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ABSTRACT

Bioinformatics is a broad realm of research in which Computer Science has much

to offer. Collecting, sorting, and analyzing statistical information for DNA and

protein sequences is difficult due to the sheer amount of available data. Tools have

been created to do this, but they have generally been limited by speed or robustness.

In addition to analyzing the statistical properties of biological sequences, it is also

important to model and understand their chemical and physical properties. A number

of valuable software tools are available for modeling and predicting the properties of

biological sequences in Computational Chemistry, including molecular docking, and

homology modeling. These tools are typically command-line driven, have a steep

learning curve, and generally must be used in conjunction with other programs to

extract the desired information. The average chemist or biologist is not well-versed

in Computer Science principles nor command-line tools and involved scripting, and

therefore finds it difficult to realize the full potential of tools that are available to

them.

The work completed here assists the field of Bioinformatics with two software

packages for biological sequence data analysis. One is CseqStat, which processes

and gathers statistical data from large repositories of genome sequence data. The

algorithms I have developed in CseqStat help speed up processing large amounts of

sequencing data for nucleotides and proteins in the NCBI database. This application

is robust in its abilities, finding the frequency of all sequences of a given length, in

a reasonable time frame, determined by the length and the amount of input data,
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storing the results in an efficient manner, and providing a mechanism for quick and

easy retrieval of such data.

The second utility is DockoMatic, a multi-faceted software package offering the

ability to run high-throughput experiments, structure creation, and molecular dock-

ing. I have collaborated with members of the Department of Chemistry and Biochem-

istry at Boise State University to gain valuable insight to improve existing methods.

DockoMatic was developed to allow a user to invoke and manage large numbers

of molecular binding calculations, linear and cyclic peptide analog structure creation,

and molecular modeling experiments on a single computer or cluster. Specifically,

DockoMatic was created to

• automate peptide-based ligand creation based on single-letter residue codes,

• automate AutoDock job creation, submission, and management for high-throughput

docking experiments,

• automate competitive binding experiments,

• track multiple jobs in real-time on a cluster,

• organize results in a useful manner,

• provide an intuitive GUI,

• automate cyclic peptide analog creation, and

• provide a simple interface for creating molecular models.
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CHAPTER 1

INTRODUCTION

Absent and rare sequences have a number of potential uses including barcodes for

labeling biological materials, such as DNA reference samples, since they either do

not occur in nature, or occur very infrequently. Genetic samples are used by many

agencies, such as the military and law enforcement for varying reasons, such as iden-

tification of suspects and victims in criminal cases and paternity testing. Although

collecting and storing DNA is quite common, and the methods have become better,

there are no significant new technologies to protect the many samples from errors in

the laboratory; the most common being cross-contamination.

The CseqStat project was initiated to identify absent or prime sequences not seen

in nature. Their absence in nature makes them ideal candidates for the tagging of

DNA samples. Studying DNA lead us to also look at protein sequences. The goal of

CseqStat for the DNA Safeguard project was to monitor biological databases in order

to identify absent and rare sequences, as well as how these change over time.

Prime DNA and protein sequences are interesting to study in order to answer the

question of why they do not occur, and how they may interact with other molecular

structures under various differing environmental conditions. In fact, it has been

conjectured that one reason they do not occur is due to their toxicity. Recently

certain prime sequences, or nullomers, have been identified that could lead to new
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cancer therapies [1]. Preliminary tests show that these nullomers have lethal effects

on cancer cells, while their effects on normal cells decreases over time.

The processing power gained from computer clusters and cloud computing has

helped computational modeling to become increasingly useful in analyzing physical

and chemical properties. Ligand to receptor binding interactions can be modeled with

software programs such as AutoDock. AutoDock is powerful and popular, although

to setup and run jobs, then collect the results, it requires a considerable amount of

user time [2].

It is also interesting to study how known ligands may interact differently with

receptors when specific amino acids are changed.

Molecular modeling is a field of computational chemistry that allows the creation

of three-dimensional structure models for macromolecules based on the molecular

template of a known molecule.

DockoMatic was developed to simplify job submission and management of virtual

high-throughput molecular docking and modeling experiments. This has the potential

for broad impact in areas of drug discovery and molecular modeling.

DockoMatic automates high-throughput screening of ligand to receptor binding

interactions via a convenient Graphical User Interface (GUI), facilitating creation and

management of AutoDock jobs.

DockoMatic includes the ability to automatically create peptide ligand protein

database (.pdb) files and invoke and manage AutoDock jobs on a cluster of nodes

or a single computer, with functionality to evaluate secondary ligand interactions [3].

Also, included in DockoMatic’s arsenal is the ability to create cyclic peptide analog

structures, and a wizard to guide a user through the steps of creating homology

models for peptides or proteins. Results are easily evaluated, as DockoMatic collects



3

and summarizes them automatically.
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CHAPTER 2

CSEQSTAT

2.0.1 Motivation

The main repository of biological data is The National Center for Biotechnology

Information (NCBI); the single largest repository for nucleotide and protein data [4].

The total monthly set of DNA and protein data to be processed and analyzed from

the NCBI database is close to 300 GB zipped, which amounts to approximately 500

GB of raw sequence data, with more being added daily. To put this in perspective,

the complete works of Shakespeare uses only 5 MB, so this is approximately 100,000

times more data.

Daily updates make it desirable to have a timeline of the changes, since NCBI

does not provide archived snapshots nor a mechanism for easy access to historical

data.

In order to generate the statistics, I have helped develop CseqStat, a sequence

processing tool, which allows one to find the number of occurrences of sequences for

a given length of DNA or peptide. Currently, due to memory restrictions, data for

sequences up to length 17 are able to be efficiently generated, however, the software

does allow for processing up to length 32.

The specific objectives were to

• Store monthly backups of the NCBI data.
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• Generate statistics for each backup.

• Make processed data available to others.

2.0.2 Design

CseqStat is a suite of tools to evaluate and compress large amounts of data, and make

the results easily retrievable and manageable. It consists of a processor, reprocessor,

and utilities to create and access numerous custom file types in order to provide

efficient storage.

In order to condense such data, I designed two file types to store processed results;

the most efficient depends upon the number of prime sequences found for a given

length. The NZ, or non-zero file type only stores the frequency of sequences that

occur, thereby saving space by not storing the sequences that do not occur. This is

beneficial when there are large numbers of prime sequences, and makes generating

and searching for those sequences fast. Since the strings for a given sequence take 8

bits per character, each sequence string is converted to a 64-bit numeric key, which

only takes two bits per character of storage when processing DNA. This realizes a

storage savings by a factor of four. Using bits also enables the reverse complements

of the DNA sequences to be easily produced with simple bit manipulations. In order

to accurately obtain the frequency, each sequence is read in the forward direction,

and then again in the reverse direction; the reverse direction being composed of the

complements of the original nucleotides. Bit shifting and complementing are much

faster than traversing a character array, or performing time consuming calculations

with multiplication each time a new character in a sequence is read.
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Working with proteins does not require reverse complements to be calculated,

although it does pose its own set of intricacies using the bit representation. Since

there are only 4 nucleotides for DNA, they are easily stored with 2 bits. On the other

hand, there are 20 amino acids for proteins, which is not a power of 2. In order to

represent the 20 amino acids, 5 bits are required. While this does cause some space

to be wasted, it is still better than using a string representation when storing results,

since, as stated before, 1 character consumes 8 bits of storage. This convention is

also scalable to any number of input characters. For instance, if using the entire

alphabet as the base set, as would be the case to study documents, such as articles,

for frequency of certain words, 5 bits per character is still used. In fact, 5 bits would

cover a base set up to 32 characters. By utilizing binary representations of string

sequences, processing of nucleotide and protein data is sped up by at least an order

of magnitude. By designing efficient file formats, the amount of storage needed for

the statistical data generated is significantly reduced.

File Formats

There are two binary file storage formats utilized with CseqStat: Non-zero (NZ) and

All-counts (AC). For longer length sequences, it is necessary to split up processing

across multiple nodes due to memory constraints. Both file formats begin with a

certain amount of meta data including length of sequence that was processed, base

sequence, number of splits used for processing, and which split it is. For instance, if

processing length 16, the job would need to split up four times, with each split being

written to a separate binary file. With length 16 split 4 times, four binary files are

used, each approximately 8 GB in size.
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NZ Format

The NZ file format utilizes a binary array with each bit signifying if a given sequence

was found or not. The binary array takes a total of 4N bits where N is the length

of sequence being processed. This allows quick retrieval of prime sequences as it is

only necessary to shift bits to see if given sequences have been found or not. This

file format saves space by recording only the count for each sequence that was found,

rather than having to store each count consecutively for each possible sequence of a

given length, which could result in many counts of 0 unnecessarily taking up space

on the disk. The binary array is used to calculate the sequence value. For instance,

if processing DNA data for length 4, a binary array of length 4 would be used, which

would contain a total of 256 bits, or 4 long long values. With length 4, there are

a total of 44 possible sequences. In order to find all primes of length 4, it is only

necessary to read in the binary array from disk. Then shift and compare each bit,

calculating and printing the values when a 0 is encountered. If printing the counts

for the found sequences, the same process is used, with the exception of reading in

the next count when a 1 occurs. In this case, a file pointer is held at the next count

value in the file.

The NZ file format is also useful for condensing results when storing DNA data,

taking advantage of the fact that each sequence has a reverse complement. It is then

only necessary to store a single count for each sequence and its reverse complement,

which reduces the total binary file size by almost half. Not exactly half, since some

sequences are palindromes, and the full binary array still has to be stored.
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AC Format

The AC file format is useful when there are larger numbers of found sequences. If

all sequences are found, the count for every sequence is already stored, so there

is no reduction in space by using the NZ format, it actually ends up taking more

space. Although the storage needed for the binary array is minimal in comparison to

the amount of space needed for the counts of the sequences themselves. One other

benefit to the AC format is the ease at which it can retrieve the results; there are fewer

calculations necessary to do so, since only a numeric value needs to be incremented to

obtain the key, rather than calculating it outright. However, this only applies to DNA

data, since the proteins still require more calculation to determine each consecutive

key, due to the gaps in the numerical representation of such keys.

General Data Handling Conventions

The software is built upon a virtual base DB Object class that defines the foundation

to process and reprocess data. Each inherited object has the ability to generically

process Fasta or Genbank files, and store the data as NZ or AC files. Fasta and

Genbank files are comprised of a series of sequences. Each sequence is preceded

by header meta-data containing information about the sequence and a marker to

identify the start. The two files mainly differ with respect to the meta-data they

hold; Genbank files use a different set of tags to identify more detailed properties of

the sequences. CseqStat is built to be generic, able to process the two files using the

same methods for both.

A utilities class provides the ability to convert character sequences to and from

their binary numeric key equivalents, along with the rest of the general data handling
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at the sequence level, such as computing bit masks and generating reverse comple-

ments.

Originally, the software used a hash map to hold the keys and counts in memory,

but testing proved it to be extremely slow compared to a standard array. This

convention stores only the number of occurrences of each key, in which the array

indices serve as the key values. This makes incrementing counts very efficient, as

a single operation is used, rather than a lookup into a hash table, in which more

overhead is involved.

Processing

Sequences are processed in a manner that yields all subsequences of a given length.

For instance, processing sequence “atgcta,” into length 4, results in atgc, tgct, and

gcta. Including the reverse complements of these sequences yields the additional

sequences of tagc, agca, and gcat.

Processing begins with a pointer to a Sequence object, which is read in from a

Fasta or Genbank file. Once the sequence is obtained, each character is converted

to a binary representation, base 4 for DNA. Upon subsequent characters, the binary

key is shifted the appropriate number of bits left, 2 for DNA, and the new binary

character is added to the key with an OR operation. Once the appropriate number of

characters initially populate the key, a count for the first key is stored in the sequence

array. The following keys are stored upon each subsequent character found, since the

length has already been populated, and previous characters are just shifted off the

key. Since the key is composed of 64 bits, a simple bit mask is used, for the length

desired, to obtain the actual key. When the processor begins, a table is created that

contains the binary representation of each character in the base sequence to provide a
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single lookup operation to convert characters to their binary counterparts. The Fasta

and Genbank data sometimes has characters that are neither nucleotide nor proteins.

When such a character is encountered, the sequence starts over upon the next valid

character.

Printing options include the ability to print only primes, only found sequences,

all sequences, or to print nothing at all.

Printing nothing at all is useful if the resulting binary files are to be used for

reprocessing, or to be used for gathering different types of results later. It is also

possible to not save binary data, which would speed up the job somewhat, as the

data does not need to be written to disk. This scenario is only useful if one of the

printing options is enabled.

When processing for sequences of longer lengths, it is sometimes necessary to split

up the jobs to avoid using all available memory, which would cause disk swapping,

thereby causing the processing job to perform extremely slow. Any number of splits

can be used, however it is generally better to use powers of 2, which helps distribute

the sequences more evenly. Splitting jobs can also be useful with regard to speed, and

can realize a linear speedup if being used on a cluster of computing nodes. This is

the preferred and intended use of the software, as it is designed for use with multiple

nodes for quick processing of large amounts of data.

During testing, it was found that the read and write operations to and from disk

were the bottleneck for the projected speed increases. After thorough testing, it was

determined that there was an optimal read/write buffer size that was different for a

parallel virtual file system as opposed to a standard EXT file system used on Linux [5].

The optimal buffer size was found to be 1 MB, while the standard buffer size was

only 4 KB. Great improvements in overall running time were realized by modifying
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these buffer sizes within the code.

Reprocessing

In order to facilitate reprocessing existing results for shorter length sequences, it

is necessary to separately keep track of each sequence that occurs after an invalid

character, and the first sequence after the meta-data. This “first key” provides

continuity, otherwise the resulting data would be inaccurate.

For instance, processing sequence “atgcta” for length 4, results in atgc, tgct, and

gcta, where the “first key” is atgc. To reprocess these results into length 3, using

the naive algorithm of scanning each of the keys from head to tail, yields atg, tgc,

tgc, gct, gct, and cta. Notice the duplicated sequences tgc and gct. However, if the

original sequence is processed for length 3, the result is atg, tgc, gct, and cta. The

naive method causes an extra tgc and gct to be counted.

To avoid this, only the last N characters of each key are used, where N is the

reprocessing length. In this example, using the last 3 characters of each key yields

tgc, gct, cta. Now the results lack one sequence. This is where the “first key” comes

into play. For the “first key,” the entire sequence has to be examined, similar to the

naive method. In the example, the “first key” was atgc. By using all characters of

the “first key,” and the tails of the rest, we now have the correct result: atg, tgc, gct,

and cta.

Reprocessing is useful when there exists binary files resulting from initial pro-

cessing jobs. These binary files can be reprocessed for various differing scenarios.

One is to use results from processing jobs of large sequence lengths to obtain results

for smaller sequence lengths. This can dramatically speed up the time necessary to

obtain results. For instance, the results for sequence length 15 can be used to obtain
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results for all lengths less than 15 without the necessity of reading all information

in the original Fasta files, and the reprocessing times get shorter with smaller length

sequences. Processing length 15 for all Fasta data takes approximately 4 hours, while

reprocessing length 15 to length 15, to account for reverse complemented sequences,

takes approximately 5 minutes. However, there is one caveat, if the amount of data

for a given sequence length does not fit into memory, the results have to be written

to disk in buckets, one per split, to later be gathered at the end of the reprocessing

job. This is currently necessary for lengths larger than 15 on the Boise State Genesis

cluster. For instance, length 16 uses approximately 32 GB of memory, which exceeds

the available RAM on each node. So, the results must be stored to disk first, then

read in at the final step of reprocessing. This sounds worse than it is, since the original

processing job takes almost the same amount of time as 15, due to splitting the jobs

accordingly, while the reprocessing time takes approximately 35 minutes, which is

still dramatically less than original processing.

To efficiently reprocess large amounts of data, it would be infeasible to attempt

to store the data to be reprocessed, as well as the reprocessed data, in memory

at the same time. This is avoided by using a virtual reprocessing mode that only

stores in memory the pertinent information of the data to be reprocessed, while the

actual sequence and count data is read from the disk as needed. This allows only

the reprocessed results to be stored in memory, making it possible to handle large

amounts of data.

There are numerous printing options available to reprocessing, which mirror the

print options when processing. Perhaps more useful than the printing options when

processing is the option to only print the results from a given binary file. This makes

it possible to walk through the results of a processing or reprocessing job to print the
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results without the added overhead of storing sequences in memory and performing

the other functions involved in processing and reprocessing.

An Iterator class was created to improve reprocessing, which generically allows

the use of different binary file types. This allows the code to be simplified in the

respect that it does not have to perform different actions based on the input file type.

Web Interface

A client-server application was also created to allow access to processed data. This

tool provides a distributable client GUI that connects to a server, making processed

data available to the masses. It is written in Java to be platform independent and

makes use of Java’s Remote Method Invocation (RMI) technology, which allows the

client to make method calls that reside on the server, resulting in a client with a small

footprint. The server interfaces with the data using the Java Native Interface (JNI),

leveraging the data structures and some code from the reprocessing and processing

pieces that were written in C++.

The client GUI provides access to the data in two main ways: search database for

a specific sequence in which its frequency is displayed, and search database for the

sequences that occur within a specified frequency range.

If searching a database for a specific sequence, the grid display will show one line

with the results as in Figure 2.1. If the sequence is not found, the software returns

quickly with a frequency of 0 if using the NZ file type for the database, as NZ file

types strength is providing fast results for primes.
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Figure 2.1: Search results for sequence aacg
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Multiple tabs can be used to show results from multiple searches. Separate

tabs can also be used to display search results from different databases. Switching

databases is easy to do by using the “View” drop-down menu, which gives the options:

• Switch database

• Create a new tab

• Show available databases

Figure 2.2 shows an example of the directory tree used for selecting new databases.

Figure 2.2: Choose new database from directory tree
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When viewing the databases currently on the filesystem by selecting the “Show

available databases,” a new tab is automatically opened and the databases are shown

in list format (Figure 2.3).

Figure 2.3: List of available databases
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Searching for ranges of counts sometimes produces more results than can easily

be displayed. The interface offers the ability to limit the number of results returned.

When this option is used, results are returned in batches. A text box titled “Show”

is available in which the number of results returned in each batch can be specified.

The default is 50 results if the text box is left empty. Figure 2.4 shows an example

of the results returned when the batch number is 10.

Figure 2.4: 10 results returned
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Then, the selection of the “Show more” button will display 10 additional results,

fetched from the server. There are two display options when using the batch mode.

If the “Append” checkbox is selected, each batch is appended to the list of results, as

shown below in Figure 2.5, and if not selected, each batch replaces the previous set

of results.

Figure 2.5: 10 additional results returned
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Figure 2.6 shows the results of a search when not using the batch mode and there

are too many sequences to display. Note the scroll bar on the right side of the display

window, which can be used to view all the results even though they do not fit on the

current screen.

Figure 2.6: Returned results not batched

2.0.3 Performance

Before CseqStat was operational, processing all of the NCBI data took approximately

32 hours for length 15. Due to the various enhancements, such as bit manipulations,



20

and efficient use of data structures, this time has been significantly reduced, especially

when reprocessing is being used.

Table 2.1 outlines the various speeds for different types of jobs used on the entire

set of Fasta data from NCBI; DNA processing, reprocessing those results, and protein

processing.

Type Length Time in minutes Time in hours
DNA Processing 15 238 3.96
DNA Processing 16 288 4
DNA Reprocessing 15 5 .083
DNA Reprocessing 16 32 .5
Protein Processing 5 10 .167
Protein Processing 6 23 .383

Table 2.1: CseqStat processing and reprocessing times for NCBI data

2.0.4 Historical Data - Results

Table 2.2 shows the results from processing the NCBI databases beginning in June

of 2009, and ending in October of 2011. Information is added to the databases daily,

resulting in fewer primes as time goes on. Notice the trend; as more data is added,

fewer and fewer primes exist. More information about the specific primes can be

found at http://biotech.boisestate.edu/bioinformatics/nullomers.private.
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Date Len5
Protein
Pepto-
primes

Len6
Protein
Pepto-
primes

Len15
DNA
Primes

Len16
DNA
Primes

June 2009 51 2,506,930 410
July 2009 47 2,418,323 358
August 2009 40 2,400,122 338 5,715,832
September 2009 39 2,356,086 296 5,419,369
October 2009 38 2,331,799 282 5,257,985
November 2009 35 2,286,375 220 4,868,635
December 2009 35 2,283,797 206 4,812,857
January 2010 33 2,247,713 186 4,605,784
February 2010 30 2,216,727 150 4,123,878
March 2010 28 2,197,514 140 3,890,482
April 2010 27 2,150,705 132 3,812,284
May 2010 25 2,131,623 120 3,706,729
June 2010 24 2,105,273 112 3,515,937
July 2010 21 2,067,895 92 3,274,347
August 2010 19 2,027,639 82 3,163,429
September 2010 17 1,992,326 78 3,122,114
October 2010 15 1,952,755 54 2,751,170
November 2010 13 1,898,422 52 2,636,007
December 2010 12 1,882,281 46 2,595,701
January 2011 12 1,852,658 34 2,358,580
March 2011 12 1,733,679 16 1,884,839
April 2011 11 1,714,935 16 1,854,416
May 2011 10 1,664,042 14 1,776,063
June 2011 10 1,627,980 12 1,747,427
July 2011 9 1,605,048 10 1,603,244
August 2011 8 1,555,146 8 1,452,028
September 2011 7 1,517,360 4 1,271,980
October 2011 6 1,493,635 2 1,126,168

Table 2.2: Historical data from CseqStat processing of NCBI databases



22

CHAPTER 3

DOCKOMATIC

3.0.5 Motivation

DockoMatic was developed to aid the study of physical and chemical properties of

statistically interesting biological sequences. For example, peptides derived from the

venom of snails of the genus Conus have demonstrated potential as potent ligands

for many biological receptors [6, 7]. It has been challenging to understand how these

peptides function by traditional wet bench experiments. Computational modeling

has become a useful tool to study peptide ligand interactions with large biological

receptors [8].

Many programs exist to simulate the atomic interactions between a ligand and a

receptor [2, 9], with AutoDock being one of the more widely used tools among them

[2,10]. AutoDock ranks ligands by estimating binding interaction energy between the

ligand and receptor [11], using the AMBER force field, as well as linear regression

analysis, for its computations. For the analysis of a receptor and a single ligand,

this works well. Since it is necessary to run ligands individually through AutoDock,

high-throughput screening of peptide ligands binding to a protein receptor can be

labor intensive. It is also time consuming to manually analyze the AutoDock output

results file to confirm ligand interactions.

DockoMatic organizes results from molecular docking experiments automatically.
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Secondary ligand interactions can also be evaluated, and single-letter amino acid

abbreviations can be supplied in strings and used to automatically create peptide

ligand .pdb files.

Another useful feature of DockoMatic is the ability to conduct experiments with

analogs of protein structures. That is, to replace sections of the protein with other

amino acids to see how a given ligand may dock differently. To create these cyclic

peptide analogs, I have integrated Treepack to predict how mutated side-chains are

oriented in relation to the backbones they attach to [12].

DockoMatic also provides homology modeling capabilities, or the creation of a

protein structure for a sequence where the structure is not known, with a user-friendly

wizard TIM (Timely Integrated Modeller). This enables virtual experiments to be

conducted that would otherwise be impossible.

The ability to generate homology models is a useful enhancement to ease an

otherwise tedious and time consuming process. The software package MODELLER

has been leveraged for its comparative modeling functionality [13]. In order to

produce a model, a known structure of similar sequence is used as a template for

the new structure to be formed. This template structure is either already known, or

is found via a similarity search of sequences, generally in a sequence database. The

search returns sequences of known structure and similar composition to the original

sequence. Next, MODELLER creates an alignment from the original sequence and the

template using its align2d() command, creating PIR and PAP formatted files. Manual

modifications can be made to the PAP and PIR alignment files after being determined

by inspecting them. Once the alignment is agreeable, the sequence and alignment are

used to create 3D model(s) with MODELLER’s automodel class. Typically, several

models are generated and evaluated to determine the best fit. The most suitable
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model can be determined by the molpdf, DOPE, and GA341 scores, as well as using

a 3D structure display program such as PyMOL [14].

Many protein complexes are formed with disulfide bonds present in the structure.

This adds a layer of complexity in the generation of such models. DockoMatic includes

the ability to specify residue positions in which disulfide bonds are used in the final

model.

Without DockoMatic, there is a steep learning curve in homology modeling. In

order to use MODELLER effectively, scripting knowledge has to be gained, as well

as the intricacies of the software itself. For users without such skills, this process can

take months. A user can become comfortable with DockoMatic’s wizard TIM in less

than a day. DockoMatic also makes it possible to run all separate modeling jobs in

parallel with the use of a cluster and no additional requirements of the user.

3.0.6 Design

Molecular Docking

Intuitive GUI

DockoMatic was designed to have an intuitive and relatively simple interface for

chemists or biochemists with limited Computer Science training. It does not require

command-line processing nor involved scripting. The interface has been designed to

help guide the user through the requirements for a successful AutoDock job creation,

submission, and analysis, or homology model creation. The GUI has been designed

with NetBeans [15] to provide a robust interface, and allow functionality such as

separate window panes for different components and the ability to manipulate these

windows for customization of the desktop. The interface is comprised of 3 separate
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components that can be detached, resized, or closed from view entirely. Users can set

up the windows according to their preferences, and to fit their workflow. DockoMatic’s

default layout places the user required items in the input window pane as the main

focus, using the central and upper left portions of the GUI. The job information or

management grid pane is on the bottom, and the output messages pane is to the

right.

The main input window pane is where all information for a docking job is entered.

It begins with the output directory. The user clicks on a button and navigates to the

directory where the results will be deposited. If no output directory is specified, it

defaults to the current working directory for the user when the GUI is started. The

user can either select a single .pdb file, or input a string of amino acids in the ligand

box. For high-throughput screening, instead of entering an individual ligand, the user

may enter a file name and check the box for “Use Ligand List File.” The file name

must refer to an input file that contains either a list of amino acid strings, or paths

to existing ligand .pdb files. The user selects both the receptor and box coordinate

files in a similar manner to the ligand. Users may also specify a secondary ligand or

a file containing a list of secondary ligands to model how an additional ligand may

bond in the presence of the first ligand.

After entering these items, the user can press the “New Job” button to initialize

AutoDock jobs. This populates the management grid with a list of all jobs. The

number of jobs created is equal to the cross product of the ligands, receptors, and

box coordinate files.

The job management window contains a list of all jobs, and provides control via

a pop-up window with four options, or direct manipulation of the text fields.

The management grid lists the output directory path, job number, ligand specified
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or path to .pdb file, path to receptor, path to box coordinate file, secondary ligand or

path to secondary ligand file, and the current status of the job. Once jobs are started,

the status of each job in the window is automatically checked every ten seconds.

Each job to be manipulated can be highlighted by the user and the pop-up options

are available with a right-click of the mouse. The options include Start, Delete,

Analyze, and to view results with PyMOL (requires PyMOL installation) [14].

To ameliorate job management, the ability to group jobs in different tabs within

the Job Management window is available. By default, all jobs are sent to the tab

that is currently being viewed. A check box is beneath the “New Job” button that

populates the job list in a separate tab. Multiple CPU cores per node can be utilized,

even while running on a single workstation by using the “Jobs per Node” text field.

The default is one.

All jobs are sent to swarm to be queued to the cluster, however, if using a single

machine, you must make sure the custom swarm file provided with DockoMatic can

be found in the PATH variable. The user also has the option to create their own

swarm script to be used for job submission.

The messages window pane displays information regarding job status and miscel-

laneous output, providing state information for jobs.

Figure 3.1 displays an image of the DockoMatic GUI after being used to create a

homology model. Note the path of the resulting model shown in the “Ligand” text

field. The same model would result if the receptor homology model option was used,

the difference being the text field in which the path to the model is shown.
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Figure 3.1: DockoMatic interface

AutoDock Job Creation and Management

While DockoMatic significantly reduces the time required by the user to create and

submit jobs to AutoDock, there are three things the user must provide. These include:

1. the ligand .pdb file or sequence

2. a receptor .pdb file

3. a user defined template .gpf file

The template .gpf input file only needs to define the grid box coordinates for

the region of interest. DockoMatic automates creation of the fully prepared .gpf file,

which includes: 1) The specific atom types to be calculated as maps by AutoGrid,
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taken from the already prepared ligand .pdbqt file, 2) The location of the prepared

receptor .pdbqt file, and 3) Specific grid box coordinates.

Automating the creation of the fully prepared .gpf saves the user time, as this

is typically done manually using AutoDock Tools. User specified Cartesian map

coordinates presented in the template .gpf file are required to determine the area of

interest on the receptor. However, DockoMatic hides the preparation of the ligand

and receptor, as well as the creation of the prepared .gpf file, from the user.

Receptor and ligand .pdb files are converted into the .pdbqt file format during

the submission phase. The “docking parameter file” must also be created and a

box coordinate file must be prepared. These files are automatically prepared via

MGLTools [16] when using DockoMatic.

AutoDock was not specifically designed to deal with the rigors of high-throughput

binding experiments by itself, as it does not directly accommodate combinations of

different ligands, receptors, and grid box locations. It is also not straightforward to

setup jobs for simultaneous binding of multiple ligands to a receptor. DockoMatic

overcomes this limitation by using lists of ligands, receptors, and box coordinate files.

Jobs are automatically created for each possible combination of inputs. For example,

a list of five peptide ligands, one receptor, and two box coordinate files generates (5

X 1 X 2) = 20 separate jobs, all of which can be run concurrently if enough nodes or

processors are available. The GUI provides the ability to manipulate the individual

jobs listed in the grid, and select particular jobs to be queued for batch processing.

By default, AutoDock attempts to quickly find the best docking site by running

10 stochastic simulations per compound. The advantage of this is a fast run time

completion, with the disadvantage being less accurate results when compared to using

more simulations. Documentation suggests that AutoDock use at least 50 docking
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simulations to ensure results are accurate, however, it is also noted that results become

increasingly better statistically as the number of dockings is increased. Literature has

suggested that 100 simulations provides a good compromise between accuracy and

speed [17]. This was the number chosen for DockoMatic’s default, although it can

be increased or decreased in the text field labeled “AutoDock cycles” if more precise

results, or quicker run times are the goal.

Below, in Figure 3.2, is an example of a DockoMatic result showing the best ranked

(lowest binding energy) conformation for CCMWF in complex with Ac-AChBP as

calculated by AutoDock.

Figure 3.2: Ligand CCMWF docked to receptor Ac-AChBP

Competing Binding Sites and Multiple Ligands

Typically, competitive binding experiments in AutoDock require a new protein com-

plex receptor to be created from the results of an initial binding experiment. This
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complex receptor is generally comprised of the conformation with the lowest binding

energy and the original receptor. This new receptor is then used with the other ligand

in a conventional AutoDock job, resulting in an experiment showing how the second

ligand may bind when the first is already bound to the same receptor. This type of

experiment is time consuming and arduous with AutoDock, as it cannot automate

the creation of the complex receptor nor start a second binding job automatically.

Competitive binding experiments are completely automated in DockoMatic. The

GUI provides a “Secondary Ligand” text box to enter the additional ligand used in the

experiment. First the ligand from the standard “Ligand” text box is used in a normal

AutoDock job. Then, DockoMatic creates a new protein complex from the original

receptor and the highest ranking conformation from the first experiment. Next, the

ligand from the “Secondary Ligand” text box is used to automatically create and run

an AutoDock job with the new receptor.

An example of two ligands docked to a receptor is shown in Figure 3.3; the results

of a competitive binding experiment beginning with the docking of CCMWF to Ac-

AChBP receptor. The best result of CCMWF with Ac-AChBP forms a new receptor-

ligand complex. The secondary ligand, CDCMW, is then allowed to bind to the new

complex. The lowest binding energy complex is displayed.

Ligand Creation

One requirement of AutoDock is that all ligand coordinate files to be submitted in

.pdb format. The process of creating novel ligand structures can be tedious, and

it is rarely the case that the .pdb files have been previously created. DockoMatic

can be used to create peptide-based ligands as its sole duty, or as a prelude to an
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Figure 3.3: Competitive binding experiment results

AutoDock job [3]. I am not aware of any other software package that provides this

functionality. DockoMatic automatically decodes a user supplied string of alphabet

characters to produce a ligand .pdb file. Each character represents an amino acid, and

when combined form a sequence for a ligand (e.g., GRWCK). Each of these characters

maps to pre-built side chain .pdb files. The algorithm for creating a peptide ligand

structure from the string representation can be summarized as follows.

1. add beginning

2. if next amino acid is not proline, add backbone structure

3. add amino acid sidechain

4. repeat steps 2 and 3 until the ligand string is exhausted

5. add end

6. optimize ligand structure
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A hydrogen atom begins the chain of amino acids that form the ligand, while

the chain ends with an oxygen and a hydrogen atom. The bend associated with

the presence of proline in the backbone of a peptide or protein necessitates the one

exception to the algorithm. Proline has the backbone already built into its side chain

.pdb file, so when it is used, a backbone structure is not added to the chain. There

are two static side chain .pdb files for each amino acid, providing representations in

both an up and down orientation. Alternating sidechain-backbone pairs in the two

orientations helps prevent atoms being set too closely together. An accounting of the

static .pdb files reveals two .pdb files for each of the twenty amino acids, making 40,

along with two backbone .pdb files for up and down, and the beginning and ending

.pdb files comprise a library of 44 .pdb files used to create peptide-ligands. Once the

ligand structure is formed, a tool from the OpenBabel package, Obconformer, is used

to optimize the structure [18].

Examples of pentapeptide ligands created with DockoMatic can be seen in Figure

3.4: A) CCMWF, B) CDCMW, C) CFWMW, D) CHMWW, and E) CHWWM.

Figure 3.4: Ligands created with DockoMatic
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Cyclic Peptide Analog Creation

Cyclic peptide analog structures are mutations of ligands in which amino acids present

in a structure scaffold are substituted. This process requires computations to be

performed on the new 3D structure so that it is well-formed with respect to the

orientation of the new amino acids to the backbone. Treepack was identified as

software that already performs this task, so it was leveraged. DockoMatic accepts as

input, the amino acids to be replaced and their replacements. In order for Treepack

to effectively restructure the new amino acids, it must look at the relation of the

two surrounding amino acids to the one being replaced and how differences in the

structure of the new one will affect the rest of the sidechain. These three amino

acids are excised from the ligand, and their identifiers are changed to reflect the new

amino acid. Treepack then performs its computations on this tripeptide sidechain,

and outputs the resulting sidechain. DockoMatic inserts the new sidechain back into

the original peptide. This process is not limited to one substitution; DockoMatic uses

a loop to perform these steps on as many substitutions as are specified.

Parallel Jobs on a Cluster

DockoMatic also facilitates running multiple jobs in parallel on a cluster by utilizing

swarm [19, 20]. Although DockoMatic was designed with the objective of being used

on a cluster, it is not a requirement. Using an environment with multiple nodes

allows jobs to be run independently and simultaneously, offering a linear speedup

with regard to the number of nodes or cores.
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Ranked Results

AutoDock outputs a single .dlg file containing the results of a docking job. Depending

upon the number of simulation cycles used, this file can be quite large and unwieldy.

Results are not easy to obtain, since the .dlg file either needs to be navigated manually,

which is cumbersome, or viewed with AutoDock Tools. DockoMatic manages the

.dlg file by parsing and summarizing results, providing a single file containing the

binding energy, inhibition constant, conformation statistics, and cluster rank of each

conformation listed in non-increasing order based on cluster rank. All resulting

simulation conformations are also written to individual .pdb files, with the most

favorable having the highest rank; 1 being the highest. The rank of 1 signifies the

conformation with the lowest binding energy.

Result Analysis

Results can also be analyzed further. A second .gpf file can be supplied in conjunction

with the “Analyze” option via a file browser window. This .gpf file would generally

focus on a more limited area than the .gpf file used in the original docking experiment.

The goal of this option is to evaluate how many conformations from a docking job

fall inside and outside the new grid coordinates; useful when a binding domain is

assumed based on experimental evidence. A text file is used to convey the results,

and is comprised of the percent of runs that lie inside the secondary .gpf coordinates,

average binding energy, best binding energy, average inhibition constant, and best

inhibition constant. This feature can be of use in experiments where the goal is to

find how likely it is for a ligand to bind to a particular site, when the entire receptor

is available for the ligand to bind to. To conduct this type of analysis by hand would
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be laborious.

Molecular Modeling

TIM Wizard

Model generation can be requested for ligands or receptors by checking the “Use

Modeller” box. Next, when the appropriate button for ligand or receptor is pressed,

the wizard TIM appears. TIM has five screens, each of which guide the user through a

major step of the homology model creation process: Screen 1) enter sequence, output

directory, and optional disulfide bond specifications (Figure 3.5), Screen 2) choose

candidate templates for download (Figure 3.6), Screen 3) select alignments (Figure

3.7), Screen 4) modify alignments (Figures 3.8 and 3.9), and Screen 5) view resulting

models (Figure 3.10).

Initial Input

TIM’s first window prompts the user to enter an output directory where the template

and models are later stored. A large text area is also provided for the starting sequence

to be entered manually. If a sequence .ali file containing the sequence already exists,

this file location can be input instead, or browsed to by pressing the “Sequence”

button.
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Figure 3.5: TIM’s first window
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Template Selection

In TIM’s second step, the list of candidate templates is offered, in which the most

desirable ones can be selected to be used for models. Candidate templates are found

automatically using a BLAST search [21]. The list is populated with template name,

e-value, length, score, identities, positives, and gaps. If yet more information is

desired, a right-click of the mouse provides a pop-up window with the option to

“Open in Browser” in which a Web browser is opened to the appropriate .pdb file

on pdb.org. It is often the case that a given template includes multiple subunits,

generally referred to as A, B, C, etc. If this is the case, DockoMatic lists the template

as many times as there are subunits, specifying a different subunit with each entry.

This provides an easy way for the user to select which subunit they would like the

alignment to be based on. In addition to using templates that were found with

a BLAST search, the user can browse to existing templates using the “Browse for

Template” button, in which the templates are added to the list.

Figure 3.6: TIM’s second window



38

Sequence Alignment

Once the proper templates are selected, the sequence is aligned with the template

using a modified version of MODELLER’s align2d.py script. The resulting alignments

are displayed in the third window of TIM in list form with a one to one mapping to

the selected templates.

Figure 3.7: TIM’s third window



39

Alignment Modification

After the desired alignments are selected, TIM’s fourth window provides the user the

option to manually modify the PIR and PAP alignment files in separate editor tabs.

It is common to adjust an alignment to reflect desired structure elements before the

modeling is performed. Generally, the two files are used together to determine what

changes to make. The PAP file is used as a reference to easily find the locations for

adjustments, while the PIR file is modified and used in the modeling experiment.

If the alignment suffices as is, the user can simply press the “Next” button. The

alignments are then used to generate 3D models.

Figure 3.8: TIM’s fourth window, looking at the .pap alignment file



40

Figure 3.9: TIM’s fourth window, looking at the .pir alignment file

Model Creation

In TIM’s fifth, and final window, models are generated and returned to the user in list

form. The user selects which model is most appropriate for the type of experiment

being conducted. The final number of models is dependent upon the number specified

in “Number of Models” text field, the default being five. In addition to listing the

models, the locations, MolPdf, DOPE, and GA341 values are presented to assist in

determining and selecting the best model for the intended purpose. Once selected,

the structure file path is automatically populated as a ligand or receptor to a binding

experiment. When using disulfide bonds in the model, only the MolPdf score is

available due to the information available from MODELLER output.
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Figure 3.10: TIM’s fifth window; the model calculations are done

Disulfide Bond Creation

In DockoMatic, creating models with disulfide bonds does not require additional time.

However, this task is not easy with MODELLER for beginning to novice users. If

disulfide bonds are needed in the final structure being modeled, they can be specified

in the “Residue Pairs” text box within the “Disulfide Bonding” area of TIM’s first

window. The desired cysteine residue positions where the bond takes place is not

limited to one set of positions; a colon separated list can be used to specify numerous

disulfide bonds in the form of: “23-32:45-67:89-102.” TIM provides an example of

such a list to avoid confusion.

Scoring and Evaluation of Alignments

For ease of selection of the final model, the MolPdf score is provided along with the

DOPE and GA341 values, however, they are not a complete ranking system in and

of themselves. The molpdf and DOPE scores cannot be used to rank models from

different alignments, while the GA341 can. The GA341 score ranges from 0.0 to 1.0,
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where 0.0 is the worst, however, is not necessarily a good way to determine if a given

model is better or worse than another. The user now has guidance on what model

may be best for the intended use. If more information is needed, the locations of the

models are provided for closer manual inspection of the .pdb files.

3.0.7 Performance

In order to utilize the full potential of DockoMatic, it should be used on a computing

cluster, as it was designed. This allows one to manage large numbers of jobs at the

same time, rather than being limited to local resources of a single computer. Using a

cluster can give a linear increase in speed for the various types of experiments that can

be performed. For instance, when creating homology models, typically a user must

wait for MODELLER to run calculations for each model sequentially; if creating 100

models for a given sequence, in order to select the most favorable, MODELLER will

calculate all 100 consecutively. DockoMatic creates all models simultaneously, giving

significant benefits in speed; with 100 nodes, 100 models can be created on a cluster

in the same time as one.

However, the benefits are not isolated to using a cluster. The creation of the

homology model for the collagen α1 (XI) amino propeptide (Npp) protein with TIM

in DockoMatic took a first time user close to six minutes, whereas the same experiment

took fifty minutes when BLAST and MODELLER were run manually, along with the

other steps necessary to create a homology model. While the two processes are similar,

the main difference in times is due to the automation of an otherwise manual and time

consuming series of steps. For instance, in the manual process, it took the user five

minutes to visit the NCBI database, enter the sequence for the target protein, select

the correct options, run the BLAST search, and to select and download the zip file for
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the correct template structure. This contrasts with DockoMatic’s one minute, where

all that is required is to enter the sequence in TIM’s text box, hit the button, and

when the results return, select the desired template. The rest of the 45 minutes for the

manual method was used to unzip the template file, creating a “.ali” file for the target

protein, editing the MODELLER script, called “align2d.py” to accommodate the new

settings, creating file labels and saving project files in accordance with MODELLER

tutorial instructions, and initiating model creation. These steps were all automated

with DockoMatic, and took an additional four minutes.

3.0.8 Publications

I currently have two publications for DockoMatic. The first, “DockoMatic - au-

tomated ligand creation and docking,” was published in BMC Research Notes in

2010 [3]. This paper introduces DockoMatic, outlining the features that reinforce

it as a powerful tool capable of significantly reducing the complexity of managing

multiple AutoDock jobs.

The second, “DockoMatic: Automated peptide analog creation for high-throughput

virtual screening,” was published by the Journal of Computational Chemistry in

2011 [22]. This publication documents the addition of cyclic peptide analog creation

and evaluates the high-throughput capabilities of DockoMatic.

Another manuscript is currently under review by the American Chemical So-

ciety Journal of Chemical Informatics and Modeling. It outlines new features for

DockoMatic, including homology modeling with TIM, Inverse Virtual Screening,

exchangeable docking engines, and an all new GUI designed with NetBeans.
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3.0.9 Research Projects

DockoMatic has proven to be useful and is actively being used in numerous ways

on and off the Boise State University campus. One appealing aspect of DockoMatic

is that it cuts down the time for novice chemistry and biochemistry students to get

to the point of performing experiments, since they no longer have to learn involved

scripting and the idiosyncrasies of existing software suites. Presentations in the form

of live tutorials and workshops have been used to get these students familiar with

DockoMatic, molecular docking, and modeling.

One tutorial outlines the creation of homology models, and uses the collagen

(XI) α1 amino propeptide protein as an example. This type of experiment took

a novice undergraduate chemistry student three months to gain the experience to

create the model without DockoMatic. With DockoMatic, users are able to perform

this experiment in under 10 minutes.

Another tutorial taught students to use DockoMatic for high-throughput molec-

ular mutation and binding experiments. The goal of this experiment is to analyze

α-conotoxin TxIA bound to the acetylcholine binding protein from Aplysia californica.

First students analyze the protein complex and propose favorable interactions. Next,

the ligand is removed, the receptor is cleaned, and a ligand mutation is recommended.

The resulting ligand is bound, and students identify whether the result is consistent

with the prediction. This is an important step for students wishing to gain familiarity

in the realm of molecular docking, and DockoMatic makes their journey easier and

less time consuming.

As well as being currently used, it has also aided with projects in the recent

past. Members of the Colorado School of Mines, under the guidance of Dr. C. Mark
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Maupin, have used DockoMatic to perform the virtual screening of acetylcholine and

α-conotoxin MII to the α3β2 nicotinic acetylcholine receptor homology model.

DockoMatic has also been used in evaluational studies of high-throughput virtual

screening tools [23].
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CHAPTER 4

CONCLUSIONS

I have developed novel algorithms in the field of Bioinformatics, with publications

supporting such work. The tools I have created offer a linear speedup over more

traditional techniques.

CseqStat speeds up processing the large amounts of sequencing data for nu-

cleotides and proteins in the NCBI database. This application is robust in its abilities,

allowing one to find the frequency of all sequences of a given length, store the results

in an efficient manner, and provide a mechanism for quick and easy retrieval of such

data, either from the command-line, or from a client-server GUI.

DockoMatic has been developed as a solitary tool to aid in numerous aspects

of Bioinformatic study. It provides a user-friendly GUI to ease the management of

molecular docking jobs, as well as facilitate the automatic creation of peptide ligands.

With the wizard TIM, homology model creation is vastly simplified and sped up

over conventional methods. It also provides an easily extendable and customizable

interface, as it has been developed with the NetBeans framework, offering the ability

to undock and resize individual window components of the GUI for an infinitely

configurable work environment. Fledgling chemists, as well as experts, can benefit

from DockoMatic’s simple interface and powerful speed.
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