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Abstract—Millimeter-wave (mmWave) communication is antic-
ipated to provide significant throughout gains in urban scenarios.
To this end, network densification is a necessity to meet the high
traffic volume generated by smart phones, tablets, and sensory
devices while overcoming large pathloss and high blockages at
mmWaves frequencies. These denser networks are created with
users deploying small mmWave base stations (BSs) in a plug-
and-play fashion. Although, this deployment method provides
the required density, the amorphous deployment of BSs needs
distributed management. To address this difficulty, we propose
a self-organizing method to allocate power to mmWave BSs in
an ultra dense network. The proposed method consists of two
parts: clustering using fast local clustering and power allocation
via Q-learning. The important features of the proposed method
are its scalability and self-organizing capabilities, which are both
important features of 5G. Our simulations demonstrate that the
introduced method, provides required quality of service (QoS)
for all the users independent of the size of the network.

I. INTRODUCTION

Millimeter-wave (mmWave) communication is one of the

main technologies of the next generation of cellular networks

(5G). The large bandwidth at mmWave frequency has the

potential to enhance network throughput by tenfolds [1].

However, large path loss and shadowing limit the performance

of mmWave systems and need to be dealt with. One approach

to overcome this problem is based on increasing the density of

access points [2], [3]. However, as the number of access points

increases, the complexity of network management increases.

Keeping this in mind, one of the features of future mmWave

base stations (BSs) is self-deployment by users. In other words

access points can be deployed in a plug-and-play fashion, and

the network architecture may change frequently. Considering

the above points, 5G needs self-organizing methods to con-

figure, adapt, or heal itself when necessary. In this paper, a

self-organizing algorithm is proposed to maximize the sum

capacity in a dense mmWave network while providing users

with their required quality of service (QoS). The algorithm

consists of clustering, based on fast local clustering (FLOC),

and distributed power allocation, via Q-learning. Scalability

and fast convergence of FLOC, adaptability and distributed

nature of Q-learning, makes their combination a suitable tool

to achieve self-organization in a dense network.

II. SYSTEM MODEL

The System model considers a dense outdoor urban sce-

nario as an important example of 5G, i.e., we consider the

downlink of densely deployed mmWave BSs. To this end let

us consider N mmWave BSs that are distributed based on

the homogeneous spatial Poisson point process (SPPP) with

density λBS [4]. Each BS is associated to one user. BSs

share a single frequency resource block (FRB) to support their

associated users. We assume a time invariant channel model,

i.e. slow fading. The channel vector between the BS i and user

k, can be written as follows

Hi,k =
(
Li,k

)−1 × gi,k, (1)

where Li,k and gi,k denote the path loss and the path gain

between the BS i and user k. The path loss between the

BS i and its associated user i, Li,i , follows the free space

propagation based on Frii’s law [1]. Here, we consider that

the majority of interferers have non-line-of-sight (NLOS) paths

[5]. Hence, the path loss Li,k (i � k) can be written as [1]

Li,k[dB] = β1 + 10β2 log10
(
di,k

)
+ Xζ, (2)

where β1 and β2 are factors used to achieve best fit to channel

measurements, di,k is the distance between the BS i and the

user k, Xζ denotes the logarithmic shadowing factor, where

Xζ ∼ N (
0, ζ2) , and ζ2 denotes the lognormal shadowing

variance.

The received signal in the downlink at the k th user includes

the desired signal from its associated BS (BS k), interference

from neighboring BSs, and also thermal noise. Hence, the

signal-to-interference-noise-ratio (SINR) at the k th user is

given by

SINRk =
PkHk,k∑

i∈Dk,i�k
PiHi,k + σ2 , (3)

where Pk denotes the power transmitted by the k th BS, Dk is

the set of interfering BSs, and σ2 denotes the variance of the

additive white Gaussian noise. Accordingly, the normalized

capacity at the k th user is given by

Ck = log2(1 + SINRk). (4)

III. PROBLEM FORMULATION

The goal of the optimization problem is to find the best

power distribution between mmWave BSs (P̄) in order to

maximize the sum capacity of the network, while supporting

all users with their required QoS. The optimization problem

(P1) can be formulated as

maximize
P̄

N∑
k=1

log2(1 + SINRk) (5a)

subject to Pk ≤ Pmax, k = 1, . . . , N (5b)

SINRk ≥ qk, k = 1, ..., N . (5c)
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Here, the objective (5a) is to maximize the sum capacity of the

network while providing all users with their required QoS in

(5c). The first constraint, (5b), refers to the power limitation of

every BS. The term qk in (5c) refers to the minimum required

SINR for the k th user.

Eq. (5a) contains the interference term in the denominator

of SINR term. In a dense network the interference term cannot

be ignored [6]. Due to the presence of the interference term,

the objective function (5a) is a non-concave function [7].

The solution to P1 should have certain features. First,

it should be distributed due to no central authority in this

network. Second, the range of mmWave BSs is limited,

so each user will receive interference from the BSs in its

neighborhood. Therefore, the solution should consider local

clustering to reduce the computation overhead. Third feature

is self-healing. The number of BSs in the network changes

sporadically, which means the solution should be adaptive

to new possible architectures. Considering the above, in this

paper, we propose a method which contains two parts : a

fast local clustering method to locally cluster the BSs, and in

each cluster, BSs will choose their transmitting power based

on Q-learning [8]. Q-learning is model-free (adaptable) and

gives the BSs the ability to learn from their environment by

interacting with it (self-organization).

IV. CLUSTER BASED DISTRIBUTED POWER ALLOCATION

USING Q-LEARNING (CDP-Q)

In our proposed method, mmWave BSs are considered as

the agents of Q-learning, so the terms agent and mmWave

BS are used interchangeably. CDP-Q is a distributed method

in which multiple agents (mmWave BSs) find a sub-optimal

policy (power allocation) to maximize the network capacity.

CDP-Q consists of two parts: (1) clustering, and (2) power

allocation. Clustering is based on a local clustering method,

and power allocation is based on Q-learning. In the following

each part is detailed.

A. MmWave BSs Clustering

Since mmWave signals suffer from high pathloss and

shadowing, only neighboring BSs that are close in distance

interfere with each other. Consequently, we propose to use

a clustering mechanism to divide BSs into clusters in which

the interference of one cluster is negligible on other clusters’

users.

In this paper, we propose to use Fast local clustering

(FLOC) [9] to divide mmWave BSs into clusters. FLOC is

a distributed message-passing clustering method with O(1)
complexity, which guarantees scalability, and produces non-

overlapping clusters. Another feature of FLOC is local self-

healing, which means re-clustering, due to addition of a new

node or removing a node, does not propagate through all

clusters. In order to apply FLOC in a mmWave network, the

following concepts are defined:

• Cluster head (CH): The mmWave BS that is chosen as the

head of the cluster. In our algorithm, there is no priority

between a cluster head and other members of the cluster.

• In-bound (IB), and out-band (OB) node: In FLOC, a node

is in-bound if it is a unit distance from a CH. A unit

distance is a set value, which in this case is the range

of mmWave links, i.e., 100-200 m [1]. Accordingly, we

define in-bound as 100 m, which is an indication of strong

interference, and out-band as 200 m, which indicates the

edge of the cluster around a CH. Finally, if a node j is in

out-band distance of a cluster i, and not in an in-bound

distance of any other clusters, then node j will join the

cluster i as an OB node.

B. Distributed Power Allocation Using Q-Learning

The output of Q-learning is a decision policy (power allo-

cation) which is represented as a function called Q-function.

Here, the Q-function of agent k is represented as a table called

a Q-table (Qk). The columns of a Q-table are the actions (ak),

and the rows are the state (sk) of the agent k.

In multi-agent Q-learning, agents can act independently

or cooperatively. In the independent learning, each agent

interacts with the environment without communicating with

other agents. In fact, it considers the other agents as part of

the environment. Independent learning has shown good per-

formance in many applications [10]. In independent learning,

since the environment is not stationary, oscillation and longer

convergence time might happen for the agents, but due to no

communication overhead between agents compared to cooper-

ative learning, we choose independent learning. Motivated by

this fact, the agents will select their actions according to [11]

ak
t = arg max

a
Qk

(
skt , a

)
, (6)

in which, subscript t denotes time step t of Q-learning. The

CDP-Q algorithm is presented in Algorithm 1.

Algorithm 1 The proposed CDP-Q algorithm

1: Cluster formation based on Sec. IV-A

2: for all Clusters in Parallel do
3: for all Agents do
4: Initialize Q(skt , at ) arbitrarily

5: Initialize skt
6: for all episodes do
7: send Qk

(
skt , :

)
to other agents of the cluster

8: receive Q j

(
sjt , :

)
, j ∈ Dk, j � k

9: Choose ak
t according to Eq. 6

10: Take action ak
t , observe Rk

t

11: Qk (skt , ak
t ) ← (1 − α)Qk (skt , ak

t ) + α(Rk
t + γQk (skt+1, a

k
t ))

12: end for
13: end for
14: end for

In the following the actions, states, and the reward function

of the proposed Q-learning method are defined.

1) Actions: The set of actions (powers) A is defined as A ={
a1, a2, ..., aNpower

}
, which uniformly covers the range between

minimum (a1 = Pmin) and maximum (aNpower
= Pmax) power.

2) States: We define Nr equally spaced concentric circles

around the cluster head (CH) of each cluster. These circles,

define Nr rings with r units of spacing, around the CH. The

state of the agent k at time step t is defined as skt = (n) which

shows the ring number that the agent belongs to. Considering
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the definition of the Q-table and the states at the beginning

of this section, if the agents’ location is fixed, each agent will

choose just one row of its Q-table to search for the best action

decision.

3) Reward: Rk
t is the immediate reward incurred due to

selection of the action ak
t at state skt by the agent k at time step

t. The constraint in (5c), can be represented as: Ck
t ≥ log2(qk),

for k = 1, ..., N . Ck
t is the normalized capacity of agent k at

time step t. Based on this, the normalized proposed reward

function for the agent k at time step t is defined as

Rk
t =

1
2 log2 (qk)︸�������︷︷�������︸

(a)

������
Ck
t︸︷︷︸

(b)

− ��Ck
t − 2 log2 (qk)

��︸���������������︷︷���������������︸
(c)

������
. (7)

The rationale behind the proposed reward function is as

follows

• The term (a) normalizes the value of reward function.

• The objective of the optimization problem is to maximize

the capacity of the network, so the term (b) results in a

higher reward for higher capacity for an agent.

• To satisfy the QoS constraint for agent k, capacity devi-

ation of its associated user from the required QoS, term

(c), should result in a lower reward.

• There is a maximum reward (+1) for an agent to provide

fairness between the agents which is shown in Fig. 1.

• The proposed reward function is a first order function of

Ck
t , which reduces each iteration’s complexity.

Fig. 1: Proposed reward function (RF).

V. SIMULATION RESULTS

In this section the simulation setup is detailed and then the

results of the simulations are presented.

A. Simulation Setup

A dense mmWave BS network, with approximately 120 BSs

in a 1 km2 area is considered. The BSs are distributed based

on SPPP and operate independently in the network. Each BS,

supports one user equipment (UE), which is located in a radius

of 10m around the BS. The QoS for a user is defined as the

required SINR to support the user’s service. The value of qk =
2.83 is considered for all the users.

To perform Q-learning, the learning rate is considered as

α = 0.5, the discount factor as γ = 0.9, Npower = 31, r =
50m, and Nr = 4. The maximum number of iterations is set

to 50, 000. The remaining parameters of the simulation are

represented in Table I.

TABLE I: Simulation Parameters

Param. Value Param. Value
f 28 GHz Pmin -10 dBm
ζ 8.7 dB Pmax 35 dBm
β1 72.0 β2 2.92

σ2 -120 dBm

B. Clustering Results

The implementation of clustering algorithm, is an event

driven, message-passing distributed program in C++. Every

BS is simulated as an independent thread, and is added to the

network randomly in [0, 10] seconds. The clustering algorithm

converges in less than 15 seconds for the assumed value for

the λBS . The resulted clusters in two different distribution of

BSs are shown in different colors in Fig. 2, and 3. Each cluster

head (CH) is marked with a filled color.
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Fig. 2: 124 BSs in 1 km2.
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Fig. 3: 122 BSs in 1 km2.

C. Power Allocation Results

According to [1], [2], the coverage range of millimeter

communication is in the range of 100 − 200 m, which means

the maximum coverage of 0.12 (km2) for each mmWave BS.

Considering the interference-limited assumption and the value

of λBS = 120 (BS/km2), a cluster might have 14 mmWave

BSs. Hence, the CDP-Q algorithm results in clusters that

include 2 to 14 BSs.
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The results of power allocation using the proposed reward

function are compared to the exponential reward function

proposed in [12], which are presented as EXP-Q in the

simulations. For all possible cluster sizes, power allocation

using the proposed reward function is simulated, and the

normalized capacity of all BSs in the clusters are plotted in

Fig. 4. The same simulations for EXP-Q are presented in

Fig. 5.
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Fig. 4: Capacity of clusters’ members.
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Fig. 5: Capacity of clusters’ members.

As it is shown in these figures, while both reward functions

satisfy all members for all sizes of clusters with their required

QoS, the normalized capacity of users in the CDP-Q are close

to each other, while in EXP-Q the normalized capacity of users

are much diverse. The diversity of normalized capacity values

in EXP-Q effects the fairness index. The fairness index in

each cluster is measured using Jain’s fairness index [13] and

is shown in Fig. 6. In Fig. 6, the CDP-Q maintains fairness

for all sizes of clusters, while EXP-Q fails to support users

with fairness in large cluster sizes. On the other hand, total

capacity of the clusters are shown in Fig. 7 with respect to the

cluster size. According to Fig. 7, the CDP-Q provides higher

capacity than the EXP-Q for all sizes of clusters.

VI. CONCLUSION

In this paper, a self-organized distributed power allocation

algorithm is presented. The proposed algorithm reduces the

optimization complexity by using a distributed clustering

method, and provides adaptability in power allocation by using

Q-learning. The proposed reward function, satisfies required

QoS for the users in all sizes of the resulted clusters, and

outperforms the exponential based reward function.
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Fig. 6: Jain’s fairness index.
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Fig. 7: Sum capacity of clusters.
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