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Abstract—Order-preserving encryption (OPE) plays an impor-
tant role in securing outsourced databases. OPE schemes can be
either Stateless or Stateful. Stateful schemes can achieve the ideal
security of order-preserving encryption, i.e., ”reveal no informa-
tion about the plaintexts besides order.” However, comparing to
stateless schemes, stateful schemes require maintaining some state
information locally besides encryption keys and the ciphertexts
are mutable. On the other hand, stateless schemes only require
remembering encryption keys and thus is more efficient. It is a
common belief that stateless schemes cannot provide the same
level of security as stateful ones because stateless schemes reveal
the relative distance among their corresponding plaintext. In real
world applications, such security defects may lead to the leakage
of statistical and sensitive information, e.g., the data distribution,
or even negates the whole encryption. In this paper, we propose
a practical and secure stateless order-preserving encryption
scheme. With prior knowledge of the data to be encrypted,
our scheme can achieve IND-CCPA (INDistinguishability under
Committed ordered Chosen Plaintext Attacks) security for static
data set. Though the IND-CCPA security can’t be met for
dynamic data set, our new scheme can still significantly improve
the security in real world applications. Along with the encryption
scheme, in this paper we also provide methods to eliminate
access pattern leakage in communications and thus prevents some
common attacks to OPE schemes in practice.

Index Terms—Range Query over Encrypted Databases, Order
Preserving Encryption, Non-deterministic OPE

I. INTRODUCTION

Encryption is a powerful tool to protect data confidentiality
and privacy, especially in the cloud environment where data
is outsourced to a third party which can’t be fully trusted.
However, encryption usually will also disable or increase the
difficulty of data processing. Traditional encryption schemes
don’t support sorting on the encrypted data because the order
of plaintexts is not persevered in the corresponding ciphertexts.
Under this circumstances, in order to perform sorting, the data
needs to be decrypted first. Since the cloud is not fully trusted,
allowing the server to perform data decryption will result in
leaking sensitive information to untrusted third parties.

One important practice of computation primitives over
encrypted data is order-preserving encryption (OPE). Such
encryption allows ciphertexts to reserve the same order of

plaintexts. That is, if x > y, then Enc(x) > Enc(y). This
characteristic of OPE schemes allows the untrusted server to
perform comparison, ordering, ranking, and range queries over
encrypted data. OPE already has a wide range of applications,
including encrypted SQL database [4][5][6][17][8][9], mail
servers [10], and web applications. For instance, in order
to process a range query over encrypted data with a range
condition on Age (e.g., a < Age < b), the untrusted server
only needs to know the values of Enc(a) and Enc(b), and
then selects all the encrypted data whose value sits in between
Enc(a) and Enc(b). Thus, using order-preserving encryption,
the range query processing will be much more efficient while
data confidentiality can still be preserved.

The security notion IND-CPA (INDistinguishability against
Chosen Plaintext Attack) is used to describe the security
strength of traditional encryption algorithms. Different from
traditional encryption schemes, OPE reveals the order-relations
amongst ciphertexts and thus it cannot satisfy the traditional
security notion IND-CPA. Boldryeva et al. [12] first proposed
a security notion for OPE called indistinguishability under
ordered chosen-plaintext attack or IND-OCPA. After IND-
OCPA, some other more relaxed OPE security notions have
been proposed in [12][14]. These security notions are weak-
ened versions of IND-OCPA and thus leak more information
than just ordering.

Boldyreva’s proof that no pratical OPE scheme can achieve
IND-OCPA is based on two assumptions: the encryption is
stateless and the ciphertexts are immutable. Without these two
assumptions, designing an OPE scheme satisfying IND-OCPA
is possible. Popa et al. in [11] proposed the first such ideal-
secure but stateful OPE scheme that achieves IND-OCPA.
Popa’s scheme is stateful because a tree structure is needed
to trace all the previous plaintexts/ciphertexts assignments.
On the contrary, Boldyreva’s scheme is stateless because its
encryption and decryption do not rely on existing assignments.

In real world, the choice from various OPE schemes
depends on the applications. Stateful schemes can achieve
higher security notion IND-OCPA, but they require retaining
a local status copy of the data. Keeping a local status copy is
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contradictory to the purpose of database outsourcing (storage
outsourcing), and the mutable ciphertexts may cause large
updates in existing database. On the other hand, for stateless
schemes, several attacks proposed in literature have already
shown that attackers may be able to recover a large portion of
sensitive data from the encrypted database.

In this paper, we propose a practical and secure stateless
OPE scheme. Though the scheme uses the same hypergeo-
metric distribution (HGD) algorithm from [12], it introduces
the concept of using Density Function to guide ciphertexts’
distribution. Unlike previous approaches that tried to make
stateless schemes more secure [4][13][17], our scheme has
many advantages with the following contributions:

1) We propose a new OPE scheme which is able to encrypt
data on the fly. The proposed scheme can achieve IND-
CCPA. That is, if the dataset is pre-known before encryp-
tion, our scheme IND-CCPA secure (see Section V for
the security analysis). Furthermore, even if the dataset
is not pre-known, our algorithm can encrypt data on the
fly. We argue that by using some public known auxiliary
datasets, our scheme can still significantly improve the
security of the encrypted databases.

2) We show that many attacks which can successfully com-
promise OPE encrypted databases can be easily relieved
by our changes. Most of these attacks are powerful and
some of them can even fully negate OPE encryptions. In
this paper, we show that by just modifying existing OPE
schemes using a proposed methodology, we can fully
prevent such attacks without having to design any new
encryption algorithm.

3) We prove that the security of our scheme is under IND-
CCPA (INDistinguishability under Committed ordered
Chosen Plaintext Attacks). We also explain how IND-
CCPA can perfectly describe our scheme and show why
it is meaningful in real world applications.

The remainder of the paper is organized as follows. Section
II reviews related work. Section III describes the security
model, followed by presenting our OPE scheme in Section IV.
Section V proves the security of our scheme. In Section VI,
we use our proposed schemes to encrypt real world databases
and compare the results. Section VII concludes the paper.

II. RELATED WORK

Some database encryption works have been done using
symmetric-key and public-key cryptography [1][2][3]. How-
ever, these research work mainly focuses on the search with
exact keyword match while left the range query still an unmet
need. Agrawal et al. [4] was the first group to define the
OPE primitive and developed a such encryption scheme. In
OPE, because the ciphertexts reserve the ordering of plaintexts,
range queries over the OPE encrypted database become possi-
ble. Besides proposing the order-preserving property, they also
raised the concept of estimation exposure that an adversary
can estimate the value of plaintext in a tight bound. Another
problem of traditional OPE schemes is that the distribution of
ciphertexts may somehow leak the data distribution of input

plaintexts. Based on these observations, their algorithm takes
a target distribution as input. The algorithm first partitions the
plaintexts and target distribution data into several buckets, then
flattens each bucket and builds mappings between each input
and target distribution one by one. Their scheme could hide
the data distribution and is robust against estimation exposure
attack. However, this scheme is rather ad-hoc and is not able
to encrypt data on the fly. All the bucket-to-bucket mapping
is built consecutively and the previous states in the encryption
have to be reused. According to their description, the key
size grows with the number of buckets during the encryption
process and thus it is not a stateless OPE scheme. Also, it
requires the entire dataset as input before it can encrypt any
data item, which is not practical.

The first formal security notion of order-preserving encryp-
tion was provided by Boldyreva et al. [12]. They introduced
a security notion indistinguishability under ordered chosed
plaintext attack (IND-OCPA), which requires ciphertexts re-
vealing nothing except the ordering. They proved that no state-
less scheme can achieve IND-OCPA and introduced a weak-
ened notion pseudorandom order-preserving function under
chosen-ciphertext attacks (POPF-CCA). They also designed
a practical encryption algorithm which is POPF-CCA secure.
Their algorithm uses hypergeometric distribution to generate
mappings between plaintext and ciphertext, and the client only
needs to store the encryption key (thus is stateless). However,
the scheme is less secure than Agrawal et al’s scheme [4]
because it is vulnerable to the estimation exposure attack.

After IND-OCPA, some other security definitions and state-
less schemes were proposed. Xiao et al. [14] weakened IND-
OCPA to IND-OLCPA (indistinguishability against ordered
large chosen-plaintext attack), where an adversary can only
challenge ”nearby” values. IND-OLCPA is a theoretical no-
tion and no real world system can enforce it. Boldyreva et
al. [13] also raised the concept of indistinguishability under
committed chosen plaintext attacks (IND-CCPA), which allows
the encryption key being generated after the adversary chooses
the challenge vectors (i.e., data is known before generating the
encryption key). Wozniak et al. [18] designed algorithms based
on random offset addition, random uniform sampling, and
random subrange selection. These schemes are either stateful
or only secure under special prerequisite.

The first IND-OCPA scheme was proposed by Popa et
al. [11]. This scheme is stated as a stateful OPE because there
is a tree structure stored on the server side. In this scheme, they
do not use any OPE encryption at all but use the standard and
more secure algorithm such as AES. The tree structure stores
all the unique ciphertexts in a binary search tree fashion and
the relative order of each ciphertext is presented by the path
from the root to the particular ciphertext node. To encrypt a
number a, starting from the root, the server returns current
node (i.e., the ciphertext contained in the node) to the client.
Client decrypts the current node and compares it with a. The
comparison result will be sent back to the server so that server
can decide which child to search in the next round until the
server finds the right place in the tree to store the new cipher-
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text for a. One obvious shortcoming of this approach is that
it is a multi-round protocol, which significantly increases the
communication overhead. Furthermore, such scheme is also
called mutable order-preserving encoding or mOPE, because
the ciphertexts is mutable. Mutable schemes occasionally have
to update the value of ciphertexts and these updates causes
performance implications on the server.

To make mOPE more efficient, another mutable IND-OCPA
scheme was provided by Kerschbaum and Schröpfer [15].
They move the tree structure from the server side to the
client side, thus the communication cost is erased. Also, they
reduce the possible rounds of ciphertext mutation to improve
algorithm’s efficiency. However, the information stored on the
client side is still linear to the number of distinct plaintexts,
which is the same as Popa et al.’s scheme. They also improved
the scheme to provide non-deterministic OPE encryptions,
where the same plaintext will be encrypted to different cipher-
texts every time, thus hides the frequency of the plaintexts
and improve the security. However, the trade off is that the
number of nodes in the tree is increased to the number of
unique ciphertexts in the database, which can be huge.

On the flip side, as various protocols have been pro-
posed, researchers also show interests in how to compromise
these OPE encrypted databases. Naveed et al. [20] proposed
several inference attacks on property-preserving encrypted
databases. They developed four attacks: frequency analysis,
lp-optimization, sorting attack, and cumulative attack. Both
frequency analysis and lp-optimization target at the DTE
(deterministic)-encrypted columns. Frequency analysis ana-
lyzes some ”well-correlated” auxiliary dataset and then com-
pares the frequency similarity between the auxiliary dataset
and the encrypted database, while lp optimization uses lp
norms and combinatorial optimization techniques to reveal
the mappings between ciphertext and plaintext. Sorting attack
targets at dense columns and it also relies on the help of
auxiliary datasets. Cumulative attack is more sophisticated and
applicable to both high- and low-density columns.

Kellaris et al. [19] proposed another generic attack on
encrypted databases. Under a weak passive adversarial model,
this attack only requires the capability of eavesdropping net-
work traffic of range queries between server and client, and
no prior knowledge is needed. By observing the access pattern
or even communication volume cumulatively, the eavesdropper
can re-construct the secret attributes of the database. Lacharité
et al. [21] improved the construction attack by reducing its
cost. In Kellaris et al.’s attack, it expects at least O(N2 logN)
queries to recover every record (N is the number of distinct
plaintexts). Lacharité et al. reduced the required queries to
N logN + O(N). Also, They provided an approximate re-
construction attack which only requires O(N) queries and
the error ratio is within a constant. This more advanced
construction attack can fully negate encryption in seconds.

All existing stateless OPE schemes suffer from the above
attacks. In this paper, we developed our scheme and proposed
some techniques to prevent or at least mitigate these attacks.

III. SECURITY MODEL

1) Model architecture: The architecture in our paper is
typical which contains two parties: client and server. The client
is the data owner while the server is the host that provides
storage and calculation capability of the data. The client can
create, delete, query and update the data to the outsourced
database through a communication protocol between them and
all data transmitted in the protocol are encrypted. Though most
service providers are not malicious, their honest behavior still
cannot be guaranteed. Thus, it is appropriate to assume a semi-
honest model in which the server will strictly execute the
instructions from the client, but it may be curious to learn
as much information as possible.

2) Adversarial model: We consider the outsourced database
is encrypted by an OPE scheme and there are two different
adversaries under the model: the honest-but-curious server
and the eavesdropper over the Internet. Both the server and
eavesdropper are treated as a persistent and passive adversary
that they can observe all the communication between the
server and client. For example, the volume of data being
transmitted or what data is transmitted (eavesdropper may
not be able to observe this). Besides the transmitted data, the
server persistently has access to the data, which includes the
rank information, density of the database, and the distribution
of all encrypted data. With such information, the adversary can
launch powerful attacks to recover the values of all encrypted
records with high accuracy [19][21]. In Section 4, we will
discuss how our proposed scheme can mitigate these attacks.

IV. OUR SCHEME

Our goal is to develop a secure and stateless (and thus
practical) OPE scheme which is easy to adopt and able to
defend most existing attacks. The construction of our scheme
follows the security notion of IND-CCPA (indistinguishability
under committed chosen plaintext attacks), where if database
is available before encryption, the scheme can achieve IND-
CCPA. If the database is not available in advance, but if an
auxiliary sample dataset in the same application is available,
our scheme can still significantly improve the security of the
OPE encrypted databases. In reality, such auxiliary datasets
can be historic data or sample data that share some common
data distribution characteristics. For the worst case where data
owner doesn’t have any pre-knowledge or auxiliary datasets,
our scheme can still make it more difficult to reveal the
plaintext and statistical information from the encrypted data.

A. Approach

We built our scheme based on the Boldyreva et al’s OPE
scheme [12]. They relate the encryption scheme to a prob-
abilistic game and generate the ciphertexts using hypergeo-
metric distribution (HGD). To have an intuitive understanding
about their approach, let’s consider a probability game as
follows. Suppose there are N balls in a pocket, where M
out of N balls are marked red and the N−M remaining balls
are white. If someone draws balls without replacement, then
after drawing y balls, the number of ’marked balls’ picked x
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Fig. 1: An OPE demo with Domain 5 and Range 1000

should follow the hypergeometric distribution with the PMF
(Probability Mass Function) as

PMF =

(
y
x

)(
N−y
M−x

)(
N
M

) (1)

Now we just need to understand the connection between
HGD and an Order-preserving Function (OPF). let’s consider
M = {1, 2, . . . ,m} as the plaintext domain (Domain) and
N = {1, 2, . . . , n} as the cipheretxt range (Range), where
n > m. An order-preserving function creates ordered map-
pings from M to N . Fig. 1 demonstrates the mapping idea.
Every number j in the Domain M is mapped to a range
Rj in Range N (i.e., Rj ⊂ N ) and a random number in
Rj is returned as the ciphertext of j. To relate the encryption
principle and the game, if we consider the total number of
balls N as the ciphertext range and M marked balls as the
plaintext domain, then we can figure out how many points
in domain lies below a point in range by treating the range
points as the ”samples” in the hypergeometric game above.
That is, given a key k to determine the randomness, N total
balls with M of them are marked red. We use a function to
deterministically simulate the hypergeometric distribution to
decide the plaintext-ciphertext mapping. For instance, picking
balls randomly without replacement, if after picking y-th ball
we pick the x-th red ball and after picking y′-th ball we pick
the x + 1-th red ball, then the range [y, y′ − 1] is mapped to
x and a random number in [y, y′ − 1] is the ciphertext of x.

Inspired by the design above, we change the algorithm that
in each round, it requires one more step after the original
HGD mapping. Besides drawing balls, there are some boxes
acting as ball holders. The number of boxes is equal to the
plaintext size in our algorithm and the number of marked
balls increase to a value between plaintext and ciphertext size,
e.g.,100∗(plaintext size). These boxes are placed in a fixed
order. The capacity of each box varies but the total capacity
of all boxes is equal to the volume of all marked balls. In our
model, for each round, we still use hypergeometric distribution
to simulate the ball drawing process. However, after drawing
balls, each of the marked balls being picked will be put into
a box in the predetermined boxes’ order. For example, if we
draw y balls and x of them are marked balls, starting from
the first box, we put the marked balls into a box until it is full
and then continuously fill the next box in the predetermined
order. If all the marked balls picked can fill t boxes (includes
the last one which may not be full), then y is mapped to t
rather than x. Next t will be compared to the plaintext input
(to be encrypted) to determine which half will be used for the
next recursive round of the binary search. In this new model,

the plaintext-ciphertext mapping is not only determined by the
randomness of HGD, but also the arrangement of all boxes’
capacities. A box with a large capacity means more attempts
to grab enough marked balls to fill it. Thus, from the order-
preserving function perspective, the plaintext which this box
represents will take more space in the ciphertext range.

B. Modeling the distribution

As described above, the capacity arrangement of all the
boxes has a significant impact on our encryption scheme.
Thus, our scheme keeps the capacity distribution of all boxes
as a part of the key. Based on this, our algorithm requires
an efficient way to model the capacity distribution of all
boxes. However, we don’t expect the modeling method to be
very precise and an approximate modeling approach would be
enough. In this paper we will use the Gaussian mixture model
(GMM) to model the data distribution in our algorithm. In
data science, Gaussian Distribution is one of the most basic
and common technique used to model real-world unimodal
data [26]. The Gaussian Distribution is written as

P (x|µ, σ) = 1

σ
√
2π
e−(x−µ)

2/2σ2

(2)

where µ is the mean of the distribution and σ is the stan-
dard deviation. For complex datasets that a single Gaussian
Distribution cannot represent, people use GMM to model
multimodal data. GMM is the mixture distribution of many
single Gaussian distributions and the total size is normalized
to 1. There are many existing tools we can use to model the
data with GMM, for example scikit-learn [25]. Since modeling
the data approximately is good enough for our approach, we
can limit the number of Gaussian distributions to a relatively
small number, for example 3 or 5 with different accuracy.
Thus, the key size of our scheme is limited to a constant
number of (µ, σ) pairs regardless of the size and distribution
of data. Thus, our scheme is stateless.

C. Algorithm

Since our algorithm is built based on Boldyreva et al’s
scheme, it is essential to explain their algorithm first. In
order to implement an order-preserving function, they de-
signed two algorithms LazySample and LazySampleInv to
simulate the hypergeometric distribution and generate the
plaintext-ciphertext assignments. The pseudocode of these two
algorithms are given in Algorithms 1 & 2 in black and the
codes in red are added/modified codes for our algorithm.
LazySample accepts a plaintext m as one of its inputs, and
returns the ciphertext of m. The LazySample algorithm builds
mappings from ”range gap” N to ”domain gap” M in a binary
search manner, where M � N . A ”gap” is the boundary
between two consecutive points in the range or domain. During
encryption, the algorithm first maps the middle range gap
y = N

2 to a domain gap. Line 13 describes this step that it uses
hypergeometric distribution to decide the number of points in
D which will be mapped to a range between the minimum
ciphertext (i.e., r in the pseudocode) and the point y. The
result from Line 13 is stored in a map I . The range point y is
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between two gaps in M , i.e., Enc(x) ≤ y < Enc(x+1) and
x = d + I[D,R, y], where d is the minimum domain gap in
M . This is equivalent to the fact that the range gap between
y and y + 1 is mapped to domain gap between x and x+ 1.
In line 17, the LazySample algorithm compares domain gap
x with the input m. Based on the result, the algorithm will be
repeated recursively either on the left half r + 1, . . . , y or the
right half y + 1, . . . , r +N until the ciphertext range cannot
be divided anymore.

Algorithm 1 LazySample Revised(D,T ,R,Gauss,m)

1: M ← |D|;N ← |R|;O ← |T |
2: d← min(D)− 1; r ← min(R)− 1; t← min(T )− 1
3: y ← r + [N/2]
4: if |D| = 1 then
5: if F [D,R,m] is undefined then
6: cc← GetCoins(1lR , D,R, 1||m)
7: F [D,R,M ]← r
8: Return F [D,R,m]
9: end if

10: end if
11: if I[D,R, y] is undefined then
12: cc← GetCoins(1l1 , D,R, 0||y)
13: I[D,R, y]← HG(M,N, y − r; cc)
14: end if
15: x← d+ I[D,R, y]
16: z ← GetGMM(D,T,Gauss, x)
17: if m =≤ �xz then
18: D ← {d+ 1, . . . , x}
19: R← {r + 1, . . . , y}
20: T ← {t+ 1, . . . , z}
21: else
22: D ← {x+ 1, . . . , d+M}
23: R← {y + 1, . . . , r +N}
24: T ← {z + 1, . . . , t+ 0}
25: end if
26: Return LazySample Revised(D,T ,R,Gauss,m)

The main difference between two algorithms lies in Line
16. In the Boldyreva et al’s algorithm, after each domain
gap x is returned, x is directly compared with input m to
decide the direction of next binary search. For our algorithm,
after generating x, before next binary search, the function
GetGMM() will be called and it returns a new value z, which
will be the value that compared with m to decide next binary
search. Intuitively, GetGMM() calculates how many boxes
will be filled (including the last not-fully-filled box) by the
picked marked balls. GetGMM() takes four inputs:

1) A density function F which is depicted by a Gaussian
mixture model. A density function describes the data
density of the dataset to be encrypted. Intuitively, F can
be considered as a function used to describe the capacity
distribution of all the boxes. For example, if there are T
boxes and total capacity are N balls, the total capacity
from box 1 to box 5 can be calculated as

∫ 5
0
F∫ T

0
F ×N .

2) A domain T which indicates the domain of boxes for
next binary search.

3) A range D which indicates the range (capacity of all
boxes in T ) for next binary search.

4) A number x, which is the output from HGD (number of
marked ball picked).

Instead of using x, the output z from GetGMM(), which
represents the index of the last filled boxes (i.e., the number
of boxes required to hold all marked balls picked) will be
compared with the input point m to determine the direction
of next binary search (see Line 17 in Algorithm 1).

Algorithm 2 LazySampleInv Revised(D,T ,R,Gauss, c)

1: M ← |D|;N ← |R|;O ← |T |
2: d← min(D)− 1; r ← min(R)− 1; t← min(T )− 1
3: y ← r + [N/2]
4: if |D| = 1 then m← min(D)
5: if F [D,R,m] is undefined then
6: cc← GetCoins(1lR , D,R, 1||m)
7: F [D,R,M ]← r
8: if F [D,R,m] = c return m then
9: else return ⊥

10: end if
11: Return F [D,R,m]
12: end if
13: end if
14: if I[D,R, y] is undefined then
15: cc← GetCoins(1l1 , D,R, 0||y)
16: I[D,R, y]← HG(M,N, y − r; cc)
17: end if
18: x← d+ I[D,R, y]
19: z ← GetGMM(D,T,Gauss, x)
20: if m =≤ �xz then
21: D ← {d+ 1, . . . , x}
22: R← {r + 1, . . . , y}
23: T ← {t+ 1, . . . , z}
24: else
25: D ← {x+ 1, . . . , d+M}
26: R← {y + 1, . . . , r +N}
27: T ← {z + 1, . . . , t+ 0}
28: end if
29: Return LazySampleInv Revised(D,T ,R,Gauss,m)

Algorithm 3 describes how the function GetGMM()
works. It uses binary search to find the index of the last box
filled. In Line 4, the function GaussPercent() calculates the
capacity percentage of boxes in (min(T ), p) over all boxes
in (min(T ),max(T )), which p is the index of middle box
in (min(T ),max(T )). Based on the density function F , the

capacity percentage can be calculated as pct =

∫ p
min(T )

F∫ max(T )

min(T )
F

.

After knowing the capacity percentage, Line 5 calculates the
capacity x′ from all boxes in (min(T ), p). After that, x′ will
be compared with x to decide the direction of next binary
search. The algorithm will exit the binary search when all
the marked balls have been filled and it returns the index
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of last box used. The inverse function of LazySample is
LazySampleInv which is used for decryption. The pseudocode
of our modified LazySampleInv is in Algorithm 2.

Algorithm 3 GetGMM(D,T,Gauss, x)

1: M = |D|;O = |T |
2: t = min(T ); step← [O/2]; p← t+ step
3: while step ≥ 1 do
4: pct = GaussPercent(Gauss,min(T ),max(T ), p)
5: x′ = pct ∗ (max(D)−min(D))
6: step← step/2
7: if x′ < x then p← p+ step
8: else p← p− step
9: end if

10: end while
11: if x′ ≥ x then return p− t
12: else return p− t+ 1
13: end if

D. Non-determinism

A function is deterministic if a plaintext will be encrypted
to the same ciphertext every time. Frequency analysis and
sorting attacks are two attacks associated with the determin-
istic characteristics. Frequency analysis not only targets at
order-preserving encryption, but also other property-preserving
encryptions, while a sorting attack exploits order-preserving
encryption only. frequency analysis and sorting attacks to a
real-world application were presented in [20].

To prevent these attacks, we propose a method to make
the OPE algorithm non-deterministic. We revise Boldyreva et
al’s algorithm by shifting the mappings. In Boldyreva et al’s
algorithm, any number j in DomainM is mapped to a range
Rj in Range N , and a fixed number in the range Rj will be
returned as the ciphertext for j every time. If the encryption
algorithm returns a random number within the range Rj rather
than a fixed number, then the OPE algorithm becomes non-
deterministic. However, to the best of our knowledge, there is
no existing stateless OPE scheme which is non-deterministic.

CryptDB [9] is a famous encrypted database project that has
an OPE implementation based on Boldyreva et al.’s algorithm.
We extracted and modified the OPE implementation from
CryptDB and proposed the non-deterministic OPE algorithm
in Algorithm 4 below. Let the ”original OPE” denote the
original deterministic OPE implementation from CryptDB.

Algorithm 4: Non-deterministic OPE
1) For encrypting a number m ∈M ,

a) Use the original OPE to encrypt m and its
next number m + 1. Let the two ciphertexts be
OPEEnc(m) and OPEEnc(m+ 1) respectively,
where the function OPEEnc() denotes the origi-
nal OPE encryption function.

b) Return a random value c in the range
[OPEEnc(m), OPEEnc(m + 1)] as the
non-deterministic ciphertext for m.

2) For decrypting the ciphertext c,

a) Use the original OPE to decrypt c. Let the de-
crypted value be p (where p could be m or m+1).

b) Use the original OPE to re-encrypt p and let the
new cipher be c′.
If c > c′, then the plaintext m of c is p.

else the plaintext m of c is p− 1.

With non-deterministic algorithm, given a plaintext m, the
ciphertext will be a random number c between OPEEnc(m)
and OPEEnc(m + 1), where OPEEnc() is CryptDB’s de-
terministic OPE encryption. This non-deterministic algorithm
should be able to fully prevent the frequency analysis attack
(because all ciphers, or in other words, data points are unique
now), and also make the sorting attack much more difficult
to conduct. However, on the flip side, if using this non-
deterministic encryption algorithm to encrypt a database, all
queries are required to be converted to range queries.

E. Fuzzing querying

For frequently used queries, if the result returned from
the server is always the same, adversaries are able to learn
some sensitive information by eavesdropping the network
traffic [19][21]. Such re-construction attack utilizes access
pattern to re-construct sensitive information. Comparing to
those deterministic OPE algorithms, our non-deterministic
OPE scheme can definitely reduce the access patterns available
to adversaries, but it cannot eliminate all patterns. Over time,
with enough queries been observed, adversaries could learn all
the possible boundaries and thus are able to guess the number
of unique plaintexts, and their orderings and frequencies.
These information might be enough for a powerful adversary
to retrieve meaningful statistic data or even recover ciphertexts.
One solution to hide this access pattern would be using a fuzzy
querying over OPE encrypted data. The details of the proposed
fuzzy querying technique is described below.

Algorithm 5: Fuzzy querying
Let Enc(), Dec() be the encryption and decryption func-
tions of our non-deterministic OPE algorithm, respec-
tively. Enc(a) encrypts a to a random ciphertext within
a range [Enc(a)min, Enc(a)max], where Enc(a)min is
the lower bound and Enc(a)max is the upper bound of
the range.

1) To convert a range query with a range [a, b], where
a ≤ b, instead of using the actual boundaries
(Enc(a)min, Enc(b)max), the client uses a random
number between Enc(a − 1)min and Enc(a)min
as the lower bound, and another random number
between Enc(b)max and
Enc(b+ 1)max as the new upper bound.

2) Once the client receives result set S from the server,
it decrypts all the data and discards all the data
outside [a, b]. Those discarded results included in the
return set is because we want to hide both the access
pattern and real boundaries from eavesdropper.
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With fuzzy querying, even for the same query, the query
actually being sent out is different every time. Each ciphertext
in the ciphertext space has the equal probability to be selected
as the extra data thus the real boundaries of queries will not
be disclosed in our non-deterministic scheme. In addition,
because a random number of irrelevant data are included in
each query result, the added noise also helps in hiding the
access pattern and the re-construction attack will be more
difficult to be conducted to our scheme.

V. SECURITY ANALYSIS

Boldyreva et al’s scheme [12] was designed to meet POPF-
CCA that an adversary has a negligible advantage distinguish-
ing between the scheme and a pseudorandom order-preserving
function under chosen-ciphertext attacks. We develop our
scheme based on Boldyreva’s but with additional security
features and thus we expect our scheme can achieve stronger
security guarantee. Nevertheless, it will be better to start with
reviewing Boldyrea et al’s security proofs.

One important theorem from Boldyreva et al. is a new
security notion POPF-CCA. Given an OPE algorithm and an
pseudorandom order-preserving function, the adversary has
no advantage in distinguishing the oracle access to the OPE
algorithm and the access to a random function. The OPE
scheme in their paper was proved to be POPF-CCA. The
definition of POPF-CCA is given in [12] and quoted below.

POPF-CCA. Given an OPE scheme SE =
(K, Enc,Dec). For an adversary A against SE ,
the pseudorandom order-preserving function advantage
under chosen-ciphertext attacks (POPF-CCA) against
SE is

Advpopf-cca
SE (A) = Pr

K
$←−K

[
AEnc(K,·),Dec(K,·) = 1

]
−

Pr
g

$←−OPFD,R

[
Ag(·),g−1(·) = 1

]
where OPFD,R stands for the set of all order-preserving
functions from plaintext space D to ciphertext space R
where D ≤ R. SE is POPF-CCA secure if for any
adversary this advantage is negligible.

As Algorithm 1 shows, our algorithm uses binary search
for encryption. In each round, the algorithm finds a plaintext-
ciphertext mapping. If the plaintext-ciphertext mapping found
is not for the input plaintext, then the algorithm moves to
the left/right half for the next binary search until it finds the
mapping for the input. As a result, if we are able to show each
round of our algorithm is POPF-CCA secure, then our scheme
with multiple such rounds is also POPF-CCA secure.

Theorem 1. The proposed OPE scheme described in
Section IV is at least POPF-CCA secure, even when the
data owner has no pre-knowledge about the data and
choose a pseudorandom density function F as input.

Proof. Let T be the plaintext domain for proposed

algorithm, D and R be the Domain and Range for the
OPEHG algorithm from Boldyreva et. al [12], respec-
tively, where |T | < |D| < |R|. Our proposed encryption
algorithm takes an input from T and outputs a ciphertext
in the range R. There are two mappings in each encryp-
tion round, where the OPEHG maps between R and D
first, and then the function GetGMM() maps between
D and T . It has been proved in [12] that OPEHG

mapping between R and D is POPF-CCA secure. If
the GetGMM() is also POPF-CCA secure between D
and T , then our proposed scheme is POPF-CCA secure
between R and T .

In our algorithm, we choose F as a pseudorandom
function and F(t) > 0 for t ∈ {0, |T |}. Given an input
x (i.e., number of marked balls picked), GetGMM()
computes an output z (i.e., index of last box used when
all x marked balls filled), where x =

∫ z
min(T )

F . When
F is pseudorandom and F(t) > 0, it is clear that the
mapping x =

∫ z
min(T )

F is a pseudorandom (and thus
POPF-CCA secure) order-preserving function between
space D and T . Since OPEHG is a POPF-CCA secure
mapping between R and D and now GetGMM() is
also POPF-CCA secure between D and T , our scheme
is POPF-CCA secure between R and T .

Though our algorithm meets POPF-CCA, we want a se-
curity notion stronger than POPF-CCA that can describe our
scheme better. In [13], Boldyreva et al. proposed a security
notion IND-CCPA that weakens IND-OCPA by requiring the
adversary to choose the challenge message spaces before key
generation. The definition of IND-CCPA is quoted below.

IND-CCPA. Let LR(·, ·, b) be the function that takes
two message vectors m0 and m1 as inputs and re-
turns mb, where m0 = (m1

0,m
2
0 . . . ,m

l
0) and m1 =

(m1
1,m

2
1 . . . ,m

l
1). SE = (K, Enc,Dec) is an order-

preserving encryption scheme on message space M . For
an adversary A against SE with (m0,m1) and b ∈ {0, 1},
where |m0| = |m1| = l, and also m0, m1 have the
same order pattern, i.e., ∀1 ≤ i, j ≤ l, mi

0 < mj
0 and

mi
1 < mj

1. Consider the following experiment (σ denotes
a state the adversary can preserve):

Experiment Expind−ccpa−bSE (A)

(m0,m1, σ)
$←− A; K

$←− K(mb)

cj ← Enc(K,mj
b) for j = 1, . . . , l

d
$←− A(σ, c1, c2, . . . , cl),where d ∈ {0, 1}

Return d
For each query (m0,m1), an adversary A’s ind-ccpa
advantage SE is

Advind-ccpaSE (A) = Pr
[
Expind-ccpa-1SE (A) = 1

]
−

Pr
[
Expind-ccpa-0SE (A) = 1

]
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We say SE is indistinguishable under committed chosen
plaintext attacks (IND-CCPA-secure) if the ind-ccpa ad-
vantage against SE is negligible.

In [13] where IND-CCPA was proposed, it expects the key
generation algorithm takes the appropriate message space from
plaintext as input. In our scheme, the key generation generates
a density function which can be derived from the plaintext. We
consider the prerequisites are similar and they both require the
datasets to be known before key generation phase. Theorem 2
below proves our proposed scheme is IND-CCPA secure.

Theorem 2. The proposed OPE scheme can achieve IND-
CCPA secure if the data is pre-known and static.

Proof. According to the definition in Section V, IND-
CCPA allows the challenger to choose the encryption key
after receiving the message vectors from the adversary.

To prove IND-CCPA security, all we need to
show is that, given any two ordered vector m0 =
(m1

0,m
2
0, . . . ,m

l
0) and m1 = (m1

1,m
2
1, . . . ,m

l
1), the

challenger can always choose a vector mi, i ∈ {0, 1},
and construct a density function F such that mi can
be encrypted to a fixed ordered ciphertext vector, for
example ( R

l+1 ,
2R
l+1 , · · · ,

lR
l+1 ), where R is the ciphertext

space and l is the length of mi. With the fixed ciphertext
vector been returned, the adversary definitely has no
advantages to guess which vector mi has been encrypted.

There are two different mappings in our algorithm,
which are the mapping OPEHG between R and D
and the mapping GetGMM() between D and T . Let
the function Dec() be the OPEHG decryption mapping
from R to D. Let mi = (m1

i ,m
2
i , . . . ,m

l
i), which

is an increasing vector for i ∈ {0, 1}, be the plain-
text vector in T , and let r = ( R

l+1 ,
2R
l+1 , · · · ,

lR
l+1 ) be

the fixed ordered ciphertext vector in R. Thus d =
(Dec( R

l+1 ), Dec(
2R
l+1 ), · · · , Dec(

lR
l+1 )) is the fixed vector

in D. For both mi with i ∈ {0, 1}, if we can show that
(I) the challenger can always construct an F so that

GetGMM() can map d to mi, and
(II) our algorithm, based on constructed GetGMM(),

will encrypt mi to the fixed ciphertext r,
then our algorithm is IND-CCPA secure.

To show (I), let F be the density function so F(t) >
0 for t ∈ {0, |T |}. The challenger can construct such
a density function F(t) and a monotonically increasing
function u(z) =

∫ z
0
F(t) as below:

F(t) =



Dec( R
l+1 )

m1
i

, if 0 < t ≤ m1
i

Dec( 2R
l+1 )−Dec(

R
l+1 )

m2
i−m1

i
, if m1

i < t ≤ m2
i

· · · ,
Dec( lR

l+1 )−Dec(
(l−1)R

l+1 )

ml
i−m

l−1
i

if ml−1
i < t ≤ ml

i

u(z) =



F(m1
i ) · z, if 0 < z ≤ m1

i

F(m2
i ) · (z −m1

i ) + u(m1
i ), if m1

i ≤ z < m2
i

· · · ,
F(ml

i) · (z −m
l−1
i ) + u(ml−1

i ),

if ml−1
i ≤ z < ml

i

For any mj
i that i ∈ {0, 1} and j ∈ {1, 2, . . . , l},

based on the functions F(t) and u(z) above, we have
u(mj

i ) = Dec( jRl+1 ) is always true. In our algorithm,
the function GetGMM() is the inverse function of u()
and can be writen as GetGMM(u(z)) = z. That is,
with such u(), given any Dec( jRl+1 ) ∈ d, the function
GetGMM(Dec( jRl+1 )) = GetGMM(u(mj

i )) = mj
i ∈

mi is always true. This concludes the GetGMM() can
map the vector d to the vector mi.

Secondly, we need to show (II) is also true. To encrypt
a plaintext mj

i for i ∈ {0, 1} and j ∈ {1, 2, . . . , l},
starting from the mid range gap in R, our algorithm uses
binary search that first maps the range gap in R to a
value in D via OPEHG, and then maps the value in
D to a value in T via GetGMM(). The value in T
will be compared to mj

i to determine the next round of
binary search. Since we have already shown in (I) that
our constructed GetGMM() maps Dec( jRl+1 ) to mj

i , and
the OPEHG maps jR

l+1 to Dec( jRl+1 ), the binary search
in our algorithm eventually will find the value jR

l+1 in R
(and thus the value Dec( jRl+1 ) in D) that maps to mj

i in T .
When mj

i is found by the binary search, the encryption
process ends and the ciphertext of mj

i is jR
l+1 in R. This

implies our algorithm can always encrypt both plaintext
vectors mi = (m1

i ,m
2
i , . . . ,m

l
i), for i = {0, 1}, to a

fixed ciphertext vector r = ( R
l+1 ,

2R
l+1 , · · · ,

lR
l+1 ). Thus,

our scheme is IND-CCPA secure.

1) Discussion: The benefits of building such function
GetGMM() are bountiful. First, it prevents adversaries from
establishing accurate estimate for any ciphertext. Previous
stateless schemes leak extra information about the relative
distances of plaintexts by just observing their ciphertexts. As
a result, the value of plaintext can be estimated by the position
of its ciphertext in the ciphertext range.

Secondly, the data distribution can be hidden. With most
of the previous stateless OPE schemes, the data distribution
of plaintext dataset is also exposed due to the fact that,
after encryption, the dense parts stay dense and sparse parts
remain sparse. Thus, some sensitive statistic information can
be derived from the data distribution disclosures. For example,
in healthcare data, an adversary could learn in which age group
most patients are located. Our strategy of building a good
GetGMM() is to make the data distribution flat for OPE
ciphertext no matter what the input plaintext distribution is
so that adversaries couldn’t learn any information about the
original data distribution.

To make the ciphertext flat, the dataset must be known
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before encryption. If data is unavailable before encryption,
historical datasets or sample datasets that shares common
similarities can also help. For the worst scenario where the
data owner knows nothing about their data, our solution
may still make an adversary harder to retrieve statistical
information from the encrypted dataset. By choosing a random
GetGMM(), the distribution of encrypted data likely will be
very different from the original plaintext distribution. Thus, it
becomes more difficult to speculate the original data and thus
the privacy and confidentiality of data can be better preserved.

VI. SIMILARITY COMPARISON FOR DATA DISTRIBUTION

We found an OPE implementation from CryptDB [9], which
implements Boldyreva et al’s algorithm. We modified their
source codes to satisfy our requirement. Their OPE imple-
mentation cannot decrypt arbitrary ciphertexts. Let n1 and n2
be the ciphertexts of m and m + 1 (where n1 < n2). Their
implementation can decrypt n1 and n2, but cannot decrypt the
values between n1 and n2. We modified their source codes so
that any number in the ciphertext space can be decrypted to
its corresponding plaintext based on the position of gaps.

We use an online employee database [28] as sample data
and encrypt the salary data in the database using three OPE
algorithms: Boldyreva et al’s algorithm, our flattened OPE
algorithm (dataset is pre-known before encryption) and our
randomized OPE algorithm (dataset is not known before
encryption). We will then compare the similarity between
the plaintext dataset against each encrypted version to see if
the encrypted data preserves the data distribution (and thus
reveals statistical information) from its plaintext counterpart.
Before the similarity comparison, we have validated our OPE
algorithms by checking whether all the encryption, decryption
and range-query work correctly on the encrypted database.

For the similarity comparison, we chose Kol-
mogorov–Smirnov test (K-S test) [27] to evaluate the
similarity among different encrypted datasets. The test returns
two values: statistic and p-value. The statistic is the absolute
max distance between two Cumulative Distribution Functions
(CDFs). The closer this number to zero, it is more likely
the samples are from the same distribution. p-value is used
to reject the null hypothesis that two samples are from the
same distribution. In K-S test, the null hypothesis states that
the distributions are the same. The lower p-value means the
greater evidence that we can reject the null hypothesis.

Original plaintexts. Figure 2a shows the plaintext distri-
bution of salary data. One Gaussian distribution is enough to
describe the distribution approximately, where the mean µ is
65745 and the standard deviation σ is 16830.

Encrypted by Boldyreva et al’s OPE algorithm. For
this OPE encryption, we set the plaintext space to 16 bits
and the ciphertext space to 30 bits. Figure 2b shows the
distribution of this encrypted database. The encrypted data
and the original plaintexts have a great similarity. We also
use normal distribution to fit this encrypted data and its mean
µ is 269121016 and standard deviation σ is 69047177.

(a) Salary in plaintext

(b) Salary encrypted with Boldyreva et. al.’s al-
gorithm

(c) Salary encrypted with our OPE algorithm:
flattened

(d) Salary encrypted with our OPE algorithm:
randomized

Fig. 2: Data distribution between plaintext and different ci-
phertexts

Encrypted by our flattened OPE algorithm. Since the
sample dataset distribution has already been studied, we set
the data distribution key as (σ = 18000, µ = 66000) which is
close to the original data distribution. The data distribution af-
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TABLE I: The similarity comparison using K-S 2-sample test.

Data Null Hy-
pothesis

Test
Statistic p-value

Null
Hypothesis
Conclusion

Boldyreva et
al’s algorithm Same 0.024788 3.39419 Accept

Proposed (flat-
tened) Same 0.376774 0.0 Decline

Proposed (ran-
domized) Same 0.356119 0.0 Decline

ter this encryption is shown in Figure 2c. The data distribution
of this encrypted version is much more flattened compared to
the ones in the plaintexts and in the Boldyreva et al’s version.
In Figure 2c, the encrypted data is not fully flattened because
in Figure 2a the normal distribution used is not able to describe
the data distribution 100% accurately. Even so, based on the
K-S 2-Sample test results shown in Table I, the distributions
of the plaintexts and the ciphertexts we encrypted using the
flattened OPE are distinct-different.

Encrypted by our randomized OPE algorithm. Assume a
DB manager who doesn’t have the dataset before encryption
but he makes a reasonable assumption that most people are
middle class and salary are around $80, 000 with the standard
deviation σ = 30000 (68% of people are within the range
$50,000-$110,000). The distribution of this encrypted dataset
is shown in Figure 2d.

To have a general and objective comparison, we conducted
the K-S 2-Sample test against each plaintext and encrypted
pair after normalization. The outcomes are shown in Table I.
The results indicate that Boldyreva et al’s scheme has the
same distribution pattern as the plaintext, while the ciphertext
encrypted by our schemes are considered to have different
distributions to the plaintext.

VII. CONCLUSION

We proposed an IND-CCPA secure and practical stateless
OPE scheme, where the position of each ciphertext is not only
decided by the randomness of the HGD function, but also the
data distribution. As a result, the estimation exposure attack
can be prevented and the ciphertexts will not reveal the data
distribution of the plaintexts. In addition, we proposed two
techniques and showed that many real-world attacks can be al-
leviated by some small changes. The first technique allows any
deterministic OPE scheme becoming non-deterministic. The
second technique ”fuzzy querying” hides the access patterns of
outsourced databases from adversaries. As a result, most real-
world attacks to encrypted databases, such as sorting attacks,
frequency attacks, and reconstruction attacks (a popular attack
in the research community recently), can be prevented or
mitigated. Besides proposing an OPE scheme, we showed that
our scheme is at least POPF-CCA secure. If the dataset is
known before encryption, we also showed our scheme is IND-
CCPA secure. In the end, we conducted empirical experiments
to demonstrate the security improvement for our schemes,
comparing to the previous work.
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