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Abstract

This paper considers the unavailability of complete channel state information (CSI) in ultra-dense

cloud radio access networks (C-RANs). The user-centric cluster is adopted to reduce the computational

complexity, while the incomplete CSI is considered to reduce the heavy channel training overhead, where

only large-scale inter-cluster CSI is available. Channel estimation for intra-cluster CSI is also considered,

where we formulate a joint pilot allocation and user equipment (UE) selection problem to maximize the

number of admitted UEs with fixed number of pilots. A novel pilot allocation algorithm is proposed by

considering the multi-UE pilot interference. Then, we consider robust beam-vector optimization problem

subject to UEs’ data rate requirements and fronthaul capacity constraints, where the channel estimation

error and incomplete inter-cluster CSI are considered. The exact data rate is difficult to obtain in closed

form, and instead we conservatively replace it with its lower-bound. The resulting problem is non-

convex, combinatorial, and even infeasible. A practical algorithm, based on UE selection, successive

convex approximation (SCA) and semi-definite relaxation approach, is proposed to solve this problem

with guaranteed convergence. We strictly prove that semidefinite relaxation is tight with probability 1.

Finally, extensive simulation results are presented to show the fast convergence of our proposed algorithm

and demonstrate its superiority over the existing algorithms.

I. INTRODUCTION

The fifth-generation (5G) wireless system is excepted to offer a 1000x increase in capacity before

2020 to meet the ever-growing capacity demand in mobile wireless systems [1]. Cloud radio access

network (C-RAN) is an emerging network architecture that shows significant promises in achieving
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this goal [2]. A typical C-RAN has three main components: 1) Baseband unit (BBU) pool hosted

in a cloud data center; 2) Radio remote heads (RRHs) geographically distributed over the coverage

area; 3) High-bandwidth low-latency fronthaul links that connect the RRHs to the BBU pool. The

key feature of C-RAN is that the baseband signal processing in traditional base stations (BSs) are

migrated to the BBU pool so that the conventional BSs can be replaced by low-functionality RRHs,

which transmit/receive radio frequency signals. Due to their simple functionalities, RRHs can be

densely deployed to provide ubiquitous service access for a large number of user equipments (UEs)

in hot spots such as shopping malls, stadium, etc. Unlike the conventional ultra-dense small cells

where cochannel interference (CCI) is a limiting factor [3], under ultra-dense C-RAN architecture,

centralized signal processing such as coordinated multi-point (CoMP) technique can be adopted

to effectively mitigate the CCI thanks to the powerful computational capability at the BBU pool.

Ultra-dense C-RANs are usually defined as those networks that there are more RRHs than the

UEs [4]–[6], i.e., λr > λu, where λr and λu represent the density of RRHs and UEs, respectively.

However, these works have not provided quantitative values for those densities. In [7], Ge et.

al showed that the density of RRHs in 5G ultra-dense networks is expected to be up to 40-50

RRHs/km2 to satisfy the seamless coverage requirements.

Recently, transmission design has been extensively studied to deal with various technical issues

in conventional C-RAN such as reducing network power consumption in [8], or/and tackling limited

fronthaul capacity constraints in [9], or/and reducing the computational complexity [10] where user-

centric cluster method is adopted. However, the most troublesome challenge is that dense C-RAN

requires large amount of CSI to facilitate centralized signal processing. The acquisition of these

CSI requires large amount of training overhead that increases with the network size. Results in [11]

showed that the network performance may even decrease with increasing number of RRHs when

taking into account the cost of acquiring CSI. One promising way to reduce the training overhead

is to consider the incomplete CSI case, where each UE only measures its CSI from the RRHs in

its serving cluster (named intra-cluster CSI) and only tracks the large-scale fading (path loss and

shadowing) for the CSI outside its cluster (named inter-cluster CSI). Recently, transmission design

considering the incomplete CSI has attracted extensive research interests [12]–[14].

However, intra-cluster CSI was assumed to be perfectly known in [12]–[14], which is impractical

for dense C-RAN. The reasons are given as follows. To estimate the intra-cluster CSI in time-

division duplex (TDD) C-RAN, the uplink training pilot sequences sent from the UEs that share at
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least one serving RRH should be mutually orthogonal so that the BBU pool can differentiate the

CSI of the shared RRH to the corresponding UEs. One naive method is to assign all the UEs with

mutually orthogonal pilot sequences. However, the number of time slots required for training will

increase linearly with the number of UEs, which is unaffordable for ultra-dense C-RAN with large

number of UEs. Hence, to support more UEs, one should allow some UEs to reuse the same pilots.

The pilot reuse scheme will incur the pilot contamination issue, which results in sizeable channel

estimation error. Hence, in this paper, besides the incomplete inter-cluster CSI, we also consider

channel estimation procedure of intra-cluster CSI for a user-centric ultra-dense TDD C-RAN by

designing pilot reuse scheme, and then design beam-vectors based on imperfect intra-cluster CSI.

To the best of our knowledge, this paper is the first attempt to unify the channel estimation and

transmit beam-vector design for ultra-dense C-RAN into one general framework.

Pilot reuse design has been extensively studied in massive MIMO [15]–[19], where the proposed

schemes are mainly based on the idea of assigning the same pilot to the UEs with different angles

due to the special feature of massive MIMO. Due to the limited number of antennas at the RRHs,

the pilot reuse schemes designed for massive MIMO cannot be extended to the ultra-dense C-RAN

network. Recently, [20] proposed a novel pilot allocation scheme for user-centric C-RAN based

on the graph coloring algorithm such as the Dsatur algorithm [21]. The aim of this algorithm is to

minimize the number of required pilots for a given set of UEs under some practical constraints.

However, for the sake of low implementation cost, the current LTE standards [22] suggests that

the proportion of pilots allocated to the UEs for training is fixed during one coherence time, i.e.,

where the training overhead of 1% is considered in LTE specification with a 10 ms training period

[22]. Hence, we should consider the joint pilot allocation and UE selection method to maximize

the number of admitted UEs under fixed number of available pilots. In addition, the transmission

beam-vector design is not considered in [20]. In this paper, we also consider robust beam-vector

design under the pilot reuse scheme by taking into account the joint effects of pilot contamination

and incomplete inter-cluster CSI. Unfortunately, due to the imperfect intra-cluster CSI, the beam-

vector design based on the well-known weighted minimum mean square error (WMMSE) method

[23], that has been widely applied in the C-RAN setup [9], [10], [13], [24]–[26] with perfect intra-

cluster CSI, cannot be extended to solve the robust beam-vector optimization problem considered

in this paper. Specifically, the contributions of this paper are given as follows:

1) We consider a two-stage optimization problem for dense C-RAN, i.e., channel estimation
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for intra-cluster CSI in Stage I and robust transmit beam-vector design in Stage II. Due to

the constraint that the UEs served by at least one common RRH should be allocated with

different pilots, some UEs may not be supported for given small number of available pilots

τ , considering large number of UEs in ultra-dense C-RAN. Hence, in Stage I, we formulate

a joint UE selection and pilot allocation optimization problem to maximize the number of

admitted UEs under several practical constraints. To solve this problem, we first apply the

Dsatur algorithm to find the minimum number of required pilots n∗ for supporting all UEs

in the network. If n∗ > τ , one novel UE removement method is proposed by considering

the multi-UE pilot interference. If n∗ < τ , all UEs can be admitted and a novel algorithm is

proposed to fully reallocate all available pilots to further reduce pilot contamination.

2) Based on the results from Stage I, in Stage II transmit beam-vectors are designed to minimize

the transmit power based on the imperfect intra-cluster CSI and incomplete inter-cluster CSI.

Both UEs’ data rate and fronthaul capacity constraints are considered. It is observed that

the expectation with respect to the channel estimation error and small-scale inter-cluster CSI

makes it difficult to derive closed-form data rate expressions. To deal with this difficulty, we

conservatively replace the data rate of each UE with its lower bound obtained by the Jensen’s

inequality. Furthermore, considering that the problem may be infeasible, we construct an

alternative optimization problem that simultaneously maximizes the number of admitted UEs

and minimizes the transmit power. Then, one iterative algorithm based on successive convex

approximation (SCA) technique [27] and semi-definite relaxation approach [28] is proposed

to solve this optimization problem with guaranteed convergence. We prove that semidefinite

relaxation is tight with probability 1.

This paper is organized as follows. In Section II, we introduce the signal transmission model

along with the channel estimation for intra-cluster CSI. In Section III, we propose the joint pilot

allocation and UE selection algorithm. In Section IV, we develop a robust transmit beam-vector

optimization algorithm while taking the channel estimation error into account. Extensive simulation

results are provided in Section V. Finally, this paper is concluded in Section VI.

Notations: For a set A, |A| is the cardinality of A, while for a complex number x, |x| represents

the magnitude of x. ‘s.t.’ denotes ‘subject to’. E{x}{y} denotes the expectation of y over x. The

complex Gaussian distribution is denoted as CN (·, ·) and C is used to represent the complex set.

The lower-case bold letters means vectors and upper-case bold letters denote matrices.
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Fig. 1. Illustration of a C-RAN with thirteen RRHs and six UEs, i.e., I = 13, K = 6. To reduce the operation cost, mmWave

communication is used to establish the fronthaul link that connects each RRH to the BBU pool. To reduce the complexity, each

UE is served by the RRHs within the dashed circle centered around the UE.

II. SYSTEM MODEL
A. Signal Transmission Model

Consider a downlink dense TDD C-RAN with I RRHs and K UEs as shown in Fig. 1. Each RRH

and each UE are equipped with M transmit antennas and a single receive antenna, respectively.

Denote the set of RRHs and UEs as I = {1, · · · , I} and Ū = {1, · · · , K}, respectively. Each

RRH is connected to the BBU pool through the wireless fronthaul links employing mmWave

communication technologies, which are represented by dark lines in Fig. 1. The BBU pool is

assumed to have all UEs’ data and distribute each UE’s data to a carefully selected set of RRHs

through the wireless fronthaul links. We further assume that all the RRHs transmit to the UEs with

the carrier frequency below 6 GHz. As a result, the transmission from the BBU pool to the RRHs

and the transmission from RRHs to the UEs can take place at the same time without interfering

with each other.

The set of UEs that are admitted in this network is denoted by U ⊆ Ū . To reduce the

computational cost for dense C-RAN, the user-centric cluster method is adopted, e.g., each UE

is only served by its nearby RRHs since distant RRHs contribute little to the UE’s signal quality

due to the severe path loss. Denote Ik ⊆ I and Ui ⊆ U as the set of RRHs that potentially

serve UE k and the set of UEs that are potentially served by RRH i, respectively. Note that for

ultra-dense C-RAN with many UEs and RRHs, the clusters for the UEs may overlap with each
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other, i.e., there may exist two distinct UEs k and k′ that Ik ∩Ik′ 6= ∅, for ∀k, k′ ∈ U . In practice,

the clusters for each UE are formed based on the long term channel state information (CSI) such

as large-scale fading [29]. Specifically, each UE measures its average channel gains to the RRHs

and sends them to the BBU pool. Then, based on the obtained average channel gains, the BBU

pool decides the cluster for each UE based on cluster formation techniques such as the ones in

[29]. The dense C-RAN can be deployed in hot areas such as shopping mall and stadium, where

the average channel gains change slowly and depends mainly on UEs’ locations [3]. Hence, the

clusters can be formed on a long time scale and are assumed to be fixed.

Denote hi,k ∈ CM×1 and wi,k ∈ CM×1 as the channel vector and the beam-vector from RRH i

to UE k, respectively. Then, the baseband received signal at UE k is given by

yk =
∑

i∈Ik
hH
i,kwi,ksk︸ ︷︷ ︸

desired signal

+
∑

l 6=k,l∈U

∑
i∈Il

hH
i,kwi,lsl︸ ︷︷ ︸

interference

+zk, (1)

where sk is the data symbol for UE k, zk is the additive complex white Gaussian noise that is

assumed to follow the distribution CN (0, σ2
k). It is assumed that E{|sk|2} = 1 and E{sk1sk2} = 0

for k1 6= k2, ∀k1, k2 ∈ U . The channel vector hi,k can be decomposed as hi,k =
√
αi,kh̄i,k, where

αi,k denotes the large-scale channel gain that includes the path loss and shadowing, and h̄i,k denotes

the small-scale fading following the distribution of CN (0, I).

B. Channel Estimation for Intra-cluster CSI

To design the beam-vectors for all the UEs, the overall CSI over the network should be available

at the BBU pool. However, it is an unaffordable task to acquire all CSI for dense C-RAN with

large number of RRHs and UEs due to limited training resources. To handle this issue, we assume

that each UE k only measures the CSI to the RRHs in its cluster Ik, while for the RRHs out of

the cluster we assume that the BBU pool only knows the large-scale channel gains, i.e., {αi,k,∀i ∈

I\Ik, k ∈ U}. Note that the large-scale channel gains are used to manage the multiuser interference.

If these gains are set to zero, the resulting solution may be too optimistic and may not satisfy

UEs’ quality of service (QoS) requirements as shown in [14].

In this paper, we assume that τ time slots are used for channel training or equivalently the length

of the pilot sequences is τ , which is assumed to be smaller than the number of total UEs K for

the dense network, i.e., τ < K. Note that the maximum number of orthogonal pilot sequences is

equal to the pilot length τ . Hence, in orthogonal pilot assignment scheme, the maximum number
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of UEs that can be simultaneously served by C-RAN is upper bounded by τ . To support more

UEs, we propose a pilot reuse scheme in this paper.

Denote the available pilot set as Q = {1, 2, · · · , τ}, and the corresponding orthogonal pilot

sequences as Q = [q1, · · · ,qτ ] ∈ Cτ×τ , which satisfies the orthogonal condition, i.e., QHQ = I.

We denote an arbitrary pilot reuse scheme as P(U ,Q) = {(k, πk) : k ∈ U , πk ∈ Q}, where (k, πk)

denotes that UE k is allocated with pilot sequence qπk . In addition, define Kπ = {k : πk = π} as

the set of UEs that reuse the πth pilot sequences.

Given the pilot reuse scheme P(U ,Q), the UEs transmit their pilot sequences to the RRHs to

estimate the channels during the uplink training phase. Specifically, the received pilot signal at

RRH i is
Yi =

∑
k∈U

√
pthi,kq

H
πk

+ Ni, (2)

where pt is the pilot transmit power at each UE, and Ni ∈ CM×τ is the additive Gaussian noise

matrix received during the training phase, whose elements are independently generated and follow

the distributions of CN (0, σ2).

To obtain channel hi,k, i ∈ Ik, the BBU pool first multiplies Yi by qπk , which yields

yi,k =
1
√
pt

Yiqπk

= hi,k +
∑

l∈Kπk\{k}

hi,l + ni, (3)

where ni = 1√
pt

Niqπk . Since qπk is a unit-norm vector, it is easy to show that ni is still Gaussian

distribution whose elements are independently and identically distributed as CN (0, σ
2

pt
). The MMSE

estimate of channel hi,k is given by

ĥi,k =
αi,k∑

l∈Kπk
αi,l + σ̂2

yi,k (4)

with σ̂2 = σ2/pt. According to the property of MMSE estimate [30], channel estimation error

h̃i,k = hi,k − ĥi,k is independently distributed as CN (0, δi,kI), where δi,k is given by

δi,k =
αi,k

(∑
l∈Kπk\{k}

αi,l + σ̂2
)

∑
l∈Kπk

αi,l + σ̂2
. (5)

In the next two sections, we propose a two-stage optimization method to optimize the transmis-

sion in dense C-RAN. Specifically, in Stage I, we provide a joint pilot allocation and UE selection

algorithm to maximize the number of admitted UEs with fixed number of available pilots in Section

III; in Stage II, based on the results from Stage I, a robust beam-vector optimization algorithm is

proposed to minimize the transmit power in Section IV, while considering the pilot contamination.
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III. STAGE I: PILOT ALLOCATION AND UE SELECTION DESIGN

In this stage, we aim to design the pilot allocation scheme and UE selection method to maxi-

mize the number of admitted UEs under several practical constraints with fixed number of pilot

sequences.

A. Problem Formulation

First, in conventional TDD communication systems, all UEs in the same macro-cell should be

allocated with orthogonal training resources for the macro-BS to distinguish the channels from

the UEs [31]. Similarly, in dense C-RAN, the UEs served by the same RRH should be allocated

with orthogonal training sequences. This kind of constraints can be mathematically expressed as

follows:
C1 : qH

πk
qπ′k = 0, for k, k′ ∈ Ui, k 6= k′,∀i ∈ I. (6)

For example, in Fig. 1, RRH 11 jointly serves UE 1, UE 4 and UE 6. Then the following conditions

should be satisfied: qH
π1

qπ4 = 0,qH
π1

qπ6 = 0, and qH
π4

qπ6 = 0.

Second, to reduce the channel estimation error, the reuse times for each pilot sequence should

be restricted under a predefined value. Denote the number of UEs that share pilot l as nl, then the

constraints can be expressed as
C2 : nl ≤ nmax,∀l ∈ Q. (7)

where nmax is the maximum reuse time for each pilot. Constraint C2 means that we should reuse

the pilot sequences in a fair way to avoid the extreme case where one pilot sequence is reused

many times while there are several unused pilot sequences. This extreme case will deteriorate the

system performance.

Here, we aim to find the maximum number of UEs that can be served with a fixed number

of pilot sequences. Hence, the joint pilot allocation and UE selection problem at Stage I can be

formulated as

P1 : max
U⊆Ū ,P(U ,Q)

|U| (8a)

s.t. C1,C2.

Problem P1 can be considered as a resource-assignment problem, which is difficult to solve in

general. The optimal solution can be obtained by the exhaustive search method, where one should

check all possible pilot allocation schemes and choose one with the maximum number of admitted

UEs while satisfying the constraints C1 and C2. However, the complexity of the exhaustive search
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UE 1 UE 2

UE 3
UE 4

UE 5UE 6

UE 1 UE 2

UE 3
UE 4

UE 5UE 6
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UE 1 UE 2

UE 3

UE 6

(c) (d)

UE 1 UE 2

UE 3
UE 4
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Fig. 2. (a) Construction of the undirected graph for the network in Fig. 1, where the vertexes denotes the UEs and any two UEs

sharing at least one RRH should be connected with each other; (b) The colored graph after applying the Dsatur algorithm [20]

with nmax = 2, the minimum number of pilot sequences required is n∗ = 3; (c) The UE selection and pilot reallocation result

after applying Algorithm 1 when τ = 2 and nmax = 2, the number of selected UEs is four; (d) The pilot reallocation result

after applying Algorithm 2 when τ = 4 and nmax = 2. In this colored graph, UE 1 and UE 2 use different pilots to avoid the

pilot interference, and the same holds for UE 5 and UE6. In addition, UE 3 and UE 4 are allocated with different pilots, which

additionally reduces the pilot interference.

method increases exponentially with the number of UEs, which is not practical for dense C-RAN. In

the following, we provide a low-complexity pilot allocation scheme, which is suitable for practical

applications.

B. Pilot Allocation Scheme

Constraints C1 can be represented by a K ×K binary matrix B, where the kth row and k′th

column of matrix B is given by

bk,k′ =

 1, if Ik ∩ Ik′ 6= ∅ and k 6= k′

0, otherwise.
(9)

When any two UEs are served by at least one common RRH, the corresponding element in B

should be one and these two UEs should be allocated with different pilots. Otherwise, the element is

zero and the UEs can share the same pilot. Based on the matrix B, we can construct an undirected

graph to describe the relationship between any two UEs for constraint C1, where any two UEs that

are served by at least one common RRH should be connected with each other. For the network in

Fig. 1, the corresponding graph is shown in Fig. 2 (a), where any two UEs that are served by at

least one common RRH are connected together. The graph coloring algorithm such as the Dsatur

algorithm [21], which aims for coloring the vertexes of a graph with the minimum number of
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different colors under the same constraints in C1 and C2 for a given set of UEs, has been used in

[20] for user-centric C-RAN to design the pilot allocation. For the undirected graph in Fig. 2 (a),

the final colored graph is shown in Fig. 2 (b) after using the Dsatur algorithm. In this example,

the minimum number of colors (pilots) required is three. The computational complexity of this

algorithm is low. However, given the set of pilot sequences, how to design the pilot allocation

scheme jointly with the UE selection process that maximizes the number of admitted UEs needs

further investigation. To resolve this issue, we first adopt the Dsatur algorithm to find the minimum

number of colors that are required for all the UEs in Ū while satisfying constraints C1 and C2. If

the minimum number of required pilots is larger than the number of available pilots, some UEs

should be removed. Otherwise, all UEs can be serve. For the latter case, although all users can be

admitted, the pilot allocation results may be that some pilots have not been allocated by the Dsatur

algorithm while some pilots are reused by up to nmax users, which wastes the pilot resources. In

this case, we can reallocate all of the available pilots to the UEs to reduce the pilot contamination.

The details of each case will be discussed in the following.

Denote the minimum number of pilots required by the Dsatur algorithm as n∗. In the following,

we discuss two cases: 1) n∗ > τ ; 2) n∗ < τ . When n∗ = τ , no additional operation is required.

Case I: n∗ > τ . In this case, some UEs should be removed so that the minimum number of

required pilots is no larger than τ . Denote θk
∆
=
∑

k′ 6=k,k′∈Ū bk,k′ as the total number of different

UEs to which UE k is connected to. In general, the UE with the largest θk should be removed

since many UEs should use different pilots from that used by this UE, which will increase the

number of required pilots. However, there are some cases that different UEs share the same largest

θk value, and randomly removing one UE may incur inferior performance. Intuitively, the UE that

incurs the highest pilot contamination should be removed. To this end, we first define a metric

ηk,k′ to measure the level of pilot contamination between any two unconnected UEs when they are

allocated with the same pilot,

ηk,k′ = log

(
1 +

∑
i∈Ik′

αi,k∑
i∈Ik αi,k

)
+ log

(
1 +

∑
i∈Ik αi,k′∑
i∈Ik′

αi,k′

)
. (10)

The above definition of ηk,k′ is inspired by the channel estimation error in (5). Obviously, the

larger ηk,k′ means more severe pilot contamination between UE k and UE k′ when the same pilot

is allocated to them. Then, define ξk =
∑

k′∈Kπk\{k}
ηk,k′ as the value to measure the level of pilot

contamination when keeping UE k. Then, the UE with the largest value of ξk should be removed.
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Based on this idea, we provide a UE selection and pilot reallocation process in Algorithm 1.

By using this algorithm for the case of τ = 2 and nmax = 2 for the network in Fig. 1, the UE

selection and pilot allocation result is shown in Fig. 2 c), where the number of selected UEs is

four.
Algorithm 1 UE selection and pilot reallocation algorithm for Case I

1: Initialize the matrix B, the UE set U = Ū = {1, · · · , K}, the initial number of required pilots

n∗ obtained from the Dsatur algorithm;

2: While n∗ > τ

3: Find k∗ = arg maxk∈U θk. If there are more than one UE with the same values of θk,

remove the UE with the largest ξk;

4: Remove UE k∗ from U , i.e., U=U/k∗, and update matrix B with current U ;

5: Use the Dsatur algorithm to calculate n∗ with B and U ;

Case II: n∗ < τ . In this case, all UEs can be admitted in this stage and only part of the available

pilots are allocated. However, all the available pilots should be allocated to UEs to reduce the pilot

contamination as much as possible. For example, in Fig. 2 b) with three allocated pilots, there may

exist measurable pilot interference between UE 1 and UE 2 since they are not so far away from

each other. A similar issue holds for UE 3 and UE 4 or UE 5 and UE 6. When there are four

available pilots, the pilots can be fully used and reallocated to resolve this issue. For example, in

Fig. 2 d), when there are four pilots, the UEs in each pair are able to be allocated with different

pilots. Hence, the pilot contamination can be additionally mitigated.

As the definition of ηk,k′ in (10) shows, larger ηk,k′ means more severe pilot contamination

between UE k and UE k′ when the same pilot is allocated to them. The pair of UEs with larger

ηk,k′ should be allocated with different pilots, or equivalently these two UEs should be connected

with each other. For the pair of UEs with smaller ηk,k′ , they can be allocated the same pilot. Hence,

to reconstruct the undirected graph, a threshold ηth is introduced to determine whether two UEs

can reuse the same pilot. Specifically, when ηk,k′ > ηth, no reuse is allowed for these two UEs.

Otherwise, these two UEs can reuse the same pilot. Based on ηth, the binary matrix B can be

reconstructed as follows

bk,k′ =


1, if Ik ∩ Ik′ 6= ∅ and k 6= k′,

1, if ηk,k′ > ηth, Ik ∩ Ik′ = ∅ and k 6= k′,

0, otherwise.

(11)
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Obviously, when ηth is small, more UEs will be connected with each other and more orthogonal

pilots are required. In the extreme case when ηth < min{ηk,k′}, all UEs will be connected with

each other and the number of required pilots is equal to the number of total UEs K. On the other

hand, when ηth is very large, less number of UEs will be connected and the number of required

pilots will decrease. In the extreme case when ηth ≥ max{ηk,k′}, the reconstructed binary matrix

B in (11) reduces to the conventional binary matrix B in (9), where the pairs of UEs without

sharing the same RRHs will not be connected with each other. The number of required pilots

in this case will be equal to n∗. As it is assumed that τ < K, there must exist at least one ηth

between min{ηk,k′} and max{ηk,k′} that the number of required pilots is equal to τ . As a result,

the bisection search method can be adopted to find the ηth such that the required number of pilots

is equal to τ . The details are given in Algorithm 2. Fig. 2 d) shows the pilot allocation results

after using Algorithm 2.
Algorithm 2 Pilot reallocation algorithm for Case II

1: Initialize the lower-bound ηth,LB = min{ηk,k′}, the upper-bound ηth,UB = max{ηk,k′}, the

initial number of required pilots n∗ obtained from the Dsatur algorithm;

2: While n∗ 6= τ

3: Set ηth = (ηth,LB + ηth,UB)/2, update the binary matrix B in (11). Use the Dsatur

algorithm to calculate n∗ with B.

4: If n∗ > τ , set ηth,LB = ηth; If n∗ < τ , set ηth,UB = ηth;

C. Complexity analysis

Now, we provide the complexity analysis for the proposed pilot assignment and UE selection

scheme. The computational complexity of the Dsatur algorithm in [20] is on the order of O (K2).

For Case I, the user selection algorithm in Algorithm 1 requires the Dsatur algorithm to be

executed for at most K times to find the final set of admitted UEs, and thus the total complexity is

on the order of O (K3). For Case II, when ηth falls in a specific region [a, c], the number of required

pilots n∗ obtained from the Dsatur algorithm will be equal to τ . Hence, when ηth,UB−ηth,LB < c−a,

Algorithm 2 will terminate. As a result, the maximum number of iterations required by Algorithm

2 is upper bounded by log2 (|max{ηk,k′} −min{ηk,k′}|/(c− a)). As a result, the total complexity

of Algorithm 2 is O (K2log2 (|max{ηk,k′} −min{ηk,k′}|/(c− a))).

For comparison, we also provide the complexity analysis for the exhaustive search method. For

a given set of UEs U with |U| = l, the total number of pilot allocation results is given by τ l. For
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each pilot allocation, one should check whether constraints C1 and C2 are satisfied or not. The

total number of possible UE sets is given by
∑K

l=1C
l
K . As the result, the total complexity of the

exhaustive search method is
∑K

l=1 C
l
Kτ

l, which is much higher than the proposed algorithm and

will be unaffordable for dense C-RAN with large number of UEs.

IV. STAGE II: ROBUST BEAMFORMING DESIGN

In this stage, we first formulate the beamforming optimization problem to minimize the transmit

power with the UEs selected from Stage I while considering the effect of pilot contamination due

to pilot reuse scheme in Section III. Then, a low-complexity beam-vector optimization algorithm

is proposed to solve this optimization problem along with the complexity analysis.

A. Problem formulation

Denote the set of UEs selected from Stage I as Ũ . The beam-vector for each UE can be merged

into a single large-dimension vector wk = [wH
i,k, ∀i ∈ Ik]H ∈ C|Ik|M×1. Similarly, we define a

set of new channel vectors gl,k = [hH
i,k,∀i ∈ Il]H ∈ C|Il|M×1, representing the aggregated perfect

CSI from the RRHs in Il to UE k. Also, define g̃k,k = [h̃H
i,k,∀i ∈ Ik]H ∈ C|Ik|M×1 and ĝk,k =

[ĥH
i,k,∀i ∈ Ik]H ∈ C|Ik|M×1 as the aggregated CSI error and estimated CSI from the RRHs in Ik to

UE k, respectively. Since channel estimation error is expressed as g̃k,k = gk,k − ĝk,k, the received

signal model in (1) can be rewritten as

yk = ĝH
k,kwksk︸ ︷︷ ︸

Desired signal

+ g̃H
k,kwksk︸ ︷︷ ︸

Self−interference

+
∑

l 6=k,l∈Ũ
gH
l,kwlsl︸ ︷︷ ︸

Interference from other UEs

+zk,∀k ∈ Ũ . (12)

As in most of existing works [32], [33], we consider the achievable data rate where the term

corresponding to the channel estimation error in (12) is regarded as Gaussian noise. Specifically,

the achievable data rate for UE k is written as

rk =
T − τ
T

E

{
log2

(
1 +

∣∣ĝH
k,kwk

∣∣2∣∣g̃H
k,kwk

∣∣2 +
∑

l 6=k,l∈Ũ

∣∣gH
l,kwl

∣∣2 + σ2
k

)}
,∀k ∈ Ũ , (13)

where T denotes the coherence time of the channel in terms of time slots, the expectation is taken

with respect to the unknown channel estimation errors
{

h̃i,k, i ∈ Ik,∀k ∈ Ũ
}

, and the small-scale

inter-cluster CSI {hi,k, i ∈ I\Ik}. Each UE’s data rate should be larger than its minimum data rate

requirement Rk,min:
C3 : rk ≥ Rk,min,∀k ∈ Ũ . (14)

Since the capacity of fronthaul links is upper bounded by the available bandwidth, each fronthaul

link should be imposed with the fronthaul capacity constraints:

keikoknudson
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at IEEE Transactions on Wireless Communications, published by IEEE. Copyright restrictions may apply. doi: 10.1109/TWC.2017.2788001




14

C4 :
∑

k∈Ui
ε
(
‖wi,k‖2) rk ≤ Ci,max,∀i ∈ I, (15)

where ε (·) is an indicator function, defined as ε (x) = 1 if x 6= 0, otherwise, ε (x) = 0, and Ci,max

is the maximum data rate that can be supported by the ith fronthaul link.

Finally, each RRH has its own power constraint, represented as

C5 :
∑

k∈Ui
‖wi,k‖2 ≤ Pi,max, i ∈ I, (16)

where Pi,max is the power constraint of RRH i.

In Stage II, we aim to jointly optimize the UE-RRH associations and beam-vectors to minimize

the total transmit power of the dense C-RAN network, while guaranteeing the rate constraints in

C3, the fronthaul capacity constraints in C4, and the per-RRH power constraints in C5. Specifically,

this optimization problem can be formulated as

P2 : min
w

∑
k∈Ũ
∑

i∈I ‖wi,k‖2

s.t. C3,C4,C5,
(17)

where w denotes the collection of all beam-vectors.

The imperfect intra-cluster CSI and incomplete inter-cluster CSI make the accurate closed-form

expression of the data rate difficult to obtain. In the following, we first obtain the lower-bound of

the data rate and replace it with this term to make the optimization problem in (17) more tractable.

By using Jensen’s inequality, the lower bound of the data rate can be derived as

rk ≥
T − τ
T

log2

1 +

∣∣ĝH
k,kwk

∣∣2
E
{∣∣g̃H

k,kwk

∣∣2}+
∑

l 6=k,l∈Ũ E
{∣∣gH

l,kwl

∣∣2}+ σ2
k

 (18)

=
T − τ
T

log2

(
1 +

∣∣ĝH
k,kwk

∣∣2
wH
k Ek,kwk +

∑
l 6=k,l∈Ũ wH

l Al,kwl + σ2
k

)
(19)

∆
= r̃k, (20)

where Ek,k = blkdiag {δi,kIM×M , i ∈ Ik}, and Al,k = E
{
gH
l,kgl,k

}
∈ CM |Il|×M |Il|. To obtain the

expression of Al,k, we define the indices of Il as Il = {sl1, · · · , sl|Il|}. Then, we have

Al,k =


(Al,k)1,1 · · · (Al,k)1,|Il|

... . . . ...

(Al,k)|Il|,1 · · · (Al,k)|Il|,|Il|

 , l 6= k, (21)
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where (Al,k)i,j ∈ CM×M , i, j ∈ 1, · · · , |Il| is the block matrix of Al,k at the ith row and jth

column, given by

(Al,k)i,j =



ĥsli,kĥ
H
slj ,k

, if sli, s
l
j ∈ Ik, i 6= j,

ĥsli,kĥ
H
slj ,k

+ δsli,kIM×M , if sli, s
l
j ∈ Ik, i = j,

αsli,kIM×M , if sli, s
l
j /∈ Ik, and i = j,

0M×M, otherwise.

(22)

It can be easily verified that Al,k is a positive definite matrix. In [13], we provided the accurate data

rate expression for the special case of non-overlapped cluster. We showed that the approximation

error was within 3% in the considered setups.

By replacing the data rate rk in data rate constraint C3 with its lower-bound or achievable data

rate r̃k given in (20), constraint C3 can be rewritten as

C6 : r̃k ≥ Rk,min,∀k ∈ Ũ , (23)

which can be equivalently rewritten as

C7 :

∣∣ĝH
k,kwk

∣∣2
wH
k Ek,kwk +

∑
l 6=k,l∈U wH

l Al,kwl + σ2
k

≥ ηk,min (24)

where ηk,min = 2
Rk,minT

T−τ − 1. In addition, by replacing the data rate rk in fronthaul constraints C4

with its lower-bound r̃k, constraints C4 can be rewritten as

C8 :
∑

k∈Ui
ε
(
‖wi,k‖2) r̃k ≤ Ci,max, ∀i ∈ I. (25)

Then, Problem P2 can be approximately transformed as

P3 : min
w

∑
k∈Ũ

∑
i∈I
‖wi,k‖2 (26a)

s.t. C5,C7,C8. (26b)

To simplify the fronthaul capacity constraints C8, we first provide the following theorem.

Theorem 1: Denote the optimal solution of Problem P3 as w? =
[
w?
j ,j ∈ Ũ

]
. Then the minimum

rate constraints are met with equality at the optimal point, i.e., r̃k(w?) = Rk,min,∀k ∈ Ũ .

Proof: Please see Appendix A. �
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Based on Theorem 1, the expressions of rate lower bound r̃k’s in constraint C8 can be replaced

by their rate targets, which yields the following optimization problem

P4 : min
w

∑
k∈Ũ

∑
i∈I
‖wi,k‖2 (27a)

s.t. C5,C7, (27b)

C9 :
∑

k∈Ui
ε
(
‖wi,k‖2)Rk,min ≤ Ci,max, ∀i ∈ I. (27c)

However, Problem P4 is still difficult to solve due to the following reasons. First, due to the

per-RRH power constraints of C5 and the fronthaul capacity constraints of C9, the system may

not be able to support all the UEs that are selected in Stage I. Second, constraint C9 contains the

non-smooth and non-differential indicator function, which is usually named as an mixed-integer

non-linear programming (MINLP) problem that is NP-hard to solve. One can solve the problem

via the exhaustive search method. Specifically, for each given set of UE-RRH associations, one

should check whether Problem P4 is feasible or not, if feasible, then the problem can be solved.

Hence, the complexity is on the order of O
(

2|Ũ|I
)

, which is prohibitive for dense C-RAN with

large number of UEs and RRHs. Third, due to the presence of the channel estimation error, the

conventional weighted minimum mean square error (WMMSE) method [23] that has been used

in [9], [10], [13] for the perfect intra-cluster CSI case cannot be used for the problem considered

here. Hence, even given the set of selected UEs and UE-RRH associations, it is still difficult to

check the feasibility of Problem P4.

B. Low-complexity Algorithm

1) UE selection method: Denote the set of admitted UEs as U . Inspired by the UE selection

algorithm in [34], we construct the following alternative optimization problem by introducing a

series of auxiliary non-negative variables {xk}k∈U :

P5 : min
w,{xk≥0}k∈U

∑
i∈I

∑
k∈Ui
‖wi,k‖2 + Γ

∑
k∈U

xk (28a)

s.t. C5,C9, (28b)

C10 :
∣∣ĝH
k,kwk

∣∣2 + xk ≥ ηk,min

(
wH
k Ek,kwk +

∑
l 6=k,l∈U

wH
l Al,kwl + σ2

k

)
,∀k (28c)

where Γ is a large constant. Obviously, Problem P5 is always feasible. If the optimal solution

{xk,∀k ∈ U} are equal to zeros, i.e., {xk = 0,∀k ∈ U}, all UEs can be admitted. Otherwise, some

UEs should be removed. The large constant Γ acts as a penalty factor that forces as many xks to

zero as possible, so that the number of admitted users is maximized. Hence, the objective function
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of Problem P5 is to maximize the number of admitted users while simultaneously minimizing the

transmit power.

Intuitively, the UE with the largest xk should have the highest priority to be removed since it

has the largest gap from the rate target. Based on this idea, we provide a low-complexity algorithm

to solve Problem P5 in Algorithm 3. The main idea is to remove the UE with the largest xk in

each iteration.
Algorithm 3 Low-complexity UE selection Algorithm

1: Initialize the set of users U = Ũ from Stage I;

2: Given U , solve Problem P5 to obtain {xk}k∈U and w;

3: If xk = 0,∀k ∈ U , output w and U?=U , terminate; Otherwise, find k?=arg maxk∈U xk, remove

user k? and update U = U\k?, go to step 2.

2) Method to deal with the indicator function: Similar to [13], we approximate the non-smooth

indicator function as a fractional function fθ(y) = y
y+θ

, where θ is a small positive value. By

replacing the indicator function in Problem P5 with fθ(y), Problem P5 can be approximated as

P6 : min
w,{xk≥0}k∈U

∑
k∈U

∑
i∈I
‖wi,k‖2 + Γ

∑
k∈U

xk (29a)

s.t. C5,C10,C11 :
∑

k∈Ui
fθ
(
‖wi,k‖2)Rk,min ≤ Ci,max,∀i ∈ I. (29b)

Although constraints C11 are still non-convex since fθ(x) is a concave function, it is the difference

of convex (d.c.) program, which can be efficiently solved by the successive convex approxima-

tion (SCA) method [27]. The main idea is to approximate it as its first-order Taylor expansion.

Specifically, by using the concavity of fθ(x), we have

fθ
(
‖wi,k‖2) ≤ fθ

(
‖wi,k(t)‖2)+ βi,k(t)

(
‖wi,k‖2 − ‖wi,k(t)‖2) (30)

where wi,k(t) is the beam-vector obtained at the tth iteration, βi,k(t) = f ′θ
(
‖wi,k(t)‖2)1. By

replacing fθ
(
‖wi,k‖2) in Problem P6 with the right hand side of (30), the optimization problem

to be solved in the (t+ 1)th iteration is given by

P7 : min
w,{xk≥0}k∈U

∑
k∈U

∑
i∈I
‖wi,k‖2 + Γ

∑
k∈U

xk (31a)

s.t. C5,C10,C12 :
∑

k∈Ui
τi,k(t)‖wi,k‖2 ≤ C̃i(t),∀i ∈ I, (31b)

where τi,k(t) = βi,k(t)Rk,min, C̃i(t) = Ci,max−
∑

k∈Ui

(
fθ
(
‖wi,k(t)‖2)− βi,k(t)‖wi,k(t)‖2)Rk,min.

1f ′θ(x) denotes the first-order derivative of fθ(x) w.r.t. x.
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Based on the above analysis, we provide the SCA algorithm to solve Problem P6 in Algorithm

4. According to [13], [27], [35], the convergence of the SCA algorithm can be guaranteed under

two conditions: 1) The initial beam-vectors are feasible for Problem P6; 2) In each iteration of the

SCA algorithm, the globally optimal solution of Problem P7 can be obtained. The first condition

can be easily guaranteed, while the second condition is in general difficult to satisfy due to the

non-convex constraints of C10. Fortunately, we are able to obtain the globally optimal solution of

Problem P7 as shown in the following subsection.
Algorithm 4 SCA Algorithm to Solve Problem P6

1: Initialize the iteration number t = 1, error tolerance δ. Initialize any feasible w(0), calculate

τi,k(0), C̃i(0), calculate the objective value of Problem P6, denoted as Obj(w(0)).

2: Solve Problem P7 to get w(t) with τi,k(t− 1), C̃i(t− 1);

3: Update τi,k(t), C̃i(t) with w(t);

4: If |Obj(w(t− 1))−Obj(w(t))|
/

Obj(w(t)) < δ, terminate. Otherwise, set t ← t + 1, go to

step 2.

3) Method to deal with the non-convex constraint C10: We apply the semi-definite relaxation

approach [28] to solve Problem P7. Specifically, define Wk = wkw
H
k ,∀k ∈ U with the constraints

that rank(Wk) = 1,∀k ∈ U . Then, Problem P7 can be equivalently transformed as2

P8 : min
{Wk�0,xk≥0}k∈U

∑
k∈U

(tr (Wk) + Γxk) (32a)

s.t. C13 :
∑

k∈Ui
tr (WkBi,k) ≤ Pi,max,∀i ∈ I, (32b)

C14 : tr
(
Wkĝk,kĝ

H
k,k

)
+ xk

≥ ηk,min

(
tr (WkEk,k) +

∑
l 6=k,l∈U

tr (WlAl,k) + σ2
k

)
,∀k ∈ U , (32c)

C15 :
∑

k∈Ui
τi,ktr (WkBi,k) ≤ C̃i,∀i ∈ I, (32d)

C16 : rank(Wk) = 1,∀k ∈ U , (32e)

where Bi,k’s are the following block diagonal matrices

Bi,k= diag


sk1︷ ︸︸ ︷

01×M , · · · ,
skj︷ ︸︸ ︷

11×M ,

skj+1︷ ︸︸ ︷
01×M , · · · ,

sk|Ik|︷ ︸︸ ︷
01×M

 , if skj = i,∀i ∈ I, k ∈ U . (33)

2For simplicity, the iteration index t is omitted.
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However, Problem P8 is still non-convex due to the rank-one constraints in C16. We further relax

these non-convex constraints and obtain the following optimization problem:

P9 : min
{Wk�0,αk}k∈U

∑
k∈U

(tr (Wk) + α2
k) (34a)

s.t. C13,C14,C15. (34b)

Obviously, Problem P9 is a semi-definite programming (SDP) problem [36], which is convex and

can be effectively solved by using the standard tools such as CVX.

In general, the optimal solution obtained from SDP Problem may not satisfy the rank-one

constraints. Fortunately, for Problem P9, we can prove that the relaxation of the non-convex

constraints is tight. Denote the optimal solution of P9 as W?
k, α

?
k,∀k, we have the following

theorem.

Theorem 2: The optimal solution obtained from the SDP Problem P9 is guaranteed to satisfy

the rank-one constraints, i.e., rank (W?
k) = 1,∀k.

Proof: Please see Appendix B. �

Since the rank of W?
k, ∀k are equal to one, one can use the simple singular value decomposition

operation to obtain the optimal beam-vector of Problem P7. Hence, the SCA algorithm will be

guaranteed to converge.

C. Complexity analysis

For simplicity, we assume the candidate size for each UE is equal to L, i.e., |Ik| = L,∀k ∈ U .

The method to solve Problem P4 consists of two layers. The inner layer is to solve the SDP problem

P9 by using the interior-point method. According to [37], the number of iterations required to reduce

the duality gap to a constant fraction is upper-bounded by O
(√

(|U|+ 2I)ML
)

. The total number

of real variables in Problem P4 is given by Ntot = |U|
(
ML(ML+1)

2
+1
)

. Then, the complexity for

each iteration of the interior-point method is given by O (N2
tot |U|M2L2) [37]. Hence, the com-

plexity of the interior-point method to solve P9 is given by O
(√

(|U|+ 2L)MLN2
tot |U|M2L2

)
.

According to the UE selection algorithm in Algorithm 3, each UE is removed for each time, and

thus Problem P9 needs to be solved at most |U| times in the worst case. Hence, the total complexity

to solve Problem P4 is on the order of O
(√

(|U|+ 2L)MLN2
tot|U|

2M2L2
)

, which can be solved

within polynomial time.
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V. SIMULATION RESULTS

In this section, simulation results are provided to evaluate the performance of the proposed

algorithms. Two types of dense C-RAN networks are considered: small dense C-RAN deployed

in a square area of 400 m × 400 m and large one with 700 m × 700 m. The numbers of UEs in

small and large dense C-RANs are given by 8 and 24 with the densities of 50 UEs/km2 and 49

UEs/km2, respectively. The numbers of RRHs in both dense C-RANs are set as 14 and 40 with the

densities of 87.5 RRHs/km2 and 81.6 RRHs/km2, respectively. The considered scenarios comply

with the 5G ultra-dense network [38], where the density of 5G BS is highly anticipated to come

up to 40-50 BS/km2. Both the UEs and RRHs are assumed to be independently and uniformly

placed in this area. The channel gains are composed of three parts: 1) the channel path loss is

modeled as PL = 148.1 + 37.6log10d (dB) [39], where d is the distance measured in km; 2) the

log-normal shadowing fading with zero mean and 8 dB standard derivation; 3) Rayleigh fading

with zero mean and unit variance. It is assumed that each UE chooses its nearest L RRHs as its

serving cluster, i.e., |Ik| = L,∀k. Unless otherwise specified, the other system parameters are set

as follows: the number of transmit antennas at each RRH M = 2, system bandwidth B = 20 MHz,

error tolerance δ = 10−5, noise power spectral density is -174 dBm/Hz, each RRH’s maximum

power Pi,max = 100 mW,∀i, large constant Γ = 105, the pilot power at each UE is pt = 200 mW,

the parameter θ in the fractional function is θ = 10−5, the minimum rate requirement for each UE

and the capacity constraint for each fronthaul link are uniformly generated within the regions of

[3, 5] bit/s/Hz and [5, 10] bit/s/Hz, respectively, the cluster size for each UE L = 3, the proportion

of pilots for training in one coherence time is 1% [22], The pilot maximum reuse times for small

dense C-RAN and large one are set as nmax = 2 and nmax = 4, respectively. The MMSE channel

estimation method is used in our simulations. The following results are obtained by averaging over

200 independent trials, where in each trial, both the UEs and RRHs are randomly placed.

We compare our proposed algorithms (with legend “Proposed”) with the following algorithms:

1) Orthogonal pilot allocation (with legend “Ortho”): The number of admitted UEs in Stage I

is equal to the number of available pilots τ , and τ UEs are randomly selected from K UEs.

2) No reallocation operations for Case II in Stage I (with legend “NoCaseII”): This approach is

similar to the proposed pilot allocation method in Stage I, except that when Case II happens,

no additional operation is applied to re-allocate the pilots.

3) Conventional pilot allocation method (with legend “Con”): This approach is similar to the
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Fig. 3. (a) Number of admitted UEs in Stage I versus the
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of admitted UEs in Stage II versus the number of available

pilots τ for small networks.
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Stage II.

above approach, except that when Case I happens, UEs are randomly removed until the

minimum number of pilots is equal to τ .

4) Perfect CSI estimation (with legend “Perfect”): In this approach, we assume that the CSI

within each UE’s serving cluster can be perfectly known. Note that it is not necessary to

consider the pilot allocation stage, and the set of UEs selected from Stage I of the proposed

algorithm is used as the initial set of UEs in Stage II of this approach.

5) Exhaustive search method (with legend “Exhau”): In this approach, when Case I in Stage I

happens, exhaustive search method is adopted to find the maximum number of UEs that can

be admitted. If Case II happens, exhaustive search method is used to find all pilot allocation

results that the number of allocated pilots is equal to τ . In Stage II, exhaustive search method

is used to find the maximum number of admitted UEs. Note that the exhaustive search method

has an exponential complexity, which is only feasible for small networks.

A. Small C-RAN networks

We first consider the small C-RAN networks for the facilitation of applying the exhaustive search

method. Fig. 3 shows the number of admitted UEs versus the number of available pilots τ for

Stage I and Stage II, while Fig. 4 verifies the robustness of our proposed algorithm.

From Fig. 3-(a), we can observe that the numbers of admitted UEs for all algorithms increase

with the number of available pilots. When τ ≤ 4, our proposed algorithm outperforms the “Con”

algorithm. The reason is that the “Con” algorithm randomly removes the UE without considering

the pilot interference among the UEs. With the increase of τ , the performance gain shrinks and

finally both algorithms have the same performance where all UEs can be admitted by using the
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Dsatur algorithm. It is observed from Fig. 3-(a) that the proposed algorithm and the “NoCaseII”

have almost the same performance over the entire range of τ . This is not surprising, as when Case

I in Stage I occurs, both the proposed algorithm and the “NoCaseII” algorithm employ Algorithm

1 to remove the UEs. On the other hand, when Case II happens, both algorithms can support all the

UEs. The superiority of the proposed algorithm over the “NoCaseII” algorithm will be observed

in Fig. 3-(b) discussed later. Note that the exhaustive search method performs almost the same

as the proposed algorithm. However, the former one requires enormous computational complexity,

which is not feasible for large-scale networks. The performance of the “Ortho” algorithm is not

shown in this figure. It has the worst performance since no UEs are allowed to reuse the pilots,

and the number of admitted UEs is equal to the number of available pilots.

It is also seen from Fig. 3-(b) that the numbers of admitted UEs in Stage II for all the algorithms

increase with the number of available pilots. The performance of the proposed algorithm is

comparable to that of the exhaustive search method over the entire range of τ , but the former needs

huge computational complexity. The proposed algorithm outperforms the “NoCaseII” algorithm

when τ ≥ 4, and the performance gain increases with τ . This can be explained as follows. When

τ increases, Case II is more likely to happen, our proposed algorithm reallocates the unassigned

pilots to the UEs to additionally reduce the pilot interference, which leads to more accurate CSI.

Thus, more UEs can be admitted. On the other hand, no reallocation operations are considered

in “NoCaseII”, which will incur severe pilot interference and less UEs can be admitted. This

highlights the necessity of reallocating the unassigned pilots to UEs. It is also observed from

Fig. 3-(b) that as τ increases, our proposed algorithm approaches the performance of the “Perfect”

algorithm, which verifies the effectiveness of the proposed algorithm.

Now, we study the robustness of our proposed algorithm in Fig. 4 for one randomly generated

simulation, where the actual data rates achieved by various algorithms are plotted. For the clarity

of illustration, the data rate targets and fronthaul capacity constraints are set to be the same for all

UEs and fronthaul links, which are given by Rmin = 3 bit/s/Hz and Cmin = 9 bit/s/Hz, respectively.

For comparison, the performance of non-robust algorithm is also shown (labeled as ‘Nonrobust’),

where channel estimation error is not taken into account and the estimated channel is naively

regarded as the perfect channel. The data rate lower-bound obtained in (20) is also shown in this

figure which is labeled as ‘Rate-LB’. The bold line in Fig. 4 represents the rate targets of all

UEs. It is observed that the rate lower bound is equal to their data rate target, which verifies the

keikoknudson
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at IEEE Transactions on Wireless Communications, published by IEEE. Copyright restrictions may apply. doi: 10.1109/TWC.2017.2788001




23

2 4 6 8 1 0
6

8

1 0

1 2

1 4

1 6

1 8

2 4 6 8 1 0
1 4

1 6

1 8

2 0

2 2

2 4

2 6

 L  L

Nu
mb

er 
of 

ad
mi

tte
d U

Es
 in

 St
ag

e I

C a n d i d a t e  s i z e

 τ= 4 , P r o p o s e d - S t a g e I
 τ= 4 , N o C a s e I I - S t a g e I
 τ= 4 , C o n - S t a g e I

 τ= 8 , P r o p o s e d - S t a g e I
 τ= 8 , N o C a s e I I - S t a g e I
 τ= 8 , C o n - S t a g e I

C a n d i d a t e  s i z e

Fig. 5. Number of admitted UEs in Stage I versus candidate

size L. The left subplot corresponds to the case of τ = 4 while

the right one is τ = 8.
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Fig. 6. Number of admitted UEs in Stage II versus the

candidate size L. The left subplot corresponds to the case of

τ = 4 while the right one is τ = 8.
correctness of Theorem 1. As expected, the actual data rates achieved by all UEs are above the

bold line, which means that our proposed algorithm can provide guaranteed data rates for all UEs.

Note that the gap between the rate lower bound and actual data rates achieved by our proposed

algorithm are within 0.1 bit/s/Hz, which is acceptable in practice. In contrast, the actual data rates

achieved by the non-robust algorithm for almost all UEs are below the bold line, and the maximum

gap is up to 0.5 bit/s/Hz for UE 4.

B. Large-scale C-RAN networks

In this subsection, we study the effects of different system parameters on the performance of

the algorithms in large-scale dense C-RAN networks.

1) Impacts of candidate size: Figs. 5 and 6 illustrate the number of admitted UEs versus the

candidate size L in Stage I and Stage II, respectively. It is seen from Fig. 5 that the numbers

of admitted UEs achieved by all the algorithms in Stage I decrease with the candidate size. The

reason is that with the increase of candidate size, more UEs will be connected with each other

when constructing the undirected graph. In this case, more UEs will be removed in this stage

to satisfy conditions C1 and C2 in Problem P1. Fig. 5 also shows that our proposed algorithm

achieves superior performance over the “Con” algorithm, highlighting the importance of carefully

considering pilot interference when removing UEs.

It is interesting to observe from Fig. 6 that the numbers of admitted UEs in Stage II obtained by

all the algorithms (except the “Ortho” algorithm) initially increase with the candidate size, and then

decrease. The reason for the former part is due to the increased spatial degrees of freedom with

the increased candidate size. However, when the candidate size continues to increase, many UEs

have been prohibited to be admitted due to the pilot allocation in Stage I as seen in Fig. 5. Hence,
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Fig. 7. Number of admitted UEs in Stage I versus the pilot

power. The left subplot corresponds to the case of τ = 4 while

the right one is τ = 8.
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in Stage II, even all the selected UEs from Stage I can be admitted, the number is small. This

trend is different from most of the existing papers [10], [13], [14], [40], [41], where the system

performance always increases with the candidate size. Hence, the cluster size should be properly

optimized and larger cluster size may deteriorate the system performance if channel estimation

process is considered. From Fig. 6, we also observe that our proposed algorithm significantly

outperforms the “Con” algorithm for both τ = 4 and τ = 8. On the other hand, when τ = 4, both

the proposed algorithm and the “NoCaseII” algorithm have similar performance; when τ = 8, our

proposed algorithm performs much better than the “NoCaseII” algorithm in the low candidate size

regime, i.e., X < 6, and this performance gap decreases with X . The reason is that when the

candidate size is small, less number of pilots is required. Hence, it is more likely to fall in Case

II in Stage I, which leads to superior performance of the proposed algorithm over the “NoCaseII”

algorithm due to the additional pilot reallocation step of our proposed algorithm. As expected, the

“Ortho” algorithm has the worst performance since no pilot reuse is allowed.

2) Impacts of pilot power: Figs. 7 and 8 show the number of admitted UEs versus the pilot

power for Stage I and Stage II, respectively. It is again seen from Fig. 7 that our proposed algorithm

significantly outperforms the “Con” algorithm in Stage I when τ = 4, and all algorithms can admit

all UEs when τ = 8 is Stage I.

Fig. 8 shows that the numbers of admitted UEs obtained by all the algorithms (except the

“Perfect” algorithm) increase with the pilot power for both cases of τ = 4 and τ = 8 due to the

more accurate CSI. However, there is a fixed gap between the proposed algorithm and the “Perfect”

algorithm in the high pilot power regime. The reason can be explained as follows. According to
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Fig. 9. Number of admitted UEs in Stage I versus the path loss

exponent. The left subplot corresponds to the case of τ = 4

while the right one is τ = 8.
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Fig. 10. Number of admitted UEs in Stage II versus the path

loss exponent. The left subplot corresponds to the case of τ =

4 while the right one is τ = 8.

the channel estimation error in (5), when the pilot power pt increases, δ̂ will approach zero, i.e.,

δ̂ → 0. Hence, the channel estimation error will become a fixed value, which is only related

to the large-scale parameters and the pilot reuse scheme. In this case, the system will enter a

pilot interference limited regime. Fig. 8 again demonstrates that the performance superiority of the

proposed algorithm over the existing algorithms.

3) Impacts of path loss exponent: The impact of path loss exponent is studied here. Specifically,

the channel path loss is modeled as PL = 148.1+10$log10d (dB), where $ denotes the path loss

exponent. Note that the other simulation results in this section are obtained by setting $ = 3.76.

Figs. 9 and 10 show the numbers of admitted UEs versus the path loss exponent $ for Stage I

and Stage II, respectively. It is observed from Fig. 9 that nearly one more UE can be admitted by

the proposed algorithm over the “Con” algorithm in Stage I.

It is interesting to find from Fig. 10 that the number of admitted UEs in Stage II for all algorithms

(except the “Ortho” algorithm) first increases with $ and then decreases with it. The reason can

be explained as follows. When $ is small, the interference power from other RRHs is significant.

As a result, the number of UEs that can satisfy their rate targets is lower. With the increase of

$, the interference power is reduced, and the number of UEs admitted is increasing. However, by

additionally increasing $, i.e., $ > 3.5, the performance achieved by all algorithms become worse

since the signal power is becoming weaker. Hence, there is an optimal $ that all algorithms have

the best performance. The performance gain over the existing algorithms is observed in Fig. 10.

4) Impacts of noise power spectral density: Figs. 11 and 12 show the number of admitted UEs

versus the noise power density for Stage I and Stage II, respectively. Fig. 11 shows the performance
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Fig. 11. Number of admitted UEs in Stage I versus the noise

power density. The left subplot corresponds to the case of τ =

4 while the right one is τ = 8.
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Fig. 12. Number of admitted UEs in Stage II versus the noise

power density. The left subplot corresponds to the case of τ =

4 while the right one is τ = 8.
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Fig. 13. Number of admitted UEs in Stage I versus the max-

imum fronthaul capacity C̃max. The left subplot corresponds

to the case of τ = 4 while the right one is τ = 8.
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Fig. 14. Number of admitted UEs in Stage II versus the max-

imum fronthaul capacity C̃max. The left subplot corresponds

to the case of τ = 4 while the right one is τ = 8.

superiority of our proposed algorithm over the ‘Con’ algorithm and the number of admitted UEs

achieved by all algorithms keep fixed in Stage I.

As expected, from Fig. 12, it is observed that the numbers of admitted UEs achieved by all

algorithms decrease rapidly with the noise power density in Stage II, and only about five UEs can

be admitted by our proposed algorithm when the noise power density is -150 dBm/Hz and τ = 8.

Fig. 12 also shows that our proposed algorithm can achieve better performance than the “Con”

algorithm for both cases of τ , and than the “NoCaseII” algorithm when τ = 8.

5) Impacts of maximum fronthaul capacity: Next, we study the impact of fronthaul capacity on

the performance of various algorithms. For the sake of illustration, we assume that all UEs have the

same rate targets, which are set as Rmin = 4bit/s/Hz. In addition, all fronthaul links are assumed

to have the same fronthaul capacity constraints, i.e., Cmax = Ci,max,∀i. For ease of exposition, the
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Fig. 15. Convergence behaviour of the SCA algorithm. The upper subplot shows the feasible case with low rate requirements

Rmin = 2 bit/s/Hz, while the lower subplot shows the infeasible case with high rate requirements Rmin = 4 bit/s/Hz.

normalized fronthaul capacity is considered, i.e., C̃max = Cmax/Rmin, which denotes the number

of UEs that each fronthaul link can support. Figs. 13 and 14 illustrate the number of admitted UEs

versus the maximum normalized fronthaul capacity C̃max for Stage I and Stage II, respectively. As

expected, from Fig. 13, we can find that all algorithms achieve fixed number of admitted UEs in

Stage I, since the pilot allocation process does not depend on C̃max.

One insightful observation can be found in Fig. 14: the numbers of admitted UEs by all

algorithms initially increase with C̃max due to the fact that more UEs can be supported by each

fronthaul link. However, when additionally increasing C̃max, these numbers remain fixed and do

not vary much in the large C̃max domain for both τ = 4 and τ = 8. It is shown that C̃max = 3 is

sufficient for all algorithms to achieve a large portion of the performance of the case C̃max =∞.

This observation is instructive for the practical implementation of the dense C-RAN, where the

mmWave communication technology with limited bandwidth can be employed as the wireless

fronthaul link in dense C-RAN network.

6) Convergence behavior: Finally, we study the convergence behaviour of the SCA algorithm in

Algorithm 4. Fig. 15 illustrates the objective value of Problem P6 versus the number of iterations

for two cases of Rmin = 2 bit/s/Hz and Rmin = 4 bit/s/Hz for one randomly generated C-RAN

network. It is seen from this figure that the objective values for these two cases decrease rapidly and

converge within four iterations, which demonstrate the effectiveness and low-complexity associated

with our algorithm. When Rmin = 2 bit/s/Hz, the objective value converges to a very small value,

which indicates all UEs can be supported. However, when Rmin = 4 bit/s/Hz, the objective value

finally converges to a very large value, which implies the system is infeasible and some UEs should

be removed by using our proposed UE selection algorithm in Algorithm 3.
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VI. CONCLUSIONS

In this paper, we provided a new framework to handle the new challenges of user-centric ultra-

dense C-RAN by considering a two-stage problem: the channel estimation for intra-cluster CSI in

Stage I and robust transmit beam-vectors design in Stage II. Specifically, in Stage I, we jointly

optimized the UE selection and pilot allocation to maximize the number of admitted UEs with

limited number of available pilots. One smart UE selection algorithm was proposed when the

number of available pilots is not sufficient to support all the UEs. On the other hand, when

the opposite case happens, one novel pilot reallocation was introduced to fully use the available

pilots. Under the results of Stage I, robust transmit beam-vector was designed to minimize the

transmit power while guaranteeing each UE’s rate requirement and fronthaul capacity constraints.

One novel algorithm was proposed to solve this problem with convergence guarantee. Simulation

results verify the effective of the proposed algorithm in terms of the number of admitted UEs

compared with the existing naive pilot allocation method. Some interesting observations have been

found in the simulations. For example, increasing the cluster/candidate size may not lead to the

increased performance when taking the channel estimation into account. Hence, the cluster size

should be carefully decided when designing the transmission scheme. In addition, the maximum

fronthaul capacity is not necessary to be extremely high and it is shown that C̃max = 3 is sufficient

to achieve good performance, which is appealing for the application of mmWave communication

link as fronthaul links.

APPENDIX A

PROOF OF THEOREM 1

We prove this theorem by using the contradiction method. Specifically, suppose one of the

following two cases occurs:

1) All UEs’ data rate lower bounds (LBs) are strictly larger than their rate targets, i.e., r̃k(w?) >

Rk,min, ∀k ∈ Ũ ;

2) Part of UEs’ data rate LBs are larger than their rate targets (denote this subset of UEs as

Ũ1), while those of the rest are equal to their targets (denote as this subset as Ũ2).

We first prove that the first case cannot happen. To this end, one can construct another feasible

solution that yields lower objective value than that of w?. Specifically, we scale each UE’s beam-
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vector by a constant
√
κ and denote the set of new beam-vectors as w# =

[√
κw?

k,k ∈ Ũ
]
, where

κ is chosen as

κ= max
k∈Ũ

σ2
k

|ĝH
k,kw

?
k|

2

ηk,min
−w?H

k Ek,kw?
k −

∑
l 6=k,l∈Ũ w?H

l Al,kw?
l

(A.1)

with ηk,min = 2
Rk,minT

T−τ − 1. It can be readily verified that the constant κ is strictly smaller than

one, i.e., κ < 1, and all UEs’ data rate LBs r̃k(w#) satisfy the following relationships:

r̃k(w
?) > r̃k(w

#) ≥ Rk,min,∀k ∈ Ũ . (A.2)

Since w? is the optimal solution of Problem P3, then it must be a feasible solution that satisfies

constraints C5, C7 and C8. Hence, the new set of beam-vectors can be verified to be a feasible

solution of Problem P3, but yields a lower objective value. Hence, this contradicts the assumption

that w? is the optimal solution and this case cannot happen.

For the second case, we cannot prove it by using the above method directly. The reason is that

if κ is chosen as in (A.1), its value will be equal to one since some UEs’ rate LBs are equal

to their targets. To deal with this issue, we divide the group of UEs in Ũ into two groups, i.e.,

Ũ1 =
{
k|r̃k(w?) > Rk,min,∀k ∈ Ũ

}
and Ũ2 =

{
k|r̃k(w?) = Rk,min,∀k ∈ Ũ

}
. Similar to the first

case, we introduce a new constant variable defined as follows:

κ= max
k∈Ũ1

σ2
k

|ĝH
k,kw

?
k|

2

ηk,min
−w?H

k Ek,kw?
k −

∑
l 6=k,l∈Ũ w?H

l Al,kw?
l

. (A.3)

Then, the constant κ is strictly smaller than one. We scale the beam-vectors of UEs in Ũ1 by

a constant
√
κ, i.e., w#

k =
√
κw?

k,∀k ∈ Ũ1, while keeping the beam-vectors in Ũ2 unchanged.

Denote the set of new beam-vectors as w# =
[
w#
k ,∀k ∈ Ũ1,w

?
k,k ∈ Ũ2

]
. It can be verified the

following relations hold:

r̃k(w
?) > r̃k(w

#) ≥ Rk,min, ∀k ∈ Ũ1, (A.4)

and

r̃k(w
#) > r̃k(w

?) = Rk,min,∀k ∈ Ũ2. (A.5)

Since the data rate LBs in Ũ2 increase, the fronthaul capacity constraints in C8 may not hold.

To resolve this problem, we update the new UE sets Ũ1 and Ũ2, and repeat the above procedure.

Since the new constructed beam-vectors decrease the total power consumption and the objective

value is lower bounded. Hence, this procedure will converge to a fixed value. Note that if there

exists some UEs whose rate LBs are strictly larger than their targets, we can always construct new
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beam-vectors with reduced total power. Hence, when the procedure converges, all UEs data rates

are equal to their targets, and the final beam-vectors satisfy all the constraints C5, C7 and C8.

However, the objective value with the final beam-vectors have a lower value than that with w?,

which contradicts the assumption that w? is the optimal solution. Hence, this case cannot happen

either, and the proof is complete.

APPENDIX B

PROOF OF THEOREM 2

Denote the collection of {Wk,∀k} as W. Then, the Lagrangian function of Problem P9 is

L (W,x,λ,µ,ν,ω) =
∑
k∈U

tr (Wk) +
∑
k∈U

xk +
∑
i∈I

λi

(∑
k∈Ui

tr (WkBi,k)− Pi,max

)
+

∑
k∈U

µk

(
ηk,min

(
tr (WkEk,k) +

∑
l 6=k,l∈U

tr (WlAl,k) + σ2
k

)
− tr

(
Wkĝk,kĝ

H
k,k

)
− xk

)
,

+
∑
i∈I

νi

(∑
k∈Ui

τi,ktr (WkBi,k)− C̃i

)
−
∑
k∈U

tr (WkZk)−
∑
k∈U

ωkxk,

where λ = [λi,∀i ∈ I], µ = [µk, ∀k ∈ U ], and ν = [νi,∀i ∈ I] are the non-negative Lagrangian

multipliers associated with constraints C13, C14 and C15, respectively. ω = [ωk, ∀k ∈ U ] are the

dual variables associated with the nonnegative constraints of x = {xk,∀k ∈ U}, and {Zk �

0,∀k ∈ U} denote the dual variable matrices associated with the semi-definite constraints on

{Wk,∀k ∈ U}.

As Problem P9 is a convex optimization problem, its globally optimal solution must satisfy its

first-order optimality condition as:

∂L (W, λ, µ, ν)

∂Wk

= IM |Ik|×M |Ik| +
∑
i∈I

(λi + νiτi,k) Bi,k − µkĝk,kĝH
k,k +∑

k∈U

µkηk,minEk,k +
∑

l 6=k,l∈U

µlηl,minAk,l − Zk = 0,∀k ∈ U . (B.1)

Then, Zk can be represented as Zk = Dk − µkĝk,kĝH
k,k, where Dk is given by

Dk = IM |Ik|×M |Ik| +
∑
i∈I

(λi + νiτi,k) Bi,k +
∑
k∈U

µkηk,minEk,k +
∑

l 6=k,l∈U

µlηl,minAk,l. (B.2)

According to the Karush-Kuhn-Tucker (KKT) condition, we have

µk

(
ηk,min

(
tr (WkEk,k)+

∑
l 6=k,l∈U

tr (WlAl,k)+σ2
k

)
−tr

(
Wkĝk,kĝ

H
k,k

)
− xk

)
=0, ∀k, (B.3)

WkZk= 0,∀k. (B.4)
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Before proving the theorem, we first give the following lemma.

Lemma 1: The optimal Lagrangian dual multipliers {µk,∀k} are positive, i.e., µk > 0,∀k.

Proof: This can be proved by using contradiction. Denote the optimal solution of Problem

P9 as {W?
k, x

?
k,∀k} and the corresponding Lagrangian multipliers as [λ?i , ν

?
i , µ

?
k, ∀i ∈ I,∀k ∈ U ].

Assume there exists one µ?l that is zero. Then, according to KKT conditions in (B.3), we have

tr
(
W?

l ĝl,lĝ
H
l,l

)
+ x?l > ηl,min

(
tr (W?

l El,l) +
∑

m 6=l,m∈U tr (W?
mAm,l) + σ2

l

)
. We consider the fol-

lowing two cases:

1) If x?l > 0, we can find a new x̄l = x?l −∆, where ∆ > 0 is a small enough positive value

such that tr
(
W?

l ĝl,lĝ
H
l,l

)
+ x̄l ≥ ηl,min

(
tr (W?

l El,l) +
∑

m6=l,m∈U tr (W?
mAm,l) + σ2

l

)
holds. Then,

we find another feasible solution {W?
k,∀k, x?k,∀k 6= l, x̄l} that yields a lower objective value than

that of {W?
k, x

?
k,∀k}, which contradicts that {W?

k, x
?
k,∀k} is the optimal solution.

2) If x?l = 0, we can find a new precoding matrix W̄l = ρW?
l with 0 < ρ < 1 such that

tr
(
W̄lĝl,lĝ

H
l,l

)
≥ ηl,min

(
tr
(
W̄lEl,l

)
+
∑

m6=l,m∈U tr (W?
mAm,l) + σ2

l

)
holds since Am,l,∀m 6= l

are positive definite matrices. Then, we find a new feasible solution
{
W?

k,∀k 6= l,W̄l, x
?
k, ∀k

}
that yields a lower objective value than that of {W?

k, x
?
k,∀k}, which contradicts that {W?

k, x
?
k,∀k}

is the optimal solution. �

The first term of Dk in (B.2) is an identity matrix. In addition, the Lagrange multipliers

{λi, νi, µk,∀i, k} and {τi,k,∀i, k} are nonnegative values, and {Bi,k,Ek,k,Ak,l} are positive def-

inite matrices. As a result, Dk is a positive definite matrix with rank(Dk) = M |Ik|. Since

rank(Zk) ≥ rank(Dk) − rank(µkĝk,kĝ
H
k,k), we obtain rank(Zk) ≥ M |Ik| − 1, where we use the

fact that rank(µkĝk,kĝ
H
k,k) = 1 since µk is positive according to Lemma 1. Furthermore, according

to (B.4), we have rank(Wk) ≤M |Ik| − rank(Zk). Then, we have rank(Wk) ≤ 1. Obviously, the

optimal precoder Wk is not a zero matrix with rank(Wk) = 0. Hence, the optimal precoder Wk

has rank one, i.e., rank(Wk) = 1, which completes the proof.
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