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ABSTRACT

Wireless sensor networks (WSNs) heavily rely on a dense deployment of sensor

nodes in order to ease deployment, increase fault-tolerance and network coverage, so

that events do not go undetected. A dense deployment however results in several

sensor nodes close to each other detecting and transmitting event reports at almost

the same time, resulting in severe contention for channel access. Channel contention is

a serious problem in WSNs resulting in collisions, re-transmissions, energy depletion,

and ultimately loss of event reports. TDMA-based protocols prevent contention, but

require tight synchronization and may lead to severe wastage of bandwidth especially

in event-based applications where the traffic is bursty in nature. Other approaches

that handle spatially correlated contention are fairly complex and contradict the

reason for dense deployment, by selecting only a subset of nodes that generate and

transmit event reports, affecting the fault-tolerance and confidence of event detection.

Motivated by the challenge to reduce contention and improve performance, we

propose a protocol that dynamically schedules transmissions in the network. The

protocol exploits the broadcast nature of a wireless medium, which allows nodes to

overhear transmissions of neighboring nodes and establish a cooperative transmission

schedule dynamically, without the need for synchronization or explicit message ex-

change. To further mitigate contention, we propose a heuristic to reduce the number

of active forwarder nodes in the network, by increasing the overlap of forwarder nodes

used while routing packets. This forwarding mechanism can isolate the areas prone
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to interference, within which the dynamic transmission scheduling mechanism works

better to mitigate contention. We evaluate the performance of our protocol using the

NS2 simulator. Results show that our protocol significantly reduces collisions and

re-transmissions, thereby improving the performance of the network.
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CHAPTER 1

INTRODUCTION

1.1 Wireless Sensor Networks (WSNs

Recent developments in wireless communication and embedded computing technolo-

gies have led to the advent of wireless sensor network technology. Wireless sensor

networks [4] typically consist of small, inexpensive, and low-powered distributed

devices, capable of sensing various environmental parameters. These devices, called

sensor motes, are equipped with a low-power radio transmitter, various sensors, a

small battery unit, limited memory, and a micro-controller. The sensor motes process

the sensed data and cooperatively disseminate information to a common sink or base

station, in an ad-hoc manner, using wireless communication. The sink is a special

node that has greater processing and communication capabilities over the other sensor

nodes, as it must perform complex data processing of the sensed information. In some

cases, it also must be able to reach all the sensor nodes in the network directly, for

dispatching any information.

Wireless Sensor Networks can typically be used to achieve continuous monitoring

or event-detection inside the supervised area. Applications using both continuous

monitoring and event-driven reporting also exist. In continuous monitoring applica-

tions, each sensor node transmits its sensed data periodically to the sink node while
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in event-driven applications, the sensor motes do a small amount of pre-processing on

the sensed data and only if an event of interest is found to occur, they generate reports

relating to the event and transmit them to the base station. The base station then

decides on an event, based on all the reports it got and performs necessary actions,

depending on the application. Although WSNs were initially targeted for continuous

monitoring applications, a lot of recent research has been focused on making WSNs

more suitable for event detection.

WSNs meant for event detection are usually deployed in extreme temperatures,

areas that are hostile or hard to access. Hence, a controlled deployment of sensor

nodes is hard to achieve. Given these conditions, it is still important to ensure

connectivity of each sensor node to the base station and ensure that the base station

receives as many reports as possible from different sensor motes, so that it can detect

events with high confidence. Thus, WSNs heavily rely on a dense deployment of

sensor motes, which eases deployment, supports fault-tolerance, and helps achieve

satisfactory coverage, so that events do not go undetected. However, inspite of its

advantages, dense deployment introduces some serious issues, which have a deterrent

effect on the performance of the network if not handled gracefully. The primary

issue with dense deployment is that, when an event of interest occurs, several sensor

nodes detect and attempt to report it at almost the same time. Several of these

sensor nodes may also be spatially close to each other, resulting in severe contention

for channel access [6]. Event-driven networks also generate and transmit data only

when an event of interest occurs, making the traffic load unpredictable and bursty

in nature. These characteristics of event-driven WSNs make them more challenging

and harder to design, compared to the networks targeted for continuous monitoring.
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This thesis focuses on event-detection applications, specifically ones where a single

event can potentially be detected by a large number of sensor motes at the same

time. For example, when sensors are deployed for detecting events such as volcanic

activity, flash floods, seismic activity, etc., a single event is detected by a large group

of sensors at the same time, since such event properties propagate through a large

area in the network.

As mentioned above, channel contention is a serious issue in event-driven WSNs.

Contention for channel access occurs when there are two or more nodes attempting

to transmit data at the same time in a given transmission range. During this process,

there is a likelihood that two or more nodes transmit data at the same time over the

shared medium, resulting in a collision. The likelihood of a collision increases when

the number of contending nodes is large, which usually is the case in event-driven

networks due to the dense deployment. Collisions increase the number of packet

drops and thus lower the throughput of the network. The cost of collision in wireless

networks is more than just packet loss. Each collision triggers a re-transmission at

the sender’s end, resulting in greater energy consumption in the network. Moreover,

there is always a time gap between when the collision occurs and when the data is

re-transmitted, because a node only learns about the collision when the transmission

is finished and the expected acknowledgment does not come back. Consequently, a

collision will cause loss of an entire packet transmission duration, increasing latency

in the network.

The wireless medium being inherently broadcast in nature is prone to interference

and contention and thus requires highly optimized medium access control (MAC) [7],
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especially in event-based WSNs, where there are several nodes trying to access the

channel all at the same time during the occurrence of an event. The prime role of

the MAC is to coordinate access to a medium common to several nodes such that the

amount of contention and the number of collisions is minimal. However, it is very

difficult to estimate the load conditions of the network and hence challenging to design

effective media access protocols that reduce the number of collisions. In the wireless

context, this is even more complicated by the fact that the common medium is the

wireless channel, which is broadcast in nature; i.e., any ongoing transmission interferes

with any other transmission within communication range. For this reason, more

efficient contention resolution mechanisms are needed to overcome these challenges

and reduce the collision probability among various contending nodes, which forms the

primary motivation of this thesis.

1.1.1 Organization of Thesis

The rest of the thesis is organized as follows: Chapter 2 reviews the related work.

Chapter 3 details the motivation and objective of the thesis and discusses the proposed

protocol design. Chapter 4 presents the performance evaluation of the protocol.

Finally, Chapter 5 highlights the conclusions.
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CHAPTER 2

RELATED WORK

In recent years, a number of studies have been done on improving performance in wire-

less sensor networks. There are also specific contributions targeted towards medium

access control protocols and on managing contention in wireless sensor networks with

dense deployments. These have resulted in various approaches to handle contention

and improve performance of the network.

2.1 Collision Avoidance and Recovery

There are several protocols designed to avoid and/or recover from collisions due to

contention in wireless networks. These can primarily be classified into contention-free

and contention-based approaches. Contention-free MAC protocols are predominantly

based on TDMA [25] [21], where each node has a preset slot only during which is it

allowed to transmit. Even though they completely solve the problem of contention,

such protocols perform very poorly, especially in event based WSNs due the bursty

nature of traffic involved. Each node has to wait until its turn, even if other nodes have

nothing to transmit, adding a lot of delay, unacceptable for critical-event reporting.

TDMA is more appropriate where there is a continuous data flow by almost all the

nodes in the network, and the amount of data each node has to send is comparable.

Additionally, TDMA protocol requires tight network-wide synchronization, which
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brings extra overhead of clock synchronization, which involves frequent exchange of

control packets between nodes. Other contention-free approaches like FDMA and

CDMA face similar drawbacks.

Due to the drawbacks of contention-free protocols discussed above, they are usu-

ally not used in an event-based WSN. The other type of protocols that are predom-

inantly used in WSN are contention-based protocols, usually based on ALOHA and

CSMA [8]. This approach is fairly simple compared to reservation-based protocols,

mainly because neither global synchronization nor topology knowledge is required.

In a contention-based approach, nodes compete for the use of the wireless medium

and only the winner of this competition is allowed to access the channel and transmit.

ALOHA is again of two types: Pure and Slotted ALOHA. In Pure ALOHA, if a

node has data to send, it sends it without sensing the channel for activity. If there is a

collision, the node tries sending after some time, depending on the back off mechanism

chosen. An improvement to the original ALOHA protocol was Slotted ALOHA, in

which a node can only send during the start of a discrete time frame. This reduces

collisions, compared to the pure version, because now a collision can only happen if

two nodes happen to have data to transmit at the beginning of the same time slot.

All other data transmission is postponed until the start of the next discreet time

slot. Although Slotted ALOHA has better throughput compared to the traditional

ALOHA, it suffers the disadvantage of needing synchronization between nodes.

In CSMA, a node having a packet to transmit first senses the channel before

actually transmitting. In the case that the node finds the channel busy, it postpones
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its transmission to avoid interfering with the ongoing transmission. If the node finds

the channel clear, it starts transmitting. This protocol can efficiently reduce collisions

using clear channel assessment and random back-off, however cannot completely

eliminate collisions, especially in event-based WSN scenarios, where the traffic is

bursty in nature with multiple nodes sensing the medium free at the same time [35].

ZMAC [22] combines the strengths of TDMA and CSMA while managing their

weaknesses. Like CSMA, Z-MAC achieves high channel utilization and low latency

under low contention, and like TDMA achieves high channel utilization under high

contention and reduces collisions among two-hop neighbors at a low cost. However,

traffic conditions are hard to estimate due to the sporadic and bursty nature of traffic

in event-based WSNs. Moreover, it takes time to adapt to the changes in traffic

patterns, which may not be acceptable.

There are interesting protocols that improvise either on CSMA-CA or TDMA or

work across network layers for additional benefits [15] [23] [2] [21]. ECR-MAC [34]

proposes a cross-layered MAC protocol, which employs a Dynamic Forwarder Se-

lection (DFS) technique, to improve network performance. The core idea is to have

multiple potential forwarders for each node and use an any-cast mechanism to forward

data. ECR-MAC deliberately avoids synchronized wake-up of nodes which not only

reduces overhead but also relieves contention, since synchronization, which usually

lets senders and/or forwarders wake up at the same time, can intensify the contention.

Each node also maintains multiple potential forwarders that choose their own wake-up

schedule randomly and independently. So a sender, as soon as its report is ready to

be forwarded, can usually identify a forwarder quickly without competing with other
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senders whose reports may be ready at a later time. Even if two senders send reports

at the exact same time, ECR-MAC can also relieve contention by dispersing the paths

the senders will take. ECR-MAC depends only on randomness in wakeup schedules

to avoid contention among nodes that are in the transmission range of each other.

However, in dense deployments, it is very likely that there are several nodes within

the transmission range of each other and active at the same.

Alert MAC [19] proposes a protocol for collecting event-triggered urgent messages

from a group of sensor nodes. Alert minimizes contention among nodes by using a

combination of time and frequency division multiplexing. Multiple frequency channels

are used within time slots and contention is minimized by controlling the selection

probability of each channel by the nodes. The authors however use a single hop test

bed and assume that the base station is in the communication range of all the nodes

in the network. Thus, the performance does not truly reflect a real-world, event-based

scenario where there may be multiple events in the network at different regions and

reports from all regions converging to the base station.

ACR [28] takes a different approach by focusing on how to efficiently recover

collided packets in dense WSNs with heavy collisions, without emphasis on avoiding

collisions. The key idea is to use the Partial Corrupted Pattern (PCP), where

only some bits are actually corrupted in a lost packet and use mechanisms such

as Forward Error Correction to recover the corrupted bits. However, not all except

LS-Collisions produce a regular PCP in collided packets. Given the unpredictable

nature of events and traffic patterns in event-based WSNs, probability that a collision

is an LS-Collision is not very high, limiting the benefits of such an approach.
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2.2 Selective Reporting based on Spatial Correlation

Event-detection applications usually rely on dense network deployments for increased

confidence on event reports and network coverage. However, there are some who

argue that event-based applications need only a subset of the reports generated by

all source nodes detecting an event. Specifically, since source nodes spatially close to

each other have highly correlated data, it may not be required for all of the reports

from those nodes to reach the base station. It also makes sense to avoid contention

between spatially close-by nodes, also called spatially correlated contention.

CC-MAC [26] exploits spatially-correlated contention, by choosing only a subset

of nodes that act as representative nodes in the network. Whenever an event occurs,

only the representative nodes send reports, thereby reducing the number of redundant

reports and hence relieving contention. Based on a theoretical framework, a dis-

tributed, spatial Correlation based Collaborative Medium Access Control (CC-MAC)

protocol was designed that has two components: Event MAC (E-MAC) and Network

MAC (N-MAC). E-MAC filters out the correlation in sensor records while N-MAC

prioritizes the transmission of route-thru packets. However, the way representative

nodes are selected is based on complex algorithms requiring node distribution statis-

tics. This may not be possible due to the highly random deployments with varying

node densities and unpredictable events.

SCMAC [33] proposes an improvement over CC-MAC by choosing the subset of

nodes that transmit based on signal strength. The protocol adopts priority node

selection algorithm, based on signal strength, while prioritizing route-thru packets.
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However, it suffers the same disadvantages of CC-MAC.

Both these approaches contradict the rational behind a dense deployment, which

is to improve fault-tolerance and network coverage. Spatially correlated contention

is indeed bad and should be avoided. However, performing a selective reporting only

reduces confidence of the event reports and leads to false positives, as a random

deployment can contain several faulty and malicious nodes. Moreover, with selective

reporting, the base station may fall short on the number of event reports. Thus, I

believe spatially correlated contention should be handled not by deeming only certain

nodes out of the available nodes to report, but by gracefully managing how and when

the source nodes access the medium.

2.3 Contention-Window Management

CSMA/MACAW aim at reducing collisions by equally trying to protect all packets.

In sensor networks, however, packets may have different importance. For example,

in surveillance applications, all nodes detecting an intrusion send an alert to the

sink that generates peak traffic around the intrusion region. In this case, it is more

important to protect the first packets so that they reach the sink rapidly.

Sift [13] considers this issue by exploiting the spatio-temporal correlation that

exists between events generated by nodes. Sifts goal is to reduce collisions of the

first R of N potential reports from nodes to the sink. This is done using a fixed size

contention window, and nodes pick slots from a probability distribution instead of a

uniform distribution, such that only a few nodes contend for the first few slots.
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Sift chooses a fixed contention-window size, but does not justify the rational

behind the specific choice of the window size. Other authors [10] [20] [5] argue

that choosing a fixed contention-window size requires an engineering optimization

and should be done by taking into account several factors such as the number of

contending nodes, size of data packets etc. The papers arrive at a relation between

contention-window size, delay, and energy consumption. However, it is hard to

estimate the number of contending nodes, specially in event-based WSNs, where

the deployment is random and dense. Also, when there are multiple events occurring

at different event areas in a sensor network, it is hard to establish the urgency of a

report or tell if it belongs in the first ’R’ of the ’N’ reports generated for that event,

at other levels above the level the event occurred.

2.4 Energy Efficient Medium Access Control

There are a lot of energy saving MAC protocols [12] [16] [14] [17] [31] [24] proposed.

The core idea behind these protocols is to use active/sleep duty cycles, so that nodes

periodically switch off their radio to save energy and avoid idle listening. However,

a node that has data to transmit has to wait until its forwarder is awake, causing

additional transmission latency. Most proposed protocols addressed this trade-off by

using synchronized wake up/sleep cycles and/or dual radio setup, which increases

hardware cost and the protocol overhead considerably. More importantly, though

employing synchronization is effective to shorten the delay in the scenario without

contention, it can impair energy efficiency and throughput under spatially-correlated

contention, since multiple senders that are synchronized to be activated at the same
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time contend for forwarders causing collisions.

DMAC [17] considers the situation where many sources send data to a sink through

a unidirectional tree, called converge-cast communication. Nodes exploit this tree to

determine their active schedules. A node determines its active schedules according to

the traffic load and to its depth in the tree. However, since the duty cycles are not

random for each node, there is an overhead involved in synchronizing the wake-up

schedules.

SMAC [31] copes with idle listening by repeatedly putting nodes in active and

sleep periods in a random manner. Nodes turn off their radios in sleep periods to

save energy and they turn them on in active periods to exchange packets. Applications

may want to send packets while nodes are in sleep periods. SMAC postpones these

transmissions until the next active period. As nodes sleep most of the time, strong

contention for the channel is expected in the active periods. Specifically, nodes are

implicitly synchronized at the beginning of active periods and there is a significant

chance they simultaneously access the channel at the beginning of an active period.

TMAC [24] is an improvement on SMAC and proposes an adaptive duty cycle in

which the duration of active periods is no longer fixed but varies according to the

traffic. The key idea of TMAC consists in making a node predict channel activity

during an active period so that it can switch its radio off before the active period

ends, in case it does not expect any traffic. By downsizing active period lengths,

TMAC saves more energy than SMAC.
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PTW [30] and LEEM [11] use dual radios to deal with the trade-off between energy

efficiency and end-to-end delay. PTW uses a pipelining transmission technique to help

shorten the amount of time it takes to wake up the nodes for data forwarding while

still maintaining energy efficiency. PTW makes use of a dual radio setup with one

radio being used to coordinate duty cycles and the other being used to transmit and

receive data. With two radios, they saw that they could coordinate a duty cycle for

its forwarder while receiving data.

LEEM requires that a system-wide synchronization takes place so that the nodes

along a route can be scheduled to wake up sequentially. So the idea behind these

protocols is that a node uses one of the radios to wake up its forwarder while it is in the

process of receiving data. This helps cut down on the setup delay, but its effectiveness

depends on many factors such as packet size and the data radio bandwidth. Moreover,

these mechanisms need some kind of synchronization and come in handy at the cost

of having additional dual radio hardware.

2.5 Topology Management

There are also protocols that improve energy efficiency and overall performance of

the network by managing the topology of the network. SPAN [9] and GAF [29] are

the most popular protocols in this class.

SPAN is an energy-efficient coordination algorithm for topology maintenance in

ad-hoc wireless networks. It is based on the observation that a dense sensor network

can work with only a part of its nodes being active. This makes it possible to prolong
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the network lifetime while maintaining its functionality by carefully choosing the

active nodes. SPAN is a distributed, randomized algorithm where nodes make local

decisions on whether to sleep or to join a forwarding backbone. It elects coordinators

from all nodes in the network, which stay awake continuously and perform multi-hop

packet routing within the network while other nodes remain active in power-saving

mode and check if they should wake up and become a coordinator. SPAN ensures

that sufficient numbers of coordinators are chosen so that every node falls under the

range of at least one coordinator. The coordinators keep changing to ensure that all

nodes share the task of providing connectivity equally.

GAF also works on a similar principle, that when there is significant redundancy

in an ad-hoc network, multiple paths exist between nodes. Hence, a few nodes can

be powered off while still maintaining connectivity. GAF identifies equivalent nodes

for routing based on location information and turns off unnecessary nodes. Both

these approaches however suffer similar disadvantages as the protocols that perform

selective reporting based on spatial-correlation. Moreover, they fail to utilize the

network’s full potential.

2.6 Congestion Control and Avoidance

In WSNs, congestion and contention are very closely related to each other. Each one of

these problems could potentially trigger the other. For example, nodes not being able

to access the channel due to contention will cause packets to rapidly queue up at each

node and hence can lead to congestion. Similarly, increased congestion in the network

can trigger channel access issues because each node now has a greater number of
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packets to transmit and hence attempts to access the channel more frequently. Thus,

techniques used for congestion control are very relevant and worth considering while

designing protocols that aim to reduce contention. However, it is important to note

that congestion does not necessarily increase contention in a network, although the

converse is true. For example, if a network operates in TDMA, there is no contention

in the network, irrespective of the network load.

Event-to-sink reliable transport (ESRT) [3] tries to achieve reliable event detection

using energy-efficient techniques and congestion control. It defines five states of

congestion: (No Congestion, Low Reliability); (No Congestion, High Reliability);

(Congestion, High Reliability); (Congestion, Low Reliability); and (Optimal Operat-

ing Region) and then tries to stay in the Optimal Operating Region state. If it falls

out of this state, the reporting rate of the sensor nodes is adjusted so that it will

return to the Optimal Operating Region state. The sensor node detect the current

state of the network by using the buffer sizes and set a congestion notification bit

when congestion is detected. When one of these packets with the notification bit set

is received at the base station, it knows that the network is congested and will then

update the reporting frequency accordingly. CODA [27] mainly uses the current buffer

occupancy to infer accurate detection of congestion at each receiver with low cost.

As long as a node detects congestion, it sends a back-pressure message to upstream

nodes so that they can adjust their reporting rate accordingly.

Pump Slow, Fetch Quickly (PSFQ) [32] is a scalable and reliable transport

protocol that distributes data from a source node by slowing down the data speed so

that nodes in the network do not get overwhelmed with data at once. Also, any nodes
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that experience data loss are able to fetch the missing pieces from the intermediate

nodes that have the pieces of data. PSFQ consists of three operations: the pump

operations, relay-initiated error recovery, and report operation. The pump operation

injects the data into the network at a scheduled rate to help reduce the amount of

congestion. A node will then cache the data that it receives so that is can forward it

on to nodes that are trying to fetch any data that they did not receive. Once a gap

is seen by a node it will go into the FETCH mode trying to retrieve the missing data

fragment. A disadvantage with PSFQ is that its pump operation can be very slow

and leads to a large delay.
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CHAPTER 3

PROTOCOL FOR CONTENTION MITIGATION

3.1 Motivation and Design Considerations

The characteristics of event-driven WSNs combined with the nature of wireless medium

pose unique challenges: Since the wireless medium is inherently broadcast in nature,

any ongoing transmission interferes with any other transmission within communica-

tion range. This interference is intensified in event-driven WSNs, where the traffic

is bursty in nature. Additionally, since event-driven WSNs are typically densely

deployed for increased fault-tolerance, coverage and connectivity, several nodes try to

access the channel at the same time during the occurrence of an event, resulting in

severe contention for channel access. Contention increases collisions, which not only

result in packet loss and decreased throughput, but also increase energy consumption

and latency in the network. Collisions lead to back-off and piling up of packets in a

node’s transmissions queue, hampering its ability to transmit data. This results in

network congestion and ultimately loss of event reports. Each collision also triggers

a re-transmission, causing energy wastage and delayed event reporting.

The seriousness of the problem lies in the fact that contention could lead to a lot

of other problems like loss of data, energy wastage, congestion, and delayed reporting,

although the converse is not always true. For example, when operating in TDMA
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mode, the nodes do not contend for channel access irrespective of the amount of

congestion in the network. Given these challenges, it is still important for the base

station to receive all the event reports, for confidently determining the occurrence

and severity of the events. Thus, it is very important to manage the contention

in the network, so that events can be reported reliably with as few collisions and

re-transmissions as possible.

Although MAC protocols based on TDMA completely prevent contention, they

perform very poorly in event-based WSNs. TDMA requires tight network-wide

synchronization and is more appropriate where there is a continuous data flow by

almost all the nodes in the network, and the amount of data each node has to send is

comparable. On the contrary, event-based WSNs have multiple event centers and the

traffic pattern is bursty in nature, with only a subset of nodes in the network having

data to send at a time. Using TDMA or any such fixed scheduling mechanisms would

not only waste bandwidth but are also hard to maintain due to problems such as

clock drifts, control message overhead etc. On the other hand, pure contention-based

protocols are known to fail, given the number of nodes that could potentially sense

and try to report the events at the same time. It is hence essential to find an

intermediate approach that captures the benefits of both contention-based protocols

and TDMA-based protocols. The objective of this thesis is thus to avoid contention

in the network thereby reducing collisions, improving packet delivery and energy

efficiency. The proposed approach to mitigate contention is expected to improve the

network performance of the WSN by gracefully managing how and when nodes access

a shared medium, using a dynamic and cooperative transmission schedule among the

sensor nodes.
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3.1.1 Design Considerations

• Spatially Correlated Contention:

As discussed previously, event-driven WSNs have sensor nodes typically deployed in

high density for obtaining high reliability in event sensing. When an event occurs,

there may be a large number of nodes that detect it. The normal response of a sensor

node that has just detected an event is to report it immediately. Having all of these

nodes report simultaneously causes severe contention for channel access. This could

lead to collisions, packet loss, energy wastage, congestion, and delayed reporting.

This is a fundamental problem typically found in all event-driven WSNs and should

be addressed gracefully. Not taking care of this issue would have a deterrent effect

on the network’s performance.

• Node Failures:

In sensor networks, nodes can fail for many different reasons, such as obstacles,

hardware defects in the node, and harsh environmental conditions in which the node

operates. Also, a drop in energy levels or any other unforeseen event may cause

node failures. If a node fails, the packets that are to be sent through that node will

be lost or corrupted. Additionally, if a failed node happens to be a source node,

it may either not be able to generate event reports at all, or will generate faulty

reports, resulting in false positives at the base station. Node failures are so typical

that support for handling them should be an inherent part of the design: a network

should be in a position to function reliably inspite of some failed nodes. Thus, as

opposed to protocols like CCMAC [26] and SCMAC [33], which select only a subset
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of the available nodes to report events, it is important that the network design uses

the full potential of dense deployment in the network so that even if a few nodes fail

or have faulty data, the base station can still reliably detect events.

• Energy Constraint:

WSNs work on low powered batteries and hence are energy constrained. It is thus

important to reduce control messages and unnecessary transmissions in the network,

so as to prolong the lifetime of the network. Event-driven WSNs typically experi-

ence severe contention for channel access, increasing the number of collisions. Each

collision in-turn triggers a re-transmission to compensate for the loss of data due to

the collision. Moreover, energy consumed by sensor nodes during transmission of

messages is very high. Thus, increased number of re-transmissions leads to a lot of

energy wastage in the network. In designing an energy-efficient protocol, the energy

wastage due to collisions and re-transmissions must be considered and reduced. Also,

the protocol design should use minimal or no control messages in order to further

reduce interference and energy consumption in the network.

• Scalability:

As event-driven WSNs contain a very large number of sensor nodes, networks should

be scalable enough to provide a high packet-delivery ratio. Additionally, the traffic

pattern in these kind of networks is bursty and unpredictable in nature with several

event centers. A protocol should thus be designed to dynamically adjust to varying

levels of node densities, traffic load and contention in the network, without depending

on prior knowledge or guess work of node distribution and traffic levels.
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3.2 Assumptions

For simplifying the explanation, we make the following assumptions:

• The network is densely deployed and its outer boundary is identified.

• All the nodes know the status of their one-hop neighborhood nodes by local

broadcast mechanisms.

3.3 Contention Mitigation

3.3.1 Basic Approach

The proposed approach exploits the broadcast nature of the wireless medium to

benefit the network. The broadcast nature of the medium empowers nodes to hear

the transmissions of all nodes in its vicinity. Nodes can use this property to dy-

namically overhear transmissions from other competing nodes in their transmission

range and thus know who has data to send. The nodes then utilize the order of

neighborhood transmissions to establish a dynamic schedule for themselves without

any synchronization or explicit message exchange. Since the broadcast medium makes

overhearing mutual in nature, the schedule established at each node does not conflict

with the schedule at other nodes. Nodes that are not participating in the data

transmission are implicitly not included in the schedule and hence do not waste any

bandwidth as opposed to TDMA-based approaches, where all nodes get their share of

bandwidth, whether or not they have data to send. Moreover, nodes operating with

this protocol can co-exist with other nodes following a CSMA-only approach. This

captures the benefits of both TDMA and CSMA-based protocols, while mitigating
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their disadvantages.

The other important aspect of the approach is about data being forwarded to

the base station in a way that compliments the transmission schedules and mitigates

the contention among the forwarder nodes located on route to the base station from

the event center. In a densely deployed network, there are several nodes within

transmission range of each other that contend to gain channel access. As the number

of active forwarder nodes increase, the contention for channel access between them

also increases, especially if the forwarders happen to be in transmission range of each

other. Additionally, the transmission scheduling mechanism described above is more

efficient when the number of neighboring nodes that a particular node has to wait for

before it can access the channel is reduced. An increase in the nodes participating

in forwarding data will have a negative impact on the scheduling mechanism, by

increasing the period a node will have to wait before it can access the channel. Thus,

a data forwarding mechanism that supports the transmission schedules should have

fewer nodes close to each other participate in forwarding data.

One can reduce the number of forwarders taking part in data forwarding by

dedicating a single forwarder (parent) node for multiple nodes (children). Although

this reduces the number of forwarding nodes, it results in congested nodes/bottle

necks in the network. The energy at these bottle-neck nodes also depletes very

quickly, as each of these forwarder nodes need to handle more transmissions. Thus,

the proposed protocol takes an intermediate approach; the potential bottle necks are

taken care of by allowing nodes to have multiple forwarders (if available), but at the

same time, the number of forwarders participating in data transmission are reduced
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by restricting the number of forwarders each node can actually use to forward data.

Thus, the proposed approach implements a data forwarding mechanism where each

child node has the property of using only a subset of the total number of parent nodes

available to it. This subset will be chosen such that there is increased overlap in the

parent nodes chosen by all child nodes at each hop level in the network. This helps

reduce the contention between forwarder nodes and the waiting period of a node using

a transmission schedule, while avoiding potential congested spots in the network.

3.3.2 Dynamic Transmission Scheduling

In event-driven WSNs, due to the unpredictability of the occurrence of events, traffic

is usually bursty with a sudden surge of packets flowing across the network when an

event occurs. Unlike networks targeted towards continuous-monitoring applications,

where all nodes in the network have comparable amount of data to send at all times,

only a specific set of nodes that detect an event or participate in forwarding event

reports have data to send in an event-driven network. Strict scheduling mechanisms

like TDMA inherently give all nodes in the network an equal share of bandwidth

whether or not they have data to send. Hence, if a node does not have any data

to send during its turn, the bandwidth allocated to it during its time slot is wasted.

This increases the latency incurred at nodes that have data to send. Additionally,

TDMA-like mechanisms require tight synchronization among all the nodes and suffer

from issues like clock-drifts and frequent control message overhead. Hence, any strict

scheduling mechanism like TDMA does not work well when applied to event-driven

WSNs due to the high density of nodes in multiple event centers across the network,

not all of which having event reports to send.
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On the other hand, although pure contention-based protocols using CSMA over-

come the disadvantages of TDMA-like protocols, they are still not suitable for event-

driven WSNs due to a couple of reasons: Firstly, these protocols depend on a back-off

mechanism for collision-avoidance, which is known to fail specially in densely deployed

networks, where there are several nodes within transmission range of each other

attempting to access the channel at the same time. Secondly, in an event-detection

application, event reports from all nodes in the network are equally important and

the order in which nodes gain access to the channel to transmit these reports does

not matter. What matters most is that all the event reports ultimately reach the

base station reliably with as few collisions and re-transmissions as possible. Thus, at

a more fundamental level, it makes a lot more sense for nodes to cooperatively access

the channel, giving each other chance to transmit, rather than merely contending or

competing with the other nodes for gaining access to the channel. Thus, there is a

need for a mechanism that is capable of dynamically scheduling transmissions of only

those nodes that have data to send, without any synchronization or control message

overhead, thereby reducing the latency incurred due to waiting for nodes that have no

data to send in TDMA-like protocols. The proposed mechanism achieves this goal by

exploiting the broadcast nature of wireless medium c combined with CSMA principles,

capturing the benefits of both TDMA and CSMA approaches and mitigating their

cons.

Schedule Establishment

The proposed dynamic transmission scheduling mechanism works by establishing a

transmission schedule at each node in the network. Once a schedule is established

at a node, it also dynamically updates the schedule, as new neighboring nodes begin
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to transmit or the transmission needs of the nodes existing in the schedule evolve.

Additionally, depending on the transmissions overheard, it determines if the node

is free to transmit or has to wait. Initially, the nodes contend for channel access

using traditional CSMA, with RTS/CTS. During this process, if a node overhears a

transmission, it records the source MAC address of the overheard transmission in a

schedule table. Once a node successfully gains access to the channel for the first time,

we call it a “scheduled” node. The property of a scheduled node is that after each

transmission, it waits for all nodes in its own schedule table to access the channel

once, before it attempts to transmit again. To achieve this, when a node overhears

from another node that happens to already exist in its schedule table, it decrements

the total number of nodes it still needs to wait for (waitCounter) before it is free to

transmit. Once the waitCounter reaches 0, the node is free to transmit.

Since overhearing is mutual in nature, if say node A and node B are scheduled, i.e,

they have both gained access to the channel at least once, and if a node A has node B

in its schedule table, it is implicit that B also has A in its schedule table. Having node

A in node B’s schedule table implies that A cooperates with B. This way, scheduled

nodes cooperate with other scheduled nodes. Hence, at any given instance of time, a

node only contends with nodes that are not “scheduled” yet, mitigating contention.

As time progresses, the network operation moves closer to a stable state where each

node cooperates with all nodes having data to send.

Dynamic Schedule Maintenance

As discussed above, a node is scheduled when it gains access to the channel for the

first time. Once scheduled, it waits for all the nodes that are in its schedule table to
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transmit once, before it attempts to transmit again. However, if a node hears from

new neighboring nodes that are not currently in its schedule table, then its schedule

table should be updated, so that it waits for these newly learned nodes stating from

the next time it gets to transmit. Thus, while a node is waiting, if it happens to hear

from a new node not in its schedule table, it adds the new node’s MAC address to

the table, so that next time, it is deemed to wait for these new nodes along with the

nodes that already existed in the table.

We now know that once a node gets to transmit, it waits to hear from all the

nodes in its schedule table before transmitting again. However, there might be a

case where one or more nodes in its schedule table has no more data to transmit at

that moment, leading to infinite waiting. We do not want to wait until a timeout

is triggered for these cases, as they may occur frequently. The dynamic scheduling

mechanism at a node should thus be in a position to detect such nodes that do not

have any data to send and avoid waiting for them. To achieve this, we modify the

structure of the schedule table by adding a column containing the number of packets

a particular node has queued at the moment. To keep this value up-to-date in each

node’s schedule table, we add a new field in the 802.11 MAC packet header that

reflects the number of packets a particular node has queued at the moment, and have

all nodes initialize this field with their latest queue sizes every time they transmit

a packet. The queue size is calculated by each node as the sum of the number of

packets the node has generated (applicable only for source nodes) and the number

of packets that it has received from other nodes for forwarding. Thus, each time a

node overhears a transmission from another node, it precisely knows how many more

packets the node has left to send at that moment. If at any point of time this value
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is 0 for a specific node, instead of waiting for it, we decrease the waitCounter as if

that node has finished transmitting. The modified structure of the schedule table is

shown in Figure 3.1.

Figure 3.1: Structure of Schedule Table

The following illustrates how the dynamic transmission schedule establishment

and maintenance work in detail. For ease of explanation, we consider a simple network

with 3 nodes A, B and C, which are all in transmission range of each other; each node

can overhear the transmissions of all the other nodes in the network. Additionally,

suppose that each node has 2 packets to send. Node A and B use C as their forwarder

and C transmits to the base station. Initially each of the node’s schedule table is

empty as shown in Figure 3.2. As nodes start to transmit event reports, Figure 3.3

shows how the schedule tables at nodes A, B and C respectively get updated so as

to achieve a dynamic transmission schedule.

Suppose that node A happens to be the first node to gain access to the channel

and transmit. Since node B and C hear this transmission, they add A to their

corresponding tables, along with the current queue size of A, which is extracted from

the MAC header of the packet transmitted by A. Since A has already transmitted

a packet, its queue size is now 1. Now suppose that B gains access to the channel

and transmits its first packet. This is heard by A and C and they update their
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Figure 3.2: Initial Configuration for a Sample Network

transmission tables accordingly. Note that since B’s schedule table contains A, it will

wait for A to transmit before it attempts to transmit again. Lets say C happens to

be the next node to transmit its first packet. Since C acts as forwarder for A and

B, the total number of packets it still needs to send are 3. This is reflected at the

schedule tables of A and B. Also, since C has both A and B in its schedule table, it

will now need to hear from both of them before it is clear to transmit again.

At this point, Node B is still on hold because it is waiting for A. Hence, node A is

the only node that is free to send and hence transmits, leaving it no more packets to

send. Since node B and C hear this transmission, they learn that the current queue

size of A is 0 and update their tables accordingly. Previously B was waiting for A,

but after A’s recent transmission, it is time for B to send; whereas, C is still waiting

for B. Hence, B transmits its final packet. When C overhears this transmission, it
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Figure 3.3: Schedule establishment and dynamic maintenance

knows that it is free to send now and sends its second packet.

According to the scheduling mechanism, C should now start waiting for A and B

before it can transmit its third packet. However, from the current queue size values

of A and B, it knows that they do not have any data to send at that moment. Hence,

without any further waiting, it can transmit its remaining packets. This way, nodes
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wait for other nodes only if they have any data to send, reducing the wait time.

The procedures used for scheduled data transmission and dynamic maintenance of

schedule tables at each node are presented below. These procedures are executed for

each packet that is to be transmitted or is received.

Procedure 1 Dynamic Schedule Table Maintenance

pkt←Incoming Packet
if pkt’s src MAC exists in the schedule table then

if waitCounter 6= 0 then
−− waitCounter
update value of current queue size for pkt’s source node in the schedule table

else
callback transmit function for the first packet in the backlog buffer

end if
else

Add src MAC address of pkt to the schedule table
Initialize value of the current queue size for the new table entry

end if
if pkt is destined to self then

update queue size of self to account for pkt
end if

Procedure 2 Scheduled data transmission
pkt← Packet to be transmitted
if waitCounter = 0 then

Send pkt to be sent immediately
Reset waitCounter to current schedule table size

else
Add pkt to backlog buffer and wait

end if

3.3.3 Data Gathering with Increased Forwarder Set Overlap

WSNs consist of a group of sensor nodes that collectively transmit data to a common

gateway, also called base station. Typically, not all nodes in the network are within
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transmission range to the base station. If a node cannot reach the base station

directly, its data is forwarded recursively through a set of intermediate nodes, until

it finally reaches a node that is 1 hop away from the base station, which then sends

the data to the base station. Therefore, in any given WSN, every node that is not a

single hop away from the base station needs to configure forwarder(s) that it can use

to transmit its data.

In wireless sensor networks, data should be forwarded to the base station in a

way that mitigates the contention among the forwarder nodes located on route to the

base station from the event center. In general, at a given hop level, as the number

of nodes being actively used as forwarders increase, the contention between them

also increases. This is corroborated in event-driven WSNs by the fact that there

are typically several nodes within transmission range of each other at any given hop

level, contending for channel access. Even though the dynamic scheduling mechanism

works on mitigating the contention between these forwarders, a good data forwarding

mechanism that compliments the scheduling mechanism is beneficial.

At any given hop level, the proposed data forwarding mechanism aims to reduce

the number of forwarder nodes (parents) being actively used by the nodes one hop

below (children), thereby mitigating contention between the forwarder nodes. One

can reduce the number of forwarders taking part in data forwarding by dedicating a

single parent node for multiple child nodes. Although this may reduce the number

of forwarding nodes, it results in congested nodes/bottle necks in the network. The

energy at these bottle-neck nodes also depletes very quickly, as each of these for-

warder nodes need to handle more transmissions. Thus, the proposed protocol takes
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an intermediate approach, where nodes are allowed to have multiple forwarders (if

available), but will only use a subset of the total available forwarders. This subset

will be chosen such that there is increased overlap of parent nodes among all the child

nodes, so as to reduce the effective number of forwarders used at each corresponding

hop level. The rationale behind this approach to data gathering is illustrated below.

(a) Nodes using multiple
forwarders without any
overlap

(b) Nodes using a single
forwarder with forwarder
overlap

(c) Nodes using multiple
forwarders with forwarder
overlap

Figure 3.4: Comparison of Forwarder Configurations

Figure 3.4 shows nodes at two consecutive hop levels say ’i’ and ’i-1’, in a sample

WSN. For ease of explanation, lets assume again that all nodes shown are within

transmission range of each other. Thus, the transmissions of each node can potentially

interfere with that of the others. Let us consider the nodes in the ith hop level to be

child nodes and the ones in the (i-1)th hop level to be their potential parent nodes.

Figure 3.4(a) shows the scenario where child nodes are allowed to have multiple
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forwarders, but in the worst case, their forwarder sets have no overlap. In this case,

since all nodes in the (i-1)th hop level are being actively used for data forwarding,

they will all need to contend among themselves for channel access. The amount of

contention in the first scenario can be mitigated, by having the nodes use only a single

overlapping forwarder, as shown in Figure 3.4(b). Although this effectively mitigates

the contention at level (i-1) compared to the first case where there were four nodes

contending, the sole forwarder in this case potentially becomes a bottle neck and

increases congestion in the network. Moreover, the energy of this forwarder depletes

very quickly, since it needs to forward data from both its child nodes alone.

The proposed data forwarding approach uses an intermediate approach shown in

Figure 3.4(c) where nodes are allowed to have multiple forwarders with increased

overlap in their forwarder sets. This mitigates the contention at level (i-1) because

now there are only two active forwarders as opposed to the four active forwarders in

the first case. Additionally, since nodes have multiple potential forwarders, the issue

of a sole forwarder acting as a potential bottle neck is mitigated. By increasing the

overlap in the forwarder sets of child nodes, the proposed data forwarding mechanism

also helps restrict the area that is prone to interference, as opposed to increasing the

radius of the zone that is prone to interference and contention. Within this contained

zone, the dynamic transmission scheduling mechanism works more effectively to

mitigate contention for channel access.

The following describes the heuristic algorithm used by each node in the network

to configure its forwarder set, such that there is increased overlap in forwarder sets

among all nodes in its hop level. The forwarder configuration happens in a hop-by-hop
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fashion, with the base station initiating the process. At each hop level, starting with

the base station, parent nodes broadcast a PARENT − HELLO packet to their

down stream neighbors. Then, they start a CHILD−ACK timer during which they

wait for CHILD −ACK messages from the child nodes. For each CHILD −ACK

message received, a parent node increments its value of numChildren, indicating the

number of children it could potentially support. Once the CHILD − ACK timer

expires, a parent node broadcasts a CHILD − COUNT packet containing its latest

value of numChildren to all the child nodes.

After sending a CHILD − ACK to its parents, a child node starts a CHILD −

COUNT timer, during which it waits for all the parents to respond with the their

respective values of numChildren through a CHILD − COUNT packet. Out of all

the forwarders it hears from, a child node only uses those forwarders with the top num-

ber of children. This way a child node achieves increased overlap with the forwarder

sets of other child nodes at the same hop level. The total number of forwarders it

selects is configured during initialization. Initially, the finalForwarderCount is set

to this number for all nodes, assuming each node has those many forwarders available.

However, based on how many parent nodes a child actually hears from and the upper

limit on the number of forwarders a node is allowed to use, this value is updated. By

the time forwarder configuration is complete, the value of finalForwarderCount at

a particular node reflects the true number of forwarders it is allowed to use.
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Procedure 3 Forwarder Configuration with Increased Hop-by-hop Forwarder Set
Overlap

Output: baseStationID = MAC address of the base station
numChildren← 0
hopdistance← −1
potentialForwarders← 0
finalForwarderCount←DESIRED-NUM-FORWARDERS
for i = 1→ finalForwarderCount do

forwarderSet[i].saddr ← −1
forwarderSet[i].childcount← −1

end for{Initialization Complete}
if baseStationID = MAC address then

hopdistance← 0
Broadcast PARENT-HELLO msg to all downstream neighbors
start CHILD-ACK timer

end if
loop

if CHILD-ACK timer expired then
Broadcast CHILD-COUNT msg to all downstream neighbors with childcount
set to numChildren

end if
if CHILD-COUNT timer expired then

finalForwarderCount← potentialForwarders
Broadcast PARENT-HELLO msg to all downstream neighbors
start CHILD-ACK-timer

end if
msg ← receivePacket()
if msg.Type = PARENT-HELLO then

hopdistance = msg.hopdistance + 1
Reply with CHILD-ACK
re-start CHILD-COUNT timer

else if msg.Type = CHILD-ACK then
numChildren← numChildren + 1

else if msg.Type = CHILD-COUNT then
potentialForwarders← potentialForwarders + 1
sort forwaderSet[] array based on childcounts of each forwarder in the arrray
if forwaderSet[1].childcount < msg.childcount then

forwarderSet[1].childcount = msg.childcount
forwarderSet[1].saddr = msg.sadd()

end if
end if

end loop
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CHAPTER 4

PERFORMANCE EVALUATION

To evaluate the performance, the proposed Dynamic Transmission Scheduling MAC

(DTS-MAC) is implemented in the NS2 simulator [1]. Extensive experiments were

conducted in order to test the performance of the transmission scheduling based

approach. First, we compare the performance of our protocol with SC-MAC [33],

because it handles spatially-correlated contention and outperforms CC-MAC [26] and

other protocols like S-MAC [31]. We provide a comparison of our approach with SC-

MAC in terms of packet delivery ratio, energy consumption, collision rate, and average

latency. Secondly, we investigate the overall performance of the proposed protocol

under different network densities in order to prove that DTS-MAC is scalable and

works in a realistic environment. To study the performance gains due to the dynamic

transmission scheduling approach, we compare DTS-MAC with a base variant that

does not schedule transmissions.

4.1 Performance Metrics

The following are the metrics used to compare and evaluate the performance of the

protocol:
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Packet Delivery Ratio

It is the ratio of the total number of packets generated to the total number of

packets delivered to the base station. This shows the performance of the protocol

and illustrates its level of reliability.

Energy Efficiency

To identify the energy efficiency of the proposed protocol, the average energy con-

sumed by each node in the network is calculated. The lower this value, better is the

energy efficiency and life time of the overall network.

Average Delay

Average delay is measured to identify the latency incurred while forwarding packets

to the base station. It is calculated as the average time taken by each packet to reach

from its source to the base station.

Collision Rate

It is the ratio of the number of packets dropped due to collisions during medium access

and total number packets generated. This gives a good insight into the number

of collisions and re-transmissions that took place in the network, with respect to

changing traffic loads in the network.

4.2 Comparison with SC-MAC

In order to compare performance of our protocol with SC-MAC, simulations were

run using the simulation parameters of SC-MAC mentioned in Table 4.1. All the
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Table 4.1: Simulation Parameters for Comparison with SC-MAC

Parameter Value

Area 500m x 500m
Transmission Radius 100m

Total Number of Nodes 50
Sources 15

Packet Size 100 bytes
Transmit Power 24.75mW
Receive Power 13.5mW

Idle Power 13.5mW
Sleeping Power 15uW

nodes are randomly deployed in a 500m x 500m sensor field, one of which is used as

base station. Each packet has a fixed size of 100 bytes. We select 15 source nodes

randomly all of which report event information to the sink with a 0.5s packet interval.

SC-MAC investigates the effect of traffic load by varying the reporting period of the

sensor nodes. The reporting period determines the period for which a source node

generates packets for each occurrence of an event. We also vary the reporting period

of the sensor nodes in order to compare our protocol with SC-MAC. For all the

experiments, data is collected from an average of 20 independent runs.

Figure 4.1 shows a comparison of the performance of our protocol in terms of

packet delivery ratio. As seen from the graph, DTS-MAC outperforms SC-MAC with

about 23% improvement in the packet delivery ratio. SC-MAC reduces contention by

selecting a subset of nodes that detect and generate event reports and thus has about

25% lower traffic volume compared to DTS-MAC. In spite of this higher volume

of traffic in DTS-MAC compared to SC-MAC, we see a good improvement in the

packet delivery ratio. The improvement can mainly be attributed to the significant

reduction in the number of collisions when transmissions are dynamically scheduled
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in DTS-MAC. Although SC-MAC reduces contention among the source nodes by

allowing only a subset of source nodes to generate event reports, there is severe

contention between the several intermediate nodes that actively help forward the

event reports to the base station. SC-MAC also has a high number of packet drops

during the First Contention Phase, where all source nodes with event information

contend and representative nodes for each region are iteratively selected. DTS-MAC

on the other hand uses a more holistic approach where each node in the network can

co-operate with and establish a dynamic transmission schedule relative to its neigh-

boring nodes, thereby reducing contention and the number of collisions throughout

the network. Additionally, the packet delivery ratio is relatively stable in DTS-MAC

with varying traffic loads, as opposed to SC-MAC, where there is noticeable drop at

higher reporting periods.

Figure 4.1: Packet Delivery Ratio
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The effect of dynamically scheduling the transmissions as seen in Figure 4.2 depicts

collision rate in the network. Since nodes using DTS-MAC cooperate with each

other by scheduling their transmissions, the contention between them is significantly

reduced in spite of higher traffic volumes and we observe a 42% decrease in the number

of collisions compared to SC-MAC, even at the highest reporting period used.

Figure 4.2: Collision Rate

As a result of a decrease in the number of collisions, the number of re-transmissions

and hence the energy consumption per node in the network is reduced with DTS-

MAC. Figure 4.3 shows a comparison of DTS-MAC and SC-MAC with respect to

energy consumed per node in the network. Although SC-MAC conserves energy by

selecting only a subset of source nodes that generate and transmit event reports,

energy is depleted due to a fairly complex representative node selection process.

DTS-MAC on the other hand reduces energy consumption by efficiently coordinating
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access to the medium, reducing the number of re-transmissions in the network.

DTS-MAC further reduces energy consumption of the idle forwarder nodes that result

from increasing forwarder set overlap among child nodes during initial forwarder

configuration, by turning off their radios.

Figure 4.3: Energy Consumption

Figure 4.4 shows the average latency incurred in each protocol. With DTS-

MAC, nodes inherently wait for each other to avoid collisions and contention in

the network. Due to this overhead, the average latency of DTS-MAC increases

with increase in reporting period used. However, due to higher number of collisions

and re-transmissions in SC-MAC, combined with its repeated representative node

selection, the latency incurred due to DTS-MAC turns out to be lower than that of

SC-MAC under reasonable traffic loads. The difference in the average delay however

decreases as the traffic increases, and the delay of DTS-MAC could potentially cross
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over that of SC-MAC under sufficiently high traffic loads.

Figure 4.4: Average Delay

4.3 Protocol Evaluation

To investigate the scalability and performance of our protocol, we compare it with

another variation of the protocol, which does not use dynamic scheduling. As the

simulation parameters used for comparison with SC-MAC do not sufficiently stress

the network to test for scalability and robustness, simulations were run using the a

different set of parameters mentioned in Table 4.2 [18] that are commonly used for

evaluating wireless sensor network protocols. For data packets, Constant Bit Rate

(CBR) traffic is used. We evaluate the scalability of the protocol using two different

network densities, 50 and 100 nodes with 15 source nodes each and a packet interval

varying between 0.1s to 1.0s. The packet size used is 512 bytes. In all the experiments,
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Table 4.2: Simulation Parameters for Protocol Evaluation
Parameter Value

Area 1000m x 1000m
Transmission Radius 250m

Total Number of Nodes 50− 100
Sources 15

Packet Size 512 bytes
Packet rate 0.1(0.5KB/s)− 1(5KB/s)

Transmit Power 0.01488 W
Receive Power 0.01250 W

Idle Power 0.01236 W
Sleep power 0.000016 W

each data point calculated is an average of 20 independent runs with a simulation

time of 400s each, on random network deployments.

As seen in Figure 4.5, when the traffic load is increased, the packet delivery ratio

drops significantly if no scheduling is done. In contrast, even at high traffic loads, we

notice that the packet delivery is relatively stable with scheduling. Moreover, we see

that increasing the network density does not affect packet delivery when scheduling

is implemented, whereas there is noticeable drop in the packet delivery ratio with

increased network density, if the transmissions are not scheduled. This is mainly

because, when the transmissions are scheduled, the contention between the nodes

and hence the number of collisions that occur is greatly reduced.

When collisions occur, there is a limit to the number of times a node re-transmits a

packet before it gives up and drops the packet. Thus it is essential to reduce collisions

in the network, so that nodes are able to transmit packets successfully with very few

or no re-transmissions. Dynamic scheduling of the transmissions helps achieve this
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very goal, as nodes cooperate with each other, reducing contention and the chance

of collisions. This can be observed in Figure 4.6, which shows how the collision

rate varies with and without scheduling. When the transmissions are dynamically

scheduled, the packet collision rate clearly drops significantly.

Figure 4.5: Packet Delivery Ratio

Figure 4.7 shows the energy efficiency of our protocol. With transmission schedul-

ing enabled, we see that the power consumption of the network is reduced. This is

because when transmissions are scheduled, the number of collisions and the associated

re-transmissions, which are a major cause for energy wastage in the network, are

greatly reduced. We also observe that when node density is increased for each

variation of the protocol, the increase in power consumption is very small, because of

the forwarder set overlap among the child nodes. The increased overlap in forwarder

sets helps decrease the number of nodes that act as forwarders and actively participate
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Figure 4.6: Packet Collision Rate

in data transmission. The radios of the resulting idle nodes can then be turned off to

save power and maintain the longevity of the network even with higher node densities.

As seen in Figure 4.8, when transmissions are not scheduled, the delay shoots up

at high traffic loads. With scheduling, since nodes wait for each other, the average

delay calculated over all packet intervals is slightly higher than when no scheduling

is done. However, the delay is relatively stable due to the reduction in the number

of collisions. Moreover since nodes wait only for other nodes that have data to send,

the increase in delay when transmissions are scheduled is counter-intuitively small.
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Figure 4.7: Energy Efficiency

Figure 4.8: Average Delay



47

CHAPTER 5

CONCLUSION

Wireless sensor networks heavily rely on a dense deployment of sensor nodes in order

to ease deployment, increase fault-tolerance and network coverage, so that events

do not go undetected. A dense deployment however results in several sensor nodes

close to each other detecting and transmitting event reports at almost the same

time, resulting in severe contention for channel access. Channel contention is a

serious problem in WSNs, which increases the likelihood of collisions in the network.

Collisions in-turn lead to re-transmissions, energy depletion, and ultimately loss of

event reports. Event-detection applications demand several event reports from ideally

unique sensor nodes, in order to support fault tolerance and detect events with high

confidence. Existing protocols like SC-MAC handle spatially correlated contention

by selecting only a subset of source nodes that detect and report events, defeating

the purpose of dense deployment. They also reduce the sink’s ability to confidently

detect events as it receives reports only from a subset of source nodes that detect an

event. Hence, there is a need for a protocol that can reduce contention and improve

performance of the network even under high traffic loads, when the network fully

functional.

In this thesis, we propose DTS-MAC that reduces contention and improves packet

delivery by dynamically scheduling the transmissions and by reducing the number
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of active forwarders in the network. Unlike TDMA-based approaches that require

tight network-wide synchronization, nodes using DTS-MAC exploit the broadcast

nature of the wireless medium to maintain the schedules dynamically, without the

need for synchronization and message exchange. By scheduling the transmissions,

we reduce contention and the number of collisions in the network, thereby improving

packet delivery ratio. As collisions reduce, the number of re-transmissions and hence

the energy wastage also goes down. Simulation results show that the proposed

protocol significantly reduces the collision rate and improves packet delivery and

energy efficiency in the network.
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