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Abstract—A CMOS synapse design is presented which can 

perform tunable asymmetric spike timing-dependent learning in 
asynchronous spiking neural networks. The overall design consists 
of three primary subcircuit blocks, and the operation of each is 
described. Pair-based Spike Timing-Dependent Plasticity (STDP) 
of the entire synapse is then demonstrated through simulation 
using the Cadence Virtuoso platform.  Tuning of the STDP curve 
learning window and rate of synaptic weight change is possible 
using various control parameters. With appropriate settings, it is 
shown the resulting learning rule closely matches that observed in 
biological systems. 

Keywords—Neuromorphic design, CMOS synapse, spike timing-
dependent plasticity (STDP) 

I. INTRODUCTION 
The adult human neocortex is composed of trillions of 

synapses interconnecting billions of neurons in extremely 
complex structures [1]–[3]. A synapse serves to modulate the 
connection strength between any two neurons in the system. 
This is achieved by altering a pre-synaptic action potential’s 
influence in exciting a post-synaptic neuron in proportion to a 
parameter called synaptic weight. Having a large weight means 
having a stronger connection, whereas having a small weight 
means that little or no propagation of a pre-synaptic signal to a 
post-synaptic neuron will occur. How a synaptic weight 
changes over time is known as the learning rule, and is some 
function of the activity of the associated pre- and post-synaptic 
neurons. In some cases, activity can refer to firing rates, but it 
is also known to relate to timing of individual spikes in a 
mechanism called Spike Timing-Dependent Plasticity (STDP) 
[4]–[6].  STDP can be thought of as a rule which determines 
synaptic weight updates as a function of timing between pre- 
and post-synaptic spikes. If a pre-synaptic spike is followed 
closely by a post-synaptic spike, the synaptic weight is 
increased (potentiation). In the opposite case, the weight is 
decreased (synaptic depression). STDP is known to be 
responsible for certain abilities observed across many animal 
species, including rapid response to threat stimuli and sound 
source localization [7]–[10]. It also results in the ability of 

networks to learn to recognize spatio- or spectro-temporal 
patterns [11]–[13]. 

For the purposes of building artificial, bio-mimetic neural 
networks, a simple, tunable, and repeatable synaptic 
implementation is needed. One such solution consists of a 
single device such as a memristor, the major advantage of 
which is an extremely high achievable synaptic density [14], 
[15]. However, there are many types of memristors, each 
requiring different fabrication methods and possessing different 
behaviors. There is also a lack of consensus on the ideal 
properties of a memristive synapse for use in a neuromorphic 
system. On the other hand, CMOS technologies are well-
developed, ubiquitous, and continue to scale to nanometer 
dimensions. Extreme interconnectivity of these networks can 
be accomplished through careful system design. Separate cores 
with 2-D synaptic arrays can send and receive data through 
high-speed pipelines using protocols such as Address-Event 
Representation (AER) [16]–[18].  

The idea of designing a synapse in CMOS technology is not 
novel [17], [19]–[21]. However, this paper presents a novel 
CMOS synapse design which implements tunable asymmetric 
STDP and is compatible with digitally spiking integrate-and-
fire (I&F) neurons. This design is unique in that it achieves a 
more biologically realistic STDP response than [17] while 
using fewer components than [21]. This is accomplished by 
using voltage dividers, instead of amplifiers, to create the 
signals responsible for changing synaptic weight. 

 Although not yet optimized for power consumption, the 
design can be directly deployed into various VLSI 
implementations such as those based on neurosynaptic core 
architectures. Section II of this paper discusses general synapse 
operation, with detailed description of each subcircuit block. 
Section III demonstrates simulation of the CMOS synapse 
learning rules, including settings for bio-mimetic STDP. Final 
conclusions are presented in Section IV.  

II. CIRCUIT AND SUBCIRCUITS OPERATION 
The results in this work were generated using the Cadence 

Virtuoso (6.1.7-64b) design suite and the NCSU Cadence 
Design Kit (CDK 1.6.0.beta). This design kit included the 
MOSIS models for CMOS devices which are extremely 
accurate over a wide range of operating conditions. The overall 
synapse design currently utilizes a total of 41 transistors and 
three capacitors. Associated layouts have been created and 
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submitted for fabrication and future testing. In the ON 
Semiconductor C5 process, the circuit occupies an area of 
approximately 200 × 300 μm2, which is comparable to other 
approaches [17], [22]. Future work includes fully investigating 
scalability of the design and its power consumption. Currently, 
energy consumption per spike ranges from approximately 23 pJ 
to 1.5 μJ for spike pairs with pulse widths of 1 ms. Pulses 
generated by all neurons are presumed asynchronous and 
digital, meaning they may occur at any time and alternate 
between values of 0 V (inactive) and 5 V (during an action 
potential). All pulses in the system are of a set duration.  

There are three total connections between the synapse and 
the two neurons it connects: two inputs are for spikes received 
from the output of both the pre- and post-synaptic neurons, and 
the synapse output is connected to the input of the post-synaptic 
neuron. A diagram containing the three different subcircuit 
blocks of the synapse is shown in Fig. 1. The synapse requires 
four control voltages to set the STDP characteristics: Vpre_leak, 
Vpost_leak, Vinc_th, and Vred_th. Although not demonstrated in this 
paper, a biasing circuit can be used to create them from Vdd. 

A. Race Condition Discriminator Circuit 
Within the synapse, the race condition discriminator circuit 

(RCD) handles the situation in which pre- and post-synaptic 
spikes overlap. The RCD output (Vrcd in Fig. 1) and its inverse 
control a PMOS device in each of the two Gauntlet circuits (M4 
in Fig. 3). Providing these two particular PMOS devices with 
opposing signals prevents overlapping spikes from influencing 
the synaptic core at the same time. 
In order to produce Vrcd, the RCD uses cross-connected outputs 
to suppress propagation of competing input signals, as shown in 
Fig. 2a. Initially, nodes Vrcd and Vrcd’ are both at 0 V, placing 
M1 and M3 in saturation and M2 and M4 in cutoff. If a pre-
synaptic pulse arrives at the Vpre input before a post-synaptic 
pulse arrives at the Vpost input, then the voltages at A and B 
lower, causing node Vrcd to rise to 5 V, which in turn causes M3 
to cutoff and M4 to saturate, forcing Vrcd’ to 0 V and preventing 
secondary signal propagation from C to D. A similar series of 
events occurs if a post-synaptic pulse arrives at the Vpost input 
before a pre-synaptic pulse arrives at the Vpre input which forces 
Vrcd to 0 V, preventing signal propagation from Node A to Node 
B. Effectively, the RCD serves to pass signals from Vpre to Vrcd 
unless a signal from Vpost precedes and overlaps it (Fig 2b).  

B. Gauntlet Circuit 
Fig. 3a shows the schematic of the Gauntlet Circuit. The 

Gauntlet Circuit’s purpose is to facilitate STDP in the synapse 
by providing a tunable window within which pre- and post-
synaptic spikes can influence synaptic weight. The diode-
connected PMOS, M1, allows 5 V digital pulses, applied to V2, 
to quickly charge capacitor C1 without also quickly discharging 
via the input after the pulse ends. A tunable discharge path for 
C1 is provided by M2, with the discharge rate controlled by Vleak. 
The resulting exponentially decaying analog signal Vdelay, whose 
time constant is determined by the value of Vleak, is applied to 
the gate of M3 (see top trace of Fig. 3b). M3 uses Vdelay to alter 
the magnitude of digital pulses applied to V1 before they reach 
the Synaptic Core. M4 uses the Vnot_pass signal from the RCD to 

ensure that only one Vchange signal reaches the Synaptic core at a 
time. M5, M6, M7, and M8 provide a low resistance path to 
ground, in the absence of a pulse at V1, to discharge trapped 
charge on either side of M8.  

C. Synaptic Core 
Fig. 4 depicts a schematic of the Synaptic Core circuit. The 

Synaptic Core produces Vstate, which is roughly analogous to 
the synaptic weight. Vstate is produced by the movement of 
charge on to, or off of, the state storage capacitor Cstate. This is 
accomplished via M5 and M8, respectively. When one of these 
devices is turned on, charge must also flow through the two 
optional MOSFETs M6 and M7, whose sole purpose is to help 
to reduce leakage current from Cstate through M5 and M8. The 
amount of directed charge is controlled by two active element 
voltage dividers that enable fine tuning of the STDP 
characteristics of the CMOS synapse. One voltage divider,  
formed by M1 and M2 in Fig. 4, allows for control over the 
amount of charge directed into Cstate for a given signal applied 
to Vincrease. This is done by limiting the drain current via Vinc_th, 
so that increasing Vinc_th reduces the amount of directed charge 
for a given signal applied to Vincrease. The other voltage divider   
(M9 and M10 in Fig. 4) allows for control over the amount of 
charge directed out of Cstate for a given signal applied to Vreduce. 
This is accomplished by limiting the drain current via Vred_th. 
The result is that decreasing Vred_th reduces the amount of 
directed charge for a given signal applied to Vreduce. 

For initial testing, the synapse was designed such that its 
conductance was controlled by applying Vstate to the gate of a 
MOSFET (Matt in Fig. 1). The issue with this is that values of 
Cstate above Matt’s threshold voltage do not cause a proportional 
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Fig. 1. A block diagram showing the connections between the subcircuits 
within the CMOS synapse. Vpost is feedback from the output of the post-
synaptic neuron, whereas Vpre is connected to the output of the pre-synaptic 
neuron. Vout is the modulated version of Vpre which is fed to the input node of 
the post-synaptic neuron circuit. 
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Fig. 2. a) Schematic diagram of the RCD circuit, which determines whether 
increase or decrease signals should be admitted to the Synaptic Core. All 
PMOS and NMOS are sized W/L = 30/4 and 10/4 respectively. b) The 
simulated response of the RCD circuit. When Vpre and Vpost overlap, it is 
observed that Vrcd is Vpre unless Vpost arrives first and blocks Vpre. 
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change in signal attenuation because the MOSFET will operate 
in saturation. In future work, Matt will be replaced with a voltage 
controlled current source with a gain controlled by Vstate.  

III. LEARNING RULE DEMONSTRATION 

A. Varying Circuit Parameters 
Pair-based STDP curves were created to demonstrate the 

effects of varying circuit parameters on the synapse. Each STDP 
data point was collected from a 110 ms transient simulation 
which contained only one pre- and one post-synaptic spike. For 
each simulation the synaptic weight was initially set to one half 
of Vdd (Vstate=2.5 V). The timing difference between the rising 
edges of pre- and post-synaptic spikes (Δt=tpost−tpre) was 
recorded as the x-coordinate. Then, since Vstate only changes due 
to pairs of spikes, and only changes on the second spike in the 
pair, the change in Vstate, between just before and just after the 
second spike, was recorded as the y-coordinate. Finally, the 
resulting x- and y-coordinate pair was plotted.  

Fig. 5a depicts the effects of varying Vpre_leak and Vpost_leak, 
which control the decay times of the two gauntlet circuits (see 
Fig. 3). The left and right sides of the figure (for negative and 
positive Δt, respectively) can be independently controlled by the 

two voltages. Increasing Vpre_leak or Vpost_leak will shorten the 
corresponding learning window for positive and negative Δt. 
When the two values are equal, the STDP curve will essentially 
be symmetrical for both positive and negative Δt, exemplified 
by the curve marked by triangle symbols in Fig. 5.  

The effects on the STDP curve of varying Vinc_th and Vred_th 
are depicted in Fig. 5b. These two values control the maximum 
change in the weight for a pre-post or a post-pre pair (the ΔVstate 
values nearest to Δt=0). For increased values of Vinc_th (and 
decreased values of Vred_th), the weight will change more 
drastically for presentation of a single pair, but only to a 
maximum of ±100%, at which point the weight saturates. When 
saturation occurs, it does not change the difficulty for the next    
(oppositely alternating) pair to change the state back to some 
intermediate value. In other words, there is no “memory” or 
other driving force pushing the state toward one extreme or the 
other. However, in the absence of spiking, subthreshold 
conduction through M5, M6, M7, and M8 in Fig. 4, will cause 
Vstate to trend toward some value near Vdd/2 over a period of 
approximately ten seconds. Some form of long-term motion of 
Vstate is common with all synaptic circuits that use MOSFETs to 
control the charge on a capacitor. In this case, if spike pairs are 
presented with regularity (at least a few times per second), the 
STDP learning will overcome the very slow state change.  

B. Fitting Biological Data 
 By choosing appropriate Vpre_leak, Vpost_leak, Vinc_th, and Vred_th 
values, the STDP curve of the synapse can be tuned to fit a wide 
range of models with biphasic decaying exponential form. Fig. 6 
demonstrates the CMOS synapse tuned to approximate STDP 
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Fig. 3.  a) The Gauntlet circuit schematic. The Gauntlet circuit helps to 
facilitate STDP by shaping Vpulse into Vchange through Vdelay. M5, M6, M7, and 
M8 help to drain charge trapped on either side of M2. All PMOS and NMOS 
are sized W/L = 30/4 and 10/4, respectively. b) Gauntlet circuit response to 
stimulus. A single 5 V pulse 1 ms wide digital pulse is applied to V2 at 1 ms. 
Vleak is set to 433 mV. V1 is supplied by a 5 V square wave with a period of 2 
ms; this is atypical and solely for illustrative purposes. Vnot_pass has been tied 
to ground to ensure that the difference between Vchange and V1 is due 
exclusively to Vdelay. Notice that the magnitude of Vchange decreases as Vdelay 
decays. This decrease in magnitude helps to create STDP in the synapse. 
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Fig. 4.  The Synaptic Core schematic. Vred_th and Vinc_th control the magnitude 
by which the charge in the capacitor can change to allow fine control of the 
STDP curve. All PMOS and NMOS are sized W/L = 30/4 and 10/4 
respectively, except where otherwise indicated. 
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Fig. 5.  a) The effects of varying Vpre_leak and Vpost_leak on the STDP behavior of 
the synapse. When pre- and post-synaptic pulses are applied to the CMOS 
synapse, it is observed that the amount of change that occurs in Vstate (ΔVstate) 
is related to the difference in time between the spikes (Δt=tpost-tpre), and the 
settings of Vpre_leak and Vpost_leak. Notice that as Vpre_leak and Vpost_leak are 
increased, the STDP curve narrows. This plot was made using Vinc_th = 300 
mV and Vred_th = 1.4 V. Input pulse widths were 1 ms. b) The effects of 
varying Vinc_th and Vred_th on the STDP behavior of the synapse. When pre- and 
post-synaptic pulses are applied to the CMOS synapse, it is observed that the 
amount of change that occurs in Vstate (ΔVstate) is related to the difference in 
time between the spikes (tpost-tpre), and the settings of Vinc_th and Vred_th. Notice 
that, as Vinc_th is increased and Vred_th is reduced, the magnitude of change is 
reduced. This plot was made using Vpre_leak = 200 mV and Vpost_leak = 200 mV. 
Input pulse widths were 1 ms. 
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data measured from a biological synapse [5].

C. Power Consumption
The power consumed by the synapse is dependent upon the 

initial state of the synapse, the magnitude of the weight change, 
and whether the weight is increasing or decreasing. Fig. 7 
depicts the energy consumed by the synapse as a function of the 
temporal difference between pre- and post-synaptic spikes. Each 
point represents the result of a simulation of a single pair of pre-
and post-synaptic spikes with Vstate initialized to 2.5 V, Vpre_leak
= 270 mV, Vpost_leak = 300 mV, Vinc_th = 540 mV, and Vred_th =
1.08 V. Input pulse widths were 1 ms. With these settings and 
an initial Vstate of 2.5 V the energies used to decrease and 
increase synaptic weight are about 23 nJ and 1 μJ respectively. 

IV. CONCLUSIONS

A novel CMOS synapse implementation with a tunable pair-
based STDP learning rule has been demonstrated through 
simulation. The synapse circuit is compatible with many VLSI 
neuromorphic designs that incorporate spiking neurons. Three
primary subcircuit blocks (Gauntlet, RCD, and Synaptic Core)
with very specific functionality are used to realize STDP. In 
addition, four control voltages provide the ability to tune the 
STDP curve learning window and learning rate over a large 
range of operation. One specific example is fitting to
biologically measured STDP data. Future directions for this 
research will be to optimize the circuit layout, to explore circuit 
simplification, and to investigate pattern recognition and 
classification tasks with large networks of spiking neurons.
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Fig. 6.  Adjusting Vpre_leak, Vpost_leak, Vinc_th, and Vred_th allows the STDP curve 
of the CMOS Synapse to be adjusted such that it can be fitted to biological 
data. In this figure, the CMOS synapse has been adjusted such that its STDP 
curve aligns with biological synapse data collected by Bi and Poo [5]. The 
settings used to create this plot are: Vpre_leak = 270 mV, Vpost_leak = 300 mV, 
Vinc th = 540 mV, and Vred th = 1.08 V. Input pulse widths were 1 ms.

Fig. 7. Energy consumption by the synapse as a function of the temporal 
difference between pre- and post-synaptic spikes. The settings used to create 
this plot are: Vpre_leak = 270 mV, Vpost_leak = 300 mV, Vinc_th = 540 mV, and 
Vred_th = 1.08 V. Pulse widths were 1 ms. Vstate = 2.5 V.

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at 2017 IEEE 60th 
International Midwest Symposium on Circuits and Systems (MWSCAS), published by IEEE. Copyright restrictions may apply. doi: 10.1109/
MWSCAS.2017.8053126


	Boise State University
	ScholarWorks
	1-1-2017

	A CMOS Synapse Design Implementing Tunable Asymmetric Spike Timing-Dependent Plasticity
	Robert C. Ivans
	Kurtis D. Cantley
	Justin L. Shumaker

	Paper Title (use style: paper title)

