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ABSTRACT 

The stable isotope composition of water (δ18O and δ2H) can reveal important 

hydrometeorologic and hydroclimatic information. For instance, simultaneous 

measurement of the stable isotope composition of precipitation and stream water is used 

to estimate the distribution of hydrologic transit time in catchments, which can provide 

information about hydrologic flow paths, storage, and source water. However, in 

mountain watersheds characterized by large topographic relief, the spatiotemporal 

distribution of precipitation can vary dramatically, as can the isotopic composition of 

precipitation. Compounding this variability is the transition in precipitation phase from 

rain to snow, which can markedly affect isotopic compositions of precipitation. This 

study aims to improve the use of stable isotope methods for hydrologic investigations in 

complex terrain by investigating the hydrometeorological and spatial controls on the 

isotopic composition of precipitation, along with improving our understanding of the 

spatial variability and evolution of the isotopic composition of snow. Additionally, we 

constructed a seasonally weighted local meteoric water line (LMWL) for the Treasure 

Valley of southwestern Idaho, which is expressed by the equation δ2H = 7.40*δ18O – 

2.17. The LMWL of the greater-Boise area is considerably influenced by the semiarid 

climate of southwest Idaho, yielding a slope and y-intercept lower than the global 

meteoric water line (GMWL: δ2H = 8*δ18O +10). Moderate to strong statistically 

significant (p < 0.05) correlations exists between several hydrometeorological variables 

(e.g., surface air temperature, relative humidity, precipitation amount, precipitation 
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intensity) and the isotopic composition of precipitation from individual events. A very 

strong negative correlation (r = -0.98, p < 0.02) exists between the amount-weighted 

isotopic composition of precipitation and the elevation from individual collection sites 

(Altitude effect lapse rate: -2.2‰/km). Snow sampling campaigns revealed significant 

variability in the spatial distribution of the isotopic composition of snow. δ18O of bulk 

snow core samples varied between -16 and -19 ‰ in an area covering 256 m2 at the 

Treeline study site in Dry Creek Experimental Watershed, which is greater than the 

variation of the annual δ18O of Dry Creek stream water. Revised methods for 

characterizing the input signal for transit time estimation (e.g., sampling snowmelt 

lysimeter water, applying Altitude effect lapse rate to isotopic composition of 

precipitation) will more accurately represent isotope tracers arriving in watersheds as 

precipitation and leaving as streamflow.  
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CHAPTER ONE: VARIABILITY OF THE ISOTOPIC COMPOSITION OF 

PRECIPITATION  

1. Introduction 

Physical water scarcity is affecting approximately one fifth of the world's 

population, while water withdrawals are predicted to increase by 50 percent by 2025 in 

developing countries, and 18 percent in developed countries (Moe and Rheingans 2006). 

In a world where climate warming and population growth are putting unprecedented 

pressures on hydrologic systems, there is a critical need to better quantify the size and 

rates of movement between and among natural and man-made reservoirs of water. This is 

particularly true in the semiarid regions of the western United States, which is 

characterized by increasing water demand and water scarcity.  

A variety of tools are available to characterize these hydrologic reservoirs, 

although each tool is associated with strengths and weaknesses. The stable isotopes of 

water are a particularly powerful natural environmental tracer and have been used as a 

tool to investigate hydrologic processes for several decades (Clark and Fritz 1997). Stable 

isotopes of water are typically not subject to change during interaction with subsurface 

material, making them an ideal tracer of hydrologic processes. Water molecules with 

enriched isotopes (HDO, H2
18O) tend to be relatively concentrated in the more condensed 

phase of water, which causes small differences in 2H/1H and 18O/16O ratios of water 

molecules between phases in the hydrologic cycle.  
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The use of stable isotopes of water in catchment hydrology has improved our 

understanding of  transit time, which is a crucial hydrologic parameter that contains 

integrated information about flow-paths, storages times, and source water (Henderson-

Sellers et al. 2004, McGuire and McDonnell 2006). The stable isotope composition of 

meteoric water can be used to model atmospheric circulation and can reveal information 

regarding moisture sources (Kirby et al. 2002), while the stable isotope composition of 

ice-cores is used to reconstruct and analyze past climate variability (Dansgaard et al. 

1993, Petit et al. 1999).  

Recent technological advances have made measurements of stable isotopes of 

water far more economical than historical averages. Laser-based methods, specifically the 

Cavity Ring-Down Spectroscopy technique,  for measuring water isotopes has resulted in 

more efficient and significantly cheaper sample processing relative to the former isotope 

ratio mass spectrometer techniques (Brand et al. 2009). Increased efficiency of water 

isotope measurements enables broader sampling in space and time, and facilitates 

improved characterization of hydrologic flow paths and reservoirs. As a result, the use of 

isotopes in hydrologic studies has expanded significantly (Berman et al. 2009); however, 

more measurements also reveal complexity in the patterns of inferred hydrologic 

processes.  

1.1 Isotope Fractionation and Meteoric Water Lines 

Isotopic fractionation, which causes variations in the isotopic composition of 

water, is associated with phase transitions of water between different water reservoirs in 

the hydrologic cycle and diffusion during transport. Two types of fractionation occur in 

the hydrologic cycle. Equilibrium fractionation is the partitioning of isotopes between 
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two phases of water that are at chemical equilibrium (water vapor condensing to liquid 

water), and is driven by differences in bonding energies (Pfahl and Wernli 2008). 

Generally, isotopes with an increased mass (enriched) form stronger bonds, thus it 

requires more energy to break the bond of an enriched isotope relative to a depleted 

isotope. This fractionation process is highly temperature dependent and decreased 

temperatures result in greater fractionation between isotopes whereas high temperatures 

result in littler fractionation between isotopes. Kinetic fractionation, or non-equilibrium 

fractionation, is a mass dependent partition between isotopes during a unidirectional 

process (Kendall and McDonnell 1998). A classic example of this type of fractionation is 

the evaporation of water. Water molecules with 16O and 1H evaporate more readily than 

molecules with 18O and 2H. Evaporation processes result in the isotopic composition of 

the source (surface water and soil moisture) enriched with 18O and 2H relative to the more 

depleted evaporated atmospheric water vapor, but with a different functional relationship 

than for equilibrium fractionation.  

 In general, the more depleted isotopes react faster and end up relatively 

concentrated in the products of a reaction relative to enriched isotopes (Craig and Gordon 

1965, Merlivat and Jouzel 1979). The resulting partitioning between phases in the 

hydrologic cycle is why the isotopic composition of water can be used to trace hydrologic 

processes (Lee et al. 2007). The nature of the hydrologic cycle complicates the use of 

stable isotopes to trace hydrologic processes. Precipitation arriving at one location often 

contains meteoric water from numerous moisture source locations. To improve the 

accuracy and value of information contained in measurements of the stable isotopes of 
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water in catchment studies, it is crucial to investigate the causes of spatial and temporal 

variations of the isotopic composition of precipitation.  

The isotopic composition of hydrogen and oxygen are reported in delta (δ) 

notation, expressing a per mil deviation from a standard and defined as,  

 

δ
18

O ‰ = (Rsample/Rstandard – 1) * 1000      (1) 

 

where Rsample and Rstandard are the 18O/16O ratios in the sample and the standard 

respectively. The isotopic composition of hydrogen is reported in the same format 

(replacing 18O/16O in Equation 1 with 2H/1H). By convention, δ18O and δ2H of ocean 

water is 0.  

Systematically, the fractionation processes that affect the stable hydrogen and 

oxygen isotopes are similar, which results in comparable behavior between isotopic 

species within the hydrologic cycle (Friedman 1953). This relationship is expressed in the 

global meteoric water line (GMWL, Figure 1). The GMWL was first derived by Craig 

(1961) by analyzing the isotopic composition of meteoric water samples collected around 

the world by the International Atomic Energy Agency (IAEA) and is expressed as:  

 

δD = 8.13 δ
18

O + 10.8        (2) 

 

Equilibrium fractionation processes that affect water isotopes are ~8 times greater 

for hydrogen than oxygen, resulting in the slope of ~8 for the GMWL as displayed in 

Equation 2 (Pfahl and Wernli 2008). This is because the fractionation processes are 
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controlled by differences in vibrational frequencies of affected bonds, with the greater 

differences in mass causing the greatest fractionation. Deuterium (2H) has double the 

mass of 1H, while the mass of 18O is only 13% greater than 16O, which results in 

fractionation processes affecting hydrogen more than oxygen. Because the average 

isotopic composition of oceanic water is 0, the y-intercept of 10.8 of the GMWL reflects 

the fact that meteoric water and oceanic water are not in thermodynamic equilibrium 

(Pfahl and Wernli 2008). 

The GMWL integrates the worldwide isotopic composition of meteoric water 

(i.e., precipitation); therefore, it serves as a useful baseline against which isotope 

measurements from the various reservoirs of the hydrologic cycle can be compared. The 

extent to which measurements depart from the GMWL can provide important insight into 

the presence and strength of hydrologic processes, such as evaporation, that lead to non-

equilibrium fractionation such as evaporation. However, the stable isotope composition 

of local meteoric water may vary from the GMWL. Therefore, a local meteoric water line 

(LMWL) can exhibit a different slope and y-intercept than the GMWL. 

As a result of potential variability between the GMWL and the LMWL of a 

specific region, isotope comparison studies are often only useful if measurements depart 

or align with the LMWL. The major processes controlling the variability between 

GMWLs and LMWLs are the humidity during primary transport after evaporation and 

secondary evaporation after precipitation falls from a cloud, which is typical of arid 

climates. In general, complex atmospheric processes are the reason why the isotopic 

composition of precipitation varies on an event scale basis.  
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1.2 Atmospheric Controls 

Past studies have identified seasonality of precipitation (Dansgaard 1964, Lee et 

al. 2003, Dutton et al. 2005), water source surface temperature (Craig 1961, Dansgaard 

1964), precipitation amount (Dansgaard 1964), elevation (Poage and Chamberlain 2001), 

latitude (Dansgaard 1964, Fricke and O'Neil 1999), and air mass history (Lawrence et al. 

1982, Burnett et al. 2004) as significant determining factors in the isotopic composition 

of precipitation (Sjostrom and Welker 2009). The continental effect is the observation of 

the depletion of enriched isotopes in water vapor the farther away air-masses are from 

coastal regions (Figure 2). This follows a Rayleigh distillation process, resulting in the 

isotopic composition of precipitation becoming more depleted the farther a precipitating 

air-mass moves inland (Dansgaard 1964). The Rayleigh distillation model, however, does 

not account for below cloud secondary evaporation, which can further enrich 

precipitating meteoric water, leading to inaccurate predictions of the isotopic composition 

of precipitation (Peng et al. 2007). Most of these factors are understood on long-term and 

large-scale studies, while very little work has been done to understand how dynamic 

physical processes affect the stable isotope composition of precipitation on an intra-

seasonal and catchment scale.  

1.3 Transit Time Estimation and Input Characterization Problem  

Transit time is the amount of time elapsed between the input and output of water 

in a flow system, thus the distribution of catchment transit times is a fundamental 

catchment descriptor and reveals critical hydrologic processes in a single characteristic 

(McGuire and McDonnell 2006). Transit time distributions can be determined 

experimentally by simultaneously characterizing the stable isotope composition of 
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precipitation input to a catchment as well as the stream water exiting. Part of the 

usefulness of stable isotopes is that they are naturally occurring tracers that are applied to 

catchments during precipitation events and transported to stream channels through 

surface and subsurface processes. The stable isotope composition of the water at the 

catchment stream outlet reveals a distribution that is damped and lagged compared to the 

applied input signal due to differential transport (McGuire and McDonnell 2006, 

McDonnell et al. 2010). Through the use of a convolution integral, catchment transit time 

distributions can be fit. Since the stable isotope composition of water is not a dissolvable 

or exchangeable ion like many tracers, it serves as a conservative tracer.   

A major problem in catchment transit time modeling, outlined by a conceptual 

model in Figure 3, is the characterization of the input stable isotope signal for transit time 

estimation models. The stable isotope composition of precipitation (as well as the total 

volume of precipitation input) is rarely homogenous over the extent of the catchment, 

particularly as the scale of the catchment increases. Moreover, large spatial and temporal 

variability in the stable isotope composition of precipitation would also be expected in 

watersheds with large topographic relief and/or spanning the rain-snow transition, 

because of the corresponding temperature gradients that control fractionation processes. 

Figure 3 also depicts the annual variability of the δ18O composition of precipitation at 

two locations differing in elevation in the same catchment. The variability of the isotopic 

composition of precipitation between the two locations is greater than the corresponding 

annual variability of the δ18O composition of the stream water output from the same 

catchment.  
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McGuire and McDonnell (2006) tracked the variability of the isotopic 

composition of precipitation for 3 storm events at Lookout Creek Watershed (Figure 4), 

and highlighted how the isotopic composition of precipitation is elevation and storm-

track dependent. During orographic lift, isotopically enriched water molecules tend to 

condense and precipitate more readily than water molecules with depleted isotopes, 

leaving the subsequent water vapor more isotopically depleted. Correspondingly, 

adiabatic cooling during orographic lift further depletes the isotopic composition of 

subsequent precipitation due to decreased temperature during condensation (equilibrium 

fractionation).  

These factors drive the altitude effect, which is the depletion of the isotopic 

composition of precipitation with increasing elevation (Dansgaard 1964). Typical 

gradients are -0.15 to -0.5 ‰ per 100 meters for δ18O, and -1.5 to -4 ‰ per 100 meters 

for δ2H (Ambach et al. 1968). In watersheds of sufficient size, the continental effect can 

simultaneously impact the isotope composition of precipitation. The isotopic composition 

of precipitation at a location, therefore, is influenced by a variety of simultaneously 

acting processes operating at a range of spatial and temporal scales.  

These aforementioned factors complicate the input signal for transit time 

characterizing in complex terrain, necessitating care when measuring the isotopic 

composition of precipitation to estimate the distribution of catchment travel times. The 

assumption in transit time studies that the stable isotope composition of precipitation is a 

homogenous input to catchments, especially in complex terrain, is flawed. Furthermore, 

even if a net input stable isotope composition signal can be determined, the use of a 
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convolution integral implicitly assumes that the travel time distribution is time invariant 

and that the output stable isotope composition is linearly related to the input composition.  

1.4 Study Objectives  

The objective of this study is to improve the understanding of the 

hydrometeorological and spatial controls on the isotopic composition of precipitation in 

mid-continent watersheds where multiple factors control the isotopic composition of 

meteoric water. The location of this investigation took place in Dry Creek Experimental 

Watershed (DCEW) near Boise, ID. Improved characterization of these controls on the 

stable isotope composition of precipitation will increase our ability to understand and 

predict the spatiotemporal variability of the isotopic composition of precipitation at the 

catchment scale. This improved understanding will correspondingly enhance our ability 

to characterize the input stable isotope function for, and estimation of, travel time 

distributions in watersheds in complex terrain. To facilitate the comparison of stable 

isotope compositions in precipitation in our study region, we must first construct a 

LMWL for the greater-Boise area of southwestern Idaho. The LMWL will also be a 

useful baseline for future and ongoing hydrologic studies in the region (e.g., determining 

sources of groundwater recharge, surface and groundwater interaction, water-mineral 

exchange, plant source water, etc.).  

To fulfill these objectives, we analyzed correlations between the isotopic 

composition of precipitation from individual events and corresponding 

hydrometeorlogical variables (e.g., temperature, relative humidity, precipitation amount, 

storm duration, etc.) from the same events. Potential moisture source locations and the 

locations where air masses made landfall were also investigated for 30 precipitation 
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events in 2011 and 2012, along with the connectivity between specific landfall locations 

and the isotopic composition of precipitation. Additionally, we created a precipitation 

collection network throughout the Treasure Valley of southwestern Idaho to obtain a 

spatial range of samples for the construction of a LMWL.   

2. Site Description 

The Treasure Valley is located in the western Snake River Plain in southwest 

Idaho. The valley is mostly below 1000 m Mean Sea Level (MSL) in elevation, and is 

bordered by the Boise Front Mountains to the northwest and the Owyhee Mountains to 

the southwest, each with mountain peaks reaching 2400 m MSL. Southwest Idaho is 

classified as a BSk climate by the Köppen Climate Classification System (Henderson-

Sellers and Robinson 1986). The BSk category is associated with semiarid mid-latitude 

climates where potential evaporation exceeds precipitation, and weather is transitional 

between deserts and humid climates. To the west, the Blue Mountains and Cascade 

Range of Oregon significantly affect Pacific Maritime air masses as they move east 

towards the Treasure Valley. As a result of orographic lifting, air masses are considerably 

drier when they arrive in the Treasure Valley from the west and northwest.  

The climate in the region reflects dynamic interactions between contrasting North 

Pacific High and Aleutian Low systems (Bograd et al. 2002). During the winter months, 

the Aleutian Low (positioned in the Gulf of Alaska near the Aleutian Islands) generates 

storms, and migratory low pressure systems move towards the Pacific Northwest coast, 

bringing abundant moisture. During the summer months, the Aleutian Low migrates 

toward the North Pole and diminishes significantly in intensity, and the North Pacific 

High system dominates weather in the region. The North Pacific High results in clear and 
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dry conditions and typically establishes in June and lasts through September. On average, 

the lower elevations of southwest Idaho receive roughly 300 mm of annual precipitation, 

with less than 50 mm falling between June and October (National Weather Service 2012). 

Significantly greater annual precipitation falls in mountains surrounding the Treasure 

Valley due to orographic lift.  

Dry Creek Experimental Watershed (DCEW) is a small research catchment (~28 

km2) in the foothills near Boise, ID. Elevation varies between approximately 1100 m at 

the intersection of Dry Creek and Bogus Basin Road and 2200 m at the headwaters near 

Bogus Basin Ski Area (McNamara et al. 2005). Dry Creek is a perennial stream and a 

tributary of the Boise River. Precipitation in the watershed is winter dominate, with lower 

elevations typically receiving rain while upper elevations receive mostly snow. The 

elevation gradient is associated with a significant orographic effect, with an average 250 

mm increase in mean annual precipitation between 1080 and 1850 m. Similar to the 

seasonality of precipitation in the surrounding valleys of southwest Idaho, the majority of 

precipitation falls between October and June in the higher elevations of DCEW, with 

roughly 8% of the total annual precipitation occurring during the summer months of June, 

July, and August in 2010 and 2011. A more thorough description of the watershed can be 

found by Smith et al. 2011 and Aishlin and McNamara 2011. 

2.1 Methods 

Precipitation was manually collected on an event-scale basis at 10 sites in the 

western Snake River Plain from July 2011 through June 2012 (Figure 5). Additionally, 

precipitation at 4 study sites within DCEW was collected on an event-scale basis between 

September 2008 and June 2012 (Figure 6). Altogether, 393 samples were collected from 
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14 sites using an apparatus consisting of 32 ounce funnels on top of 250 ml opaque 

beakers, with small sections of 8 inch diameter opaque PVC pipe serving as the base. 

Snow was collected from the top of the funnels and from snow-boards. Snow-boards are 

flat 2 ft. x 1 ft. boards with a pipe attached to the center of the board. After each snow 

event, snow is removed from the board and the board is raised to the top of the snowpack 

so additional snow accumulated on top of the board.  

Precipitation collection took place within 24 hours after the conclusion of storm 

events to minimize evaporative enrichment. Additionally, to assess the potential impacts 

of evaporative enrichment on samples, a controlled enrichment experiment was 

performed during the summer of 2012. The evaporation enrichment experiment did not 

show any substantial alterations to the isotopic composition of the sample water (Figure 

7).  

During collection, liquid water samples were transferred and stored in 5 ml vials 

with inverted caps. Solid water samples were sealed in plastic bags and melted in a 

refrigerator. After the solid samples were completely melted, the samples were well 

mixed and transferred into 5 ml vials. All samples were stored at room temperature until 

isotopic analysis was performed  

Stable isotope analysis took place using a Los Gatos Research, Inc. Liquid Water 

Isotope Analyzer (LWIA) in the Stable Isotope Laboratory in the Department of 

Geosciences at Boise State University. The LWIA is a fourth generation cavity enhanced 

adsorption ring-down spectrometer, and allows for the processing of several hundred 

samples per day. Each sample was transferred from 5 ml storage vials to 2 ml vials used 

by the LWIA by using graduated 3 ml large bulb pipets. A new pipet was used for the 
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transfer of every sample to avoid isotope cross-contamination. Our methods are largely 

consistent with previous studies (Goldsmith et al. 2011, Welker 2000) and USGS 

sampling protocol.  

Each sample is measured through 6 injections, and the average and standard 

deviation of the final 4 measurements of the oxygen and hydrogen isotopic composition 

reported for each sample. The first 2 injections are excluded from analysis to minimize 

the possibility of contamination from the previous sample injections. Samples are 

calibrated to the international Vieanna Standard Mean Ocean Water (VSMOW) standard 

using a suite of five reference waters ranging is isotopic composition between -2.96 and   

-19.57 ‰ δ18O, -9.8 and -154.1 ‰ δ2H.  The LWIA is calibrated with these reference 

materials during each sample run allowing for variable operating conditions.   

The isotopic composition of all samples used in this study is displayed in Table 1, 

while Table 2 displays the average isotopic composition, the number of samples, and the 

elevation (MSL) for each site location. Most of sample collection occurred at the 4 

highest elevation sites, which correspond to the 4 study sites in DCEW. The guaranteed 

precision error is 0.2‰ for δ2H and 0.03‰ for δ18O, with a typical precision range of 

0.15‰ for δ2H and 0.02‰ for δ18O.  

2.2 Weather Data and NOAA HYSPLIT Model 

Hydrometeorological data were collected for the 30 largest precipitation events 

from May 2011 through May 2012 at 3 study sites within DCEW that are co-located with 

research-grade weather stations. Hourly hydrometeorological data were collected and 

averaged for the duration of each event. The duration of a continuous storm event was 

considered to be the period of continuous precipitation accumulation, allowing for breaks 
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in hourly precipitation no longer than 12 hours. Storm duration ranged from 5 hours to 72 

hours using this criterion. We used the 12 hour criterion because the obtained durations 

often coincided with when samples were collected, and collection typically occurred after 

precipitation had completely ended and more precipitation was not in the immediate 

forecast. The retrieved hydrometeorological data for each event consisted of surface 

temperature, relative humidity, wind speed, wind direction, storm duration, duration of 

accumulating hours of precipitation, and precipitation amount. These data were collected 

because they are related to the atmospheric processes that are thought to affect the stable 

isotope composition of precipitation (Sjostrom and Welker 2009).  

We used the NOAA HYSPLIT model (Draxler and Rolph 2003) air parcel reverse 

trajectory technique to determine where air masses originate and entered the west coast of 

the United States and Canada for each precipitation event. The HYSPLIT model has been 

used to track the dispersion of aerosols on a regional scale, but can also be used to 

determine water vapor sources (Strong et al. 2007, Breitenbach et al. 2010). The North 

American Mesoscale Model (NAM) 12 km reanalysis dataset (Rogers et al. 2005) was 

used to force the  HYSPLIT model, resulting in the HYSPLIT model using NAM 3-

dimensional wind velocity fields to advance air parcels (either forward or backward in 

time) through the 12 km grid. Additional inputs required to run the model are starting 

time of model run, starting elevation, and vertical motion.  

The starting time of each run was determined by the onset of precipitation at the 

DCEW Treeline weather stations for all 30 events. Starting elevation of the reverse 

trajectory runs were the lifted condensation level (LCL) for each event, which was 

obtained from atmospheric sounding data from the Boise National Weather Service office 
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for the sounding immediately before precipitation onset. Since soundings are only 

performed twice daily (at 00z and 12z), the potential lag time between the sounding and 

the onset of precipitation introduces some uncertainty into the inferred location of the 

LCL.  The model vertical velocity option was used for the vertical motion input, resulting 

in NAM vertical velocities used to simulate vertical motion.  

3. Results and Discussion 

The following section describes the local meteoric water line for the Treasure 

Valley region, along with our analysis of correlations between the stable isotope 

composition of individual precipitation events, hydrometeorological variables, and 

potential precipitation moisture sources. In the first subsection, we discuss variations 

from the GMWL and the local climatic conditions with which these variations are 

associated. The second subsection highlights correlations between hydrometeorological 

variables and the isotopic composition of precipitation, and the significance of these 

correlations. Finally, in the third subsection, we identify the impact of potential moisture 

sources on the isotopic composition of precipitation. 

3.1 Local Meteoric Water Line 

The LMWL for the Treasure Valley of SW Idaho (Figure 8) has a slope of 7.10 

(+/- 0.01) and a y-intercept of -6.3 (+/- 0.2, Equation 3). While the slope is similar to that 

of the GMWL (m = 8.13), the y-intercept of the LMWL is considerably different than the 

GMWL (b = +10.8).  

 

δ
2
H = 7.10*δ

18
O – 6.3               (3) 
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Timing of precipitation collection was categorized into dry-season (June 1st- 

September 30th) and wet-season (October 1st – May 31st), resulting in the LMWL 

comprising 36 dry season and 357 wet season samples. Deviation from the GMWL is a 

result of the semiarid climate of SW Idaho, and is especially pronounced during the dry 

season when secondary evaporation can be significant (Peng et al. 2007).   

Fractionation processes result in a strong seasonal variance in the isotopic 

composition of precipitation, complicating the LMWL of the Treasure Valley (Figure 9). 

Linear regression of dry season precipitation results in a LMWL with slope 6.3 (+/- 0.01) 

and a y-intercept of -17.0 (+/- 0.2, Equation 4), while wet season precipitation results in a 

LMWL with slope 7.5 (+/- 0.01)  and a y-intercept of -0.88 (+/- 0.2, Equation 5).  

 

Dry Season: δ
2
H = 6.3*δ

18
O – 17.0                         (4) 

Wet Season: δ
2
H = 7.5*δ

18
O – 0.88              (5) 

 

The signficant difference in the y-intercept (-16.12) is likely a result of increased 

secondary evaporation processes after precipitation exits a cloud during dry season events 

(Peng et al. 2007). The controlled evaporative enrichment experiment suggests it is 

highly unlikely the variation in the isotopic composition of precipitation during the dry 

season arose through a processes of enrichment after cessation of precipitation and before 

retrieval of samples. This supports the notion that the dry season slope and intercept of 

the LMWL are significantly different from the wet season and that the corresponding 
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values during the dry season arise from secondary evaporation during precipitation 

events.  

We created a seasonally weighted LMWL (Figure 10) due to the seasonality of 

significant precipitation events. On average, 92% of the annual precipitation occurs 

during the wet season at the 3 collection sites in Dry Creek Experimental Watershed. 

Treating all events equal when the amount of summer precipitation is minimal, as was 

done in Figure 4, skews the linear regression towards the evaporatively enriched dry 

season samples. Therefore, we applied 92% weight to the wet season events and 8% 

weight to the dry season events. This method yields a LMWL with slope 7.4 (+/- 0.01) 

and a y-intercept of -2.17 (+/- 0.2, Equation 6), which is closer to the wet season LMWL 

(Equation 5) than the LMWL highlighted in Equation 3. We propose that this LMWL, 

weighted on a precipitation-mass basis, better represents the LMWL for this region and 

should be used when the stable isotopes of water are being used to constrain water mass 

fluxes, storages, and transit time in the region.  

  

δ
2
H = 7.4*δ

18
O – 2.17                             (6) 

 

3.2 Hydrometeorological Controls 

Figure 11 shows the measured δ18O of precipitation, plotted against the average 

temperature at the surface for the duration of individual events. A strong positive 

correlation exists between the two parameters (r = 0.63) that is statistically significant at 

p < 0.05. This reveals information regarding the connectivity between the isotopic 
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composition of precipitation and surface air temperature, and the linkage between surface 

temperature and the dew point temperature. The magnitude of equilibrium fractionation 

between vapor and liquid is a function of the temperature at the point of water vapor 

condensation and is thought to be one of the major controls on the isotopic composition 

of precipitation, along with moisture source history (Dansgaard 1964). Therefore, the 

strong correlation between surface temperature and the isotopic composition of 

precipitation suggests a relationship between surface air temperature and the temperature 

at which water vapor is condensing.  

The correlation between surface temperature and the isotopic composition of 

precipitation is often more pronounced in the Rocky Mountain regions of the United 

States (Welker 2000). This is likely the result of moisture being predominantly from one 

source, the Pacific Ocean, while other regions of the United States receive moisture from 

several major sources (Gulf of Mexico, Pacific Ocean, Atlantic Ocean, coastal 

convection). Figure 12 also displays δ18O of precipitation, plotted against the average 

surface temperature at each study site in DCEW. On visual inspection, little variability in 

the relationship between δ18O and temperature exists between sites, with the most 

noticeable difference being a smaller temperature range at Lower Weather, which is the 

lowest elevation study site.  

A moderate to strong negative correlation (r = -0.57) exists between the measured 

δ
18O of precipitation and the average relative humidity from individual events and is 

statistically significant at p < 0.05 (Figure 13). Five of the six events with the lowest 

average relative humidity occurred during the dry season (June through September), 

which is expected in a semiarid, mid-latitude climate. The five least humid dry season 
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precipitation events were also the most isotopically enriched. Relative humidity is related 

to the seasonality of events in this region since there are distinct wet and dry seasons.  

Secondary evaporation while precipitation is falling from the cloud base to the ground 

results in precipitation that is enriched isotopically relative to the original precipitation 

formed by condensed water vapor. The association between isotopically enriched 

precipitation and low humidity reflects an increased potential evaporation as precipitation 

transits from cloud base to the ground through a large driving vapor pressure deficit 

(Peng et al. 2007).  

Little variability is seen among the three DCEW sample sites in the relationship 

between humidity and δ18O (Figure 14). Interestingly, however, the three lowest humidity 

events occurred at Lower Deer Point and Treeline study sites, the two highest elevation 

sites in DCEW. The fact that there are no precipitation events associated with 

correspondingly low relative humidity at the Lower Weather site, the lowest elevation 

study site, likely reflects the scattered nature of summer convective precipitation and the 

increased secondary evaporation potential due to the greater distance between the cloud 

base and the ground.  

The relationship between measured δ18O of precipitation, precipitation amount, 

and storm intensity is shown in Figures 15-18. The δ18O of precipitation and precipitation 

amount from individual events correlates moderately negatively (r = -0.47), as does the 

δ
18O of precipitation and storm intensity (r = -0.36). Both correlations are statistically 

significant at the 95% confidence interval. The Amount Effect, which is the isotopic 

depletion of precipitation with intense and continual precipitation events (Dansgaard 

1964), potentially contributes to the correlation between δ18O of precipitation and 
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precipitation amount. Higher frequency and longer duration precipitation events tend to 

be associated with increased relative humidity, which decreases potential evaporation 

and, therefore, suppresses kinetic fractionation.  

However, the seasonality of larger volume events is also revealed in this 

correlation and is likely a greater control than the Amount Effect. Of the 25 largest 

precipitation events, 21 of these events occurred during the wet season (Oct – May) and 

the 9 largest precipitation events all occurred during the wet season. The wet season 

events, which are also often larger in magnitude in this region, undergo greater Rayleigh 

distillation, resulting in more isotopically depleted precipitation events. This also 

underscores that, from a watershed water balance perspective, these non-summer 

precipitation events are the most significant, further supporting our proposed seasonal-

weighted LMWL above. The most important meteoric water from a hydrological 

perspective is non-summer precipitation at this location, with summer (dry season) 

precipitation events mostly amount limited.  

There is no significant correlation between the temperature of the LCL for each 

event and the corresponding δ18O of precipitation (r = 0.13, Figure 19). Air mass history 

and the temperature of water vapor condensation are thought to be the two major factors 

controlling the isotopic composition of precipitation (Dansgaard 1964). We only 

determined the temperature of the cloud base (i.e., where water vapor beings to condense 

to liquid water), rather than the average condensation temperature for precipitation 

events, which would likely be a better reflection of the rate of equilibrium fractionation. 

The lack of a correlation between δ18O and the temperature at the LCL suggests that the 

parameter is a poor proxy for the rate of equilibrium fractionation.  
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The amount-weighted isotopic composition of precipitation, plotted against the 

elevation of the collection sites results in a very strong negative correlation (r = -0.98, p < 

0.02, Figure 20). For every 100 m gained in elevation, the average δ18O of precipitation 

decreases by 0.22 ‰. This is consistent with findings from other Altitude effect studies 

outlined by Ambach et al. (1968), with typical δ18O decreases of 0.15 to 0.5 ‰ per 100 

m, and reflects the direct connection between the isotopic composition of precipitation 

and the fractionation processes associated with orographic lift. In complex terrain, the 

isotopic composition of precipitation is highly variable at the event-scale, creating major 

complications for catchment transit time estimation studies. However, at climatological 

time scales, the variability conforms to the Altitude effect, providing some degree of 

predictability at seasonal to annual time-scales. In watersheds characterized by complex 

terrain, therefore, isotopic compositions can be distributed with knowledge of elevation 

and precipitation lapse rates over relevant time scales.  

3.3 Moisture Sources 

Using the NOAA HYSPLIT model, we were able to classify 4 predominant 

moisture sources for the 25 largest precipitation events in Dry Creek Experimental 

Watershed from May 2011 – May 2012. Event moisture tracked coastal over 

Oregon/Northern California for 12 events (Figure 21), while 8 events tracked over 

Southern California (Figure 22) and 3 events tracked over the Washington/Canadian 

coast line (Figure 23). Coastal sources from inland convection were associated with 2 

summer events.  

The average isotopic composition of all events from each moisture track location 

shows 18O of precipitation is enriched from Washington/Canada sources compared to 
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Oregon/N. California and S. California (Figure 24). This was unexpected because 

fractionation during evaporation increases in colder regions as a result of greater 

difference in bonding energies, leaving the subsequent water vapor more depleted 

isotopically than water vapor from warm regions. However, the temperature gradients 

between potential moisture source locations and precipitation events may be more 

important than the moisture source locations themselves, since increased temperature 

gradients result in greater Rayleigh distillation.  

We did not attempt to determine the location of ocean evaporation for the events 

analyzed, but instead located where moisture sources moved coastal for each event. The 

uneven distribution of moisture sources and the seasonality of events make comparative 

analyses problematic, requiring more analyses to draw meaningful conclusions. 

Additionally, the location an air parcel moves coastally does not necessarily equate with 

moisture source. Wind moves counterclockwise towards low pressure centers in the 

Northern Hemisphere. For instance, low pressure systems of sufficiently large size in the 

Gulf of Alaska off the coast of the Pacific Northwest can result in storms that move 

coastal over the Oregon Coast.  

4. Conclusions 

The LMWL of the greater-Boise area is considerably influenced by the semiarid 

climate of southwest Idaho, yielding a slope and y-intercept lower than the GMWL. 

Summer precipitation follows an evaporation enrichment line and is likely a result of the 

occurrence of significant secondary evaporation between the cloud base and the ground. 

Summer precipitation (dry season) events are typically smaller in volume than wet season 

events, with 8% of the total annual precipitation occurring between June 1st – Sept. 31st. 
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Therefore, we developed a seasonally weighted version of the LMWL to account for the 

large variation in precipitation arriving in the wet versus dry seasons. The seasonally 

weighted LMWL yields a slope of 7.4 and a y-intercept of -2.17, which we propose better  

represents the Treasure Valley LMWL than the non-seasonally weighted LMWL (m = 

7.1, b = -6.3), which over-weights low-volume samples that have likely undergone 

secondary evaporation.  

While our research and previous studies have discovered significant correlations 

between hydrometeorlogical variables and the isotopic composition of precipitation 

(Dansgaard 1964, Welker 2000), variations in the isotopic composition of precipitation 

cannot be explained by one variable. The variability is the result of dynamic physical 

processes that control and alter the isotope composition of precipitation (e.g., 

temperature, relative humidity, storm duration, precipitation amount, storm track, 

secondary evaporation, etc.). Additionally, the isotopic composition of precipitation is 

dependent on the sea surface temperature and the relative humidity at the moisture source 

location, along with the amount of rain-out along the storm track following a Rayleigh-

type distillation process (Dansgaard 1964). Further work is needed to better constrain 

moisture sources and, thereby, improve predictability in the isotopic composition of 

precipitation. 

Our research suggests the altitude effect in DCEW is significant, which is in 

agreement with previous studies (Poage and Chamberlain 2001, Dansgaard 1964). Since 

the isotopic composition of precipitation varies spatially, particularly in complex terrain, 

assuming homogeneity is not sufficient for isotope-based tracer studies. This finding has 

significant implications for estimating the distribution of transit times. When determining 
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the input function for transit time distribution estimation in catchments with complex 

terrain, the altitude effect suggests that elevation exerts a strong control on the isotopic 

composition of precipitation. However, this correlation is strongest only at seasonal to 

annual time-scales. 

Additionally, orographic lift enhances the amount of precipitation at higher 

elevations in complex terrain. At the same time, the Altitude effect implies that, on 

average, precipitation is increasingly isotopically depleted at higher elevations. For event-

scale determination of the isotopic input function to a watershed, therefore, we propose 

an approach that combines the relationship between the isotopic composition of 

precipitation with the relationship between precipitation volume and elevation to obtain a 

weighted-average isotopic composition input to the watershed. Over the long term, this 

method will more accurately represent the true spatial contribution of the isotopic 

composition of precipitation to the catchment, and may improve transit time distribution 

estimates. However, event-scale variations from the strong relationship between elevation 

and isotopic composition of precipitation could introduce large uncertainties into 

estimation of travel time distributions when a relatively small number of events are 

considered.    
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Appendix A 

Table 1: Isotopic composition of 393 precipitation samples from various sites in 

the greater-Boise area. 

Site 

 

Collection  

Date 

δ
2
H ‰ 

 

δ
18

O ‰ 

 

Bogus Ridge 1/20/2012 -161.99 -22.17 

Bogus Ridge 1/24/2012 -104.47 -14.14 

Bogus Ridge 1/27/2012 -127.29 -16.61 

Bogus Ridge 2/2/2012 -146.64 -20.54 

Bogus Ridge 2/15/2012 -144.53 -19.95 

Bogus Ridge 2/15/2012 -114.10 -15.77 

Bogus Ridge 3/16/2012 -124.86 -16.42 

Bogus Ridge 3/17/2012 -116.57 -14.57 

Bogus Ridge 3/19/2012 -129.14 -16.94 

Bogus Ridge 3/21/2012 -135.86 -17.46 

Boise State University 12/1/2010 -139.51 -18.61 

Boise State University 12/7/2010 -171.22 -22.72 

Boise State University 12/20/2010 -107.99 -14.43 

Boise State University 12/27/2010 -144.41 -19.84 

Boise State University 12/29/2010 -179.67 -22.93 

Boise State University 1/17/2011 -119.56 -15.13 

Boise State University 1/19/2011 -85.64 -11.78 

Boise State University 1/25/2011 -83.87 -11.59 

Boise State University 2/17/2011 -114.81 -15.63 

Boise State University 3/7/2011 -143.37 -18.55 

Boise State University 3/10/2011 -122.07 -14.27 

Boise State University 3/17/2011 -106.33 -13.51 

Boise State University 3/22/2011 -151.31 -20.39 

Boise State University 3/24/2011 -87.75 -11.64 

Boise State University 3/25/2011 -150.92 -20.11 

Boise State University 3/29/2011 -131.73 -17.63 

Boise State University 3/30/2011 -122.17 -15.44 

Boise State University 4/2/2011 -86.96 -10.86 

Boise State University 4/21/2011 -125.36 -16.81 

Boise State University 4/25/2011 -93.92 -12.02 

Boise State University 4/28/2011 -97.83 -13.04 

Boise State University 5/7/2011 -92.92 -10.93 

Boise State University 5/8/2011 -117.85 -15.38 

Boise State University 5/16/2011 -114.93 -15.06 

Boise State University 5/26/2011 -72.99 -10.74 
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Boise State University 6/3/2011 -54.74 -4.73 

Boise State University 6/30/2011 -75.32 -7.03 

Boise State University 7/14/2011 -74.15 -6.81 

Boise State University 9/16/2011 -25.13 -2.49 

Boise State University 10/6/2011 -94.21 -12.11 

Boise State University 10/6/2011 -106.99 -13.99 

Boise State University 10/11/2011 -140.67 -17.60 

Boise State University 10/11/2011 -143.68 -18.46 

Boise State University 10/17/2011 -98.82 -12.99 

Capital High School 10/5/2011 -56.54 -8.14 

Capital High School 11/18/2011 -80.77 -10.77 

Capital High School 1/18/2012 -135.91 -18.03 

Capital High School 1/19/2012 -130.97 -16.19 

Capital High School 1/24/2012 -123.73 -16.63 

Capital High School 1/26/2012 -94.79 -12.10 

Crimson Point 
Elementary 11/18/2011 -78.83 -10.54 

Crimson Point 
Elementary 1/18/2012 -197.06 -25.49 

Crimson Point 
Elementary 1/18/2012 -204.24 -26.48 

Da Vinci Charter 2/2/2012 -98.69 -11.99 

Da Vinci Charter 3/19/2012 -120.83 -15.07 

Euclid 9/15/2011 -20.98 -1.14 

Euclid 10/5/2011 -77.66 -9.97 

Euclid 10/11/2011 -148.00 -18.70 

Euclid 10/17/2011 -99.10 -13.03 

Euclid 1/19/2012 -152.71 -20.78 

Euclid 1/26/2012 -115.69 -15.89 

Euclid 3/17/2012 -108.10 -13.61 

Euclid 3/19/2012 -115.59 -14.73 

Euclid 4/26/2012 -112.20 -14.52 

Euclid 5/1/2012 -59.15 -6.53 

Lower Deer Point 10/14/2009 -131.86 -15.51 

Lower Deer Point 10/14/2009 -169.81 -22.20 

Lower Deer Point 10/15/2009 -79.78 -9.97 

Lower Deer Point 10/15/2009 -63.46 -9.41 

Lower Deer Point 10/15/2009 -54.69 -7.64 

Lower Deer Point 10/19/2009 -88.57 -12.64 

Lower Deer Point 10/24/2009 -110.78 -15.09 

Lower Deer Point 10/30/2009 -88.63 -12.83 

Lower Deer Point 11/7/2009 -71.76 -10.56 
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Lower Deer Point 11/13/2009 -150.39 -19.06 

Lower Deer Point 1/13/2010 -84.22 -11.37 

Lower Deer Point 1/20/2010 -131.73 -15.63 

Lower Deer Point 1/20/2010 -136.24 -17.27 

Lower Deer Point 3/29/2010 -118.34 -15.84 

Lower Deer Point 4/2/2010 -108.70 -14.57 

Lower Deer Point 4/15/2010 -125.44 -16.64 

Lower Deer Point 4/20/2010 -114.25 -15.17 

Lower Deer Point 4/21/2010 -110.42 -15.23 

Lower Deer Point 4/24/2010 -99.68 -12.43 

Lower Deer Point 5/7/2010 -101.36 -13.34 

Lower Deer Point 5/12/2010 -106.79 -14.07 

Lower Deer Point 5/19/2010 -103.61 -14.79 

Lower Deer Point 5/25/2010 -104.54 -14.23 

Lower Deer Point 5/28/2010 -100.80 -14.14 

Lower Deer Point 6/5/2010 -113.98 -15.20 

Lower Deer Point 6/7/2010 -110.87 -14.41 

Lower Deer Point 6/11/2010 -61.63 -8.36 

Lower Deer Point 6/21/2010 -71.25 -9.80 

Lower Deer Point 10/25/2010 -134.04 -18.47 

Lower Deer Point 10/27/2010 -79.52 -12.34 

Lower Deer Point 11/1/2010 -94.02 -13.84 

Lower Deer Point 11/8/2010 -126.88 -18.55 

Lower Deer Point 11/11/2010 -104.91 -15.20 

Lower Deer Point 11/15/2010 -98.53 -13.64 

Lower Deer Point 12/7/2010 -130.12 -16.84 

Lower Deer Point 1/17/2011 -148.73 -19.91 

Lower Deer Point 5/7/2011 -130.28 -17.78 

Lower Deer Point 5/16/2011 -129.08 -17.58 

Lower Deer Point 5/19/2011 -112.96 -15.15 

Lower Deer Point 5/26/2011 -83.75 -12.47 

Lower Deer Point 5/27/2011 -115.98 -16.06 

Lower Deer Point 6/7/2011 -100.52 -13.74 

Lower Deer Point 6/9/2011 -103.45 -14.71 

Lower Deer Point 6/29/2011 -84.00 -9.91 

Lower Deer Point 6/30/2011 -99.43 -12.31 

Lower Deer Point 9/11/2011 -70.64 -10.18 

Lower Deer Point 9/15/2011 -39.23 -3.19 

Lower Deer Point 9/16/2011 -52.59 -7.71 

Lower Deer Point 10/5/2011 -93.89 -13.54 

Lower Deer Point 10/7/2011 -167.90 -22.76 
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Lower Deer Point 10/17/2011 -119.80 -16.48 

Lower Deer Point 11/5/2011 -112.21 -16.53 

Lower Deer Point 11/13/2011 -85.62 -13.04 

Lower Deer Point 11/22/2011 -167.41 -23.48 

Lower Deer Point 12/27/2011 -101.51 -13.63 

Lower Deer Point 12/31/2011 -100.36 -13.87 

Lower Deer Point 1/20/2012 -157.65 -21.76 

Lower Deer Point 1/22/2012 -100.55 -14.33 

Lower Deer Point 1/24/2012 -158.73 -21.37 

Lower Deer Point 1/27/2012 -104.95 -12.95 

Lower Deer Point 2/3/2012 -135.99 -18.44 

Lower Deer Point 2/15/2012 -133.19 -18.27 

Lower Deer Point 3/18/2012 -130.16 -17.56 

Lower Deer Point 3/19/2012 -124.73 -16.08 

Lower Deer Point 3/21/2012 -122.04 -15.74 

Lower Deer Point 3/27/2012 -96.29 -13.33 

Lower Deer Point 3/28/2012 -113.09 -15.05 

Lower Deer Point 4/19/2012 -105.75 -14.54 

Lower Deer Point 4/26/2012 -121.82 -16.58 

Lower Deer Point 4/27/2012 -110.39 -12.88 

Lower Deer Point 5/1/2012 -75.86 -11.09 

Lower Deer Point 5/5/2012 -92.18 -13.09 

Lower Deer Point 5/23/2012 -66.86 -9.86 

Lower Weather 10/6/2009 -137.96 -19.20 

Lower Weather 10/19/2009 -71.19 -9.59 

Lower Weather 10/19/2009 -70.80 -9.69 

Lower Weather 10/24/2009 -83.97 -10.63 

Lower Weather 10/24/2009 -85.12 -10.81 

Lower Weather 10/30/2009 -93.39 -12.69 

Lower Weather 11/7/2009 -53.15 -7.15 

Lower Weather 11/13/2009 -140.93 -18.66 

Lower Weather 11/13/2009 -140.82 -18.65 

Lower Weather 1/7/2010 -112.83 -15.65 

Lower Weather 1/25/2010 -140.90 -17.87 

Lower Weather 1/27/2010 -133.85 -18.10 

Lower Weather 2/1/2010 -179.15 -23.77 

Lower Weather 2/10/2010 -127.65 -15.35 

Lower Weather 2/17/2010 -75.34 -9.42 

Lower Weather 2/24/2010 -164.83 -20.85 

Lower Weather 2/28/2010 -110.39 -12.95 

Lower Weather 3/5/2010 -100.24 -12.65 
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Lower Weather 3/9/2010 -96.81 -12.79 

Lower Weather 3/15/2010 -118.51 -14.75 

Lower Weather 3/26/2010 -84.71 -11.51 

Lower Weather 4/2/2010 -80.13 -9.93 

Lower Weather 4/3/2010 -125.32 -15.95 

Lower Weather 4/13/2010 -98.57 -12.35 

Lower Weather 4/21/2010 -75.81 -10.54 

Lower Weather 4/30/2010 -114.87 -14.96 

Lower Weather 5/7/2010 -80.88 -10.71 

Lower Weather 5/12/2010 -102.44 -13.79 

Lower Weather 5/19/2010 -72.61 -10.22 

Lower Weather 5/24/2010 -117.97 -16.04 

Lower Weather 5/30/2010 -91.87 -12.27 

Lower Weather 6/1/2010 -70.63 -6.94 

Lower Weather 6/5/2010 -100.12 -12.39 

Lower Weather 6/11/2010 -43.32 -4.75 

Lower Weather 6/21/2010 -49.32 -5.72 

Lower Weather 10/25/2010 -127.30 -16.33 

Lower Weather 10/27/2010 -72.94 -11.43 

Lower Weather 11/1/2010 -74.22 -10.22 

Lower Weather 11/8/2010 -109.63 -15.45 

Lower Weather 11/15/2010 -83.27 -11.35 

Lower Weather 12/7/2010 -144.44 -19.59 

Lower Weather 12/7/2010 -144.93 -19.80 

Lower Weather 12/13/2010 -70.60 -10.24 

Lower Weather 12/15/2010 -129.92 -17.20 

Lower Weather 12/27/2010 -133.90 -17.96 

Lower Weather 12/29/2010 -177.12 -23.35 

Lower Weather 1/17/2011 -123.45 -16.19 

Lower Weather 1/25/2011 -91.66 -12.80 

Lower Weather 3/8/2011 -149.49 -19.30 

Lower Weather 3/11/2011 -105.21 -13.89 

Lower Weather 3/14/2011 -87.44 -10.61 

Lower Weather 3/17/2011 -111.05 -14.41 

Lower Weather 3/22/2011 -134.18 -18.17 

Lower Weather 3/25/2011 -120.80 -16.53 

Lower Weather 3/31/2011 -130.90 -17.19 

Lower Weather 4/2/2011 -92.92 -12.85 

Lower Weather 4/5/2011 -72.83 -9.86 

Lower Weather 4/17/2011 -139.78 -18.84 

Lower Weather 4/22/2011 -105.00 -13.25 
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Lower Weather 4/26/2011 -98.00 -13.25 

Lower Weather 4/30/2011 -95.71 -12.79 

Lower Weather 5/7/2011 -102.03 -12.75 

Lower Weather 5/8/2011 -129.92 -17.19 

Lower Weather 5/16/2011 -124.06 -16.73 

Lower Weather 5/19/2011 -94.55 -12.79 

Lower Weather 5/27/2011 -94.26 -12.72 

Lower Weather 6/2/2011 -121.64 -16.51 

Lower Weather 6/7/2011 -80.33 -11.14 

Lower Weather 6/9/2011 -86.11 -12.09 

Lower Weather 6/29/2011 -72.75 -7.23 

Lower Weather 6/30/2011 -80.71 -7.52 

Lower Weather 9/16/2011 -39.06 -5.04 

Lower Weather 10/5/2011 -82.01 -11.21 

Lower Weather 10/7/2011 -152.86 -20.46 

Lower Weather 10/11/2011 -142.84 -18.32 

Lower Weather 10/17/2011 -110.68 -14.79 

Lower Weather 11/5/2011 -109.63 -15.77 

Lower Weather 11/22/2011 -126.83 -17.34 

Lower Weather 12/29/2011 -107.10 -13.51 

Lower Weather 12/31/2011 -84.29 -11.25 

Lower Weather 1/20/2012 -148.88 -20.26 

Lower Weather 1/24/2012 -127.75 -16.59 

Lower Weather 1/27/2012 -98.91 -12.08 

Lower Weather 2/2/2012 -147.88 -20.16 

Lower Weather 2/15/2012 -103.93 -13.98 

Lower Weather 2/27/2012 -93.24 -11.83 

Lower Weather 3/16/2012 -112.53 -14.88 

Lower Weather 3/18/2012 -119.65 -15.35 

Lower Weather 3/19/2012 -125.82 -16.58 

Lower Weather 3/21/2012 -118.51 -15.00 

Lower Weather 3/26/2012 -84.20 -12.35 

Lower Weather 3/28/2012 -113.94 -15.27 

Lower Weather 4/19/2012 -83.53 -10.24 

Lower Weather 4/26/2012 -117.88 -15.34 

Lower Weather 4/27/2012 -116.91 -15.37 

Lower Weather 5/1/2012 -62.70 -7.50 

Lower Weather 5/5/2012 -93.44 -12.75 

Lower Weather 5/23/2012 -60.59 -7.86 

Mountain View High 
School 10/12/2011 -99.45 -12.99 
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Mountain View High 
School 10/17/2011 -100.75 -13.27 

Mountain View High 
School 11/5/2011 -105.76 -14.56 

Mountain View High 
School 1/18/2012 -118.29 -14.78 

Mountain View High 
School 1/18/2012 -210.55 -27.27 

Mountain View High 
School 1/20/2012 -145.77 -18.58 

Mountain View High 
School 2/1/2012 -112.29 -14.49 

Mountain View High 
School 2/25/2012 -94.59 -12.70 

Mountain View High 
School 3/16/2012 -103.61 -12.44 

Taft Elementary 10/5/2011 -119.85 -15.31 

Taft Elementary 10/11/2011 -148.70 -18.49 

Taft Elementary 1/9/2012 -132.58 -16.47 

Taft Elementary 1/18/2012 -182.10 -23.42 

Taft Elementary 1/19/2012 -132.65 -16.90 

Taft Elementary 1/23/2012 -129.14 -17.11 

Taft Elementary 1/26/2012 -114.54 -14.75 

Taft Elementary 2/1/2012 -93.20 -11.82 

Taft Elementary 3/15/2012 -112.91 -13.66 

Taft Elementary 3/21/2012 -110.87 -13.85 

Taft Elementary 4/16/2012 -52.54 -6.13 

Taft Elementary 4/17/2012 -77.13 -9.53 

Taft Elementary 4/19/2012 -99.73 -11.98 

Taft Elementary 4/27/2012 -122.40 -16.10 

Taft Elementary 4/27/2012 -115.08 -14.84 

Taft Elementary 4/30/2012 -64.33 -7.06 

Taft Elementary 5/3/2012 -72.05 -7.91 

Taft Elementary 5/4/2012 -98.99 -13.40 

Treeline 10/6/2009 -153.53 -21.27 

Treeline 10/14/2009 -144.21 -18.35 

Treeline 10/15/2009 -58.80 -8.64 

Treeline 10/19/2009 -84.25 -12.38 

Treeline 10/24/2009 -105.49 -14.32 

Treeline 10/30/2009 -90.29 -12.75 

Treeline 11/7/2009 -66.66 -10.15 

Treeline 11/13/2009 -149.07 -19.81 

Treeline 1/20/2010 -128.18 -16.56 
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Treeline 1/25/2010 -150.96 -19.74 

Treeline 1/27/2010 -151.14 -19.94 

Treeline 1/30/2010 -149.72 -19.49 

Treeline 2/10/2010 -147.14 -19.07 

Treeline 2/17/2010 -135.56 -17.26 

Treeline 3/5/2010 -140.51 -18.14 

Treeline 3/9/2010 -134.86 -17.56 

Treeline 3/12/2010 -121.95 -15.72 

Treeline 3/26/2010 -63.32 -7.82 

Treeline 3/29/2010 -102.06 -13.27 

Treeline 4/2/2010 -75.07 -10.13 

Treeline 4/7/2010 -100.01 -12.89 

Treeline 4/13/2010 -107.13 -13.81 

Treeline 4/14/2010 -109.23 -14.24 

Treeline 4/21/2010 -91.98 -12.59 

Treeline 4/24/2010 -84.54 -11.06 

Treeline 4/24/2010 -84.05 -11.09 

Treeline 4/30/2010 -107.65 -13.85 

Treeline 5/7/2010 -110.79 -15.48 

Treeline 5/12/2010 -109.57 -15.50 

Treeline 5/19/2010 -96.41 -13.25 

Treeline 5/24/2010 -104.49 -14.64 

Treeline 5/28/2010 -96.57 -13.40 

Treeline 5/30/2010 -106.00 -14.45 

Treeline 6/1/2010 -84.04 -10.50 

Treeline 6/7/2010 -108.24 -13.69 

Treeline 6/11/2010 -50.36 -6.43 

Treeline 6/21/2010 -68.52 -9.61 

Treeline 10/25/2010 -130.23 -17.48 

Treeline 10/27/2010 -71.62 -11.79 

Treeline 11/1/2010 -86.33 -12.58 

Treeline 11/8/2010 -123.23 -17.59 

Treeline 11/11/2010 -95.71 -13.97 

Treeline 11/15/2010 -95.66 -13.10 

Treeline 12/7/2010 -139.72 -19.34 

Treeline 12/9/2010 -123.57 -16.85 

Treeline 12/9/2010 -147.10 -20.60 

Treeline 12/13/2010 -85.83 -12.44 

Treeline 12/13/2010 -126.81 -17.85 

Treeline 12/15/2010 -139.07 -19.26 

Treeline 12/15/2010 -140.31 -19.15 
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Treeline 12/16/2010 -133.99 -18.13 

Treeline 12/27/2010 -148.37 -19.72 

Treeline 1/17/2011 -131.84 -17.99 

Treeline 1/17/2011 -150.31 -20.20 

Treeline 1/20/2011 -108.85 -15.01 

Treeline 1/20/2011 -142.84 -19.07 

Treeline 1/28/2011 -106.81 -14.82 

Treeline 1/28/2011 -117.58 -14.66 

Treeline 3/3/2011 -120.03 -15.63 

Treeline 3/8/2011 -118.47 -15.81 

Treeline 3/11/2011 -115.21 -15.10 

Treeline 3/14/2011 -96.02 -13.04 

Treeline 3/14/2011 -113.29 -15.09 

Treeline 3/18/2011 -118.22 -16.03 

Treeline 3/18/2011 -103.48 -14.28 

Treeline 3/22/2011 -127.94 -17.13 

Treeline 3/22/2011 -129.47 -17.22 

Treeline 3/25/2011 -110.44 -15.64 

Treeline 3/31/2011 -138.09 -18.18 

Treeline 4/5/2011 -87.93 -12.73 

Treeline 4/17/2011 -153.13 -21.14 

Treeline 4/22/2011 -121.42 -15.77 

Treeline 4/23/2011 -123.92 -16.63 

Treeline 4/27/2011 -97.69 -13.78 

Treeline 4/30/2011 -110.82 -14.82 

Treeline 5/7/2011 -115.87 -15.16 

Treeline 5/8/2011 -145.33 -19.78 

Treeline 5/16/2011 -130.25 -17.52 

Treeline 5/19/2011 -102.32 -13.66 

Treeline 5/26/2011 -103.36 -14.79 

Treeline 5/27/2011 -106.05 -14.69 

Treeline 6/7/2011 -97.07 -13.46 

Treeline 6/9/2011 -101.57 -14.57 

Treeline 6/29/2011 -70.04 -7.41 

Treeline 6/30/2011 -98.41 -11.59 

Treeline 9/11/2011 -49.55 -6.37 

Treeline 9/16/2011 -50.01 -7.07 

Treeline 10/5/2011 -90.35 -12.50 

Treeline 10/7/2011 -168.45 -22.60 

Treeline 10/11/2011 -148.06 -19.60 

Treeline 10/17/2011 -118.70 -16.34 
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Treeline 11/5/2011 -119.80 -15.98 

Treeline 11/13/2011 -90.84 -13.99 

Treeline 11/22/2011 -154.88 -21.78 

Treeline 12/29/2011 -117.55 -15.73 

Treeline 1/20/2012 -166.60 -22.57 

Treeline 1/24/2012 -112.34 -15.87 

Treeline 1/27/2012 -114.21 -14.99 

Treeline 2/15/2012 -129.26 -17.70 

Treeline 2/27/2012 -92.72 -12.69 

Treeline 3/16/2012 -113.38 -15.55 

Treeline 3/18/2012 -123.60 -16.27 

Treeline 3/19/2012 -128.51 -16.10 

Treeline 3/21/2012 -127.57 -16.82 

Treeline 3/21/2012 -125.86 -16.42 

Treeline 3/27/2012 -89.13 -12.89 

Treeline 3/27/2012 -93.26 -13.27 

Treeline 3/28/2012 -121.26 -15.89 

Treeline 4/19/2012 -99.01 -13.60 

Treeline 4/26/2012 -141.65 -19.15 

Treeline 4/27/2012 -121.38 -16.53 

Treeline 5/1/2012 -75.04 -10.38 

Treeline 5/5/2012 -91.21 -12.56 

Treeline 5/23/2012 -68.35 -9.78 

Washington 
Elementary 11/18/2011 -76.32 -9.35 

Washington 
Elementary 11/22/2011 -97.99 -12.68 

Washington 
Elementary 12/28/2011 -111.00 -13.46 

Washington 
Elementary 12/30/2011 -56.60 -6.46 

Washington 
Elementary 1/18/2012 -184.08 -23.99 

Washington 
Elementary 1/20/2012 -157.24 -19.91 

Washington 
Elementary 1/22/2012 -133.75 -16.76 

Washington 
Elementary 1/24/2012 -113.13 -15.02 

Washington 
Elementary 1/30/2012 -94.42 -11.65 

Washington 
Elementary 2/21/2012 -102.79 -13.32 
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Washington 
Elementary 3/6/2012 -111.08 -14.68 

Washington 
Elementary 3/14/2012 -123.41 -15.78 

Washington 
Elementary 3/19/2012 -113.26 -14.55 

Washington 
Elementary 4/15/2012 -122.18 -15.73 

Washington 
Elementary 4/17/2012 -93.90 -11.99 

Washington 
Elementary 4/27/2012 -145.22 -18.86 

 

Table 2: Average isotopic composition of precipitation from all sites. 

Site Average δ
2
H 

‰ 

Average δ
18

O 

‰ 

# of samples 

(n) 

Elevation 

(m) 

Bogus Ridge 

(only snow) 

-130.54 -17.46 34 2114 

Lower Deer 

Point 

-107.55 -14.56 73 1850 

Treeline -112.43 -15.19 114 1610 

Lower 

Weather 

-105.56 -13.88 98 1151 

Boise State 

University 

-111.14 -14.27 34 823 

Euclid -100.92 -12.89 10 820 

Capital High 

School 

-103.79 -13.64 6 814 

Crimson Point 

Elementary 

-160.04 -20.83 3 792 

Da Vinci 

Charter 

-109.76 -13.53 2 804 

Mountain View -121.23 -15.68 9 762 

Washington 

Elementary 

-114.77 -14.64 16 829 

Taft 

Elementary 

-108.60 -13.66 17 830 
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Table 3: Seasonal Variations of greater-Boise LMWL. 

Dataset  Slope (m) Y-Intercept (b) Correlation 

Coefficient (r
2
) 

# of Samples 

(n) 

Winter 
Precipitation 
(Oct. – May) 

7.5 -0.88 0.96 357 

Summer 
Precipitation 
(June – Sep.) 

6.3 -17.0 0.90          36 

All 
Precipitation 

7.1 -6.3 0.96 393 

 

 

 

Figure 1: The Global Meteoric Water Line, as refined by Rozanski et al. (1992) 
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Figure 2: The Continental effect: Precipitation becomes more isotopically 

depleted the farther away air masses are from the original moisture source (Coplen 

et al. 2000, Hoefs 2009).  

 

 

  



Figure 3: Conceptual model depicting the problems with transit time estimation 
using stable isotope composition of precipitation as environmental tracers.

 

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

May-11

δ
1

8
O

 (
‰

) 

 

 

 

 

 

 

 

 

 

 

 

 

Conceptual model depicting the problems with transit time estimation 
composition of precipitation as environmental tracers.
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Conceptual model depicting the problems with transit time estimation 
composition of precipitation as environmental tracers. 
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Figure 4: Variability in isotopic composition of precipitation in the Lookout 

Creek Watershed within western Oregon (McGuire & McDonnell 2006). 
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Figure 5: Greater-Boise precipitation collection sites comprising the LMWL. 
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Figure 6: Dry Creek Experimental Watershed near Boise, ID. 
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Figure 7: Evaporation enrichment experiment at 2 study sites in DCEW, 

performed from July 25-27th 2012. The δ
18

O composition of the sample was 

enriched by less than 0.7 per mil after 50 hours. Maximum temperature at Lower 

Weather exceeded 90°F each day, and exceeded 80°F each day at Lower Deer Point 
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Figure 8: Local Meteoric Water Line for the Greater-Boise Area, events have 

equal weight. 
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Figure 9: Variations in the LMWL depending on seasonality of precipitation. 

Dry Season (June – Sept) events follow an evaporation enrichment line. 
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Figure 10: Seasonally weighted local meteoric water line based on occurrence of 

total annual precipitation percentages during dry season vs. wet season. 
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Figure 11: Relationship between δ
18

O of precipitation and average surface 

temperature (C) for each precipitation event. 
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Figure 12: Relationship between δ
18

O of precipitation and average surface 
temperature for each precipitation event at each collection site. 
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Figure 13: Relationship between δ
18

O of precipitation and average relative 

humidity for each precipitation event. 
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Figure 14: Relationship between δ
18

O of precipitation and average relative 

humidity for each precipitation event at each collection site. 
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Figure 15: Relationship between δ
18

O of precipitation and total precipitation 

amount (mm) for each precipitation event. 
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Figure 16: Relationship between δ
18

O of precipitation and total precipitation 

amount (mm) for each precipitation event at each collection site. 
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Figure 17: Relationship between δ
18

O of precipitation and precipitation intensity 

(mm/hour) for each precipitation event. 
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Figure 18: Relationship between δ
18

O of precipitation and precipitation intensity 

(mm/hour) for each precipitation event at each collection site. 
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Figure 19: Relationship between δ
18

O of precipitation and lifted condensation 

level temperature (K) for each precipitation event. 
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Figure 20: Relationship between the average δ
18

O of precipitation and collection 

site elevation (m) for each precipitation event (May 2011 – May 2012). The Altitude 

effect results in an average δ
18

O depletion of 0.22‰ /100m in Dry Creek 

Experimental Watershed. Error bars represent standard error of isotopic 

composition of precipitation at each collection site.  
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Figure 21: Precipitation events moving coastal over Oregon and Northern 
California based on NOAA HYSPLIT reverse trajectory analysis. 
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Figure 22: Precipitation events moving coastal over Southern California based 

on NOAA HYSPLIT reverse trajectory analysis. 
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Figure 23: Precipitation events moving coastal over Canada and Washington 

based on NOAA HYSPLIT reverse trajectory analysis. 
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Figure 24: Box plots of δ
18

O of precipitation from different potential moisture 

sources determined by NOAA HYSPLIT model. 
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CHAPTER TWO: THE ROLE OF SNOW IN CONTROLLING THE ISOTOPIC INPUT 

FUNCTION TO WATERSHEDS  

1. Introduction 

The input signal for transit time estimation studies is further complicated in snow-

dominated catchments. Individual snow events have distinct isotopic compositions, 

which in large part controls the isotopic composition of the entire snowpack. However, 

the evolution of a snowpack changes the isotopic composition of each layer and the entire 

snow profile (Cooper et al. 1991). Dissimilar to rain events, snowmelt does not enter the 

catchment in the same chronological order in which the snow falls, which is commonly 

assumed in transit time estimation studies. During periods of snowmelt, isotopic 

fractionation related to the phase change between solid and liquid phases of water can 

result in melt-water with a depleted isotopic composition relative the remaining 

snowpack (Kendall and McDonnell 1998). The fractionation associated with melt leaves 

the remaining snowpack isotopically enriched and typically results in a gradual isotopic 

enrichment of snowmelt through the melt season (Mast et al. 1995). 

Additionally, pre-melt fractionation also occurs and these processes are not 

inconsequential (Kendall and McDonnell 1998). Sublimation, the direct transfer of the 

solid to vapor phase of water, results in a snowpack with an enriched isotopic 

composition compared to the sublimated water vapor (Neumann et al. 2008). Vapor 

within the snowpack can exchange with soil water and moisture in the atmosphere, which 
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can alter the isotopic composition of the snowpack and tends to dilute the unique signals 

from individual snow events (Cooper et al. 1991). These processes, in addition to the 

fractionation associated with snowmelt, result in significant temporal and spatial 

variations of the isotopic composition of seasonal snowpacks. The true hydrological 

isotopic input to the catchment system is the isotopic composition of melting snow and 

ice through the duration of the melt season.  

2. Methods and Objectives 

In this study, we investigate the issue of snowpack complications in the input 

characterization problem by examining the spatial variation of the isotopic composition 

of snow. We collected snow in DCEW at the Treeline study site. The Treeline study site 

is a small micro-catchment that drains approximately 0.02 km2 , and typically has snow 

cover from December – March. The elevation of the study site is 1610 m, and all 

hillslope aspects are represented in the northwest to southeast trending catchment. The 

combination of a consistent snowpack and slopes representing all aspects make the 

Treeline study site a suitable location for our snow-based investigation. The data in this 

section are from two separate snow sampling campaigns both completed at the Treeline 

study site in DCEW.  

During the first sampling campaign, snow samples were collected at 2 cm 

increments through the entirety of snow pit profiles (vertical direction) at 3 separate 

locations near the Treeline study site. Pit 1 was on the top of ridge trending from the 

northwest to southeast, leaving it exposed to all directions. Pit 2 was on a slope with a 

southwest-facing aspect and pit 3 was on a slope with an easterly aspect. All 3 pits were 

within 150 meters of each other. The sampling campaign was performed on January 27 
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2012, approximately 7 days after a large mixed rain-snow event that delivered <10 cm of 

liquid water equivalent to the Treeline weather station.  

The second snow sampling campaign consisted of the collection of bulk snow 

core samples at the Treeline study site on an individual hillslope. Bulk snow core samples 

were collected with a federal sampler in a “star pattern” on the hillslope. The star pattern 

was associated with transects in the up/down-slope, cross-slope, and diagonal directions 

(Figures 25 and 26). The star sampling technique resulted in four separate 16 meter 

transects. Snow core samples were collected every meter along each transect, resulting in 

64 total samples covering an area of approximately 256 m2. Additionally, snow depth 

was measured for all 64 samples.  

For both snow sampling campaigns, all snow samples were stored in zip lock 

plastic bags and allowed to completely melt in a refrigerator. After samples were 

completely melted, they were well mixed and transferred to 5 ml glass vials in 

preparation for isotopic analysis on the LWIA in the Stable Isotope Laboratory at Boise 

State University.  

3. Results and Discussion 

Figures 27 and 28 display the isotopic composition of snow samples (δ18O and 

δ
2H, respectively) plotted against the depth of collection from 3 snow pits at the Treeline 

study site. Pit 1, which was on a ridge top and the most exposed location to wind and 

solar radiation, is more isotopically enriched from the top of the snowpack to 10 cm from 

the ground surface. Furthermore, the depth of snow at pit 1 was less than 35 cm while the 

other 2 pits were greater than 40 cm. Mass losses likely occurred at this location through 

sublimation, melt, or wind scour. Sublimation and melt processes result in an isotopic 
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enrichment of the remaining snow. The extreme isotopic depletion towards the bottom of 

the snowpack at pit 1 could be the result of several successive melt-freeze cycles, with 

depleted water isotopes preferentially melting in the upper layers of the snowpack and 

subsequently refreezing near the ground surface.  

All 3 pits display a trend of a more enriched isotopic composition towards the top 

of the snowpack. Other studies have observed the same trend (Rodhe 1987, Sommerfeld 

et al. 1991), which can result from evaporative loss of depleted isotopes through 

sublimation, leaving the remaining snow isotopically enriched. The precipitation event 

that created the snowpack for this study was a wet snow, and transitioned to rain near the 

end of the event. The observed enrichment trend towards the top of the snowpack in all 3 

pits could also be a product of intra-storm evolution, since rain is typically more enriched 

relative to snow from the same event due to the increased temperature. Increased 

temperature results in less equilibrium fractionation during condensation (Dansgaard 

1964), and the resulting raindrops have greater potential for kinetic fractionation through 

evaporative enrichment during decent  (Mast et al. 1995). 

Figure 28 displays the LMWL for the Treasure Valley area along with the 

isotopic composition of each sample from all 3 snow pits and the isotopic composition of 

the bulk precipitation sample (rain and snow) that created the snowpack. There is an 

observable systematic difference between pits 1 and 2 and pit 3. All samples from pit 3 

plot above the LMWL, along with the bulk precipitation sample. Conversely, all samples 

from pits 1 and 2 plot below the LMWL.  

Pits 1 and 2 were on slopes with south to southwest facing aspects and pit 3 was 

on an easterly facing aspect. The south to southwest aspect receives more solar radiation 
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and is exposed to the predominant wind direction (west) at this location. These 

correlating factors potentially increase the likelihood of sublimation at pits 1 and 2 

relative to pit 3. Since the bulk precipitation sample plots near the line of samples from 

pit 3, it is plausible that fractionation associated with sublimation changed the 

composition of pits 1 and 2. Evaporative losses through sublimation results in an 

enrichment trend of both δ18O and δ2H (Sokratov and Golubev 2009), which could 

partially explain the difference between pits 1 and 2 and that at pit 3. However, the most 

isotopically depleted samples were also from pits 1 and 2, suggesting an additional 

fractionation process. The additional process could be the result of the snowpack melting 

and refreezing, creating a snowpack with a wider range of isotopic values, including 

more depleted isotopic values than the original snowpack composition. 

The δ18O of each bulk snow sample from the star sampling campaign is displayed 

in Figure 30. The δ18O varied between -16 and -19 ‰, with a mean composition of -17.6 

‰. This is a substantial isotopic variation considering the spatial resolution of the 

sampling campaign (256 m2) and is greater than the variation of the annual δ18O of Dry 

Creek stream water. The y-transect variation appears to become more isotopically 

depleted in the downslope direction. The average δ18O of the upper 8 y-direction samples 

is -17.53 ‰ (+/- 0.1) while the average lower 8 y-direction samples is -18.06 ‰ (+/- 0.1). 

Figure 31 displays the relationship between the δ18O of bulk snow samples, and the y-

transect location of each sample. Although data points are limited, linear regression 

results in a moderate to strong correlation (r = 0.57, p < 0.05).  

The y-direction downslope isotopic depletion trend is not controlled by snow 

depth because δ18O vs. depth (Figure 32) displays no correlation (r = 0.02).  A possible 
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explanation for the isotopic depletion in the downslope direction is the lateral 

redistribution of melt-water. Recent studies have suggested the lateral redistribution of 

snowmelt can be significant throughout the winter (Eiriksson et al. 2013). Since the more 

depleted isotopes (16O and 1H) melt first, the remaining snowpack becomes isotopically 

enriched. If the melt-water is redistributed by lateral flow in the downslope direction and 

refreezes, the downslope snow would become isotopically depleted relative to the 

upslope snow. Further investigations and statistical analysis needs to be performed (e.g., 

longer y-direction transect, sample multiple locations, subsample dataset during analysis) 

to test the robustness of these conclusions.  

4. Conclusions 

Fractionation processes that control and change the isotopic composition of snow 

are complex, making it unlikely the isotopic composition of snowmelt will resemble the 

order in which the snowpack was created. The complication of the input signal in snow-

dominated catchments is problematic for transit time estimation studies, especially when 

the input is considered to be the raw isotopic composition of precipitation data. Areas of 

catchments that receive high winds are likely to have increased sublimation rates. As a 

result, snow at higher elevations as well as ridges and sparsely vegetated regions (where 

wind speeds are presumably stronger) may undergo more sublimation than snow in lower 

elevation and more sheltered regions. Snowpacks in areas with enhanced sublimation 

could be expected to be isotopically enriched, all else being equal. In contrast to the 

Altitude effect, which predicts isotopic depletion of precipitation with increasing altitude, 

the interaction of processes that would tend to isotopically enrich or deplete precipitation 
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suggests substantial complexity in the spatiotemporal pattern of the isotopic input 

function to watersheds.   

However, this complexity does not make the problem intractable and the study of 

the isotopic composition of evolving snow presents opportunities beyond transit time 

estimation studies (e.g., mass loss, vapor fluxes, melt rates, lateral flow, crystal structure 

alterations, etc.). Using snowmelt lysimeters to sample the isotopic composition of melt 

water throughout the melt season is a better way to estimate the input signal required for 

transit time studies. This method also has drawbacks (including increased labor and cost, 

as well as inherently local observations), but coupled with the techniques and methods 

applied here could further constrain two critical phases (precipitation and snowpack 

evolution) of the evolution of isotope tracers arriving in watersheds as precipitation and 

leaving as streamflow.  

  



Figure 

 

Appendix B 

Figure 25: Snow Star sampling technique. 
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Figure 26: Sampling on 3-5-12 at Treeline Study Site in Dry Creek Experimental 

Watershed. Bulk snow-core samples were collected using a federal sampler. 

Elevation: 1624 meters. 
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Figure 27: δ
18

O of snow samples at 2 cm increments through entire snow profile 

at 3 separate locations. Pit 3 snowpit was directly over a bush, resulting in 

compromised samples below 9 cm. 
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Figure 28: δ
2
H of snow samples at 2 cm increments through entire snow profile 

at 3 separate locations. Pit 3 snowpit was directly over a bush, resulting in 

compromised samples below 9 cm. 
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Figure 29: Isotopic composition of all 3 snowpit samples plotted with LMWL. 
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Figure 30: δ
18

O of bulk snow samples (1 meter spacing) at Treeline study site. 
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Figure 31: δ
18

O of star technique samples plotted against Y-transect values. 
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Figure 32: δ
18

O of star technique samples plotted against the recorded snow 

depth of each sample. 
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