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Abstract: We develop an optimized force-field for poly(3-hexylthiophene) (P3HT) and demonstrate its
utility for predicting thermodynamic self-assembly. In particular, we consider short oligomer chains,
model electrostatics and solvent implicitly, and coarsely model solvent evaporation. We quantify the
performance of our model to determine what the optimal system sizes are for exploring self-assembly at
combinations of state variables. We perform molecular dynamics simulations to predict the self-assembly
of P3HT at ∼350 combinations of temperature and solvent quality. Our structural calculations predict
that the highest degrees of order are obtained with good solvents just below the melting temperature.
We find our model produces the most accurate structural predictions to date, as measured by agreement
with grazing incident X-ray scattering experiments.

Keywords: molecular dynamics; organic photovoltaics; coarse-graining

1. Introduction

Limiting the negative impact of global climate change requires a shift to sustainable energy
generation. Organic photovoltaics (OPV) are carbon-based solar panels that could meet this need
with one-day energy payback times, if they can be manufactured at scale with sufficient (∼15%)
power conversion efficiency (PCE) [1]. The low cost of OPVs derives from the solution processability
of their active ingredients, which can also be used to make light emitting diodes and field effect
transistors [2,3]. Controlling the solution-phase self-assembled morphology—the microstructure
that emerges spontaneously during fabrication—is central to meeting the 15% efficiency target,
as morphology governs performance [4]. The choice of organic electronic compounds, solvents [5],
annealing protocols, [6–8] and processing temperatures [9] all affect the self-assembled microstructure
and resultant device characteristics. However, the impracticality of exhaustively testing which
chemistries and processing protocols are sufficient to manufacture environment-friendly devices [10]
necessitates computational or theory-based guidance of promising candidates.

Poly-3(hexylthiophene) (P3HT) is one of the polymers that kick-started research into solution-phase
self-assembly of OPVs [11,12], and is the focus of this work. Often referred to as the “bench-mark”
OPV compound [13], the relative ease of working with P3HT has led to hundreds of studies linking
P3HT’s structure to its performance in OPV devices [14]. This work on P3HT over nearly two decades
highlights the difficulty and opportunity in optimizing self-assembly, and underscores the potential
utility of informing experimentation with theory. How many of these experiments could have provided
additional insight if equilibrium phase diagrams of P3HT were known in 2002? Would more promising
ingredients have been identified earlier if a theoretical maximum PCE for P3HT blends was known?
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Answering these questions requires calculating phase diagrams and predicting PCE, which requires
models of P3HT capable of predicting self-assembly.

Predicting P3HT self-assembly in particular, and OPV assemblies in general, is difficult
because of the multiple length-scales that matter: atomic orbitals, molecular packing, alignment of
crystallites, and thermodynamic phase separation all impact OPV device performance. First principles
calculations have the highest resolution and can provide insight into charge transport relationships
in P3HT [15–17], but their computational demands preclude simulating thousands of atoms—far
too small to gain insight into the bulk morphological features that arise from thermodynamic
self-assembly. Macroscopic models are successful in predicting device-scale morphologies with
thickness ∼100 nm both on-lattice [18–22] and off-lattice [23–25], but cannot represent important
structural features such as crystallite grain orientations and energetic differences between molecules.
Molecular models implemented in molecular dynamics (MD) or Monte Carlo simulations fill the
gap between first-principle and macroscopic models, though the system size versus relaxation
time trade-off significantly hinders investigations of self-assembly [26–34]. At the largest scales,
the structural evolution of 5 million coarsely-modeled P3HT monomers can be accessed on >100 nm
length-scales [34], but the computational cost of evaluating each step meant that equilibration was
inaccessible over the 400 ns simulation trajectory. At 11-nm scales, equilibration of coarse-grained
P3HT models is achievable over ∼2 µs simulation trajectories [28], but such coarse models
miss the π-stacking details of P3HT rings, which can have implications for charge transport
calculations [35,36]. Long relaxation times can be avoided in MD simulations through carefully
selected initial conditions [32,37–40], but these simulations can only check if a structure is locally
stable, not whether it will robustly self-assemble at a particular state-point. Determining the optimal
“sweet spot” between system size, model resolution, and computational cost of predicting equilibrium
is therefore essential if MD simulations of thousands of candidate materials and conditions are to be
used to inform OPV experimentation [41].

Validating predictions of OPV structures against experiments further complicates the challenge
of building good simulations because the two most common characterization techniques—surface
analysis and reciprocal space spectroscopy—each provide an incomplete picture of structure [42,43].
Surface techniques such as atomic force microscopy detect crystalline and amorphous regions at the
surface of the film but do not reveal structural characteristics important for charge generation and
transport within the film [44]. Reciprocal space techniques such as grazing incident X-ray scattering
(GIXS) probe the bulk material, revealing averaged periodic features but lack the precision to resolve
a unique solution of molecular positions. Additionally, analysis is complicated by residual solvents
and amorphous regions [42]. In concert, surface and scattering experiments provide references against
which simulations can be checked, but doing so requires the modeling of volumes large enough for
features that repeat on 10 Å to 30 Å scales, reinforcing the need for simulations that are big enough
and fast enough.

The aims of this work are to (1) describe an optimized model of P3HT that is efficient and
meets structural prediction needs, (2) resolve ambiguity around what “big enough” and “fast enough”
means for P3HT, and (3) discuss transferable recommendations for simulating other OPV materials.
This work is organized as follows: We present our P3HT model in Section 2 and characterization
techniques in Section 3. We explain the important performance metrics and discuss current and future
requirements for predicting OPV self-assembly in Section 4.1. We employ small-scale simulations to
evaluate P3HT self-assembly over∼350 state-points in Section 4.2 and evaluate the impact of simulated
solvent evaporation in Section 3.1. We evaluate structural predictions with large-scale simulations in
Section 4.4, and finally validate against experimental measurements in Section 4.5.

2. Model

We represent P3HT molecules with a “united-atom” model [45] wherein hydrogen atoms are
treated implicitly through the interactions between three types of simulation elements (“beads”):
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aromatic carbon (CA), aliphatic carbon (CT), and sulfur (S) (Figure 1). This level of coarse-graining is
convenient for modeling OPV materials, as the reduction of simulation elements from 25 atoms
to 11 united-atom sites per monomer reduces computational cost [45–47], while simplifying
back-mapping of atomic coordinates for charge transport calculations [35]. United-atom models
have been used to successfully predict structures for a variety of systems including: polymers [48,49],
proteins [46], and small molecules [50,51]. The base units of mass M = 32 amu, energy E = 0.32 kcal/mol,
and length L = 3.905 Å, used to describe interactions within the simulation, are adapted from the
Optimized Potentials for Liquid Simulations (OPLS)-United Atom (UA) force-field [52]. The pairwise
non-bonded interaction potentials derived from these base units are presented in Table 1 in which
ε is the depth of the Lennard–Jones potential, σLJ is the van der Waals radius, and m is the mass of
the bead.

Figure 1. P3HT is modeled in this work with a united-atom representation. Sulfur beads (S) are yellow,
aromatic carbon beads (CA) are dark blue, and aliphatic carbons beads (CT) are in cyan. Red bonds
indicate thiophene rings modeled as rigid bodies, whereas the light blue indicate harmonic bonds.

Table 1. Optimized OPLS-UA interaction parameters for CA, CT, and S simulation elements used in
this work. ε is the depth of the Lennard–Jones well, σLJ is the van der Waals radius, and m is the mass.

Bead Type σLJ (Å) ε (kcal/mol) m (amu)

CA 3.436 0.11 13.0
CT 3.905 0.17 15.0
S 3.436 0.32 32.0

The pairwise bonded constraints (bond lengths, triplet angles, and quadruplet dihedrals) are taken
from a modified atomistic force-field based on OPLS-All Atom, as parameterized by Bhatta et al. [37].
Since this force-field is atomistic, we adapt it to account for implicit hydrogens and the reduced number
of element types in our model (see Supplementary Materials Section 1 for full details). We also model
aromatic thiophene rings as rigid: the bonds, angles, and dihedrals are fixed, maintaining the relative
positions of the elements of the rigid bodies throughout the simulation [53]. Abstracting away these
degrees of freedom reduces the number of calculations required for each timestep while maintaining
good agreement with experiment for both the chemical and structural properties of a variety of
molecule types [49,50,54–56]. We further optimize this model by adjusting interaction parameters to
better predict P3HT structure, and lower computational cost with implicit solvent and electrostatics.

The unit of time, t, can be calculated from the base units:

t =

√
ML2

E
= 1.8× 10−12 s. (1)

We use a timestep of 0.001t, so each simulation timestep corresponds to 1.8 fs. The “base case”
model considered here handles solvent and long-range electrostatics implicitly, and each oligomer
comprises 15 monomers (15mers). Comprehensive evaluation of the optimized model assumptions,
including explicit consideration of electrostatic interactions and short oligomer chains are included in
Supplementary Materials Sections 2 and 3.
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3. Methods

In this work, we conduct molecular dynamic (MD) simulations using the Graphical Processing
Unit (GPU)-accelerated HOOMD-blue simulation package [57,58], performed on NVIDIA K80 and
P100 GPUs. The code used to produce this data is open-source and freely available at Ref. [59].
The complete dataset from this investigation is available at Ref. [60]. Simulations are conducted in
the canonical ensemble (NVT), in which the total number of particles, volume, and temperature are
kept constant. The Nosé–Hoover thermostat, in which the system is coupled to a heat bath, is applied
to maintain the temperature [61]. Particle positions and velocities are updated with the two-step
velocity-Verlet integration of Newton’s equations of motion with a timestep of 1.8 fs [62].

Each simulation is initialized from a unique random configuration within a cubic volume
with periodic boundary conditions. We accomplish this by first placing molecules created with
the mBuild software package [63] at random positions in a large simulation volume, where molecules
are sufficiently separated so that they can be placed without overlapping their neighbors. A short MD
simulation (1.8 ns) is performed at high temperature (T ∼ 1300 K) to randomize the molecule positions
and orientations. The system volume is then reduced during another short simulation (1.8 ns and
1300 K) until the target density is reached. This process of “initializing”, “mixing”, and “shrinking”
has been previously used to initialize independent snapshots at arbitrary densities [28,49,50,64].
Unless otherwise specified, every simulation presented herein is instantaneously quenched from high
temperature to the target temperature for the duration of its NVT simulation. We consider target
temperatures from T = 80 to 1300 in steps of 80 K. These temperatures span the glass transition
(300 K) and melting (490 K) temperatures expected for P3HT [37]. Of course, real P3HT degrades at
the higher temperatures in this range. Our simulations at these high-T conditions are performed to
provide unique independent snapshots from which to initialize independent simulations, and to check
if high-temperature structural transitions might exist if P3HT did not degrade.

We consider a range of relevant film densities, ρ = 0.56, 0.72, 0.89, 1.05, 1.11 g/cm3, with the largest
ρ = 1.11 g/cm3 corresponding to the experimental thin-film density for P3HT [65]. For the lowest
densities, as much as 40% of the simulation volume is occupied by the implicit solvent, whereas the
volume occupied by the implicit solvent is negligible for the highest densities. We employ an extremely
simplified model of solvent quality: we define the parameter εs to represent how poor the solvent is for
P3HT, and scale all of the pairwise interaction potentials by this amount (εij → εs × εij). We explore
εs values from 0.2 to 1.2 in this work. Low values of εs ≤ 0.7 correspond to solvents in which P3HT
is highly soluble (e.g., chloroform, chlorobenzene or 1,2-dichlorobenzene), whereas larger values
εs > 0.7 describe solvents where P3HT is less soluble (e.g., acetone) [8]. While this simplified model
cannot capture complex or entropic solvent phenomena, it provides a significant computational
advantage [66–68]. Furthermore, adjusting εs while holding T constant enables exploration of how
equilibrium structure depends on molecular attractions at fixed kinetic energy. In this work, we perform
simulations at the combinations of T, ρ, and εs described above to understand how these parameters
in concert influence thermodynamic phase behavior.

3.1. Solvent Evaporation

Each simulation performed herein utilizes one of two simulation protocols to sample microstates
at the target state-point. Protocol (1) ignores solvent evaporation: disordered initial configurations
at the target density, ρ, and solvent quality, εs, are instantaneously quenched from T = 1300 K to the
target temperature, after which equilibration progress is monitored [50]. Protocol (2) is a very basic,
qualitative model of solvent evaporation that helps to sample configurations at experimental densities
(ρ = 1.11 g/cm3): First, a system is equilibrated at ρ = 0.72 g/cm3 and the target temperature and εs

using Protocol (1), followed by a linear compression to ρ = 1.11 g/cm3 over 280 ns. After the shrinking
step of Protocol (2), equilibration progress is monitored as in Protocol (1).

Modeling implicit solvent removal in this way creates two fundamental tensions with our claimed
thermodynamic approach. Firstly, invoking Protocol (2) suggests that microstate sampling with
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Protocol (1) is non-ergodic over practical time scales. It is well established in both experiments and
simulations that polymer dynamics are kinetically arrested at higher densities, so Protocol (2) can be
viewed as a sampling acceleration scheme that assumes structures arising from enthalpy minimization
at low densities are representative of equilibrium at high densities. Of course, steric entropic effects are
known to contribute most interestingly to the free energy at high densities, with the striking diversity
of entropically stabilized hard-polyhedra phases as just one example [69]. This leads to the second
tension: Invoking an implicit solvent model assumes entropic contributions of the solvent either (a)
can be effectively represented in the coarse Hamiltonian, or (b) are negligible compared to enthalpic
contributions. It is therefore implied in the present work—and every multiscale study invoking
coarse-graining—that potential energy minimization dominates the free energy minimization of the
coarse Hamiltonian, whose emergent coarse structures represent the underlying atomistic description
with all of its encoded entropic contributions. In the cases where such coarse-graining is not predictive
of the more detailed representation’s structure, there are interesting open questions about how to
include entropic contributions within the coarse Hamiltonian explicitly, or whether back-mapping
fine-grained structure is sufficient, both beyond the scope of this work.

Protocol (2) does not capture evaporation-driven dynamics that occur in real systems,
including the alignment of linear molecules induced by hydrodynamic flows and steric effects at
interfaces. In principle, such dynamics could be used to facilitate self-assembly, but are beyond the
equilibrium approach of this work.

3.2. Morphology Characterization

To characterize the molecular packings obtained in our simulations we use two structural
metrics: an order parameter and simulated GIXS using the Diffractometer simulation software [35,70].
GIXS patterns are used to identify and quantify periodic morphological features and are used to
validate predicted structures directly against experiments. We obtain a set of patterns by simulating
diffraction on each cubic morphology from 60 unique orientations uniformly distributed on a sphere.
We identify orientations with clearly resolved peaks and align crystallographic directions along the
same axes before averaging these orientations into a final diffraction pattern. Treating the diffraction
patterns in this way improves signal-to-noise ratio of periodic features, allowing detection of periodic
length-scales more precisely.

The order parameter, ψ, is used to describe the proportion of thiophene rings in “large” clusters.
The clustering algorithm is described in full in our previous work and presented, with examples, in the
Supplementary Materials Section 4 [50]. Briefly, two thiophene rings are considered “clustered” if their
centers-of-mass are within 6.6 Å of each other and if the planes of the thiophene rings are oriented
within 20◦ degrees of each other. The value of 6.6 Å is informed by the radial distribution function
of the thiophene centroids in ordered P3HT, and the 20◦ cut-off is taken due to rotations under this
having small effect on the transfer integral (a measure of the electron orbital overlap) between two
rings [16]. A cluster must contain at least six thiophene rings to be considered “large” and contribute
towards ψ, a cut-off that is selected to distinguish morphologies with fewer large clusters from those
with many small clusters.

4. Results and Discussion

Here, we benchmark P3HT simulations using our optimized model to provide context for the
system sizes that are practically accessible, perform experiments with simulated solvent evaporation
as potential way to avoid long relaxation times, and evaluate the system sizes needed to validate
predictions against experiments.

4.1. Computational Performance and Scaling

The time it takes to predict self-assembly of a material with MD primarily depends upon the size
of the simulated volume, which affects two key metrics:
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1. Relaxation time: The number of timesteps that must be evaluated before the system reaches
equilibrium. Larger volumes generally mean larger relaxation times because more molecules
must rearrange before the system has converged to the equilibrium distribution of microstates.

2. Computational performance: The number of timesteps that can be evaluated per each second
that elapses on a clock on the wall, here measured as Timesteps Per Second (TPS). TPS scales
between O(N−1) and O(N−2).

We measure relaxation time and TPS in order to quantify the practicality of performing equilibrium
simulations as a function of system size. We perform instantaneous quenches to T = 600 K at
ρ = 0.72 g/cm3 and εs = 0.8 for our base case model with N ranging from N = 16,500 to N = 600,000.

Figure 2a shows TPS decreases monotonically with N, closely matching the O(N−1) reference
slope (orange). For the smallest systems (N = 16,500), this corresponds to being able to perform
400 ns per day, and, for the largest systems (N = 600,000), 17 ns per day. In Figure 2b, we show a
characteristic time evolution of the Lennard–Jones pair potential energy, which we use as one proxy for
structure. At equilibrium, measurements of potential energy are observed to fluctuate about a stable,
time-invariant average (Region 3 in Figure 2b). Before equilibrium is reached, we observe a fast initial
change in structure (Region 1), followed by a slower relaxation time (Region 2). We detail the automatic
detection of these regions and present the curves for multiple systems in Supplementary Materials
Section 5. Here, we observe Region 1 is insensitive to N, occurring within the first 0.5 µs of simulation
time. The relaxation time (Region 2), however, strongly depends on N. We measure relaxation
times of ∼0.2 µs for the ∼16,000 beads, ∼0.4 µs for ∼29,000 beads, and ∼1.0 µs for 40,000 beads.
For system sizes larger than N = 40,000, we do not observe equilibration of the base case model 15mers
at T = 600 K, ρ = 0.72 g/cm3, εs = 0.8. Empirically, these observations suggest relaxation time scales
O(N2), though the longer relaxation times for larger N tested here preclude detailed evaluation.
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Figure 2. GPU-accelerated simulations of P3HT presented here achieve ideal performance scaling,
but practical equilibration of a volume is limited by relaxation times. (a) computational performance
measured by Timesteps Per Second (TPS, blue data) scales O(N−1) (dashed orange line for simulations
performed at T = 600 K at ρ = 0.72 g/cm3 and εs = 0.8); (b) the time evolution of non-bonded potential
energy shows a fast initial structural rearrangement (blue), a slower relaxation to equilibrium (cyan),
followed by sampling of equilibrium microstates (green). The divergence of relaxation time (cyan)
with system size, N, and density, ρ, puts practical limitations on the systems that can be equilibrated,
despite high TPS values. (c) Computational performance, measured by TPS, has roughly doubled
with each new hardware release for the last four generations of Nvidia hardware (K20m, K80, P100,
and V100 cards). Error bars indicate one standard deviation over five independent simulations per
cluster across multiple clusters.

Once a system has come to equilibrium, we measure decorrelation times, explained in detail in
previous works [49,50]. The 100 15mer simulation requires ∼80 ns for each independent measurement
to be generated, the 175 15mer simulation requires ∼50 ns per measurement, and the 250 15mer
simulation requires ∼300 ns per measurement. Therefore, simulations of around one µs are needed to
sample the equilibrium distribution of microstates after the relaxations of Regions 1 and 2.
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To put these performance numbers in context with advances in computational hardware,
we benchmark P3HT systems with N = 165,000 on four different Nvidia GPUs and six different
high performance computing systems. Figure 2c shows a factor-of-two improvement in TPS roughly
every two years. The TPS scaling and relaxation scaling as a function of N, and evolution of TPS over
GPU release year data presented so far allows us to answer “How many years must we wait before
we can equilibrate a system with twice the spatial dimensions of the largest practical dimensions
today?” Doubling the size of the simulation volume along each axis results in eight times the volume
and therefore eight times higher N (given the same density), so we would expect the TPS to drop
by a factor of ∼8, given that TPS ∝ O(N−1). However, as relaxation time scales as roughly O(N2),
we would require 64 times as many simulation time steps to equilibrate before sampling. This means
that doubling the linear dimensions of a system requires 512 times the TPS to equilibrate it in the
same amount of time. Extrapolating current hardware trends, a new GPU 18 years from now would
meet this performance need. Of course, performance scaling will vary significantly, depending on
model details (e.g., chain length), T, ρ, and εs, so the precise numbers reported here will have limited
transferability to other chemistries and conditions.

Even so, we draw two takeaways from these data: The first dispels the idea that significantly
larger volumes can be equilibrated with incremental advances in hardware. Rather, doubling the
dimensions of a system requires decades of hardware improvement, all other factors being equal.
Consequently, the second takeaway is that techniques that mitigate relaxation times will be essential in
predicting OPV morphologies relevant to device scales. Such techniques include modeling at multiple
scales, modeling the minimal necessary physics at each scale, efficiently sampling parameter space,
and advanced sampling techniques [71–73].

4.2. Identifying Optimal Assembly Conditions

Despite the divergent behavior of simulation time as a function of N observed in the previous
section, it is computationally tenable to efficiently sample the state space of P3HT self-assembly using
a base case system of 100 15mers, using our OPLS-UA model. We therefore perform an ensemble of
MD simulations over a range of 350 unique state-points (depicted by a black “x” in Figure 3) each
defined by T, ρ, and εs, to determine which combinations are correlated with self-assembly. Doing so
generates the rough phase diagram of P3HT structure as a function of T, ρ, and εs. Each simulation
employs cubic volumes with edge length ∼7 nm. These volumes relax to equilibrium within ∼180 ns,
after which the ordering measured by ψ is constant. Decorrelated equilibrium microstates are drawn
from trajectories after this initial relaxation, with an additional 180 ns of simulation time generating
∼8 microstates per state-point. The colorbars in Figure 3 quantify the degree of ordering measured
by the order parameter ψ. In each case, more ordered systems appear red, whereas systems with less
ordering and fewer ordered clusters appear in blue. The order parameter values depicted between
simulated state-points are linearly interpolated.

In Figure 3, we observe two major trends in P3HT ordering: (1) increasing the density limits
the ordering and (2) there exists a narrow band of T-εs combinations that produces a high degree
of order, independent of density. The first trend arises from systems becoming kinetically arrested:
Chains have little room to rearrange at high densities after being instantaneously quenched below the
melting temperature. The second trend arises from the relationships between T, kinetic energy, and the
scaling of the Lennard–Jones well-depths through εs. When the ratio T

εs
is sufficiently high, simulation

elements have sufficient kinetic energy to routinely break out of the short-range pairwise potential
energy wells of their neighbors. Conversely, in systems with deep potential wells, beads are more
likely to get stuck in local potential energy minima, resulting in longer relaxation times. As expected,
we observe that P3HT orders most robustly when it has both sufficient free volume and kinetic
energy to rearrange, providing the temperature is below the melting temperature. These requirements
are consistent with experimental annealing practices used to increase order, where energy is added
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(thermal annealing) or interaction strengths are decreased while increasing free space for polymers to
rearrange (solvent annealing).
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Figure 3. The degree of ordering, ψ, for Protocol (1) shows the most robust assembly occurs at lower
densities, with more temperature-solvent combinations resulting in high ψ. (a) ρ = 0.56 g/cm3;
(b) ρ = 0.72 g/cm3; (c) ρ = 0.89 g/cm3; (d) ρ = 1.05 g/cm3. Red regions denote order, whereas blue
denotes disorder. Each black “x” indicates a measurement from an MD trajectory, and ψ values between
measurements are linearly interpolated.

In Figure 3, we also observe that P3HT is able to robustly self-assemble over a range of a couple
of hundred Kelvin. This self-assembly occurs just below the melting temperature, given a particular
solvent quality. In systems with sufficient free space to order, the model predicts melting temperatures
in the range of ∼400 to 600 K (depending on the solvent strength), which corresponds well to the
experimentally observed melting temperature at 490 K. The experimental melting temperature of
P3HT in the absence of a solvent is reproduced when εs = 0.5, indicating that the optimized OPLS
force-field used here overpredicts P3HT’s melting temperature and that varying εs can be thought of
as either varying solvent quality, or correcting for systematic attraction offsets in the force-field.

4.3. Modeling Solvent Evaporation Facilitates Equilibration

We observe that P3HT simulations at ρ ≥ 1.05 g/cm3 show a low degree of order, ψ (Figure 3),
when instantaneously quenched from T = 1300 K to the target simulation temperature. However,
highly ordered P3HT has been observed in experiments at and near this density. We explain this
discrepancy by kinetic arrest over simulation timescales: Closely-packed P3HT volumes with negligible
solvent have long rearrangement times. To avoid such trapping and to more faithfully model solvent
evaporation, we perform “shrinking” simulations using a simple model of solvent evaporation
(Protocol (2)) from ρ = 0.72 g/cm3 to ρ = 1.11 g/cm3 over 36 ns, and compare the resultant systems
to the base case in the previous section. The initial density ρ = 0.72 g/cm3 is chosen because it is
the highest density at which highly-ordered morphologies are robustly assembled. When solvent
evaporation is modeled in this way we generally observe negligible change in ψ (Figure 4) as the
system transitions from ρ = 0.72 g/cm3 to ρ = 1.11 g/cm3. At high temperatures, 600 ≤ T < 900 K,
we observe increased ordering as a result of solvent evaporation (Figure 4), which is consistent with
previous work showing that increased density at constant temperature can lead to a higher degree of
order [50]. In aggregate, these results indicate that our OPLS-UA model is efficient enough to identify
the temperature-solvent-density combinations that result in molecular self-assembly.
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Figure 4. Morphologies sampled with Protocol (2) are observed to have higher ordering, ψ than
Protocol (1) at the same state-points (compare Figure 3d), which suggests that simulating solvent
evaporation helps to avoid long relaxation times.

The results presented in Figure 3 are generated with Protocol (1): Low-solvent (high P3HT density)
systems display less order because of longer rearrangement times. The results presented in Figure 4
are generated with Protocol (2): Equilibrating and then shrinking the simulation volume while holding
temperature constant results in structures that are as ordered as those at ρ = 0.72 g/cm3, but at the
experimental density of ρ = 1.11 g/cm3, and with GIXS in quantitative agreement with experiments
(Figure 6). We therefore recommend using Protocol (2) for simulating solvent evaporation where
appropriate because, otherwise, long rearrangement times at high densities can be avoided.

4.4. Large Volumes Are Needed for Experimental Validation

Here, we combine the results of the previous two sections and perform solvent evaporation
simulations of large volumes at specific state-points to evaluate which advantages in structural insight,
if any, are afforded with larger volumes. We compare the base case “small” systems of 100 15mers
(N = 16,500, L = 7 nm) against “large” 1000 15mer (N = 165,000, L = 15 nm) systems. The large
simulations are initialized at T = 600 K, ρ = 0.72 g/cm3, and εs = 0.8 using Protocol (1). During
the evolution of the large systems, we record atom positions at three different degrees of order:
when the system is disordered, when some crystallites have formed but disordered regions still exist
(semi-ordered), and when it has ordered. These times are chosen based on the degree of structural
evolution discussed in Section 4.1. Each of these snapshots is used to initialize independent simulations
using Protocol (2) to reach ρ = 1.11 g/cm3 over a 180 ns simulation trajectory. We compare these
three large morphologies at experimental densities, “disordered”: ψ ∼ 0.4, “semi-ordered”: ψ ∼ 0.6,
and “ordered”: ψ ∼ 0.8), to the smaller base cases. Note that we present our analysis for only the
ordered system here in the main text and in Supplementary Materials Section 6 we present the analysis
for the semi-ordered and disordered systems.

The large and small ordered systems shown in Figure 5a,b, in which only “large” clusters,
identified using the cluster analysis discussed in Section 3.2, are shown (large clusters ≥ 6 monomers,
and side chains are omitted). The large ordered system contains a few large crystallites, colored
blue, red, and yellow. This contrasts with the small morphology, which primarily consists of a
single large crystallite (shown in blue in Figure 5a), with the next largest having significantly fewer
members (shown in red). These results indicate that smaller systems will tend to have fewer ordered
crystallites, which limits the opportunity to observe periodic organization of these structures. Despite
this difference, GIXS patterns show that the same periodic distances are present in both system sizes
(Figure 5c vs. Figure 5d), albeit with significantly increased noise in the case of the smaller system.
As such, small morphologies can be used to identify state-points of structural interest; however, large
simulations are better at characterizing crystal structure and quantifying morphological order.
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a b c d

Figure 5. While small systems (a) are sufficient for identifying key structural features of ordered P3HT,
large volumes (b) are needed to resolve structural periodicities ((c)-small, (d)-large) and therefore
enable experimental validation.

4.5. Experimental Validation of Optimized P3HT Model

To validate our model, we perform simulations of 1000 15mers with Protocol (2) and compare
simulated GIXS patterns against experimental P3HT patterns (T = 600 K, εs = 0.8). Predicted and
experimental GIXS patterns are presented in Figure 6a (averaged over 18 simulation orientations)
and Figure 6b (Reprinted with permission from [74]. Copyright 2012 American Chemical Society).
Both experimental and predicted structures are characterized by bright reflections extending
vertically along the out-of-plane axis with reciprocal spacing of 0.38 ± 0.02 Å−1 (corresponding
to real-space separation of 16.5 Å) and the narrow peak perpendicular to the [100] direction at
1.68 ± 0.02 Å−1 (corresponding to a real-space separation of 3.74 Å). To connect these scattering
features to morphological features, we present the ordered morphology in Figure 7a, which shows
lamellae of π-stacked thiophene rings (shown with dark blue CA and yellow S), and aliphatic
tails (cyan CT). It is the periodic π-stacking at ∼3.7 Å and perpendicular alkyl-stacking at 16.5
Å responsible for the ∼1.7 and 0.4 Å−1 features that are observed in the GIXS patterns. The agreement
between experimental and predicted structures demonstrates the present OPLS-UA model is capable
of efficiently and quantitatively predicting ordered P3HT structures within three weeks of simulation
on a single GPU. Also similar to the structures seen experimentally, the lamellae in the ordered system
do not represent a single, perfect crystal, but rather multiple crystallites with various grain orientations.
The thiophene rings in these grains are depicted by red, blue, and yellow in Figure 7b.

ba

(010)(010)
(100)

(200)

(300)

Figure 6. Our model produces (a) simulated GIXS patterns that closely match (b) experiment with
π-stacking features along the (010) plane at 1.68 ± 0.02 Å−1 and alkyl-stacking features along the (100)
plane with a spacing of 0.38 ± 0.02 Å−1. (Experimental GIXS pattern (b) reprinted with permission
from Ref. [74]. Copyright 2012 American Chemical Society).
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Figure 7. (a) a representative ordered molecular morphology of P3HT 15mers (CA-dark blue, S-yellow,
CT-cyan) depicting π- and alkyl-stacked lamellae (state-point: implicit charges, T ∼ 600 K, εs = 0.8,
ρ = 1.11 g/cm3); (b) the locations of the three largest crystallites in the system (colored blue, red, and
yellow in order of descending size). Small crystallites and side chains are omitted for clarity. Within
each crystallite, thiophene rings stack in (c) an aligned or (d) anti-aligned conformation, which are
observed in (e) the RDF of the thiophene centroid (e-inset) as the green (3.9 Å) and magenta (5.3 Å)
dots, respectively. The RDF minimum at 6.6 Å (yellow dot) is used as a clustering criterion describing
the maximum separation of two rings in the same cluster.

Within each layer, the thiophene rings primarily stack co-facially in either an “aligned” (Figure 7c)
or “anti-aligned” (Figure 7d) conformation, in which the sulfur atoms of adjacent rings are on the
same side or opposite sides of the stack respectively. We calculate the radial distribution function
(RDF, Figure 7e) between monomer centers to characterize short-range packing. A monomer center
is defined by the geometric average position of the sulfur and two furthest carbons in the thiophene
rings (see Figure 7e inset), and the spacing between two centers is used to distinguish aligned and
anti-aligned π-stacking. The first peak in the RDF describes π-stacking of the thiophene heads and is
split into two features at 3.9 and 5.3 Å corresponding to the aligned and anti-aligned cases, respectively.
As made evident by the RDF peak magnitudes, we observe a slight preference for aligned thiophene
stacking vs. anti-aligned stacking. Generally, more ordered morphologies of P3HT are expected to
provide faster charge transport characteristics. As such, these results show that sufficient amounts of
good solvent, which is then evaporated off just below the P3HT melting temperature, are expected to
produce ordered morphologies with beneficial electronic device properties.

5. Conclusions

In this work, we presented insight into semiconducting polymer assembly aimed at both molecular
simulators and experimentalists. Specifically, for P3HT, we demonstrated excellent quantitative
agreement with P3HT nanostructure investigated by GIXS and we found temperature and solvent
combinations where robust self-assembly into ordered structures is expected. In doing so, we validated
the predictive accuracy of our optimized OPLS-UA model, which implicitly includes solvent, charges,
and abstracts away fast degrees of freedom in the thiophene rings.

Our analysis of computational efficiency scaling with simulation size showed that projected
improvements to computational hardware over the next decades will not enable the equilibration
of significantly larger organic semiconductor volumes than those presented, using the techniques
demonstrated in this work. Since relaxation times were identified as the limiting factor to polymer
equilibration, multi-scale techniques and model approximations must be used in order to predict OPV
morphologies at experimentally relevant length scales. For instance, we demonstrated that modeling
solvent molecules implicitly by modulating the inter-molecular interactions in our forcefield, and
implementing a very basic technique to simulate solvent evaporation leads to good experimental
predictions at relatively low computational cost. Based on our observations, we therefore propose the
following simulation guidelines for predicting the morphologies of OPV candidate molecules:
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1. Benchmark performance to identify the system size N that is practical for equilibrating hundreds
of systems.

2. Generate coarse phase diagrams with these inexpensive simulations to identify rough phase
boundaries and interesting structures.

3. Use simulated solvent evaporation to generate morphologies at experimental densities,
with sufficiently large volumes.

4. Validate predictions against experimental GIXS patterns, when available.

These guidelines can be applied to any OPV active layer material, and will help to ensure that
the most information about model validity and OPV morphology are gained per unit of simulation
time. Combining these guidelines with automatic identification methodologies and more detailed to
more efficiently search parameter space [72,75] will further improve information gained per Central
Processing Unit cycle. Extending the current investigation and applying these methods to a broader
range of OPV candidate materials with potential for mitigating climate change will be the focus of
future work.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/12/
1305/s1: Section 1 explaining the bonded interactions used in the P3HT model, Section 2 discussing the
determination and effects of explicit charges in the model, Section 3 exploring the effects of longer chains
(degree polymerization 50) on structure, Section 4 providing a more in-depth explanation of the order parameter,
ψ, Section 5 linking the system’s energy to structural evolution, and Section 6 comparing the differences between
small and large semi-ordered and disordered systems.
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Abbreviations

15mer P3HT chain containing 15 monomers
CA Aromatic Carbon
CT Aliphatic Carbon
ε Energy Parameter
εs Solvent Quality
GIXS Grazing Incident X-ray Scattering
GPU Graphical Processing Unit
m Mass
MD Molecular Dynamics
NVT Canonical Ensemble (constant number of particles, colume, and temperature)
OPLS Optimized Potentials for Liquid Simulations
OPLS-UA Optimized Potentials for Liquid Simulations - United Atom
OPV Organic Photovoltaic
P3HT Poly(3-hexylthiophene)
PCE Power Conversion Efficiency
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ψ Order Parameter
ρ Density
RDF Radial Distribution Function
S Sulfur
σLJ Lennard–Jones van der Waals radius
t Simulation Unit of Time
T Temperature
TPS Timesteps Per Second
UA United-Atom
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