
Boise State University Boise State University 

ScholarWorks ScholarWorks 

Computer Science Faculty Publications and 
Presentations Department of Computer Science 

2018 

A Certificateless One-Way Group Key Agreement Protocol for End-A Certificateless One-Way Group Key Agreement Protocol for End-

to-End Email Encryption to-End Email Encryption 

Jyh-Haw Yeh 
Boise State University 

Srisarguru Sridhar 
Boise State University 

Gaby G. Dagher 
Boise State University 

Hung-Min Sun 
National Tsing Hua University 

Ning Shen 
Boise State University 

See next page for additional authors 

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, 
in any current or future media, including reprinting/republishing this material for advertising or promotional 
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. https://doi.org/10.1109/PRDC.2018.00014 

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs
https://doi.org/10.1109/PRDC.2018.00014


Authors Authors 
Jyh-Haw Yeh, Srisarguru Sridhar, Gaby G. Dagher, Hung-Min Sun, Ning Shen, and Kathleen Dakota White 

This conference proceeding is available at ScholarWorks: https://scholarworks.boisestate.edu/cs_facpubs/379 

https://scholarworks.boisestate.edu/cs_facpubs/379


A certificateless one-way group key agreement
protocol for end-to-end email encryption

Jyh-haw Yeh
Dept. of Computer Science

Boise State University, Boise, USA
jhyeh@boisestate.edu

Srisarguru Sridhar
Dept. of Computer Science

Boise State University, Boise, USA
srisargurusridhar@u.boisestate.edu

Gaby Dagher
Dept. of Computer Science

Boise State University, Boise, USA
gabydagher@boisestate.edu

Hung-Min Sun1,2
1Dept. of Computer Science

National Tsing Hua University, Taiwan
2Research Center for Information Technology

Innovation, Academia, Sinica, Taiwan
hmsun@cs.nthu.edu.tw

Ning Shen
Dept. of Computer Science

Boise State University
Boise, USA

ningshen@u.boisestate.edu

Kathleen Dakota White
Dept. of Applied Mathematics

University of North Carolina at Asheville
Asheville, USA

dwhite2@unca.edu

Abstract—Over the years, email has evolved into one of the
most widely used communication channels for both individuals
and organizations. However, despite near ubiquitous use in much
of the world, current information technology standards do not
place emphasis on email security. Not until recently, webmail ser-
vices such as Yahoo’s mail and Google’s gmail started to encrypt
emails for privacy protection. However, the encrypted emails will
be decrypted and stored in the service provider’s servers. If the
servers are malicious or compromised, all the stored emails can
be read, copied and altered. Thus, there is a strong need for end-
to-end (E2E) email encryption to protect email user’s privacy.
In this paper, we present a certificateless one-way group key
agreement protocol with the following features, which are suitable
to implement E2E email encryption: (1) certificateless and thus
there is no key escrow problem and no public key certificate
infrastructure is required; (2) one-way group key agreement and
thus no back-and-forth message exchange is required; and (3) n-
party group key agreement (not just 2- or 3-party). This paper
also provides a security proof for the proposed protocol using
“proof by simulation”. Finally, efficiency analysis of the protocol
is presented at the end of the paper.

Index Terms—End-to-end email encryption; One-way group
key agreement; Certificateless PKC

I. INTRODUCTION

This paper proposes a Certificateless One-way Group Key
Agreement (CLOW-GKA) protocol for end-to-end (E2E)
email encryption. The main motivations are that (1) email
is the most used communication channel between individuals
and organizations; (2) most organizations do not emphasize
the importance of email security; and (3) most email servers
will backup messages you sent to ensure delivery and thus the
possibility of exposing backup messages to public is a real
threat if the messages are not E2E encrypted.

E2E email encryption schemes are built on top of Public
Key Cryptosystems (PKC). The evolution of the public key
cryptography from the traditional PKC to the Identity-based
PKC (ID-PKC) and then to the Certificateless PKC (CL-

PKC) provides a more suitable cryptosystem for researchers
to design secure protocols for E2E email encryption.

The traditional PKC is still used mostly around the world
till now, though its certificate infrastructure is not easy to
manage. In traditional PKC, each participant assigns their own
public and private keys. Thus, it requires a trusted Certificate
Authority (CA) to authenticate each participant’s public key.
The additional server for CA and the management (creation,
revocation and storage) of all the certificates is a major issue
the traditional PKC suffers.

PGP (Pretty Good Privacy) [1]–[3] probably is the most
popular E2E email encryption scheme used in the world now.
If a person wishes to use PGP to send a secure email, he/she
needs to:

1) encrypt the email using the International Data Encryp-
tion Algorithm (IDEA) [4],

2) find and confirm the email receivers’ public keys by
verifying the corresponding public key certificates, and

3) encrypt the IDEA encryption key using the email re-
ceivers’ public keys.

The encrypted email along with the encrypted IDEA key can
then be sent over a regular emailing system. Upon receiving
a PGP-encrypted email, each of the email receivers needs to

1) use his/her private key to decrypt the IDEA encryption
key, and

2) use the IDEA key to decrypt the email.
PGP’s public key certificate infrastructure uses a distributed

trust model called Web Of Trust to solve the key validation
problem. In Web Of Trust, any user can issue certificates for
any other users and users get the public keys from someone
they trusts. This scheme is flexible and leave the individual
user making the trust decisions. However, this certificate
infrastructure still has some drawbacks, such as limited trust
levels, limited validity levels, and counter-intuitive key vali-
dation [35]. The emailing processes listed above are fairly

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this conference paper. The final, definitive version of this document can be found online at 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/PRDC.2018.00014.



easy for one-to-one emailing, but fail to provide an intuitive
solution with multiple receivers. In that case, the sender needs
to perform the key verification process for each email receiver,
and also perform the encryption process multiple times with
different keys.

Shamir [5] was the first one to propose the idea of Identity-
based Public Key Cryptosystem ID-PKC to eliminate the cer-
tificate infrastructure. In ID-PKC, the participants’ public keys
are generated directly from their identities through some public
known hash functions. Thus, every participant can directly
derive other participants’ public keys from their identities
without having to verify the validity of public keys. Since
Shamir’s paper [5], many ID-PKC schemes [6]–[10] have
been proposed in literature. However, ID-PKC schemes require
a Key Generation Center (KGC) to generate and distribute pri-
vate keys for participants. This approach inevitably introduces
the key escrow problem, in which if the KGC is malicious or
compromised, the whole system will be compromised (since
the KGC knows participants’ private keys).

In 2003, Al-Riyami et al. [11] introduced a first Certifi-
cateless Public Key Cryptosystem (CL-PKC) to solve the key
escrow problem without having to have the public key certifi-
cate infrastructure. Following his paper, many certificateless
protocols [12]–[15] were proposed for various applications,
including secure encryption, signature, or key agreement.
For application like email encryption, certificateless signature
schemes obviously are not suitable. Certificateless encryption
schemes are not suitable for email encryption either since for
an email with multiple receivers the message or the encryption
key may need to be encrypted multiple times, once by each
email receiver’s public key so that each receiver can use his/her
private key to decrypt the message (or decrypt the encryption
key first and then decrypt the message). Therefore, a secure
key agreement protocol should be the best choice to implement
E2E email encryption if the protocol is a one-way and is an
n-party protocol. Unfortunately, none of the certificateless key
agreement protocols proposed in literature were designed for
E2E email encryption and thus are not one-way nor n-party.

The proposed CLOW-GKA protocol in this paper is a
key agreement protocol with the following features that are
required to implement a good E2E email encryption scheme.

• Certificateless:
– No public key certificate infrastructure is re-

quired: Certificateless means there is no need to
have certificate authority signed certificates to verify
public keys. That is, users can use some known
public information and/or identities to verify public
keys directly.

– No key escrow problem: There is no server (such
as KGC) will know any user’s private key and
thus cannot derive any encryption key to decrypt
emails. Any protocol used to implement E2E email
encryption should not have the key escrow problem.

• One-way: Most existing group key agreement protocols
require several rounds of message exchanges before all

participants can reach a group key. This approach obvi-
ously does not work for E2E email encryption because
not all participants are online when the email sender sends
emails. The proposed CLOW-GKA protocol requires no
back-and-forth message exchange. The sender only needs
to encrypt the email using a specially constructed group
key and then attach a set of Key Derivation Keys (KDKs)
in the email, one KDK for each email receiver. Upon
receiving the email, each receiver will based on his/her
own private key, the KDK and the sender’s public key to
derive the group key (i.e., the encryption key).

• n-party: Most ID-based or certificateless-based group
key agreement protocols in literature were designed for
2-party or 3-party only, probably because they are not
one-way protocols and thus the amount of back-and-
forth broadcast messages may become un-manageable
if the group size is n (especially when n is big). The
proposed CLOW-GKA has no such limitation and can
support arbitrary n parties.

In addition to the above features, unlike other CL-PKC
protocols, the proposed CLOW-GKA does not need to use
secret channels for key distribution. In order to eliminate
the key escrow problem, most CL-PKC protocols require the
KGC to distribute a partial private key to each participant
through some secret channels. The secrecy of the partial
private key is important because if a third party gets hold
of the partial private key, then they can create a fake public
keys for the user to whom the partial private key belongs to.
These fake public keys will also be able to pass the public
key verification. A detailed explanation of this problem is
discussed in Section IV-C. The proposed CLOW-GKA uses
the binding-blinding technique [16] to eliminate this secret
channel requirement. That is, the KGC can send a quantity,
in which the partial private key is embedded within it, to
the participant using any public channel. Only the participant
receiving the quantity can recover the partial private key.

Whether the proposed E2E email encryption scheme is
secure relies on the security of the underlying CLOW-GKA
protocol. In Section 5, we provide a security proof for the
protocol using a “proof by simulation” methodology.

This paper is organized in six sections. Section 2 briefly
describes some related work in literature. Section 3 provides
some preliminaries, including the elliptic curve cryptography
and bilinear pairings. Section 4 presents the CLOW-GKA
protocol for E2E email encryption. Section 5 proves the
security of the protocol, followed by analyzing the efficiency
in Section 6. The paper is concluded in Section 7.

II. RELATED WORK

Other than PGP, the authors found only one previous
work [17], referred as YZL’s protocol, in literature aimed at
designing a key agreement protocol specific for E2E email
encryption. However, this work proposed to use an identity-
based protocol for E2E email encryption and thus has the key
escrow problem.

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this conference paper. The final, definitive version of this document can be found online at 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/PRDC.2018.00014.



Currently, some commercial email encryption software
products available in the market today such as LuxSci Se-
cureLine [18], ProtonMail [19] and Mailvelope [20] are
email encryption software based on OpenPGP [3]. ProtonMail
is an email service provider like Google which uses OpenPGP.
Mailvelope is a chrome extension which can be integrated
within the email service provider’s interface. Mailvelope also
has a firefox addon. LuxSci SecureLine also uses OpenPGP
and provides end-to-end email encryption. In addition to the
well-known certificate management problem, the disadvan-
tages of using PGP/OpenPGP, as described earlier, are its
limited trust and validity levels and its counter-intuitive key
validation using certificates [35]. In our proposed CLOW-
GKA, eliminating the need of certificates is one of the desired
properties for building an end-to-end email encryption system.

Shamir [5] was the first person to propose the idea of
Identity-based Public Key Cryptosystem ID-PKC, where every
participants’ public keys are generated from their identities
through some public known hash functions. Thus, no public
key verification is required. However, ID-PKC schemes require
a Key Generation Center (KGC) to assign private keys for
participants and this inevitably introduces the key escrow prob-
lem. Though the ID-PKC has the key escrow problem, some
commercial email encryption software were still built based on
ID-PKC such as HPE Secure email [21], Trend Micro email
[22], DataMotion SecureMail [23], and Proofpoint [24].

In 2003, Al-Riyami et al. [11] designed the first CL-PKC
(certificateless public key cryptosystem) to eliminate the key
escrow problem by making the KGC to generate only a partial
private key for each participant. Upon receiving a partial
private key from KGC, each participant can then use it along
with his/her private key to construct the public key. In this
way, even a compromised or malicious KGC, with only the
knowledge of the partial private key, will not be able to
derive any participant’s private key and thus the key escrow
problem can be prevented. However, in their scheme the partial
private keys have to be distributed to participants using some
secret channels. In addition, the paper, based on their CL-
PKC setting, has only sketched a 2-party (not n-party) key
agreement protocol. Furthermore, the protocol is not one-way.
That is, it requires back-and-forth message exchanges for both
parties to agree on a key. For E2E email encryption, this key
agreement protocol obviously is not suitable.

To summarize, most email encryption software products
currently in the market still use the public key certificates
for key management (for example, PGP/OpenPGP). Some
newer email encryption software use ID-PKC to eliminate the
burden of key management. However, they suffer on the key
escrow problem. The proposed CLOW-GKA scheme aims at
eliminating both problems based on certificateless protocols.
In addition, our approach will be based on key agreement
protocols, where the email is encrypted by a key which can
be derived by all email participants. Thus, there is no need for
multiple encryptions for an email with multiple receivers.

Table 1 provides a brief functionality comparison among
the proposed CLOW-GKA protocol, YZL’s (Yeh, Zeng and

Long’s) ID-PKC protocol [17] and Al-Riyami et al’s CL-
PKC [11], where the CLOW-GKA is a protocol designed
for E2E email encryption, the YZL’s protocol is designed for
email encryption but has the key escrow problem and the Al-
Riyami’s CL-PKC is the first certificateless cryptosystem.

TABLE I
FUNCTIONALITY COMPARISON AMONG CLOW-GKA, YZL’S ID-PKC,

AND AL-RIYAMI ET AL’S CL-PKC

CLOW-GKA YZL’s Al-Riyami’s
ID-PKC CL-PKC

Without Key • YES • NO • YES
Escrow problem
Without public • YES • YES • YES
key certificate
infrastructure
One-way • YES • YES • NO
n-party • YES • YES • NO

III. PRELIMINARY

In this section, we describe the cryptographic basics of
elliptic curves and bilinear pairings that are used frequently
in ID-based and certificateless-based cryptosystems.

A. Elliptic curves

Elliptic curve cryptosystem (ECC) [25], [26] is a popular
cryptosystem used in many different cryptographic proto-
cols. To set up an ECC, based on the National Security
Agency’s recommendation [27], an appropriate prime curve
is Ep(a, b) : y2 = x3 + ax + b over a prime p and a base
point (generator) P with an order q (i.e., q × P = O), where
(4a3 + 27b2) 6= 0 mod p and O is the infinity point. An ECC
Ep(a, b) is an additive group with the following operation
rules. For all points A,B,C ∈ Ep(a, b),

1) A+O = A.
2) If A = (xA, yA), then −A = (xA,−yA) and thus A +

(xA,−yA) = O.
3) Given A = (xA, yA) and B = (xB , yB) with A 6= −B,

another point C = A+B = (xC , yC) can be calculated
by the rules below:

xC = (λ2 − xA − xB) mod p
yC = (λ(xA − xC)− yA) mod p

where

λ =


yB−yA

xB−xA
mod p if A 6= B

3x2
A+a

2yA
mod p if A = B

4) Multiplication is defined as repeated additions. For ex-
ample, for some positive integer k, the multiplication
k ·A = A+A+ . . .+A, i.e., A adds itself k− 1 times.

There are many ECC encryption and signature algorithms
available in literature. All these algorithms are based on the
hardness assumption of the Elliptic Curve Discrete Logarithm
Problem that states:

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this conference paper. The final, definitive version of this document can be found online at 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/PRDC.2018.00014.



• Elliptic Curve Discrete Logarithm Problem (ECDLP):
Given two points A and B on a curve Ep(a, b) with an
order q, if B = r ·A for some r ∈ Z∗q , it is computational
hard to find r.

B. Bilinear pairings

Bilinear pairing has found recent use in various encryption
and signature schemes [6]–[10], [28]–[30]. A symmetric
bilinear pairings cryptosystem is described briefly below.

Let (G1,+) and (G2,×) be two cyclic groups of the same
prime order q, and let P be the generator of the additive group
G1, and e : G1×G1 → G2 is a bilinear mapping if it has the
following properties:
• Bilinearity: ∀A,B,C ∈ G1, and ∀ r1, r2 ∈ Z∗q ,

e(A,B) = e(B,A)
e(A,B + C) = e(A,B)e(A,C)
e(r1A, r2B) = e(A,B)r1r2 = e(r2A, r1B)

• Non-degeneracy: If P is a generator of G1, then e(P, P )
is a generator of G2.

• Computability: ∀A,B ∈ G1 , there exists a polynomial-
time algorithm to efficiently compute the bilinear map-
ping e(A,B).

An elliptic curve is a typical example that can be used as
the G1 group. The security of most bilinear mapping based
cryptographic algorithms is related to the hardness assumption
of the following bilinear problems, which are:
• Computational Bilinear Diffie-Hellman Problem (CB-

DHP): Given A, r1A, r2A, for r1, r2 ∈ Z∗q , compute
r1r2A.

• Decision Bilinear Diffie-Hellman Problem (DBDHP):
Given A, r1A, r2A, r3A, for r1, r2, r3 ∈ Z∗q , and an
element g ∈ G2, decide if g = e(A,A)r1r2r3 .

• One Way Bilinearity Problem (OWBP): Given a random
element g ∈ G2, find a pair (A,B) ∈ G1 such that
e(A,B) = g.

There is no algorithm available currently which is able to
efficiently solve these hard problems.

IV. THE CLOW-GKA PROTOCOL FOR E2E EMAIL
ENCRYPTION

This section proposes the CLOW-GKA (certificateless one-
way group key agreement) protocol and describes its applica-
tion to E2E email encryption.

A. KGC servers

For the proposed CLOW-GKA protocol to allow an email
sender and a group of n (≥ 1) email receivers to agree on a key
for E2E email encryption, all of the email participants must
register through a same KGC (key generation center). This
can be easily achieved by letting the email service provider
(such as Google) act as the KGC. For some security sensitive
organizations, for example government agencies may want to
establish their own email system for their employees only, the
agency can also have a dedicated server serves as the KGC.

However, no matter in which cases (public or internal), the
KGC will not be able to know any participant’s private key,

and thus not able to derive any agreed group key (i.e., email
encryption key) and subsequently decrypt any of the emails
if the KGC is compromised. Thus, the proposed CLOW-GKA
protocol can implement a truly E2E email encryption scheme,
i.e., no other entity (except the email sender and receivers) is
able to decrypt the emails.

B. CLOW-GKA for E2E email encryption

In this section, we formally present the CLOW-GKA pro-
tocol for E2E email encryption. Within this protocol, several
sub-protocols will be called and executed. The entities par-
ticipating in the protocol are the KGC and the email users,
where each email user can play different roles either as an
email sender or as an email receiver.

CLOW-GKA protocol: E2E email encryption

Assume an email sender with an identity ID0 would
like to send an E2E encrypted email to n ≥ 1 email
receivers with identities IDi,∀ 1 ≤ i ≤ n. This protocol
is based on a cryptosystem with a set of parameters set
up by the KGC. The KGC, ID0, and all IDi need to
execute the steps described in this protocol.

1) The KGC server defines a cryptosystem
and publishes a set of parameters
〈G1, G2, e, P, Ppub, q,H1, H2〉, where parameters
G1, G2, e, P and q were defined in Section III-B.
The KGC also chooses a master secret s ∈ Z∗q
and then computes Ppub = sP as the system’s
public key. The KGC chooses a hash function
H1 : {0, 1}∗ → G1. The map-to-curve and map-
to-point algorithms from Weil pairings in [6], [9]
are such functions that can map users’ identities
to points on an elliptic curve (the group G1).
Finally the KGC chooses another hash function
H2 : Z∗q → Z∗q that will be used in generating key
generation keys. Secure Hash (SHA) algorithms
are appropriate hash functions that can be used in
this protocol.

2) Each email user, including ID0 and all IDi, ∀ 1 ≤
i ≤ n, needs to have an email account before
sending/receiving emails. Each email user executes
the Sub-protocol 1 to register an email account
through the KGC. In Sub-protocol 1, each email
user will generate his/her private and public keys.

3) Each email user, including ID0 and all IDi, pub-
lishes his/her public key along with his/her identity
in a public directory.

4) The email sender ID0 executes the Sub-protocol
2 to send an encrypted email to all email receivers
IDi.

5) Each email receiver IDi executes the Sub-protocol
3 to receive and decrypt the email.

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this conference paper. The final, definitive version of this document can be found online at 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/PRDC.2018.00014.



C. Email account registration

All email users need to register through the KGC first before
they can send or receive any E2E encrypted email.

Sub-protocol 1: Email account registration

Input: An email user with an identity IDj , ∀ 0 ≤ j ≤ n,
and a random number rj ∈ Z∗q .
Output: IDj’s private key sj ∈ Z∗q and public key
〈Pj , Rj〉, where both Pj and Rj ∈ G1.

A user IDj registers an email account and generates
his/her private and public keys through the KGC by the
following steps:

1) IDj computes and sends rjQj to KGC, where rj
is a random secret and Qj = H1(IDj).

2) KGC computes Dj = srjQj and sends it back to
IDj through any public channel, in which a partial
private key sQj is embedded in Dj .

3) IDj chooses his/her private key sj and then com-
putes his/her public key 〈Pj , Rj〉, where

Pj = sjP (1)

Rj = s−1
j r−1

j Dj = s−1
j r−1

j rjsQj = s−1
j sQj (2)

Note that in the step 2 of the Sub-protocol 1, unlike
other ID-based or certificateless-based protocols, the proposed
CLOW-GKA protocol does not require secret channels for
the KGC to distribute the partial private key sQj . We use
the binding-blinding technique to avoid the requirement of
secret channels. Rather than sending the partial private key
sQj directly, the KGC sends Dj = srjQj to IDj through
any public channel, where only the IDj knows the random
secret rj . Based on the hardness assumption of the Elliptic
Curve Discrete Logarithm problem, it is hard for everyone
(except the KGC and the user IDj) to derive the partial private
key sQj even he/she eavesdrops Dj from the public channel.
The secrecy of the partial private key sQj is important to
the security of the protocol since if a third party is able to
eavesdrop sQj , then this party can create a fake public key
for IDj . This malicious party just needs to choose his/her
own random secret s′j , and based on the eavesdropped sQj ,
to generate 〈P ′j , R′j〉 and then claims that this fake public key
is IDj’s public key.

D. Sending an E2E encrypted email

The email sender ID0 needs to execute the Sub-protocol 2
below to send an E2E encrypted email to a group of n email
receivers IDi,∀ 1 ≤ i ≤ n.

Sub-protocol 2: Sending an E2E encrypted email

To send an E2E encrypted email to n email receivers
IDi,∀ 1 ≤ i ≤ n, the sender ID0 needs to perform the
following steps:

1) ID0 obtains each email receiver IDi’s public key
〈Pi, Ri〉 from the public directory.

2) ID0 verifies each IDi’s public key by checking the
equality of Equation 3 below.

e(Pi, Ri)
?
= e(Ppub, Qi) (3)

since
e(Pi, Ri) = e(siP, s

−1
i sQi) = e(sP, sis

−1
i Qi)

= e(Ppub, Qi).
If the equality checking in Equation 3 returns true,
the validity of the public key 〈Pi, Ri〉 is verified.

3) ID0 chooses a random number r ∈ Z∗q and com-
putes

xj = e(H2(r)Q0, s0Pj), ∀ 0 ≤ j ≤ n (4)

4) ID0 computes n key derivation keys yi’s, one for
each email receiver IDi, where

yi = x0 ⊕ x1 ⊕ . . .⊕ xi−1 ⊕ xi+1 ⊕ . . .⊕ xn (5)

5) ID0 computes the group key (will be used to
encrypt the email message)

K = x0 ⊕ x1 ⊕ . . .⊕ xn (6)

6) ID0 uses the group key K to encrypt the email
message and then sends the encrypted email along
with the key derivation keys and the random number
(y1, y2, . . . , yn, r) as an attachment to all n email
receivers IDi’s.

For Equation 3, the email sender only needs to use the
KGC’s public information Ppub and the email receiver’s
identity IDi (or Qi = H1(IDi)) to verify the validity of
the IDi’s public key 〈Pi, Ri〉. This certificateless public-key
verification capability (i.e., Any user can verify another user’s
public key without the need to have a third party to serve
as a certificate authority) is an important feature for a well-
designed certificateless protocol.

E. Receiving an E2E encrypted email

Upon receiving an E2E encrypted email from the email
sender ID0, each email receiver IDi, ∀ 1 ≤ i ≤ n, needs
to execute the Sub-protocol 3 to derive the group key K and
then use it to decrypt the message.

Sub-protocol 3: Receiving an E2E encrypted email

Each email receiver IDi,∀ 1 ≤ i ≤ n, performs the
following three steps:

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this conference paper. The final, definitive version of this document can be found online at 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/PRDC.2018.00014.



1) IDi first obtains the email sender ID0’s public key
〈P0, R0〉 from the public directory.

2) IDi checks the validity of ID0’s public key
〈P0, R0〉 based on Equation 3.

3) IDi derives the group key K using his/her own
private key si, the key derivation key yi, and the
email sender ID0’s identity Q0 (= H1(ID0)) and
public key P0. Equation 7 below describes this key
derivation process.

K = yi ⊕ e(siQ0, H2(r)P0) (7)

since
yi ⊕ e(siQ0, H2(r)P0)

= yi ⊕ e(H2(r)Q0, siP0)
= yi ⊕ e(H2(r)Q0, sis0P )
= yi ⊕ e(H2(r)Q0, s0Pi)
= yi ⊕ xi
= (x0 ⊕ . . .⊕ xi−1 ⊕ xi+1 ⊕ . . . xn)⊕ xi
= K

4) Finally, IDi can decrypt the email using the just
derived group key K.

In Equations 4 and 7, the reason of using H2(r), in-
stead of r, to (re-)generate each xj is to prevent a poten-
tial impersonation attack. The attack works as follows: If
xj = e(rQ0, s0Pj), any receiver, for example ID1, who can
calculate his/her own x1 and thus is able to compute each xi
(1 ≤ i ≤ n) from the transcript (y1, y2, . . . , yn, r) from ID0

(the sender). Then ID1 just chooses a new random number r′

to re-generate valid x′j and y′i as

x′j = e(rQ0, s0Pj)
r′ = e(rr′Q0, s0Pj),∀0 ≤ j ≤ n and

y′i = x′0 ⊕ x′1 ⊕ . . .⊕ x′i−1 ⊕ x′i+1 ⊕ . . .⊕ x′n ∀1 ≤ i ≤ n

Thus, ID1 is able to impersonate ID0 and send group emails
by attaching the new transcript (y′1, y

′
2, . . . , y

′
n, rr

′).
However if xj = e(H2(r)Q0, s0Pj), the attack cannot be

successful. Applying the same attack the receiver ID1 first
chooses a random number r′ and re-generate x′j as

x′j = e(H2(r)Q0, s0Pj)
r′ = e(r′H2(r)Q0, s0Pj)

Then in the transcript (y′1, y
′
2, . . . , y

′
n, r
′′) the receiver ID1

needs to give a random number r′′ that makes H2(r′′) =
r′H2(r). Based on the preimage resistance of hash functions,
it is computationally hard to find such r′′.

F. Example

For demonstration purpose, this section will give a walk
through example. In this example, the email sender ID0 is
sending an email to n = 3 receivers ID1, ID2, and ID3.

1) Cryptosystem setup: The KGC sets up a cryptosystem
with all the parameters as described in the step 1 of
CLOW-GKA protocol in Section IV-B.

2) Email account registration: Each of the users
ID0, ID1, ID2 and ID3 registers an email account

through the KGC and during the registration, their public
keys are generated.

3) Public key directory: All the users ID0, ID1, ID2 and
ID3 publish their public keys in a public directory.

4) Sending an encrypted email:
a) The email sender ID0 accesses the public directory

to obtain all email receiver ID1’s, ID2’s and
ID3’s public keys 〈P1, R1〉, 〈P2, R2〉, 〈P3, R3〉.

b) ID0, based on Equation 3, verifies the validity of
all three public keys by checking

e(P1, R1)
?
= e(Ppub, Q1)

e(P2, R2)
?
= e(Ppub, Q2)

e(P3, R3)
?
= e(Ppub, Q3)

c) ID0 picks a random number r and computes
x0 = e(H2(r)Q0, s0P0)
x1 = e(H2(r)Q0, s0P1)
x2 = e(H2(r)Q0, s0P2)
x3 = e(H2(r)Q0, s0P3)

d) ID0 computes three key derivation keys as follows. y1 = x0 ⊕ x2 ⊕ x3

y2 = x0 ⊕ x1 ⊕ x3

y3 = x0 ⊕ x1 ⊕ x2

e) ID0 generates the group (encryption) key

K = x0 ⊕ x1 ⊕ x2 ⊕ x3

f) ID0 encrypts the email using the group key K and
sends (y1, y2, y3, r) along with the email.

5) Receiving an encrypted email:
a) Each email receiver ID1, ID2 or ID3 accesses

the public directory to obtain ID0’s public key
〈P0, R0〉.

b) By Equation 3, each email receiver ID1, ID2 or
ID3 verifies the sender ID0’s public key 〈P0, R0〉
by checking e(P0, R0)

?
= e(Ppub, Q0).

c) ID1 computes
y1 ⊕ e(s1Q0, H2(r)P0)

= x0 ⊕ x2 ⊕ x3 ⊕ e(H2(r)Q0, s1s0P )
= x0 ⊕ x2 ⊕ x3 ⊕ e(H2(r)Q0, s0P1)
= x0 ⊕ x2 ⊕ x3 ⊕ x1 = K

ID2 computes
y2 ⊕ e(s2Q0, H2(r)P0)

= x0 ⊕ x1 ⊕ x3 ⊕ e(H2(r)Q0, s2s0P )
= x0 ⊕ x1 ⊕ x3 ⊕ e(H2(r)Q0, s0P2)
= x0 ⊕ x1 ⊕ x3 ⊕ x2 = K

ID3 computes
y3 ⊕ e(s3Q0, H2(r)P0)

= x0 ⊕ x1 ⊕ x2 ⊕ e(H2(r)Q0, s3s0P )
= x0 ⊕ x1 ⊕ x2 ⊕ e(H2(r)Q0, s0P3)
= x0 ⊕ x1 ⊕ x2 ⊕ x3 = K

d) Finally all three email receivers can decrypt the
encrypted email using the group key K.

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this conference paper. The final, definitive version of this document can be found online at 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/PRDC.2018.00014.



V. SECURITY ANALYSIS

A. Adversarial model

CLOW-GKA protocol is secure against static and non-
colluding adversaries in the semi-honest adversarial model,
also called honest-but-curious. The adversary obtains the in-
ternal state of the corrupted party, including the transcripts
of all messages received. It correctly follows the protocol
specification while attempting to learn private information
from other parties. In the rest of this section, we prove
the security of our protocol in the setting of semi-honest
adversarial model.

B. Privacy by simulation

According to the simulation paradigm [33], a protocol is
secure against semi-honest adversaries if whatever can be
computed by a party participating in the protocol can be
computed based merely on its input and output. If the view
of a party is simulatable based only on the party’s input and
output, then whatever the adversary can learn from the input
and output of the corrupted party, can be learned without the
execution of the protocol. If the view each party in the protocol
is simulatable based only on the it’s input and output, then
we can conclude that the protocol is privacy-preserving, and
consequently secure.

1) Definition of security:
• Let f = (fi, ..., fm) be a m-ary probabilistic polynomial-

time functionality and let Π be a multi-party protocol for
computing f .

• The view of the ith party (i ∈ 1, 2, ..,m) during
an execution of Π on x = (x1, ...., xm) and secu-
rity parameter n is denoted by viewΠ

i (x, n) and equals
(w, ri,mi,1, . . . ,mi,t) where w ∈ x = (x1, ...., xm)
(its value depending on the value of i), ri equals the
contents of the ith party’s internal random tape, and mi,j

represents the jth message that it received.
• The output of the ith party during an execution of Π on
x = (x1, ...., xm) and security parameter n is denoted by
outputΠi (x, n) and can be computed from its own view
of the execution. We denote the joint output of all parties
by outputΠi (x, n) = (outputΠ1 (x, n), ..., outputΠm(x, n))

In the case where the functionality f is deterministic (our
protocol is deterministic too), a simpler definition can be used.
Specifically, we do not need to consider the joint distribution
of the simulatorŁ output with the protocol output. Rather we
separately require correctness, meaning that

{outputΠ(x, n)}x∈({0,1}∗);n∈N
c≡ {f(x, n)}x∈({0,1}∗);n∈N

and in addition, that there exist probabilistic polynomial-time
algorithm (simulator) S such that for each I ⊆ {1, . . . ,m}:

{SI(1n, xI , fI(x))}x∈({0,1}∗);n∈N
c≡

{viewΠ
I (x, n)}x∈({0,1}∗);n∈N

where
c≡ denotes computational indistinguishability. �

According to the security definition above, it is sufficient to
show that we can effectively simulate the view of each party
in the two phases of CLOW-GKA protocol given only the
input and output of that party, in order to prove the protocol
is secure.

1. User Registration Phase:
Theorem 1: Let f be a polynomial-time two-party single-
output functionality that takes as input two private keys sj
from user IDj and Dj from KGC, and outputs a public
key pair 〈Pj , Rj〉. Then Sub-protocol 1 securely computes
f in the presence of static semi-honest adversaries.

Proof. In Sub-protocol 1, a user with an identity IDj

first sends a parameter to KGC. Then the KGC computes
the partial private key and sends it back to IDj , which
uses it to computes its public key pairs. The interaction
between KGC and IDj is secure due to the binding-
blinding technique which has the hardness assumption
of the Elliptic Curve Discrete Logarithm problem [32].
According to the simulation paradigm [33], A protocol is
secure against static semi-honest adversaries if whatever
can be computed by a party participating in the protocol
can be computed based on its input and output only.

Case 1 - User with identity IDj is corrupted. We
construct a simulator S1 that is given private key sj and
public key 〈Pj , Rj〉 as inputs, and it generates the view
of IDj in Sub-protocol 1. We need to prove that:

{S1(sj , 〈Pj , Rj〉)}sj ,Pj ,Rj∈{0,1}*
c≡

{viewΠ
IDj

(sj , s)}sj ,s∈{0,1}* (8)

where S1(sj , 〈Pj , Rj〉) is the simulator as defined above
and Π denotes Sub-protocol 1, by proving that each
simulated message received by IDj in Sub-protocol
1 is indistinguishable from a message received in the
real world. In Step 2 of Sub-protocol 1, IDj receives
Dj = srjQj . Therefore, S1 must generate Dj and send
it to IDj such that IDj is able to obtain 〈Pj , Rj〉.
However, S1 cannot honestly generate Dj as it does not
know KGC’s master key s. The crux of this proof is
in showing that D′j generated by S1 is computationally
indistinguishable from Dj that IDj receives in the real
protocol execution. S1 uniformly chooses random number
r′j that IDj would use to generate rjQj (in Step 1). Next,
we know that

Rj = s−1
j r′

−1
j Dj (9)

So rewriting Equation 9 we get

Dj = Rjsjr
′
j

Since S1 knows Rj , sj and r′j , S1 is able to compute Dj

without knowing s and sends it to IDj . IDj can now
generate 〈Pj , Rj〉 as it does in the real execution.

Case 2 KGC is corrupted. We construct a simulator
S2 that is given master key of KGC s and public key

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this conference paper. The final, definitive version of this document can be found online at 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/PRDC.2018.00014.



〈Pj , Rj〉 as inputs, and generates the view of KGC in
Sub-protocol 1. We need to prove that:

{S2(s, 〈Pj , Rj〉)}s,Pj ,Rj∈{0,1}*
c≡

{viewΠ
KGC(sj , s)}sj ,s∈{0,1}* (10)

where S2(s, 〈Pj , Rj〉) is the simulator as defined
above and Π denotes Sub-protocol 1. In Step 1 of
Sub-protocol 1, KGC receives rjQj from IDj . S2

computes Qj = H1(IDj). Next, it uniformly chooses
random number r′j , computes r′jQj and sends it to KGC.
rjQj is computationally indistinguishable from r′jQj as
both rj and r′j were randomly chosen from a uniform
distribution. ♦

2. Email Sending and Receiving Phase:
Theorem 2: Let f: {0, 1}* × ...× {0, 1}* → {0, 1}* be
a polynomial-time multi-party single-output functionality,
and let Sub-protocol 1 be a secure user registration
protocol in the presence of static semi-honest adversaries.
Sub-protocol 2 and Sub-protocol 3 securely computes f in
the presence of static semi-honest adversaries.

Proof: In Sub-protocol 2, a sender with identity ID0

sends an encrypted email with some parameters to n
email receivers IDi,∀ 1 ≤ i ≤ n. In Sub-protocol
3, each receiver IDi receives an encrypted email with
some parameters, derives the decryption key, and then
decrypts the email. In Step 2 of both Sub-protocol 2
and Sub-protocol 3, the user verifies the validity of other
user’s public key, e.g., ID0 verifies for the validity of
IDi’s public key pair 〈Pi, Ri〉 by checking Equation
3, i.e., e(Pi, Ri)

?
= e(Ppub, Qi) since e(Pi, Ri)

= e(siP, s
−1
i sQi) = e(sP, sis

−1
i Qi) = e(Ppub, Qi).

Although parameters Pi, Ri, Ppub, Qi are all public, no
secret information can be derived from these parameters
due to the hardness assumption of the Elliptic Curve
Discrete Logarithm problem [32]. Note that since in Sub-
protocol 2 and Sub-protocol 3 the sender does not receive
any message, there is no need to simulate the view of the
sender. We only need to simulate the view of one receiver
(let us assume it to be ID1) in each sub-protocol to prove
they are secure according to the simulation paradigm.

Case 3 - Receiver with identity ID1 is corrupted.
In this case, we construct a simulator S3 that is given
encryption key K and private key s1 of ID1 as inputs,
and generates the view of ID1 in Sub-protocol 2 and
Sub-protocol 3. S3 will simulate sender ID0 and other
receivers IDi,∀ 2 ≤ i ≤ n. We need to prove that:

{S3(s1,K)}s1,K∈{0,1}*
c≡

{viewΠ
ID1

(s1, (xi,∀ 0 ≤ i ≤ n))}s1,(xi,∀ 0≤i≤n)∈{0,1}*

(11)

where S3(s1,K) is the simulator as defined above and
Π denotes Sub-protocol 2 and Sub-protocol 3 combined.

S3 uniformly chooses random number r′ that ID0 would
choose. Notice that ID0 first computes x0 and xi,∀ 1 ≤
i ≤ n using its private key s0 in the real execution. S3

cannot honestly compute x0 and xi,∀ 1 ≤ i ≤ n because
it does not know private key s0 of ID0. Next, ID0 com-
putes yi,∀ 1 ≤ i ≤ n and K and encrypts the email using
K and sends (y1, y2, . . . , yn, r) along with the encrypted
email in the real protocol execution. The crux of this
proof is in showing that (y1, y

′
2, . . . , y

′
n, r
′) along with

the encrypted email (generated by S3) is computationally
indistinguishable from the real (y1, y2, . . . , yn, r) along
with the encrypted email that ID1 receives in the real
protocol execution. We know that:

x1 = e(H2(r′)Q0, s0P1)

S3 computes x1 with input (s1,K) as follows:
x1 = e(s1Q0, H2(r′)P0)

= e(H2(r′)Q0, s1s0P )
= e(H2(r′)Q0, s0P1) (as computed by ID0)

S3 now knows s1, Q0, r
′, P0, and S3. Since:

y1 = x0 ⊕ x2 ⊕ . . .⊕ xn
K = x0 ⊕ x1 ⊕ x2 ⊕ . . .⊕ xn

S3 computes y1 as follows:
y1 = K ⊕ x1

= x0 ⊕ x1 ⊕ x2 ⊕ . . .⊕ xn ⊕ x1

= x0 ⊕ x2 ⊕ . . .⊕ xn (as computed by ID0)
S3 now has K, r′, y1. It can now encrypt email using
K as in real execution. Since S3 uses the same K
as in real execution the encrypted email generated by
S3 will be computationally indistinguishable from the
encrypted email generated in the real execution. Even
though S3 has all the parameters that receiver ID1

needs to derive back K and decrypt the email we
still need to make sure the message (y1, y

′
2, . . . , y

′
n, r
′)

along with the encrypted email is computationally
indistinguishable from the real execution message. So
S3 has to compute y′2, . . . , y

′
n. But S3 does not know x0

and xi,∀ 2 ≤ i ≤ n. Therefore, S3 randomly chooses
n-1 elliptic curve points and applies bilinear mapping
to generate x′0 and x′i,∀ 2 ≤ i ≤ n, from which it
computes y′2, . . . , y

′
n as shown in Equation 5. Next,

S3 sends (y1, y
′
2, . . . , y

′
n, r
′) along with the encrypted

email to receiver ID1. Since x′0 and x′i,∀ 2 ≤ i ≤ n
were randomly generated and based on the One-way
Bilinearity problem [34], y′2, . . . , y

′
n are computationally

indistinguishable from the real y2, . . . , yn. ♦

Theorem 3: Let Π be a polynomial-time multi-party
protocol which is CLOW-GKA protocol: E2E email en-
cryption and let Sub-protocol 1, Sub-protocol 2 and Sub-
protocol 3 be secure in the presence of static semi-honest
adversaries, then Π securely executes in the presence of
static semi-honest adversaries.

Proof: By Theorem 1 it is possible to securely execute
Sub-protocol 1 and by Theorem 2 it is possible to securely

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this conference paper. The final, definitive version of this document can be found online at 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/PRDC.2018.00014.



execute Sub-protocol 2 and Sub-protocol 3 assuming the
existence of static semi-honest adversaries. Furthermore,
recall that CLOW-GKA protocol: E2E email encryption
is made up of the sub-protocol blocks mentioned above.
Combining these facts with Theorem 3 we can conclude
that CLOW-GKA protocol: E2E email encryption is se-
cure in the presence of static semi-honest adversaries.

VI. EFFICIENCY ANALYSIS

In this section we analyze our proposed CLOW-GKA pro-
tocol: E2E email encryption scheme. First, we analyze the
computational cost for each of our protocol blocks. Secondly,
we analyze the efficiency with respect to email size. Finally,
we compare the efficiency of our protocol with other related
protocols with the use of a table. In our analysis we use
the following notations for the operations associated with our
CLOW-GKA protocol.

PM Point multiplication in group G1

BP Bilinear pairing
HASH1 [6], [9] defined map-to-point hash algorithm as

H : {0, 1}∗ → G1

HASH2 This hash function is defined as H : Z∗q → Z∗q
HASH3 [11] defined this hash function as H : G2 →

{0, 1}n, where n is the bit length of plaintexts

Note that if a practical elliptic curve E/F3163 is used to
implement the group G1, then one BP operation requires
≈ 11, 110 modular multiplications in F3163 [29]. Also, a PM
operation of E/F3163 requires only a few hundred modular
multiplications in F3163.

A. Computational cost of the protocol

In this subsection we are going to analyze the computational
cost of the main protocol block and its sub-protocol blocks.

1) CLOW-GKA protocol: E2E email encryption:
In this protocol block, the KGC defines a cryptosystem
and publishes a set of parameters. The KGC uses only
one PM operation to compute the system’s public key.

2) Sub-protocol 1:
Each email user needs to register an email account
through the KGC. The user first uses a HASH1 and a
PM operation to send a parameter to KGC. The KGC
again uses a PM operation to compute the partial private
key and sends it back to the user. The user computes
its public key pair using 2 PM operations as shown in
Equations 1 and 2. So the total computational cost for
each user is (4 PM + 1 HASH1).

3) Sub-protocol 2:
To send an email to n recipients, the sender needs to

1) verify n recipients’ public key by Equation 3. This
requires 1 HASH1 and 2 BP operations for verifying
each recipient’s public key.

2) calculate x0, x1, . . . , xn: By Equation 4, each
computation needs 1 HASH2, 2 PM, and 1 BP
operations.

3) calculate y1, y2, . . . , yn: By Equation 5, the calcu-
lation of each yi requires ⊕ing all xj’s ∀ j 6= i.

4) derive the encryption key K. By Equation 6, this
derivation requires ⊕ing all xi’s.

5) AES encrypt the email by the encryption key K.
The bit-wise ⊕ operation is extremely efficient, making
the costs for calculating K and yi’s negligible. From the
email sender’s perspective, the main computational cost
stems from the public key verification, AES encryption
and the calculation of X = {x0, x1, . . . , xn}. Since
each xi calculation requires 2 PM, 1 HASH2, and 1
BP operations and each public key verification requires 1
HASH1 and 2 BP operations, the total cost for this block
is n HASH1, n+ 1 HASH2, (2n+ 2) PM and (3n+ 1)
BP operations.

4) Sub-protocol 3:
To receive an email, a recipient needs to

1) verify the sender’s public key by Equation 3. This
requires 1 HASH1 and 2 BP operations.

2) re-construct the group key using Equation 7. This
requires 1 HASH2, 2 PM and 1 BP operation (the
⊕ operation is again ignored).

3) AES decrypt the message using the re-constructed
group key K.

So the total cost is 1 HASH1, 1 HASH2, 2 PM and
3 BP operations. We see that the computational cost of
sending an email is linearly proportional to the number of
recipients while the cost of receiving an email is constant.

B. Email size analysis

Our proposed CLOW-GKA for E2E email encryption is an
n−party protocol and so the size of an email will increase
depending on the number of recipients. The most important
factor for the email size increase is due to the inclusion of
key derivation keys (y1, y2, . . . , yn). Each key derivation key
will have the same size as the key of the selected curve, since
our scheme uses an elliptic curve to implement the group G1

in the bilinear pairings. An elliptic curve with a key size of
≈ 2k bits is required for the security of a symmetric encryption
scheme with an k-bit key according to the National Institute
of Standards and Technology. So the size increase of an email
to n recipients would be ≈ 256×n bits when using an elliptic
curve with a 128-bit symmetric encryption security strength.

C. Efficiency comparison with different protocols

In Section II Related Work, we have selected two other pro-
tocols besides the proposed CLOW-GKA for the comparison
of functionality in Table I. Table II below provides a brief
efficiency comparison among these three protocols again.

Al-Riyami et al’s CL-PKC (certificateless public key cryp-
tosystem) [11] is not an n-party scheme. For fair comparison,
we assume that it performs one CL-PKC encryption for each of
the n email recipients. In Table II, our CLOW-GKA protocol
is slower than those in YZL’s and Al-Riyami’s protocols by a
constant factor (about 2 times slower in average). Though the

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this conference paper. The final, definitive version of this document can be found online at 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/PRDC.2018.00014.



TABLE II
COMPARISON AMONG CLOW-GKA, YZL’S ID-PKC, AND AL-RIYAMI ET AL’S CL-PKC, ASSUMING THERE ARE n RECIPIENTS IN AN EMAIL

CLOW-GKA YZL’s ID-PKC Al-Riyami’s CL-PKC
System Setup • 1 PM • None • 1 PM
Key distribution • 1 HASH1 • 1 HASH1 • 1 HASH1
and generation • 4 PM • 1 PM • 2 BP

• 4 PM
Encryption • (2n + 2) PM • (n + 1) PM (n) CL-PKC email encryptions contain:
(Sending email) • (3n + 1) BP • (n + 1) BP • (n) HASH1

• (n) HASH1 • (n + 1) HASH1 • (n) HASH3
• (n + 1) HASH2 • Symmetric key email encryption • (3n) BP
• Symmetric key email encryption • (2n) PM

Decryption • 2 PM • 1 PM CL-PKC email decryption contains
(Receiving email) • 3 BP • 1 BP • 1 BP

• 1 HASH1 + 1 HASH2 • 1 HASH1 • 1 HASH3
• Symmetric key email decryption • Symmetric key email decryption

Message size • Encrypted message plus all yi’s • Encrypted message plus all yi’s • (n) CL-PKC encrypted message
(the key agreement info) (the key agreement info)

proposed CLOW-GKA has a minor performance disadvantage,
it should still be a better choice for E2E email encryption since
it provides a better functionality than others (see Table I).

VII. CONCLUSION

To protect email privacy, an end-to-end email encryption
scheme is required, where only the email sender and receivers
can decrypt the emails. In this paper, we proposed a cer-
tificateless one-way group key agreement protocol with nice
features which are suitable for implementing end-to-end email
encryption schemes. These features are (1) certificateless (and
thus no public-key certificate infrastructure is required and
does not have key escrow problem) , (2) one-way, and (3) n-
party. This paper also gives a security proof of the proposed
protocol using a ”proof by simulation” method. This method
is relatively new and thus very few examples (or case studies)
can be found in literature. The proof presented in this paper
can be a good reference for future researchers who would
like to use this methodology for security proof. Finally, the
efficiency of the protocol is analyzed at the end of the paper.

REFERENCES

[1] P. Zimmermann, “Why I wrote PGP?” 1991.
https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html

[2] The International PGP Homepage, “PGP Documentation,”
http://www.pgpi.org/doc/

[3] The OpenPGP homepage, http://openpgp.org
[4] X. Lai and J. Massey, “A Proposal for a New Block Encryption Standard,”

EUROCRYPT, pp. 389-404, 1990.
[5] A. Shamir, “Identity-based Cryptosystems and Signature Schemes,”

CRYPTO’84, LNCS 196, pp. 47-53, 1985.
[6] D. Boneh, M. Franklin, “Identity-based encryption from the Weil pairing,”

CRYPTO’01, pp. 213-229, 2001.
[7] C. Gentry, A. Silverberg, “Hierarchical ID-based cryptography,” Advances

in Cryptography - ASIACRYPT’02, Springer-Verlag, pp. 548-566, 2002.
[8] F. Zhang, K. Kim, “ID-based blind signature and ring signature from

pairings,” Advances in Cryptography - ASIACRYPT’02, Springer-Verlag,
pp. 533-547, 2002.

[9] X. Yi, “An Identity-based Signature Scheme from the Weil Pairing,” IEEE
Communications Letter, Vol. 7, No. 2, pp. 76-78, 2002.

[10] H. Elkamchouchi, Y. Abouelseoud, “A new proxy identity-based sign-
cryption scheme for partial delegation of signing rights,” Cryptology
ePrint Archive, Report 2008/041, 2008.

[11] S. Al-Riyami and K. Paterson, “Certificateless public key cryptography,”
Advances in Cryptology - ASIACRYPT’03, pp. 1-40, 2003.

[12] H. Xiong, F. Li, and Z. Qin, “Certificateless threshold signature secure
in the standard model,” Information Sciences, Vol. 237, pp. 73-81, 2013.

[13] R. Tso, X. Huang, and W. Susilo, “Strongly secure certificateless short
signatures,” Journal of Systems and Software, vol. 85, no. 6, pp. 1409-
1417, 2012.

[14] J. Baek, R. Safavi-Naini, and W. Susilo, “Certificateless public key
encryption without pairing,” 8th International Information Security Con-
ference (ISC 2005), LNCS 3650, pp. 134-148, 2005.

[15] G. Yang and C.H. Tan, “Strongly secure certificateless key exchange
without pairing,” ASIACCS’11, pp.71-79, 2011.

[16] M.L. Das, ”A key escrow-free identity-based signature scheme without
using secure channel,” Cryptologia, Vol. 35, No. 1, pp. 58-72, 2011.

[17] J.H. Yeh, F. Zeng, and T. Long, “E2E email encryption by an identity-
based one-way group keyagreement protocol,” 20th IEEE International
Conference on Parallel and Distributed Systems (ICPADS 2014), pp. 760-
767, 2014.

[18] LuxSci SecureLine, 2011, https://luxsci.com/extranet/secure-email.html
[19] ProtonMail, 2013, https://protonmail.com/security-details
[20] Mailvelope, 2014, https://www.mailvelope.com/en/
[21] HPE Secure Email, 2015,

https://www.voltage.com/products/email-security/hpe-securemail/
[22] Trend Micro email, 2008,

http://www.trendmicro.com/us/enterprise/network-web-messaging-
security/email-encryption/

[23] Data-Motion SecureMail, 2010,
https://www.datamotion.com/products/securemail/

[24] Proofpoint Email Protection, 2005,
https://www.proofpoint.com/us/products/email-protection

[25] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computa-
tion, Vol. 48, pp. 203-209, 1987.

[26] V. Miller, “Use of Elliptic Curves in Cryptography,” CRYPTO’85, pp.
417-426, 1985.

[27] National Security Agency, ”Recommended Set of Advanced Cryptogra-
phy Algorithms - Suite B”, 2005.

[28] H.Y. Lin, T.S. Wu, S.K. Huang, Y.S. Yeh, “Efficient proxy signcryption
scheme with provable CCA and CMA security,” Computers and Mathe-
matics with Applications Vol. 60, No. 7, pp. 1850-1858, 2010.

[29] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, M. Scott, “Efficient algorithms
for pairing-based cryptosystems,” CRYPTO’02, pp. 354-368, 2002.

[30] D. Boneh, B. Lynn, H. Shacham, “Short signature from the Weil
pairing,” Advances in Cryptography - ASIACRYPT’01, Springer-Verlag,
pp. 514-532, 2001.

[31] O Goldreich “Foundations of Cryptography,” Cambridge University
Press,New York, NY, USA, Vol. 2, 2004.

[32] D. Hankerson, A. Menezes “Elliptic Curve Discrete Logarithm Prob-
lem,” Encyclopedia of Cryptography and Security Springer US, Boston,
MA, pp. 397-400, 2011.

[33] C. Hazay, Y. Lindell “Efficient Secure Two-Party Protocols,” Springer-
Verlag Berlin Heidelberg, Vol. 2, 2010.

[34] M. B. Barbosa “Identity Based Cryptography From Bilinear Pairings,”
Universidade do MinhoCampus de Gualtar Braga Portugal, 2005.

[35] R. Haenni, J Jonczy “A new approach to PGP’s web of trust,” EEMA
2007: European e-Identity Coference, Paris, France, 2007

ScoutBinegar
Text Box
This is an author-produced, peer-reviewed version of this conference paper. The final, definitive version of this document can be found online at 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC), published by IEEE. Copyright restrictions may apply. https://doi.org/10.1109/PRDC.2018.00014.


	A Certificateless One-Way Group Key Agreement Protocol for End-to-End Email Encryption
	Authors

	tmp.1689631947.pdf.sfT0T

