as carbon fiber based materials. The development process
involved a multistep pipeline. The first step involved normalization
of the data and extracting similar data using k-means clustering.179

The next step involved training with some type of NN, such as
multilayer perceptron (MLP), Stuttgart Neural Network, average
neural network (avNNet), or SVM. The resulting models were
compared using ML metrics to determine the best fitted models
and hyperparameters. Afterward, transfer learning was applied by
extrapolation of the prediction of the best trained models to a vali-
dation dataset of various indentation depths. It was observed that
SVM performed the best with 67% on the test dataset and 72.7%
on the validation dataset.

Kossman and Bigerelle180 have employed the use of CNN
model to identify pop-in and pop-out events in nanoindentation.
The training dataset contained a total of 755 load and unloaded
displacement curve, where there were 342 curves with pop-ins and
402 curves without pop-in. These curves were converted into
square matrices (50� 50) and used as inputs for the CNN model.
The model successfully differentiated between pop-in and
non-pop-in curves with an accuracy of approximately 93% in the
training and validation datasets, indicating minimal risk of overfit-
ting. These results demonstrated the use of direct spectrum data as
inputs for usefulness in artificial intelligence and computer vision
models for analyzing nanoindentation data.

Finally, Burleigh et al.181 have extended materials characteriza-
tion framework of Terry et al.,149 Neo, for the analysis of nanoin-
dentation load-displacement curves. They utilized a GA method in
conjunction with the Oliver and Pharr79 to overcome the limita-
tions of least squares fitting (LSF) in fitting materials with sharply
peaked unloading curves, such as polycrystalline isotropic graph-
ites. The existing GA based materials characterization tool, Neo,
was extended to fit nanoindentation data, with the new nanoinden-
tation software requiring minimal user input to produce meaning-
ful fit parameters. Fused silica (FS) and Al reference standards were
used to benchmark the quality of the fits using this method. After
validation, the method was applied to graphite and a high entropy
alloy (HEA) consisting of body-centered cubic (BCC) and face-
centered cubic (FCC) phases. For FS, the calculated material char-
acteristics were slightly larger than those found in the literature,
but consistent with LSF results for fits on the same tests. In the
case of the aluminum sample, the GA results were consistent with
those found in the literature and were 10.5% and 5.7% smaller than
the HYSITRON software hardness and modulus results, respectively.
When compared against LSF, the GA produced fits where the
contact geometry fits well within the range predicted by theory,
while the LSF is much above this range for the graphite specimen.
For these tests, the elastic modulus computed using the GA-based
tool was approximately 5% less than those from the LSF but follow
similar trends between individual indentations, while the hardness
results were consistent between the two methods. When applied to
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HEA, our GA-based tool results were consistent with the HYSITRON

software as well as the LSF used for analysis of the fused silica and
graphite samples. All three fitting algorithms showed the same
trends across all tests and produced consistent estimates for the
hardness and modulus of the FCC and BCC phases. The HEA

fitting result can be seen in Fig. 8, which shows the (a) inverse pole
figure, (b) higher hardness, (c) reduced modulus, (d) HYSITRON

hardness value, (e) hardness, and (f ) reduced modulus using GA.
The row of indentation corresponds to the result seen in earlier
figure, which examine a specific row of data. The result

FIG. 7. (a) Analysis pipeline of the construction of interatomic fits using XRD and ML. (b) The modeling of ML data workflow for developing GAP from diffraction data.
Reprinted from Sivaraman et al., J. Phys. Soc. Jpn. 91, 091009 (2022). Copyright 2022 JPS, licensed under a Creative Commons License.

REVIEW pubs.aip.org/avs/jva

J. Vac. Sci. Technol. A 41(6) Nov/Dec 2023; doi: 10.1116/6.0002809 41, 060801-14

Published under an exclusive license by the AVS

https://pubs.aip.org/avs/jva


demonstrates the accuracy of the high-throughput workflow to
obtain the hardness and reduced modulus mapping, allowing
determination of the material properties.

G. SEM

SEM commonly uses image analysis techniques in the data
analysis; therefore, most ML applications to SEM resolve around

classification of chemical species present in the image or recon-
struction technique to improve image quality.

de Haan et al.182 proposed a DL-based method for improving
the lateral resolution of SEM images through the use of a neural
network. The approach involves training a CNN with coregistered
high- and low-resolution SEM images of the same set of samples,
which is then utilized for blind super-resolution of individual SEM
images. This technique helps mitigate issues such as sample

FIG. 8. Various analysis techniques were applied to generate maps of an HEA sample. These include an inverse pole figure obtained from EBSD (a), a phase map (b),
and measurements of hardness (c) and reduced modulus (d) determined via HYSITRON software. Additionally, accelerated GA-based Neo, as described in Ref. 181, was uti-
lized to measure hardness (e) and reduced modulus (f ). Reprinted with permission from Burleigh et al., Appl. Surf. Sci. 612, 155634 (2023). Copyright 2023 Elsevier.
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charging and beam damage without compromising image quality
or requiring additional sample preparation steps. Unlike traditional
image enhancement methods, this approach is versatile and can be
applied to a wide range of sample types using only a single SEM
image as input. This approach has been demonstrated on
gold-on-carbon specimens, with a result of increasing the resolution
by a factor of 2x. This increase allowed for a 4X reduction in the
number of electrons required from the conventional SEM, further
decreasing the time required for image acquisition. DL based super-
resolution techniques have been shown to generalize other types of
samples or magnification factors, particularly when larger datasets or
similar samples were used, mainly through the use of transfer learn-
ing once a well generalized model has been trained.

Figure 9 shows an example of the image with the resolution
enhancement. It demonstrates the ability in upsampling the input
image given the original input image when compared with a Au
nanorod. Additionally, cross-sectional slices displaying various
spatial features are included to highlight the significant improve-
ment in resolution. By employing CNN algorithms, this approach
achieves a remarkable increase in resolution, up to 2X, without
compromising the image quality. Furthermore, it effectively
reduces the number of electrons required to achieve a desired 4X
resolution enhancement.

Ge et al.183 proposed a workflow of using DL on micoscopic
imaging, specifically for materials science. It involves the generali-
zation of tasks such as specific task analysis, preparation of work,
model design, feature analysis, and validation. Current applications
of DL primarily focus on extracting structural information, such as
morphology recognition and tracking, phase identification, and
defect analysis. They also suggest the use of generative models for
super-resolution reconstruction and linkage construction between
experimental conditions and microstructures. In the future, the
increasing use of DL in microscopic imaging analysis presents both
challenges and opportunities. While current work mainly employ
similar models and architectures, other powerful algorithms like
LSTM and graph neural networks (GNNs) can be used to handle
complex data structures in materials research data.

Similarly, a CNN model has been developed by Kaufmann,
et al.184 using the Xception architecture185 for the phase mapping
of EBSD data and tested against traditional Hough transformation
based techniques for six different materials. The CNN-based model
was then compared to Hough-based EBSD results that have used
EDS measurements to manually determine the phase of certain
parts of the image in order to improve mapping, referred to as opti-
mized EBSD. Training was done using Adam optimization186 on
images that had not been prefiltered and the datasets may have
contained partial or low quality DPs. The CNN performed well,
identifying the correct Bravais lattice automatically and reproducing
phase maps consistent with the traditional analysis even in the case
of Rutile quartz when the model was not trained with quartz DPs.
When analyzing a sample from the Campo del Cielo meteorite, the
CNN was able to correctly identify a higher percentage of the
schreibersite phase that was recessed below the surface than the tra-
ditional method. For samples of Fe–Al and a cycled thermal barrier
coating (five FCC phases, one rhombohedral), the CNN produced
phase maps that were superior to the traditional EBSD maps and
consistent with optimized EBSD using EDS classification. Finally,

in the case of 430 stainless steel, the Hough-based EBSD map
incorrectly characterized most of the sample as martensite while
the CNN produced a phase map consistent with that produced by
a pattern quality thresholding technique often used to discern these
two phases.

Shiratori et al.187 developed a decision tree model to predict
the dimensions of gold nanorods over a wide range of sizes, using
approximately 450 nanorod geometries and corresponding scatter-
ing spectra obtained from finite-difference time-domain simula-
tions. The resulting model deduced relationship between two
spectral features (linewidth and resonance energy). Validations of
the model were performed using experimental spectra and sizes
obtained from correlated scanning electron microscopy images,
and the model generated dimension predictions of gold nanorods
within approximately 10% of their true values over a wide range of
sizes. Analysis of the decision tree structure shows that a relation-
ship with resonance energy and linewidth of the localized surface
plasmon resonance was sufficient to predict nanorod dimensions,
outperforming more complicated models.

H. TEM

Compared to SEM, TEM provides high-resolution images of
the internal structure, composition, and crystallographic informa-
tion of samples. However, the usage of ML in both SEM and TEM
is very similar, which involves the analysis of TEM images to iden-
tify and quantify features of interest in the images.

Wen et al.188 proposed the use of unsupervised ML to charac-
terize the size of nanoparticles in TEM images. The resulting
model allowed for accurate and rapid analysis of the TEM sample
images, but was also robust against factors such as image quality,
imaging modalities, and participle dispersions from experimental
noise. The analysis pipeline contained multiple steps. It started
with background removal. A separate background from that of the
foreground was removed using a dynamic brightness threshold
filter. Then, the edges of the particles were identified using a
Canny Edge detection algorithm.189 This algorithm was shown to
correctly identify single particles but encountered difficulty when
multiple particles were aggregated or overlapping. To overcome
this, a convexity filtering method was instead applied, which
showed substantial improvement in edge identification. Afterward,
the processing data were used to train a unsupervised ML classifica-
tion algorithm, which calculated the approximate particle size. The
shape of each particle contour was parameterized using Hu
moments, and the hierarchical agglomerative clustering method190

was used with the average linkage to classify the parameterized par-
ticle shapes. The optimum numbers of clusters were determined
automatically by applying internal cluster validity indexes.191 This
method was highly automated. It did not require initial steps from
the user. It is generally applicable to any nanoparticle samples
without the need of new raw data for training.

Computer vision algorithms can be utilized in the automation
of TEM micrograph analysis for the purpose of feature identification
and classification. One such tool is the Crystallographic Tool Box
(CRYSTBOX) software192,193 for the analysis of electron diffraction pat-
terns. CRYSTBOX utilizes blob detection techniques such as Gaussian
detection, Hessian response, and the difference of Gaussian194 to
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locate diffraction spots before applying it to the RANSAC algo-
rithm,195 which matches the diffraction pattern to a lattice. For ring
diffraction patterns, the central beam spot can be automatically
detected and the beam stopper removed from the image through
iterative thresholding before the mean radial profile is extracted.

Morenko and Ostaeva196 compared the results of the CRYSTBOX

automated tools and those of another automated analysis program,
ProcessDiffraction, with manual counting and two “semiautomatic”
tools, IMAGEJ

91 and DIGITALMICROGRAPH.92,110 For comparisons, two
simulated (ZnO and TiO2) and one measured diffraction pattern

FIG. 9. Example of image upsampling using DNN between original input image, output, and the ground truth by de Haan et al. (Ref. 183). The image also includes cross-
sectional slices of different spatial features to demonstrate the noticeable resolution enhancement. The use of CNN algorithms enables upward of 2X resolution increase
without any compromise to the image quality, while also reducing the number of electrons requires to achieve desire resolution by 4X. Reprinted from de Haan et al., Sci.
Rep. 9, 12050 (2019). Copyright 2019 Springer Nature, licensed under a creative commons license.
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(copper-containing nanoparticles) were analyzed, and it was found
that all of the methods were in agreement with the literature and of
comparable precision. However, both of the automated programs
failed to identify some reflections, although they were more time
efficient. The Watershed method197 is another computer vision
algorithm that is available in the form of open source libraries. It is
an image segmentation algorithm that has been applied to diffrac-
tion spot identification198 as well.

I. GISAXS/GIWAXS

ML can also be used to solved many challenges faced in
GISAXS/GIWAXS, such as particle classification, object detection
for Bragg reflection, parameter extraction for layer thickness and
roughness, and data processing to improve conventional fitting.199

However, application of scattering data to ML is challenging due to
the phase problem and experimental limitations such as differences
in setup properties, measurement results, detectors, and sample
environments, as well as finite accuracy of sample alignment.

Loaiza and Raza200 discussed using artificial NNs to infer a
material’s scattering length density (SLD) profile from experimental
reflectivity curves in the context of specular neutron and x-ray
reflectometry, especially in GISAS. Their goal was to explore a new
approach to the ill-posed, noninvertible problem of SLD profile
inference, using ML to analyze large datasets of simulated reflectiv-
ity curves and SLD profiles. The approach involved replacing
detailed layer-by-layer quantitative descriptions of samples (SLDs,
thicknesses, roughnesses) with parameter-free curves ρ(z), allowing
a priori assumptions to be used in terms of the sample family to
which a given sample belongs. They demonstrated that properly
trained DNNs can recover plausible SLD profiles when presented
with previously unseen simulated reflectivity curves. However,
additional information about the instrument, such as its resolution
and Q range, would be needed to apply the approach to real experi-
ments. The proposed approach offers the advantages of faster batch
analysis for large datasets and a new paradigm for describing
sample physical models.

Similarity, Van Herck et al.201 have proposed the use of DNN
to rapidly analyze GISAXS data. As an inital case study, the
authors extracted rotational distributions of hexagonal nanoparticle
arrangements, with the training set sourced from BORNAGAIN.124 The
dataset was generated from synthetic labeled data, which underwent
data augmentation to expand the size of the dataset. The resulting
input dataset comprised of 50 000 training samples and 5000 vali-
dation samples. The two specific neural networks that were selected
were DenseNet121 and DenseNet169.202 Every layer was connected
in a feed-forward manner, allowing feature maps to propagate to
subsequent layers and alleviate the vanishing gradient problem
while promoting feature reuse. This neural network architecture
also has a relatively small number of parameters, which is essential
for neutron and x-ray scattering data due to the limited amount of
training data. For the training process, Kullback–Leibler diver-
gence203 was used as the loss metric during training, using a sto-
chastic gradient descent algorithm as the optimizer and adaptive
learning rate. The learning rate was actively adjusted during train-
ing, with a warm-up phase where the learning rate linearly
increased up to its base value, followed by a decrease at each step.
The resulting algorithms were applied to three different experi-
ments with experiment 3 shown in Fig. 10. The expert scientists
suggest that rotational distribution for experiment 3 contained only
two rotations, while the predictions using neural network were sig-
nificantly different. To indirectly check the accuracy of the predic-
tion, a simulation was performed with predicted and uniform
orientational distributions, and the results were compared to the
measured pattern. The uniform distribution provided a better
match to the experimental data than the expert scientist’s guess,
particularly in reproducing the diffuse scattering. This work shows
great promise that it can be extended to other data analysis tasks
and scattering techniques that require predicting distributions.

Archibald et al.204 used weighted k-nearest neighbors (wKNN)
as an ML algorithm for classifying unknown datasets in small angle
scattering data. Unlike using neural networks, wKNN is a lazy
learning algorithm that compares the unknown data against the
entire set of training data each time, which can be very computa-
tionally intensive. This approach employed the Euclidean distance

FIG. 10. Distribution predicted by DenseNet169 for experiment 3 (iron nanoparticles on the surface of ferroelectric BaTiO3) was compared to a simulation by Van Herck
et al. (Ref. 201) with axis labels omitted intentionally. The range of Qy values varied approximately between �0.7 and 0.7 nm�1, while Qz ranged between 0.3 and
1.4 nm�1. Reprinted from Van Herck et al., Mater. Res. Express 8, 045015 (2021). Copyright 2021 IOP, licensed under a Creative Commons license.
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as the criterion for classification and was able to perform actual
data fitting during classification to inform the user of the model
parameters that best fit the data for the selected model. This
method was tested against 61 models implemented in commonly
used analysis software SASVIEW

205 and showed good performance
against many of the models, especially when a Gaussian process
with or without integrated fitting was employed. However, closely
related models based on spheres or cylinders presented challenges
for classification.

J. Neutron scattering

For neutron scattering, application of ML involved model
training to uncover potential structural parameters. Conventional
methods of processing neutron scattering data involve the usage of

physics-based forward models and comparing against profiles gen-
erated experimentally, which can be very computationally intensive.

Garcia-Cardona et al.206 proposed the use of powder diffrac-
tion data generated from GSAS II,77 as input into both shallow and
DL models to accelerate materials discovery by aiding experts in
the determination of structures. Multiple ML models were applied
such as unconstrained least squares, multilabel regressor with gradi-
ent boosting, and SVM, to material structure prediction. It was
uncovered that these “shallow” models can achieve up to 90% pre-
diction accuracy for certain classes of materials, but deep learning
models such as CNN are better for more general predictions with
accuracy up to 92%. Future model improvement requires explora-
tion of deep learning to alleviate limitations in shallow ML models.

Kanazawa et al.207 proposed a new approach to implementing
an adaptive policy for multistep decision making, using a small-
angle neutron scattering (SANS) experiment in materials science as

FIG. 11. (a) The proposed ML workflow for solving direct and inverse scattering problem. The main workflow was separated into four different block: block I involved scat-
tering experiment design and optimization, block II was designating parameter space and information compression. Block III was structure and properties’ predictions using
NLAE. Finally, block IV was parameter space predictions from the latent space. (b) Design of a surrogate model used to predict the latent space S(L) and S(Q) for a given
set of parameters. The training process involved using MC simulations and NLAE encoding. Simulations were done in areas of interest, and the surrogate was trained
using the new MC result to improve the prediction accuracy. Reprinted from Samarakoon et al., Commun. Mater. 3, 84 (2022). Copyright 2022 Springer Nature, licensed
under a Creative Commons license.
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a proving ground. Even though this is not ML, machine learning
can instead be easily incorporated into the analysis process. Two
methods were proposed, one where decision is based on real-time
similarity search, and the second where an adaptive database search
is used to achieve future measurement confirmation. Though these
two methods used numerical experiments, it was demonstrated to
accelerate an SANS experiment by a factor of 2–3 as compared to
random sampling without prior planning. It is expected that
similar methods can also be applied to speed up a small-angle
x-ray scattering (SAXS) experiment. Future directions related to
this research involve extending the scheme to SANS experiments
for nonspherical scatters and also the requirement to address
potential issues surrounding sequential optimization problems
beyond SANS experiments. In addition, the effect of noisy data
must be understood.

Samarakoon et al.208 proposed a workflow that applied ML to
enable high-level, real-time feedback for neutron scattering. It
involved using nonlinear autoencoders (NLAEs) to compress data
from computationally expensive simulations of neutron scattering
into a latent space. Using the compressed data, a generative model
was then created, which allowed for identification of areas of inter-
est and experiment planning. Description of the pipeline is shown
in Fig. 11. Additionally, hierarchical clustering was used to catego-
rize theoretical phase diagrams and identify experimental phases
from measurements. The NLAE also provided accurate parameter
determination and data handling. The authors demonstrated the
capabilities of this approach on the highly frustrated magnet
Dy2Ti2O7 under pressure, demonstrating that hydrostatic pressures
of up to 1.3 GPa can modify the magnetic interactions of the mate-
rial, leading to prediction of a magnetic phase transition at higher
pressures.

IV. CONCLUSION AND DISCUSSION

Integration of AI methods into the analysis of materials char-
acterization data has been a rapidly expanding research area in
recent years. AI algorithms have enabled more efficient and accu-
rate analysis of complex material systems that may not be feasible
using convectional methods, leading to advancements in the under-
standing of their material properties. Here, we reviewed the appli-
cation of various AI algorithms in popular surface characterization
techniques such as XPS, XANES, EXAFS, XRD, XES, nanoindenta-
tion, SEM, TEM, and GISAS/GIWAXS. A summary of the charac-
terization methods and the AI methods that were reviewed are
presented in Table I.

Such applications have also enabled rapid interpretation of
spectra or images data, allowing for reduction in analysis time,
which leads to an overall increase in the scientific productivity.
Similarly, AI algorithms such as DNN and GA have been used to
analyze XANES and EXAFS data, providing more comprehensive
and accurate information about the local atomic and electronic
structure of materials. AI has also been applied to image characteri-
zation technique such as SEM and TEM to enable rapid characteri-
zation of physical structure. The application of AI in other
characterization techniques, such as XRD, nanoindentation, SEM,
TEM, and GISAS, has also been successful in automating data

processing and analysis, leading to more efficient and accurate
material analysis.

The application of AI into various material characterization
pipelines has allowed scientists to not only increase the rate of anal-
ysis, but also to study materials to a greater depth than is possible
conventionally. The process of training an AI model requires a
large amount of data from either experiment or theoretical model-
ing. Fortunately, the next generation of material characterization
experiments excels at creating large datasets. By leveraging AI abili-
ties in data ingestion both with and without human input, a more
accurate and data driven conclusion will be made compared to con-
vectional experiments.

In addition, modeling and simulations can complement exper-
imental methods. In fact, many of the approaches examined here
involved a combination of experiments and modeling. Together,
modeling and simulation can efficiently explore the scope of
parameter space and is much more practical than conducting a
large number of experiments separately. Furthermore, modeling
can assist in filling in gaps in data and meeting the AI requirements
of a vast and varied dataset.

All in all, incorporating AI into material characterization anal-
ysis pathways offers promising methods to address reproducibility
issues in material characterization. These methods include the use
of AI algorithms to analyze large datasets generated by various
characterization techniques, where they can be used to identify pat-
terns and extract meaningful information. AI can help to standard-
ize the data analysis process and reduce the potential for human
error. AI can be used to verify that all necessary parameters and
metadata are reported,149 which is a major issue in the literature.33

Additionally, AI results can be used to inform the data collection
pipeline. AI can be used to optimize experimental conditions, such
as identifying the optimal parameter settings for XRD or SEM
imaging. AI can also be used to develop predictive models, which
can aid in interpreting large data results. By leveraging AI in material
characterization, we can improve reproducibility, reduce variability in
analysis, and accelerate the pace of scientific discovery. To date, none
of the tools reviewed here are capable of full automation of the mate-
rials characterization data analysis process for data currently being
collected. There is still much work to be done to extract parameters
from either literature or material databases. Most of the current AI
based tools are focused on determination of experimental parame-
ters, which leaves very few avenues available for pre-experiment plan-
ning. As a result, we recommend that further research should be
directed toward alleviating these deficiencies.

Although AI’s ability to inform the scientific process is well
detailed above, there are several challenges and potential problems.
There is always the potential for misuse of AI models. There is a
lack of expertise among computer scientists in materials science
along with the corresponding lack of expertise among material sci-
entists in computer science. The complexity of materials and data
availability can hamper the ability to further expand the use of AI.
These may require more training of experts and the expansion of
open databases holding raw data. The interpretability and operation
of AI models is always open to discussion. It is obvious to us that
AI models need to be continually monitored by experts in order to
detect any shifts in accuracy and be retrained as soon as new data
become available. Experts in both materials characterization and AI
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must be vigilant in checking that the output of the AI models does
not drift over time to unphysical values. While much of this moni-
toring will need to be driven by these subject matter experts
because AI algorithms will continue to become more sophisticated.

The users of the AI analysis tools must also pay close attention to
the output. The analyst using the AI tools is responsible for their
interpretation of the data. The end user must ask themselves if the
obtained results make sense in terms of the sample being analyzed,

TABLE I. Summary of surface characterization methods and their corresponding AI usage references in this review.

Characterization AI methods References

XPS CNN to analyze the chemical composition of multicomponent XPS. Drera et al.139

Data clustering algorithms for quantifying spectral analysis. Aarva et al.140,141

CNN is used to perform human-free analyses of 1D spectroscopic data. Park et al.143

PCA and PLSR are used to create CHO predictive model. Golze et al.138

EXAFS GA applied to examine in situ Li-Sn battery structural changes. Terry et al.149

NN to extract EXAFS parameters for metals and oxide materials. Timoshenko et al.150

Inverse method to examine the backscattering phases and amplitudes. Martini et al.151

K-mean and PCA are used to examine all possible rational structures. Kido et al.152

XANES DNNs to estimate XANES edge position and peaks. Rankine et al.153

NN used to uncover the structural parameters. Liu et al.155

Hierarchical clustering, Decision Tree and NN used to predict bond length, angle, and Voroni
volume.

Mizoguchi and
Kiyohara156

Random forest is used to create XANES based descriptors from databases. Torrisi et al.157

Training data are mapped to RBF before used for NN training and applied to SiO. Kiyohara and
Mizoguchi159

PCA and spectral un-mixing for analysis of transition metals. Khan et al.160

PCA used to uncover spectra edge position, intensity, and minima/maxima of the curvature. Guda et al.163

Ab initio modeling used to construct dataset, which feeds into random forest and NN to
analyze ZnS.

Trejo et al.164

XRD Random forest techniques used for classifying crystal space group. Suzuki et al.172

Logistic regression, KNN, Decision Tree, Random Forest, and Extremely Randomized Tree
were compared for space-group and crystal system classification.

Suzuki et al.173

High-throughput analysis of FeCoNi using ab initio calculation and nonsupervised learning. Iwasaki et al.174

Experimental, modeling, and GAP method are used to extract material properties. Sivaraman et al.175

CNN with Transformer encoder and FCN to identify symmetry and property prediction. Lee et al.176

XTEC pipeline for XRD and XRD temperature clustering. Venderley et al.177

XES PCA, VAE, and t-SNE are used to classify VtC-XES data of organic sulfur. Tetef et al.165

DNN is used to predict line shape of VtC-XES spectra. Penfold and Rankine166

Convolution and GA is used to optimizes line-shape parameters of Mn, Co, and Ni oxides. Huwang et al.168

Nanoindentation MLP, SNN, avNN, and SVM are used for analysis of fiber-matrix material. Konstantopoulos et al.178

CNN used to identify pop-in and pop-out events. Kossman and
Bigerelle180

GA used to analyze unloading and loading curves of graphite and HEA. Burleigh et al.181

SEM CNN used for image enhancement of Au and C samples. de Haan et al.182

DL is used to extract structural information, such as morphology recognition and tracking,
phase identification, and defect analysis.

Ge et al.183

Xception CNN is used on EBSD for phase mapping on Fe–Al. Kaufmann et al.184

Decision tree model used to predict the dimensions of Au nanorods. Shiratori et al.187

TEM Unsupervised ML used to characterize the nanoparticles size. Wen et al.188

Gaussian detection and Hessian response are used to match diffraction patterns of ZnO and TiO2. Klinger et al.192,193

GISAXS/
GIWAXS

NN is used to infer SLD profile from experimental reflectivity curves size. Loaiza and Raza200

NN is used to extract rotational distributions of hexagonal nanoparticle arrangements. Van Herck et al.201

wKNN is used to classify material properties. Archibald et al.204

Neutron
Scattering

DL models to accelerate analysis of powder diffraction. Garcia-Cardona
et al.206

Adaptive policy with multistep decision making is used to accelerate analysis. Kanazawa et al.207

NLAE is used to create auto-descriptors to categorize theoretical phase diagrams and identify
experimental phases.

Samarakoon et al.208
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the application for which it is being used, and the chemical and
physical properties expected to be observed. Ultimately, it is ana-
lysts job to carefully select and ensure their data are accurate and
free of bias and ensure that AI models are appropriately used and
interpreted such that the result from the AI model accurately repre-
sents both the physics and data.

The future of AI in material characterization techniques is
promising, with the potential to revolutionize the field of materials
science. With continued development of AI algorithms and
advancements in computing power, AI models could become even
more accurate and reliable in predicting and characterizing materi-
als in the era of big data. Potential applications include high-
throughput screening, where AI models could rapidly screen large
numbers of potential materials to identify promising candidates, or
in the design of novel energy materials to optimize our use of
energy, such as batteries and solar cells, by improving their effi-
ciency and performance. Additionally, AI could be used to improve
the accuracy of predicting material properties, analyze large
amounts of data from experiments, and discover new materials
with novel properties. Overall, the future of AI in material charac-
terization techniques is exciting, and it has the potential to enable
faster and more accurate characterization of materials, leading to
the discovery of new materials with novel properties and
applications.
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