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ABSTRACT

We present an overview of the document classification process and present re-

search conducted against the newly constructed SBIR-STTR corpus. Specifically,

the current methods in use for annotation, corpus construction, feature construction,

feature weighting, and classifier algorithms are surveyed. We introduce a new dataset

derived from public data downloaded from sbir.gov and the Text Annotation Toolkit

(TAT) 1 for use in classification research.

TAT is a collection of independent components packaged together into one open

source software application. TAT was engineered to support the document classifica-

tion process and work flow. Tracking of changes in a working corpus, saving data used

in the training of classifiers to ensure reproducibility, and providing a mechanism for

interacting with copyright protected corpora are all fundamental issues that TAT

addresses. TAT is built using the robust Open IDE [35] framework that allows

plug-in developers access to standard well tested libraries saving years of development

time. The main goal of TAT is to minimize the labor intensive process of creating

labelled data that can be used to train, test, and deploy machine learning models for

automated text annotation. Additionally, TAT allows researchers an easy method

to automatically reproduce prior results. The toolkit can facilitate the annotation

of text using different machine learning packages as well as corpora with different

metadata specifications.

1TAT is freely available for download from trac.boisestate.edu
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CHAPTER 1

INTRODUCTION



2

1.1 Overview

The purpose of this thesis is threefold: to deliver the Text Annotation Toolkit (TAT),

to develop a new dataset for testing, and to analyze Small Business Innovation

Research (SBIR) and Small Business Technology Transfer (STTR) abstracts between

the years 1983 and 2009 to determine factors that influence funding outcomes. TAT

speeds the training of classifiers implemented using machine learning techniques, the

testing of classifiers, manual and or automatic annotation, management of a collection

of documents, and management of training data. TAT is a set of tools that bring

together three independent activities: classification of documents, construction of

a training and test set, and the management of trained data used to produce a

classifier. TAT provides researchers and practitioners with the necessary framework

and plumbing to foster new research and growth in the field of text classification.

We define document classification as the process of placing a set of documents

into a predefined taxonomy of topics [40]. Manning et al. [27] notes that the notion

of classification is very general and has a significant number of applications outside of

the information retrieval discipline. Computers are not necessary for the classification

process, books in a library for example have been classified manually for centuries.

There are, however, significant drawbacks to manual classification such as the expense

of labor and difficultly in scaling the volumes of documents processed [25, 16].

Document classification consists of several components that all need to work in

harmony to achieve the desired results. First, a classification algorithm such as Naive

Bayes or K-nearest neighbors must be implemented for use in text classification.

Second, a data set of interest must be designed and built in order to train and test

the classifier. Finally, if the classifier and data set are to be used by individuals other
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than computer experts, a clean and friendly front end must be developed to facilitate

user interaction and management of the dataset and classifier.

There is need across several different industries to reduce the cost of classifying the

ever increasing volume of documents. TAT helps facilitate this goal by providing a

unified framework and interface. For example, manual classification of news articles

by companies such as Reuters requires a prohibitive amount of human capital to

maintain. The Reuters Corpus Volume 1 (RCV-1) corpus consists of over 800,000

manually categorized news wire stories for use in research. RCV-1 was produced in

an operational setting between August 20, 1996 and August 19, 1997. Annotating

the collection was a substantial undertaking. Lewis et al. cites one estimate at 12

person-years to annotate the RCV-1 collection [25]. Additionally, the amount of text

available in on-line sources such as web pages is growing at a rapid pace [18]. Machine

learning techniques can help to reduce costs and increase the volume of documents

that can be processed. Thus, the reduction in the time required to classify documents

is valuable for both production and research applications.

1.2 Background

While there are many toolkits and applications available, TAT occupies a unique niche

that we believe has not been filled by any existing open source implementations. Other

open source applications that provide a general solution to automatic classification

tend to focus heavily on the construction of classifiers and classification pipelines,

or solely on adding annotations to documents without giving the user access to an

automatic classifier. The primary difference between TAT and other classification

toolkits is simplicity, end user focus, and a standardized plug-in framework. TAT



4

was developed to address the problem of quickly adding labels to documents, provide

seamless change tracking for corpora, and give researchers an easy method to replicate

results. TAT records all the information needed to setup and run a classifier so

results are reproducible. This approach overcomes a long standing problem when

dealing with copyright protected corpora that cannot be redistributed to end users.

A researcher can simply redistribute the created metadata that can then be replayed

by anyone who can gain access to the original data.

Abstracting the complexity of building and training document classifiers allows

users unfamiliar with document classification techniques to quickly come up to speed

and start contributing to a development corpus. For example, a domain expert in the

medical field can accurately annotate medical documents using TAT without having

knowledge of classification techniques. Thus, we think that TAT is an excellent

tool for the construction and maintenance of new corpora by domain experts with

limited knowledge of document classification. A non-exhaustive list of other open

source applications that provide similar functionality includes General Architecture

for text engineering (GATE) and Annotea. Section 1.2.1 and 1.2.2 briefly overview

each application and compares them to TAT.

1.2.1 GATE

GATE [6] is a mature language engineering framework developed in Java. GATE has

been under continuous development for more that 15 years and thus has support for

multiple languages and a deep and complex feature set. The framework is designed to

separate the various tasks such as data storage, data visualization, classification, and

automatic measurement of classifier performance into a modular plug-in structure.
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Currently, GATE has support for 28 different languages with more planned for future

releases.

Due to the maturity of the platform, GATE provides all of the features of TAT

across its plethora of plug-ins. Both manual and automatic annotation [22] modes

are available and can operate against custom corpora. Additionally, GATE provides

collaborative annotation and change tracking similar to TAT in the form of a web

application.

The primary difference between TAT and GATE is in the plug-in structure, inte-

grated annotation and classification environment, and transparent change tracking on

working corpora. The change tracking feature allows researchers working on copyright

protected corpora the ability to distribute the change sets so that results can easily

be replicated by replaying the changes against a clean copy of the corpus.

1.2.2 Annotea

The Annotea project [47] is a W3C lead project to help the advancement of a semantic

web. Amaya is the Annotea project’s first implementation and provides a complete

web browsing and authoring environment. While it does not provide an interface into

any classifier, it does provide an interactive environment for adding annotations to

Hypertext markup language (HTML) documents. Additionally, Amaya allows you

to hook into an annotation server allowing teams of annotators to simultaneously

annotate documents.

Amaya has several differences when compared to TAT. First, it does not provide

access to an automatic classifier, which can be helpful when annotating a large set

of documents all from a specific domain. Second, Amaya was specifically designed to



6

work with a limited number of document types such as HTML. TAT allows the user

to work with any document as long is there is a supporting plug-in.

1.3 Thesis Statement

For this thesis, the following research questions are addressed in Chapter 5 using a

dataset consisting of SBIR/STTR phase I and phase II proposals and TAT.

Can we determine which phase I proposals are likely to make it to phase II based

on the following criteria:

• The amount of money the award requests

• The properties of the proposal such as woman, minority, or Historically Under-

utilized Business Zone (HUBZoned)

• The origin of primary investigator’s name and title

• The textual properties of the submitted abstract

1.4 Methods

TAT consists of several independent components that must work in harmony in order

to allow efficient annotation, classification, and reporting. As shown in Figure 1.1,

TAT consists of 4 different components. First, a graphical user interface (GUI)

presents the classifier, reporting, and dataset to the end user. Second, a plugin

structure allows different machine learning toolkits to be used against the chosen

dataset. Third, a direct interface into the dataset allows users to review text, add

annotations, and build training and test sets. Fourth, a reporting structure allows
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users to view the results of training and classification in a simple and straight forward

manner. Finally, the management of trained classifiers including the transparent

change management of all the relevant data to reproduce a trained classifier.

1.4.1 Classifier

TAT provides an interface into the classification toolkit of the users choice through

TAT’s pluggable architecture. The interface includes the following features:

• Train a new classifier on a selected dataset

• Test a classifier on a selected dataset

• Report performance of trained classifiers on a selected dataset

Training a classifier is dependent on the classification algorithm selected. Dif-

ferent algorithms have different parameters and weights that the user can set, thus

presenting a custom interface. All classifiers are evaluated using the same criteria,

thus testing results are displayed the same regardless of the classifier implementation.

Evaluating the performance of classification algorithms uses a standard set of

measurements widely known and used in the field of Information Retrieval (IR) [27].

First, we measure the average precision and recall of a classifier. Precision is defined

as the number of documents correctly placed in a category by the classifier divided by

the total number of documents retrieved. Recall is the number of documents correctly

placed in a category by the classifier divided by the total number of documents in the

category. Finally, taking the recall and precision scores, a weighted average known

as the F-measure is calculated and presented to the user. All formulas are defined in

Table 2.4.
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1.4.2 Dataset

A new data set has been constructed using SBIR/STTR abstracts between the years

1983 and 2009. Developing new collections is important in the field of document

classification and annotation. Machine learning algorithms can over-fit by tuning

a classifier’s parameters to properties in the training set that are accidental. Ad-

ditionally, readily available non-proprietary datasets allow researchers to test ideas

without having to hire human annotators. According to Lewis et al., existing test

collections suffer from one or more of the following weaknesses: few documents, lack

of the full document text, inconsistent or incomplete category assignments, peculiar

textual properties, and or limited availability [25]. Thus, providing a new dataset for

the research community to use is a valuable contribution.

The dataset that we built is derived from SBIR and STTR data sources freely

available to the public. Unfortunately, the data is spread across 11 different govern-

ment agencies all with different formats and reporting methods. Thus, we defined

a common extensible markup language (XML) format to use in TAT that we then

used to represent the SBIR and STTR abstracts and supporting information. It is

important to note that the derived data set has been annotated automatically using

characteristics of the dataset instead of using humans to annotate the data.

1.5 Artifacts

During the course of this thesis, the following artifacts have been delivered.

• An annotated dataset in XML format consisting of SBIR/STTR phase I and

phase II abstracts between the years 1983 and 2009
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Figure 1.1: High level architecture of TAT. TAT consists of several independent
components that are designed to work together to give a seamless user experience.
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• A Text Annotation Toolkit that allows a user to train, test, and use machine

learning algorithms such as Naive Bayes

• A plugin for the mallet machine learning toolkit to be used with TAT

1.6 Summary

Developing TAT provides both the machine learning and information retrieval com-

munities with a valuable tool to facilitate research of text annotation and classification

techniques by providing a clean and crisp interface into the classification process. The

research questions enumerated in Section 1.3 were answered using TAT to demon-

strate the capabilities and usefulness of the toolkit. Additionally, deep insight into

the SBIR/STTR award process, which affects small businesses and universities such

as Boise State, has been provided to the grant-seeking community.



11

CHAPTER 2

CLASSIFICATION
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2.1 Overview

Finding documents based solely on keywords such as in a traditional book index fail

when searching for a document that has the desired content but lacks the required

keywords. For example, the Reuters news agency may want to identify documents

about corporate acquisitions. However, if the stories do not contain any of the

“required” key words, then an interested reader may not be able to find all the

relevant documents [16]. Thus, classifying documents by their semantic meaning and

providing a method to retrieve a set of documents with high precision and recall

provides an invaluable tool in the management of large scale document repositories.

Machine learning based text classification allows a classifier to learn a set of rules,

or the decision criterion, from a set of labeled data that has been annotated by an

expert. This approach allows for better scaling and a reduced cost in classifying

documents when compared to a system that relies on manual input only. Most of

the research in the field of machine learning based document classification has been

done on binary classifiers [27, 42, 32, 1]. That is, building a classifier from a set of

positive and negative examples to then deduce a document’s membership in a class.

When dealing with a corpus that has documents that belong to multiple classes, the

approach thus far has been to build a separate binary classifier for each class in the

corpus [25] and then aggregate the results of each binary classifier.

2.2 Classification

Classification can take many forms, from fully automated systems with limited human

intervention [16] to semi-automatic systems that employ a hybrid human machine

approach [46]. The classification process includes constructing the features that will



13

represent a document, weighting said features, and algorithms to process and rank

the documents.

Transforming a document from a string of characters into a representation that

is suitable for the selected learning algorithm and classification task is generally the

first step in any text categorization process [19]. This process assumes that any

unnecessary characters such as formatting tags or other meta-data not related to the

text have been removed. Transforming the document entails the selection features

that give a good representation of the domain and a weighting scheme that the

classification algorithm can use.

The training algorithm attempts to approximate an unknown function f such

that f : d → c with d representing the document in question and c the class of the

document chosen from a available set of classes C. With the function derived from

the training phase, we can use f to classify unseen documents into the proper class.

With the classification of documents, there are several difficulties that must be

overcome to achieve the greatest level of accuracy. Li and Jain [26] highlight the fact

that it is difficult to capture high-level semantics and the abstract concepts of natural

languages from a few key words. We can take a look at a selection of words that

represent different meanings depending on the context in which they are used. For

example, the word “worm” in computer science refers to a self-replicating malicious

piece of code. However, the same word used in the context of nature refers to a

soft body invertebrate animal. There are also extensive use of synonyms throughout

natural language such as the term “student” and “pupil”, which mean the same thing.

Additionally, large numbers of words and the inter-dependency between these words

becomes a problem.

When describing the components of a classification system, the following notation
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is used:

• V - The vocabulary of the collection with |V| equal to the total number of

unique features across all the documents

• C - The set of available class labels

• d - A single document to classify or train on.

• f - A feature of the document.

• D - A collection of Documents

• A - A sparse matrix consisting of N ×M rows and columns. Each row N is a

single document and each column M ∈ V

2.2.1 Document Representation

Document representation is an important part of the classification process. Each doc-

ument must be processed into a form that a classifier can operate on and still preserve

as much as the original information as possible [8]. The current best known approach

is to use a vector space model to represent the document as seen in Equation 2.1 [8].

Each dimension of the document d corresponds to a unique feature f (term) and each

feature is determined by the system in use. Typically, a feature is simply a word,

however any representation can be used depending on the data being classified.

di = (f1i, f2i, · · · , fji) (2.1)

Different methods exist to construct the features of each document. Each method

has strengths and weakness and must be evaluated for each given document domain.
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Additionally, after the construction of a feature set for D, the number of features may

be too large to process or too sparse to give good results.

2.2.2 Bag of Words

One common approach when constructing features is to treat the document as a “bag

of words.” This approach takes all the words in a document and places them in a

vector that represents the feature set of the document. This vector is unordered and

does not necessarily represent any structure between the words. An example of the

“bag of words” approach can be seen in Table 2.2 with the example sentences listed

in Table 2.1. The example in Table 2.2 uses a simple boolean weight approach with 1

representing the feature as present and 0 as not present. More comprehensive weight-

ing approaches that can improve classification accuracy are detailed in Section 2.3.

The biggest advantage to the “bag of words” approach is its simplicity in repre-

sentation. No special knowledge of the language in question is needed in order to

design and implement a classifier [12]. Simply tokenize the given words and construct

the document vectors. However, there are some drawbacks with this approach. For

example, multi-word semantic phrases in the language are lost during the processing.

Additionally, depending on the size of your training corpus you could have a V that

is too large for any classifier to process.

Table 2.1: Example sentences
number Document

d1 Sally goes to a market
d2 Sally was eaten by a bear
d3 Right to bear arms

Using the example “documents” as listed in table 2.1 V, D and A are calculated.
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V =<Sally, goes, to, market, was, eaten,by,a,bear,Right, arms>

D =<d1,d2,d3>

N ×M = (D, V)

Table 2.2: A using simple boolean representation
Sally goes to market was eaten by a bear Right arms

↑ d1 1 1 1 1 0 0 0 1 0 0 0
N d2 1 0 0 0 1 1 1 1 1 0 0
↓ d3 0 0 1 0 0 0 0 0 1 1 1

←−M −→

2.2.3 N-grams

Another method that can be used to construct the features of a document is a N-

gram approach. A N-gram is a N-character slice from a longer string [3]. When

constructing features using N-grams, we must note that uni-grams (N=1) would be

a simple reflection of the distribution of the letters that make up the documents

language alphabet.

N-grams have several attractive features that make them a compelling choice to

use in feature construction [3, 12].

• construction is very easy and independent of language

• N-gram features automatically perform certain kinds of stemmings and are

robust against misspellings

• multi-word phrases are automatically captured when N != 1

When using N-grams for feature construction several decisions need to be made.

For example, would raw text be preprocessed to remove special characters such as
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“!%&$” or are these characters kept. There is also the choice of distinguishing between

upper and lower case characters.

N-grams sound like an exciting and natural way to represent documents. However,

they are not without drawbacks. For example, given that it is possible for a gram

to bridge words when N is greater than 1, we can have a vocabulary V that is too

sparse for a classifier to use. Thus, the use of N-grams must be evaluated within the

domain to determine an optimal value of N and the size of V.

2.3 Feature Weight

After the features of a document have been constructed, it is often necessary to weight

the constructed features in order to improve classifier accuracy. Methods to weight

the features of a document vector are an exciting and deep area of research. The

simplest and easiest method is to assign the features a simple boolean value as shown

in Table 2.2. This, however, can result in sub-par performance as noted in a study by

Goller et al. [12]. The following sections detail current weighting methods that have

been developed. We review weighting by term frequency, document frequency, and

finally a combination of both term and document frequency into a single score.

2.3.1 Term Frequency (TF)

Simple boolean representation can be improved by counting the number of times a

specific feature occurs in a document. Equation 2.2 details calculating the weight of

a feature from a document, tfk is the weight for a specific feature f in document k.

It is logical to assume that the more times a feature is present, the more important
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that feature is in determining the semantic meaning of the document [27]. Thus,

weighting features with TF singleton features will not skew the training of classifiers.

tfk = freqfk (2.2)

TF suffers from poor performance when we have a domain with extremely high

feature frequencies that do not provide any useful information. This can happen when

classifying documents that all originate from a narrowly focused industry or subject

matter. For example, if your document corpus consists only of documents from the

auto industry, terms such as “auto” or “car” may have high weights but provide little

semantic meaning of the document content [27].

2.3.2 Inverse Document Frequency (IDF)

Inverse Document Frequency (IDF) is a weighting formula listed in Equation 2.4 that

attempts to scale down the effect of features that occur too frequently in a collection

and thus are not as valuable in determining the semantic meaning of a document.

dff is the document frequency of a feature and is defined as the number of

documents in D that contain feature f . Taking the number of documents in the

collection |D| divided by dff , we can determine the IDF of a feature for a particular

document. By using the IDF of a document, terms that are rare provide more value

than frequent terms in a collection.

idff = log
|D|
dff

(2.3)

One clear drawback to using IDF is that singleton terms become highly influential

when ranking documents. Thus, TF and IDF both have weaknesses when dealing with
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outlier features.

2.3.3 TF-IDF

Both TF and IDF have qualities that allow features to negatively influence the ranking

of documents within a collection. We now look at a method to combine TF and IDF

in order to get the benefits while minimizing the drawbacks [1].

idf -idffd = tffd × idff (2.4)

With TF-IDF, we assign a weight to a feature that has the following characteris-

tics [27, 1].

• Highest for a feature that occurs many times in a small number of documents

• Medium for a feature that occurs fewer times in a document, or occurs in

numerous documents in low frequency

• Lowest when we have a feature that occurs in virtually all documents

2.4 Curse of Dimensionality

It is important to note that when classifying textual documents a unique problem

surfaces. Several studies [1, 8, 42] state that one important step in text classification

is the reduction of the number of features in a training set. High dimensionality

of the feature space is not conducive for standard classification techniques because

calculating the score of a document becomes computationally prohibitive. Thus, we

review several techniques in the following sections such as feature selection, word

stemming, and stop word removal.
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2.4.1 Feature Selection

Feature selection is also referred to in other texts as dimensionality reduction (DR) [1,

42]. When dealing with natural language, the size of the vocabulary |V| could prove

costly for a learning algorithm to consider. Consequently, reducing |V| with respect

to D is a very active research topic.

With the ever increasing number of text documents available for training, high-

dimensional feature sets are not uncommon. In the context of document classifica-

tion, a high-dimensional feature set (a large value for |V|) presents computational

challenges at the implementation level. At some point, it becomes impractical to

represent every word or N-gram in a given language as a feature. High-dimensional

feature sets also increase the model complexity for many classifiers, which could lead

to over-fitting [12].

When choosing the features to represent a document, there have been two ap-

proaches developed. Sabastiani and Fuka both define processes for choosing fea-

tures [42, 8]. The first method is to simply choose the features of a document such

that the chosen features are a subset of the original set. This can be done on either

the global level (across all documents) or local level (per document). The second

method is to produce a whole new set of features from the existing feature set. That

is, the features are not a subset of the original features but rather they are generated

by combinations or transformations on the feature set.

2.4.2 Word Stemming and Stop Word Removal

When text is taken as raw input, there is a lot of noise that is not critical for the

classification process. For example, words such as “and,” “the,” or “a” do not provide
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much value when one is attempting to assign a document to one class or the other.

Thus, one very simple way of reducing the feature set is to remove these common

words, typically referred to as “stop-words” [19]. We can generate a stop word list

from a document collection (typically referred to as a corpus) by collecting the most

frequent terms and hand-filtering them for semantic content relative to the domain of

the documents being classified [27]. These words are then removed from the feature

set. Looking at V from Table 2.2, we can see that the stop words we would filter

would be “to” and “a.”

A second very effective way in reducing the number of words that a classifier must

deal with during training or classification is word stemming. There has been some

research [19] in the area of information retrieval that suggests that representing the

features of a document as word stems works well. More precisely each distinct word

stem as extracted from the document by a stemmer such as the Porter [37] Stemming

Algorithm can be included in the feature set. For example, the words walking, walked,

walker, and walk all could be represented by the single word walk [1]. Using our

running example from Table 2.2, we can see that “goes” could be reduced to “go,”

“eaten,” to “eat,” and “arms” to “arm.”

2.5 Classification Algorithms

There have been many classification algorithms developed over the years. There are

several implementations of these algorithms such as those in Machine Learning for

Language Toolkit MALLET [29]. In the following sections we provide a high level-

review of two very popular algorithms used in the domain of document classification.
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2.5.1 Naive Bayes

Naive Bayes is a classifier that is based on Bayes’ theorem. As stated in the Stanford

Encyclopedia of Philosophy, “Bayes’ theorem is a simple mathematical formula used

for calculating conditional probabilities” [20]. One problem that is encountered with

classifiers based on Bayes theorem is they quickly become intractable with even a

small feature set. This makes using Bayes theorem without modifications impractical.

Thus, Bayes theorem has been modified with the naive assumption of conditional

independence to make it usable for document classification.

As stated by McCallumzy and Nigamy [30], the Naive Bayes classifier uses a

simple probabilistic model to classify text. The model “assumes that all attributes

of the examples are independent of each other given the context of the class.” This

assumption is referred to as the “Naive Bayes assumption.” Zhang [48] proposed

an explanation of the performance of Naive Bayes by showing that even with strong

dependencies between features, Naive Bayes can still give optimal results.

There are many variations and extensions of the basic Naive Bayes algorithm.

Two of the most basic variations deal with the underlying data models that are used

to represent the document. The first model represents a document with a vector of

binary attributes indicating which words occur in said document. This model does

not however capture the number of times a word occurs, only that it did occur. The

second model represents a document by the set of word occurrences. Both models

disregard the order of the words with their representation [30].
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2.5.2 Support Vector Machines (SVM)

Support Vector Machines (SVM) were invented by Vladimir Vapnik and others at

AT&T Bell Laboratories in 1995. SVM’s map the input vectors into some high

dimensional feature space through some non-linear mapping [5]. They are based on

the structural risk minimization principle from computational learning theory [19]. A

side effect of SVM’s being based on a theoretical model of learning is that they

come with theoretical guarantees about their performance. In their basic form,

SVM’s learn a linear threshold function. Nevertheless, by a simple “plug-in” of

an appropriate kernel function, they can be used to learn polynomial classifiers,

radial basic function (RBF) networks, and three-layer sigmoid neural nets. Besides

using SVM in non-linear mapping, it is also possible to use simple linear SVMs

(LSVM). Hearst et al. state that simpler LSVMs are fast to learn and provide good

generalization accuracy [17].

Joachims asserts that SVMs perform exceptionally well because they are well

suited to a high dimensional feature space with few irrelevant features and sparse

instance vectors [19]. These three properties are fundamental when dealing with

assigning a class to a document. SVMs seek to find a decision surface based on

support vectors. They then attempt to maximize the margin between said support

vectors to find the optimal hyperplane. We know what the support vectors are because

removal of a support vector would obviously change the position of the hyperplane.

2.5.3 Evaluation of Performance

When evaluating classification algorithms, there is a standard set of measurements

that we can compare against. Table 2.3 details the data necessary to calculate the
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Human: yes Human: no
Classifier: yes true positive (TP) false positive (FP)
Classifier: no false negative (FN) true negative (TN)

Table 2.3: Statistics collected on classifiers

precision TP/(TP + FP )
recall TP/(TP + FN)

F-Measure 2 ∗ precision ∗ recall/(precision + recall)

Table 2.4: Formulas for precision recall and F-Measure

standard measures with the formulas given in Table 2.4. Measuring the effectiveness

of a classifier using well-known methods allows researchers to compare results across

implementations. It is important to note that the quality of the corpus that the

classifiers are trained against can have an impact on performance metrics. It is

possible for overfitting to occur when training your classifier, which can arbitrarily

boost results. We can mitigate the effects of overfitting with k-fold cross validation

as explained in Section 3.5, however, with a poor quality corpus it may still not result

in an accurate performance measure.

2.6 Summary

This chapter has explored the overall classification process. We looked at ways to

represent a document so that a classifier can process it during both the training and

classification phase. We also reviewed several methods for weighting features within

a document and reducing the number of features that a classifier has to deal with.

Finally, we looked at methods to evaluate the overall quality of the implemented

classifier to ensure results are in line with expectations.
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CHAPTER 3

CORPORA
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3.1 Overview

Corpora (singular corpus) are an integral part of the automated classification process.

A corpus is defined as “all the writings or works of a particular kind or on a particular

subject” [31]. While it may be possible, although improbable, to collect all works

currently in existence in a particular domain and classify them for semantic meaning,

it is not possible to collect future works and classify them, until of course we invent

a time machine. Thus, a corpus representing a particular domain allows us to train

a classifier and then use said classifier to classify new unseen documents into the

appropriate categories.

In this chapter, we explore methods for creating a corpus that we can use to train a

classifier. A brief overview of existing data sets commonly used in research for testing

and comparing new classifier algorithms will be presented. Methods for annotating

a document with the appropriate class, encoding a document for long-term storage

and processing, and finally building training and test sets used to confirm the quality

of the classifier will be presented.

3.2 Corpora

The primary purpose of a classifier is to assist in the building and maintenance of

large collections of documents. Just as you would have to train a human to place new

unclassified documents into the correct class you must also train a classifier. When

training a classifier, a corpus acts as a set of examples with which we can compare

new instances and then pick the class that has the greatest similarity in features.

Several domain specific corpora have been developed and released for public use

over the years and have been used as a benchmark to test new ideas and imple-
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mentations. In the field of document classification, the most well-know corpora are

the Reuters-21578 collection and the newer RCV-1. The Reuters-21578 corpus is

a collection of documents that appeared on the Reuters newswire in 1987. It has

largely been replaced by the newer and larger RCV-1 [24]. Using these collections

for the training of new classification algorithms allows a results-only comparison of

classification precision and recall. In addition to an overview of RCV-1, we will

present a new corpus derived from publicly available sources, which can be used by

researchers in document classification research.

3.2.1 Reuters

RCV-1 consists of over 800,000 manually categorized news-wire stories for use in

research purposes. RCV-1 was produced in an operational setting between August

20, 1996 and August 19, 1997. Annotating the collection was a substantial under-

taking. Lewis et al. cites one estimate at 12 person-years to annotate the RCV-1

collection [25]. A sample document from the RCV-1 data set is shown in Listing 3.1.

1 <?xml version=” 1 .0 ” encoding=” i so −8859−1” ?>

<newsitem itemid=”2904” id=” root ”

3 date=”1996−08−20” xml:lang=”en”>

< t i t l e>USA: MRS Technology says ea s ing o f f merger hopes .</ t i t l e>

5 <head l ine>MRS Technology says ea s ing o f f merger hopes</ head l ine>

<da t e l i n e>CHELMSFORD, Mass 1996−08−20</ da t e l i n e>

7 <t ex t>

<p>MRS Technology Inc , encouraged by momentum in orde r s f o r a l i n e o f

i t s p r i n t e r s , s a id Tuesday i t p lans to &quot ; s o f t pedal&quot ; i t s

r e c en t e f f o r t to court a merger partner .</p>

9 <p>The company c i t e d two orde r s from U. S . semiconductor manufacturers

f o r i t s r e c en t l y introduced Model 5200GHR Pane lPr inter in t h i s year ’
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s f our th quarte r .</p>

<p>Although i t p lans to ease away from cour t ing a merger partner , the

company sa id i t w i l l cont inue to con s id e r f o r g i n g r e l a t i o n s h i p s with

two or more beta−s i t e u s e r s f o r the company ’ s new Model 70000

Pane lPr inter .</p>

11 </ text>

<copyr ight>( c ) Reuters Limited 1996</ copyr ight>

13 <metadata>

<codes c l a s s=” b i p : c o u n t r i e s : 1 . 0 ”>

15 <code code=”USA”>

<e d i t d e t a i l a t t r i b u t i o n=”Reuters BIP Coding Group”

17 ac t i on=” conf irmed ”

date=”1996−08−20”/>

19 </code>

</ codes>

21 <codes c l a s s=” b i p : i n d u s t r i e s : 1 . 0 ”>

<code code=” I34531 ”>

23 <e d i t d e t a i l a t t r i b u t i o n=”Reuters BIP Coding Group”

ac t i on=” conf irmed ”

25 date=”1996−08−20”/>

</code>

27 </ codes>

<codes c l a s s=” b i p : t o p i c s : 1 . 0 ”>

29 <code code=”C11”>

<e d i t d e t a i l a t t r i b u t i o n=”Reuters BIP Coding Group”

31 ac t i on=” conf irmed ”

date=”1996−08−20”/>

33 </code>

<code code=”C18”>

35 <e d i t d e t a i l a t t r i b u t i o n=”Reuters BIP Coding Group”
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ac t i on=” conf irmed ”

37 date=”1996−08−20”/>

</code>

39 <code code=”C181”>

<e d i t d e t a i l a t t r i b u t i o n=”Reuters BIP Coding Group”

41 ac t i on=” conf irmed ”

date=”1996−08−20”/>

43 </code>

<code code=”C31”>

45 <e d i t d e t a i l a t t r i b u t i o n=”Reuters BIP Coding Group”

ac t i on=” conf irmed ”

47 date=”1996−08−20”/>

</code>

49 <code code=”CCAT”>

<e d i t d e t a i l a t t r i b u t i o n=”Reuters BIP Coding Group”

51 ac t i on=” conf irmed ”

date=”1996−08−20”/>

53 </code>

</ codes>

55 <dc element=”dc . date . c r ea ted ” value=”1996−08−20”/>

<dc element=”dc . pub l i s h e r ” value=”Reuters Holdings Plc ”/>

57 <dc element=”dc . date . pub l i shed ” value=”1996−08−20”/>

<dc element=”dc . source ” value=”Reuters ”/>

59 <dc element=”dc . c r e a t o r . l o c a t i o n ” value=”CHELMSFORD, Mass”/>

<dc element=”dc . c r e a t o r . l o c a t i o n . country . name” value=”USA”/>

61 <dc element=”dc . source ” value=”Reuters ”/>

</metadata>

63 </newsitem>

Listing 3.1: Sample Document from RCV-1
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There are several inconsistencies, anomalies with the coding scheme, and out-

right assumptions within the Reuters RCV-1 collection. Problems include duplicate

documents or near duplicate documents, foreign language documents, miscoded doc-

uments, and an unknown coding policy. For example, a coding problem that is

pervasive within the corpus is shown in Listing 3.2. We see that “AGRICULTURE,

FORESTRY AND FISHING” has multiple codes assigned to it with different levels

of padding. Lewis et al. state that the coding anomalies were likely caused by con-

straints imposed by legacy auto-coding software. However, eliminating the anomaly

by compressing the codes into a single unique code assumes that the original system

did intend for them to be the same. This assumption is at best an educated guess,

as Lewis et al. state that reproducing the hierarchical structure in which the codes

were originally embedded is exceedingly difficult [25].

1 I0 AGRICULTURE, FORESTRY AND FISHING

I00 AGRICULTURE, FORESTRY AND FISHING

3 I000 AGRICULTURE, FORESTRY AND FISHING

I0000 AGRICULTURE, FORESTRY AND FISHING

5 I00000 AGRICULTURE, FORESTRY AND FISHING

Listing 3.2: Sample industry codes

Despite the problems within RCV-1, it still provides value to the research commu-

nity. It represents data collected and annotated in a constrained real-world environ-

ment and is a fair approximation of what researchers working on new classification

algorithms can expect to see. Keeping the dataset as close to the original as possible

allows researchers to evaluate real-world data instead of a clean room implementation

that will artificially boost classification results. Lewis et al. outline steps to produce

a test collection for research to this end [25].



31

3.2.2 SBIR-STTR

The SBIR and STTR programs were created by the 1982 Small Business Innovation

Development Act and was reauthorized in 2011. The purpose of the SBIR/STTR

program is to stimulate high-tech innovation in the United States by engaging in

Federal Research and Development that has the potential for commercialization [13].

Current laws require any federal agency with a Research and Development budget in

excess of 100 million dollars to allocate 2.5% of their budget to the SBIR and STTR

programs.

Each agency with an SBIR/STTR program is responsible for reporting their grants

to the Small Business Administration (SBA). The SBA provides a search interface

for the grants that have been awarded across all agencies. This search gives the

basic abstract information from the submitted proposal. Some agencies such as the

USDA provide additional information from their local reporting page such as program

progress updates. However, agencies such as the DOD only report abstracts. Thus,

the only data that is guaranteed across all granting agencies are the abstracts from

awarded proposals.

The current list (November, 2012) of SBIR/STTR granting agencies are as follows:

• United States Department of Agriculture (USDA)

• National Institute of Standards and Technology (NIST)

• National Oceanic and Atmospheric Administration (NOAA)

• Department of Defense (DOD)

• Department of Education (ED)



32

• Department of Energy (DOE)

• Department of Health and Human Services (HHS)

• Department of Homeland Security (DHS)

• Department of Transportation (DOT)

• Environmental Protection Agency (EPA)

• National Aeronautics and Space Administration (NASA)

• National Science Foundation (NSF)

The SBIR-STTR corpus is constructed from past proposal abstracts from the

listed agencies between the years 1983 and 2009. The corpus has been automatically

annotated to give classifiers a set of positive and negative examples to train from.

Each proposal that was selected for both phase I and phase II is labeled as a positive

example. Proposals that were only selected for a phase I award are labeled as negative

examples. A sample document shown in Listing 3.3 would be a negative example.

Obtaining the SBIR-STTR data is straight forward, as the program provides an

application programming interface (API) to download and or query award informa-

tion [13]. First, the awards are downloaded in bulk by year. Once we have the awards

downloaded, we can query the API to obtain the agency tracking number to correlate

phase I and phase II abstracts. Chapter 5 gives an in-depth analysis of the number of

positive and negative examples that exist in the corpus and how they were derived.

Due to the time gap between a phase 1 and phase 2 award, it may be necessary to

omit awards in order to prevent counting a phase I that was awarded in 2009 with a

subsequent phase II awarded in 2010 as a negative example.
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1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

3 <Award>
<id>67854</ id>

5 < t i t l e>Improved U l t r a f i l t e r s f o r B ioproce s s ing</ t i t l e>
< l i n k>ht tp : //www. s b i r . gov/ sb i r s e a r c h / d e t a i l /67854</ l i n k>

7 <abs t r a c t>E f f i c i e n t s epa ra t i on and p u r i f i c a t i o n o f b ioproducts on a
commercial s c a l e are c o n t r o l l i n g s t ep s in the b i op r o c e s s i n g o f
high value−added products such as th e r apeu t i c s in human hea l th
care . This p r o j e c t w i l l examine the f e a s i b i l i t y o f ach i ev ing
s i g n i f i c a n t improvement in downstream proc e s s i ng through−put by
the use o f f low−induced v o r t i c e s to reduce or e l im ina t e the
e f f e c t o f concent ra t i on p o l a r i z a t i o n and f o u l i n g o f the membrane
su r f a c e in u l t r a f i l t r a t i o n app l i c a t i o n s .</ abs t r a c t>

<agency>HHS</agency>
9 <program>SBIR</program>

<phase>1</phase>
11 <year>1993</ year>

<company>Abel Company</company>
13 < r i></ r i>

<agency−t r a ck ing>22280</agency−t r a ck ing>
15 <top ic−code>N/A</ top ic−code>

<woman−owned>No</woman−owned>
17 <minority−owned>No</minority−owned>

<hubzoned−owned>No</hubzoned−owned>
19 <award−id>22280</award−id>

<pi−name>Kenneth Abel</pi−name>
21 <pi−e t hn i c i t y></pi−e t hn i c i t y>

<p1top2></p1top2>
23 </Award>

Listing 3.3: Sample Document from SBIR-STTR

Problems and Errors

The SBIR-STTR data set, like most data sets, is not without problems. The dataset is

plagued with duplicate awards, missing abstracts, and inconsistent reporting across

agencies. When using this dataset for training classifiers, duplicates and missing

abstracts need to be filtered out in order to maintain a high quality data set. In

Chapter 5, we give a detailed overview of procedures for scrubbing out the bad data

from the corpus in order to improve training accuracy.
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3.2.3 Other Corpora

There is a plethora of semantically annotated corpora of varying quality and cost

available on the web. A brief listing of just a few of the publicly available corpora

is shown in Table 3.1. Each of these corpora can be use to train and test new docu-

ment classification techniques and reinforce current implementations across disparate

domains of interest.

In addition to publicly available corpora on the web, another approach is to

artificially construct documents from a predefined set of features. This method will

produce “documents” that can be used in training classifiers but will not necessarily

represent natural language. Generating documents is purely mechanical and is only

constrained by the available computing power and time constraints. This eliminates

the need for domain experts, which can be costly. This method is valuable to

researchers who are developing new classification algorithms and need a controlled

sandbox to test and tune behaviors.

Name Description Source
New York Times Annotated Corpus from 1987 to 2007 [41]
GENIA A semantically annotated corpus for bio-textmining [23]
Sentiment140 Twitter entries by product or brand [11]
CLEF Semantic annotation of clinical text [38]
Common Crawl Common Crawl web archive [7]

Table 3.1: Public corpora for use in text classification

3.3 Annotation

An annotation, as defined by the Merriam-Webster dictionary, is a note added by

way of comment or explanation [31]. Annotations can be viewed as metadata to
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a document that can be used to properly classify a document into its user-defined

category. Annotations take a different meaning depending on the domain in question.

For example, in the Linguistic domain, an annotation may designate a part of speech

(POS) or named entity (NE). For the task of document classification, we designate an

annotation simply as a tag attached to a chunk of text whose meaning is determined

by the domain and classifier in use. For example, the Reuters RCV-1 corpus consists

of XML encoded documents with annotations (tags) representing the category of

the document. The SBIR-STTR corpus has annotations designating successful or

unsuccessful grant abstracts.

Annotating a corpus is a substantial undertaking as it is typically created manually

by domain experts. In order to get the maximum benefit from a machine learning

algorithm, a clean, well-annotated corpus of documents is an absolute necessity.

Creating a semantically annotated corpus is solely reliant on human labor and thus

susceptible to whims and errors in judgment. Mitigating said errors with cogent

procedures backed with solid software is the key to creating a gold standard corpus

with which to train a classifier.

The cost to produce an annotated gold standard corpus is an important aspect

that cannot be overlooked. Corpora such as the Reuters RCV-1 were exceptionally

expensive to create [25] proving that accurately estimating the cost of collecting and

labeling a data set is important. The cost of a labeled data set is derived from multiple

sources. First, we have to look at the actual labor for domain experts and the time it

takes them to apply a gold standard label to a document [43]. The cost per label may

not be constant given the complexity of the domain in question or the experience of

the annotators. Second, we have to look at the cost of improperly labeled documents

and how they impact a system [28]. If we have enough documents that are improperly
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labeled, it is possible to degrade the precision and recall of a classifier to levels that

are unusable.

Due to the expensive and time-consuming nature of creating corpora, there has

been active research to help automate [21, 33] or supplement [44, 32] the process.

While results from studies in automating or supplementing the annotation process

have been promising, there will always been a need for a domain expert when dealing

with natural language classification. At the very least, we must verify the generated

or supplemented annotations.

3.3.1 Annotation Methods

Once a domain expert is ready to apply an annotation to a document that has been

analyzed, a method for attaching the annotation to the source text must be devised.

Unfortunately, there is no universally agreed upon method to correlate annotations

with the source text and is generally domain dependent. For example, Listing 3.4

shows the POS tagged corpus from the GENIA project with in-line annotations placed

in accordance with the Penn Treebank POS tagging scheme [45], while Listing 3.1

shows stand-off annotations developed by Reuters when constructing the RCV-1

dataset. Finally, Listing 3.5 shows a sample listing from the Sentiment140 corpus

with annotations as numbers that correspond to the polarity of the text as shown in

Table 3.2.

3.4 Document Storage and Encoding

Encoding of documents consists of two high-level concepts. First, we have to define

how the characters of the document are encoded. Two common examples are the
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Field Meaning
0 the polarity of the tweet (1 = negative, 2 = neutral, 4 = positive)
1 the id of the tweet
2 the date of the tweet
3 the query. If there is no query, then this value is NO QUERY.
4 the user that tweeted
5 the text of the tweet

Table 3.2: Sentiment140 corpus field key

American Standard Code for Information Interchange (ASCII) or Unicode Transfor-

mation Format (UTF). The encoding of the characters is important to note so that

archived documents can be retrieved at a later date and their contents read. Second,

we have to determine how the structure of the document will be represented, examples

include Standard Generalized Markup Language (SGML) or XML.

While there have been attempts at standardizing the representation of text in

digital form such as the Text Encoding Initiative [4], there is no universal encoding

that is currently applied across all corpora. Most modern data sets follow an XML

style formatting with older data sets using SGML, HTML, or a proprietary markup

language. For example, Reuters uses XML in their RCV-1 and RCV-2 corpus with a

custom Document Type Definition (DTD). The New York Times corpus uses National

Imagery Transmission Formant (NITF) to encode their documents, which is XML

based, and the Sentiment140 corpus uses a comma separated values format.

3.5 Training and Testing

Once the corpus has been annotated, the performance of a classifier trained with the

applied annotations and text must be evaluated. The primary technique in the field of

document classification is k-fold cross validation with a common value for k = 10. In
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k-fold cross validation, a corpus is divided into 2 disjoint sets: a training set TR and

a test set TS [42]. The corpus split is typically not even. For example, one may use

a 90/10 or 70/30 split depending on the size and domain of the corpus in question.

The classifier in question is then trained on the training set and evaluated on the

test set. This process is repeated k times with the precision, recall, and F-Measure

aggregated across all runs.

3.6 Summary

In this chapter, we reviewed the definition of what a corpora is in the domain of docu-

ment classification. We introduced several standard corpora that are commonly used

in the field to train and test new classifier implementations. Additionally, methods for

correlating annotations with raw text in the form of in-line or stand-off annotations

were reviewed with examples from existing corpora given. Most importantly, we

introduced a new dataset, SBIR-STTR 1, that has been derived from publicly available

data sources and automatically annotated for use by the research community.

1The SBIR-STTR corpus is freely available for download from trac.boisestate.edu
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1 <a r t i c l e>
<a r t i c l e i n f o>

3 <b i b l i om i s c>MEDLINE:95369245</ b i b l i om i s c>
</ a r t i c l e i n f o>

5 < t i t l e>
<sentence><w c=”NN”>IL−2</w> <w c=”NN”>gene</w> <w c=”NN”>exp r e s s i on</w>

<w c=”CC”>and</w> <w c=”NN”>NF−kappa</w> <w c=”NN”>B</w> <w c=”NN”>
a c t i v a t i o n</w> <w c=”IN”>through</w> <w c=”NN”>CD28</w> <w c=”VBZ”>
r e qu i r e s</w> <w c=”JJ”>r e a c t i v e</w> <w c=”NN”>oxygen</w> <w c=”NN”>
product ion</w> <w c=”IN”>by</w> <w c=”NN”>5− l i poxygenase</w><w c=” . ”
> .</w></ sentence>

7 </ t i t l e>
<abs t r a c t>

9 <sentence><w c=”NN”>Act ivat ion</w> <w c=”IN”>o f</w> <w c=”DT”>the</w> <w
c=”NN”>CD28</w> <w c=”NN”>s u r f a c e</w> <w c=”NN”>r e c ep to r</w> <w c=”

VBZ”>prov ides</w> <w c=”DT”>a</w> <w c=”JJ”>major</w> <w c=”JJ”>
co s t imu la to ry</w> <w c=”NN”>s i g n a l</w> <w c=”IN”>f o r</w> <w c=”NN”>T
</w> <w c=”NN”>c e l l</w> <w c=”NN”>a c t i v a t i o n</w> <w c=”VBG”>
r e s u l t i n g</w> <w c=”IN”>in</w> <w c=”VBN”>enhanced</w> <w c=”NN”>
product ion</w> <w c=”IN”>o f</w> <w c=”NN”> i n t e r l e uk i n −2</w> <w c=” ( ”
>(</w><w c=”NN”>IL−2</w><w c=” ) ”>)</w> <w c=”CC”>and</w> <w c=”NN”>
c e l l</w> <w c=”NN”>p r o l i f e r a t i o n</w><w c=” . ”> .</w></ sentence>

<sentence><w c=”IN”>In</w> <w c=”JJ”>primary</w> <w c=”NN”>T</w> <w c=”
NNS”>lymphocytes</w> <w c=”PRP”>we</w> <w c=”VBP”>show</w> <w c=”IN”
>that</w> <w c=”NN”>CD28</w> <w c=”NN”> l i g a t i o n</w> <w c=”VBZ”>l e ad s
</w> <w c=”TO”>to</w> <w c=”DT”>the</w> <w c=”JJ”>rap id</w> <w c=”JJ
”> i n t r a c e l l u l a r</w> <w c=”NN”>format ion</w> <w c=”IN”>o f</w> <w c=”
JJ”>r e a c t i v e</w> <w c=”NN”>oxygen</w> <w c=”NNS”>i n t e rmed ia t e s</w> <
w c=” ( ”>(</w><w c=”NNS”>ROIs</w><w c=” ) ”>)</w> <w c=”WDT”>which</w>
<w c=”VBP”>are</w> <w c=”VBN”>r equ i r ed</w> <w c=”IN”>f o r</w> <w c=”∗
”>CD28</w><w c=”JJ”>−mediated</w> <w c=”NN”>a c t i v a t i o n</w> <w c=”IN”
>o f</w> <w c=”DT”>the</w> <w c=”NN”>NF−kappa</w> <w c=”∗”>B</w><w c=
”∗”>/</w><w c=”∗”>CD28</w><w c=”JJ”>−r e spon s i v e</w> <w c=”NN”>
complex</w> <w c=”CC”>and</w> <w c=”NN”>IL−2</w> <w c=”NN”>
exp r e s s i on</w><w c=” . ”> .</w></ sentence>

11 <sentence><w c=”NN”>De l inea t i on</w> <w c=”IN”>o f</w> <w c=”DT”>the</w> <
w c=”NN”>CD28</w> <w c=”NN”>s i g n a l i n g</w> <w c=”NN”>cascade</w> <w c
=”VBD”>was</w> <w c=”VBN”>found</w> <w c=”TO”>to</w> <w c=”VB”>
i nvo l v e</w> <w c=”NN”>pro t e in</w> <w c=”NN”>t y r o s i n e</w> <w c=”NN”>
k inase</w> <w c=”NN”>a c t i v i t y</w><w c=” , ”> ,</w> <w c=”VBN”>f o l l owed<
/w> <w c=”IN”>by</w> <w c=”DT”>the</w> <w c=”NN”>a c t i v a t i o n</w> <w c
=”IN”>o f</w> <w c=”NN”>phospho l ipase</w> <w c=”NN”>A2</w> <w c=”CC”>
and</w> <w c=”NN”>5− l i poxygenase</w><w c=” . ”> .</w></ sentence>

</ abs t r a c t>
13 </ a r t i c l e>

Listing 3.4: Sample Document from GENIA
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”0” , ”1467810369” , ”Mon Apr 06 22 : 1 9 : 4 5 PDT 2009” , ”NOQUERY” , ”
TheSpecia lOne ” , ”@switchfoot h t tp : // tw i tp i c . com/2 y1z l − Awww, that ’
s a bummer . You shoulda got David Carr o f Third Day to do i t . ;D”

2 ”0” , ”1467810672” , ”Mon Apr 06 22 : 1 9 : 4 9 PDT 2009” , ”NOQUERY” , ”
sco t thami l ton ” , ” i s upset that he can ’ t update h i s Facebook by
t ex t i ng i t . . . and might cry as a r e s u l t School today a l s o . Blah ! ”

”0” , ”1467810917” , ”Mon Apr 06 22 : 1 9 : 5 3 PDT 2009” , ”NOQUERY” , ”mattycus” , ”
@Kenichan I dived many times f o r the b a l l . Managed to save 50% The
r e s t go out o f bounds”

4 ”4” , ”2193427163” , ”Tue Jun 16 08 : 2 6 : 3 9 PDT 2009” , ”NOQUERY” , ”CrazySlutty ”
, ”@markREED3 Awh, coo l ! ”

”4” , ”2193427181” , ”Tue Jun 16 08 : 2 6 : 3 9 PDT 2009” , ”NOQUERY” , ”yasminexO” , ”
@jonasbrothers − mr . p r e s i d en t i s a geeee . im o f f to take my
h i s t o r y r egen t s . wish me luck and i l l l ove you f o r e v e r ”

6 ”4” , ”2193427199” , ”Tue Jun 16 08 : 2 6 : 3 9 PDT 2009” , ”NOQUERY” , ”MirandaJ” , ”
@Farc ica l Ah . . . Book ! I ’ l l watch Bogey ’ s and l e t you know how i t
i s ! ”

”4” , ”2193427224” , ”Tue Jun 16 08 : 2 6 : 3 9 PDT 2009” , ”NOQUERY” , ”Art Advisor ”
, ”@Donnette thanks ! yeah l i k e I mentioned , was fun How i s your day
look ing ?”

8 ”4” , ”2193427276” , ”Tue Jun 16 08 : 2 6 : 3 9 PDT 2009” , ”NOQUERY” , ”
ThnksFrThMmrs ” , ”Now Pig l e t ’ s Dead . ”

”4” , ”2193427329” , ”Tue Jun 16 08 : 2 6 : 3 9 PDT 2009” , ”NOQUERY” , ” wh i p z i l l a ” , ”
− had a grea t time with some o f the bes t people l a s t n ight /2day ”

10 ”4” , ”2193427403” , ”Tue Jun 16 08 : 2 6 : 4 0 PDT 2009” , ”NOQUERY” , ” MisterG” , ”
@dajbelshaw you ’ l l be j u s t round the corner from me ! Ok a Big
Corner then ”

”4” , ”2193427413” , ”Tue Jun 16 08 : 2 6 : 4 0 PDT 2009” , ”NOQUERY” , ”AnneDouglas”
, ”@LorelieBrown Congrats on the s a f e re turn ”

12 ”4” , ”2193427459” , ”Tue Jun 16 08 : 2 6 : 4 0 PDT 2009” , ”NOQUERY” , ”ChoongYH” , ”
@MeiTingT Haha , i t s j u s t f o r fun , s t a r t ed r e c en t l y only thou ”

”4” , ”2193427479” , ”Tue Jun 16 08 : 2 6 : 4 0 PDT 2009” , ”NOQUERY” , ”Nainx” , ” I
j u s t found 2 cinema t i c k e t s from 06 and 07 . Don ’ t know why I s t i l l
have them , but they brought back so many memories ”

Listing 3.5: Sample Document from the Sentiment140 corpus
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CHAPTER 4

TAT
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4.1 Overview

TAT is a collection of independent components packaged together into one open source

software application. TAT was engineered to support the document classification

process and workflow. Tracking of changes in a working corpus, saving data used

in the training of classifiers to ensure reproducibility, and providing a mechanism

for interacting with copyright protected corpora are all fundamental issues that TAT

addresses. TAT is built using the robust Open IDE [35] framework that allows plug-

in developers access to standard well-tested libraries saving years of development

time. The main goal of TAT is to minimize the labor intensive process of creating

labelled data that can be used to train, test, and deploy machine learning models

for automated text annotation. The toolkit can facilitate the annotation of text

using different machine learning packages as well as corpora with different metadata

specifications. This chapter gives a brief overview of the application and how it

interacts with a classification engine and a given corpus.

4.2 Application Overview

There are several functions that the application can facilitate during the process of

document classification. First, there is document annotation, which aids the user

in adding both manual and automatic annotations. Section 4.2.1 gives a detailed

overview of this functionality. Second, there is model training and testing, which

allows you to select any supported classifier, a set of annotated documents, and

produce trained classifiers. Section 4.2.2 drills down into this functionality. Finally,

Section 4.2.3 reviews the built-in corpus change tracking functionality, which provides

an easy way for a user to replicate past training results.



43

4.2.1 Annotation

When TAT is used for annotation, a user can open a set of records from a document

repository specified by the corpus provider plug-in. Each record is subsequently

loaded with its contents viewable in the TAT interface. The user can then assign

class labels to the record simply by selecting from the annotations tab within the

application as seen in Figure 4.1. Upon completion of annotating a record, the

user can save the updated document with associated metadata, which can be used

in training machine learning models. Annotation mode supports the editing of

heterogeneous record sets with automatic annotation recognition. This allows the

application to edit raw (unannotated) records in parallel with partial or complete

annotated records.

In addition to directly applying a label to a document, TAT supports adding in-line

annotations. As shown in Figure 4.2, a user can highlight a portion of text and apply

an annotation. This action saves the start and end offset into the document, allowing

the labeling of named entities or parts of speech. It is important to note that the

original document is unchanged with in-line annotations, the metadata is simply an

overlay that can be passed to the relevant classifier.

During the process of adding class labels to documents, the user also has the

ability to modify the document text to remove any data that may be unnecessary,

incorrect, or restricted by law. For example, if a user is working on creating a corpus

of annotated medical records, it may be necessary to remove any data that could

possibly be used to identify a patient in order to satisfy privacy laws.

Once a trained classifier has been produced, it is possible to use the classifier to

assist the user in labeling new documents. When each document is loaded, the user
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Figure 4.1: Manual annotation in TAT: After reading a document, shown in the
upper-right panel, the user can select an annotation to apply to the text, shown in
the left-hand panel. All current annotations that are applied to the document are
shown in the bottom panel. This example shows the user applying a label called
“phase 1 award” to a document loaded from the SBIR-STTR corpus. This label is
being applied as a stand off annotation with no offset information into the document.
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Figure 4.2: In-line annotations in TAT: In-line annotations allow a user to apply a
label to any highlighted portion of text. This example shows the user applying a
label directly to the text in the document. This allows users to apply labels to name
entities or parts of speech if desired.
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Figure 4.3: Editing multiple documents simultaneously: This gives the user the ability
to do comparison edits. For example, it is possible to load all the documents that
were annotated by a specific user and review them side-by-side to ensure that labels
have been applied consistently across the corpus.
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Figure 4.4: Suggested annotations in TAT: When annotating a document, the user
can request that a classifier trained on the corpus in question suggest a label to apply.
The figure above shows that a suggested label of “phase 1 award” for the currently
loaded text.

can view a list of suggested annotations that the selected classifier produces as seen

in Figure 4.4. Thus, the user can accept the suggestions and move on to the next

document or manually apply a label to improve classifier accuracy.

4.2.2 Model Training and Testing

In model Training and Testing mode, the application allows the user to specify

parameters on the loaded classifier and to select a set of annotated files to be used for

training, testing, and validation. The user can use TAT to train a machine learning
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Figure 4.5: Training a classifier in TAT: Training a new Naive Bayes classifier from the
Mallet plug-in using texts from the years 1992 and 1993 with 90% of the documents
going to the training set and 10% of the documents going to the test set.

model on the selected files. This mode also allows the user to load previously trained

models for testing (or further training and testing) on selected data. TAT calculates

various accuracy measures as described in Section 2.5.3, such as precision, recall,

and F-Measure scores, and saves these statistics as metadata. Figure 4.5 shows the

training and testing interface as presented to the user.

4.2.3 Freeze Dry and Change Tracking

Tracking changes within the corpus is just as critical as tracking changes to source

code. As a corpus (or code base) grows, it becomes very difficult to monitor all

changes that are committed each day. Thus, it becomes critical to be able to look
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through the change history to be able to identify events that may have impacted the

quality of trained classifiers. Take for example a system that is continuously training

and deploying trained classifiers in a production environment. It is safe to assume

that such a system would have metrics in place to ensure that the quality of newly

trained classifiers does not drop below a certain predefined threshold. If a change

to the corpus is made that causes the quality of newly trained classifiers to drop to

unacceptable levels, a user can look through the recent history to identify the change

that caused the drop.

During the process of annotating a corpus, tracking all changes that are made is

important so training results can be replicated. The core framework and classifier

plug-in determine the relevant information that needs to be saved in order to repro-

duce the results. Information can include the particular classification algorithm and

version used, such as Naive Bayes or SVM, the set of documents that were used to

train, test, and validate the classifier, random seeds used, and any parameter settings

needed.

The freeze dry feature of TAT is implemented by leveraging the change tracking

feature provided by the core framework. Each change in the form of an annotation,

modification, or document visit is logged by the system. Figure 4.6 shows the editing

history of a document that is saved. Having a robust history allows the user to find

any actions that may have had a impact on the working corpus.

4.3 Application Architecture

TAT is built using a component-based setup and leverages the Open IDE frame-

work [35]. Key functionality is implemented as separate modules so the user will be
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Figure 4.6: The annotation history on a document: The history on a document
is shown in the bottom window. The loaded document has been visited, had an
annotation added, and had been used in the training of a classifier.

able to support a wide range of scenarios. For instance, if the user needs to access

text records located on disk, a plug-in to accomplish this task can be selected. If

on the other hand the user needs to load records that reside in a database such

as MySQL, a different plug-in can be selected. Out of the box, plug-ins for TAT

are provided to interface with the SBIR-STTR corpus, annotations extracted from

the SBIR-STTR dataset, and MALLET [29]. There are three extension points that

offer a pluggable interface, the classifier, corpus, and change tracking modules. Each

extension point is defined as a Java interface that must be implemented and placed

into the appropriate service provider. A complete listing of the necessary interfaces

are provided in Appendix B. The following sections give a high-level overview of each

plug-in module and the default setup.

Using an interface setup within each plug-in allows TAT to maintain maximum
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flexibility when working with different corpora and classifiers. Each interface provides

a buffer between the UI element of TAT and the data elements. For example, existing

corpora do not have to be “imported” into TAT as long as the corpus plug-in knows

how to read the existing format. TAT can display the information by querying the

interface. This allows data to be portable with legacy systems or meet a specific data

archive policy. In addition to abstracting the source and format of the data, TAT does

not assume to know the best format needed to maximize performance. Leaving the

performance requirements in the domain of the plug-in assures that the users can take

advantage of any tweaks that TAT cannot predict. For example, companies such as

Reuters have a very large system already in place to manage documents. Leveraging

these systems allows TAT to eliminate expensive data export and import work.

4.3.1 Classifier Plug-in

Any new classifier can be plugged in by implementing the IClassifier and IClassifi-

cation interface. Listing B.4 and B.5 in Appendix B shows all the methods needed

to add a new classifier into TAT. A general high-level description of all the relevant

methods are listed below and visualized in Figure 4.7.

• IClassifier

– Accuracy - The self-reported accuracy of the classifier

– Date - The date the classifier was last trained

– F-Meassure - The self-reported F-measure score

– Name - The name of the classifier. A good choice for the name includes

the algorithm + corpus that was used to train
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Document 1
Corpus

- + TAT

Document 2
Document 3
Document 4
Document 5
Document 6

Trained 
Classifier 

Classifier Plug-in backed by Mallet

Classifier Interface

Training Classifiers

CType : Option

Options : *******
Select Query : *******

Train

Figure 4.7: This sketch gives a high-level view of the relationship between the
Classifier UI, Classifier Plug-in, and backing implementation. The Classifier plug-in
serves as a buffer between the UI portion of the application and the actual classifier
being used.
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– ID - The ID of the classifier. This field is used for saving the classifier and

indexing. This should be unique and is dependent on how the classifier is

saved (i.e., saved to a database or disk)

– Other - Additional information specific to this classifier

– Precision - The self-report precision of the classifier

– Recall - The self-reported recall of the classifier

• IClassification

– ClassifiyTexts - Given a set of texts and a classifier classify each text with

the selected classifier and display the most likely tag.

– Classifiers - Get all current trained classifiers

– TrainClassifiers - Given a set of texts train a new classifier

– RemoveClassifier - Delete a classifier out of the database

– SupportedClassifiers - Returns a list of supported classifiers

Mallet has a very well developed API that makes integration with TAT painless

and straight forward. First, the IClassification interface is implemented and config-

ured to return the supported classifiers. The UI queries this interface and presents the

list to the user. Once the user has set all the required parameters, the information is

sent down to Mallet through the TrainClassifiers API call. Once the TrainClassifiers

call has been made, we construct a new instance of the desired algorithm, build a

training pipeline, and feed all selected documents to the classifier. Upon completion,

we take the resulting classifier and wrap it in an object that implements the IClassifier

and pass it back to the UI for the user to interact with.
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4.3.2 Corpus Plug-in

When working with existing corpora, it is possible to run into copyright issues that

prevent the data from being distributed with any results generated. This is the case

with the Reuters RCV-1 corpus. Any researcher that obtains this corpus is, by law,

not allowed to redistribute the raw data. Thus, it may be difficult for any other

researcher to reproduce any results from a description alone. TAT addresses this

problem by allowing researchers to build plug-ins for any copyrighted corpora and

distribute the corpora specific plug-ins. By distributing the plug-ins for TAT, any

other researcher that can obtain the original dataset can simply load the plug-in for

the copyright protected corpus and reproduce the results reported.

The corpus plug-in provides an abstract view of the text used to train new

classifiers and text that needs to be classified. A new Corpus can be added by

implementing the ICorpus, IText, and ITextFacet interfaces. Listing B.1, B.2, and B.3

in Appendix B shows all the methods needed to add a new corpus into TAT. A general

high-level description of all the relevant methods are listed below and visualized in

Figure 4.8.

• ICorpus

– Find - Given a user-defined query find all relevant texts

– RemoveText - Remove a text from the corpus

– UpdateText - Update an existing text

– TextsForUser - Retrieve all texts that were annotated by a specific user

– TextsForAnnotations - Retrieve all texts with the specified annotation

– BuildSearchIndex- Build or rebuild the search index (Optional).
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Document 1
Corpus

- + TAT

Document 2
Document 3
Document 4
Document 5
Document 6

SBIR/STTR xml 
based corpus 

Corpus plug-in backed by 
Apache Lucene

Corpus Interface

Title : Document Title

Figure 4.8: This sketch gives a high-level view of the relationship between the Corpus
UI, Corpus Plug-in, and backing implementation. The Corpus plug-in serves as a
buffer between the UI portion of the application and the backing dataset. This allows
users to abstract the actual storage method used for the corpus.
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• IText

– Date - The date of the text

– Desc - The description of the text

– GoldStandard - Has this article been marked as a gold standard

– Id - A unique ID typically used as an index into a database

– Text - The body of the document

– Title - The title of the text

• ITextFacet

– Id - The id of the text facet

– Property - A property of the facet

– Object - An extension point for customization

4.3.3 Freeze dry and Change Tracking plug-in

The Freeze dry and Change tracking plug-in provides a method to track changes to

the corpus over time. A new change tracking module can be added by implementing

IEvent, IUser, and ITappCore interfaces. The storage method of the change is entirely

plug-in dependent. The change can be stored as stand off annotations directly to

the affected text or in a separate database and linked back to the text in question.

Listing B.6, B.7, and B.8 in Appendix B shows all the methods needed to add a new

change tracking module into TAT. A general high-level description of all the relevant

methods are listed below.

The dataset used to train and test a classifier can have a significant impact on

classifier precision and recall. There have been several attempts at establishing a
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standard dataset for researches to use such as the ModApte split of the Reuters-21578

document collection or the LYRL2004 split from the RCV-1 collection. However,

there has not been universal adaptation of these datasets within the community.

Researchers have only loosely followed the training and test splits [9, 36], randomly

generated new ones [2, 39], only reported on the most frequent classes [1], or generated

an entirely new custom dataset [3]. Using TAT, researchers can distribute the data

that was generated during the creating of the training and test splits to allow results

to be reproduced.

• IEvent

– Id - The id of this event, typically a unique identifier

– User - The user associated with this event

– Date - The date this event happened

– OldValue - The old value of a change that was made

– TextId - The unique id of the affected text

– UserAction - What the user did

– TextStart - Numerical offset into the document where the change started

– TextEnd - Numerical offset into the document where the change ended

• IUser

– Id - The id of this user, typically a unique identifier

– LoginName - The login name of the user

– RealName - The real name of the user
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– Password - The users password

– Date - The date of the text

• ITappCore

– CreateUser - Adds a new user into the system

– LookupUser - Find a user

– DeleteUser - Remove a user from the system

– EventsForText - Retrieve all the events that exist for the selected Text

– AddEvent - Add a new event to the system

– DeleteEvent - Remove an event from the system

– EventsForUser - Retrieve all relevant events for a specified user

4.3.4 Properties Window

Each plug-in has access to the Properties window of TAT. This allows the user

to select a Text, Classifier, or Annotation object within the interface to see any

exposed properties of the object. The properties window leverages the Java reflection

framework and a list of properties that the plug-in author wants to expose to extract

the values. This feature is especially important to the corpus plug-in as it allows

a unified approach to viewing attributes for a text object that would otherwise be

inaccessible through the GUI. Figure 4.9 shows custom properties as extracted from

a Text object.
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Figure 4.9: The properties window: Showing properties extracted from a IText object

4.3.5 Licensing of TAT

There are hundreds of licenses available to the general public, we reviewed a few

prominent ones in Chapter 1. If you take into account the fact that an individual or

organization can write his or her own custom license, then the set of licenses available

is infinite. By selecting a license that is backed by a well-known organization, it is

possible to get a robust license that meets our needs and keeps costs low. Generally

speaking, if the developer of a piece of software wants to ensure that the work and all

derivative works stay out of proprietary software, then the best license to use would

be the GNU GPL license. However, in the case of TAT, we do not want to restrict

usage, as any commercial adoption can help further the development and plug-in

ecosystem. Thus, TAT will be licensed under the LGPL to allow the greatest degree

of flexibility among potential users.
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4.4 Summary

With TAT’s modular design, plug-ins can be provided for any document classifica-

tion interface. Currently, plug-ins are provided for the SBIR-STTR dataset and a

classification engine. Given the generic nature of the plug-in system, extending TAT

to include other packages should be relatively straight forward for any experienced

developer. Doing so will improve the usefulness and robustness of the application and

help to further document classification and machine learning research.
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CHAPTER 5

RESULTS



62

5.1 Overview

We can now address the research questions outlined in Chapter 1. We are interested

in determining the likelihood that a phase I proposal will be selected to move to phase

II based on features that are publicly available. We look at the amount of money

that the award requests, the properties of the proposal such as woman, minority, and

HUBZoned owned, the surname origin of the primary investigator, and the text of

the proposals abstract. Section 5.2 details the work necessary to tune up the SBIR-

STTR corpus downloaded from sbir.gov. Section 5.3 outlines the characteristics

of the tuned corpus that was built. Section 5.4 details the experiments that were

executed against the tuned corpus. Finally, Section 5.5 summarizes the results from

the experiments.

5.2 Corpus Preparation

This section details the process of cleaning up the raw SBIR-STTR corpus as down-

loaded from sbir.gov and identify problems that must be corrected for accurate

analysis. First, we evaluate the abstract for content and filter out awards below

a given threshold. Second, we look for duplicate or near duplicate awards present

in the dataset. Third, we evaluate the award metadata to identify and eliminate

discrepancies. Finally, we detail the process of labeling the positive and negative

examples. Section 5.3 lists the statistics for the final corpus.

5.2.1 An Overview of the Raw Data

The raw SBIR-STTR corpus contains 120,584 awards from the years 1983-2009 with

87,800 phase I awards and 32,784 phase II awards. The corpus is organized by year
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Figure 5.1: SBIR-STTR raw corpus breakdown by year. Each year shows the number
of Phase I and Phase II awards that were granted across all eligible agencies. An
analysis of the raw data is given in 5.2.1.

and saved in the format detailed in Chapter 3. Figure 5.1 gives a detailed break down

by year. Table 5.1 gives a breakdown of the awards in the raw corpus by the category

of the award. As we will see in the following sections, not all of the awards are usable

in the final dataset.

5.2.2 Award Abstracts

As noted in Chapter 3, the raw SBIR-STTR corpus has a large number of awards with

missing abstracts. Additionally, these awards have vague and uninformative titles.

Using the search query of “N/A,” we found 23,164 individual awards that need to be

filtered out because of missing abstracts. Listing 5.1 shows an example of one of the

awards that was filtered. We can see that there is little we can gleam from an award

with a missing abstract and a vague title of “A COMPUTER SYSTEM FOR THE

MOLECULAR BIOLOGY LABORATORY.”
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Category of Award Number present
Duplicate phase I 780
Additional phase II award 316
Missing award Id 36
Potential usable awards 119452

Table 5.1: SBIR-STTR raw corpus breakdown by category. Duplicate and additional
phase II awards are defined in Section 5.2.3. Missing award Id’s are explained in
Section 5.2.4.

1 <id>148283</ id>

< t i t l e>A COMPUTER SYSTEM FOR THE MOLECULAR BIOLOGY LABORATORY</ t i t l e>

3 < l i n k>ht tp : //www. s b i r . gov/ sb i r s e a r c h / d e t a i l /148283</ l i n k>

<abs t r a c t>N/A</ abs t r a c t>

5 <agency>HHS</agency>

<program>SBIR</program>

7 <phase>1</phase>

<year>1983</ year>

9 <company>Dna Star</company>

< r i />

11 <agency−t r a ck ing>523</agency−t r a ck ing>

<top ic−code>N/A</ top ic−code>

13 <woman−owned>No</woman−owned>

<minority−owned>No</minority−owned>

15 <hubzoned−owned>No</hubzoned−owned>

<award−id>523</award−id>

Listing 5.1: Example of a document with a missing abstract in the SBIR-STTR

corpus
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5.2.3 Identifying Duplicate Awards

The SBIR-STTR program has been in operation for 29 years. Over time, duplicate

awards have found their way into the corpus. A duplicate award is defined as a phase

I award with all the same data except the sbir.gov ID of the award. Listings 5.2

and 5.3 show an example of a phase I award that has been flagged as a duplicate

in the SBIR-STTR corpus. In the raw corpus, there were a total of 780 duplicate

awards found and removed.

In addition to duplicate phase I awards, it is possible to have one additional

phase II award under the same award-id due to Section 5111 of the National defense

authorization act, which governs the SBIR/STTR process. The additional phase II

award is only to be used for continued work on the current project not a new project.

There were 316 of these awards found and removed.

<Award>

2 <id>208656</ id>

< t i t l e>Simulated Job Performance Assessment</ t i t l e>

4 < l i n k>ht tp : //www. s b i r . gov/ sb i r s e a r c h / d e t a i l /208656</ l i n k>

<abs t r a c t>JPS i s de s i gn ing and deve lop ing a standard and a f f o r d ab l e

s e t o f procedures f o r c r e a t i n g and va l i d a t i n g PC−based job

s imu la t i on s that can be app l i ed ac r o s s a broad range o f Army MOS

to a s s e s s S o l d i e r job performance . As part o f the Phase I

e f f o r t , JPS i s bu i l d i ng a s imu la t i on f o r one Army MOS. In t h i s

e f f o r t JPS i s deve lop ing a 10 step proce s s f o r c r e a t i on o f the

s imu la t i on s .</ abs t r a c t>

6 <agency>ARMY</agency>

<program>SBIR</program>

8 <phase>1</phase>

<year>2007</ year>
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10 <company>JOB PERFORMANCE SYSTEMS, INC .</company>

< r i></ r i>

12 <agency−t r a ck ing>A072−048−0409</agency−t r a ck ing>

<top ic−code>N/A</ top ic−code>

14 <woman−owned>No</woman−owned>

<minority−owned>No</minority−owned>

16 <hubzoned−owned>No</hubzoned−owned>

<award−id>81417</award−id>

18 </Award>

Listing 5.2: Duplicate phase I award with a sbir.gov ID of 208656 and an award-id of

81417.

<Award>

2 <id>206202</ id>

< t i t l e>Simulated Job Performance Assessment</ t i t l e>

4 < l i n k>ht tp : //www. s b i r . gov/ sb i r s e a r c h / d e t a i l /206202</ l i n k>

<abs t r a c t>JPS i s de s i gn ing and deve lop ing a standard and a f f o r d ab l e

s e t o f procedures f o r c r e a t i n g and va l i d a t i n g PC−based job

s imu la t i on s that can be app l i ed ac r o s s a broad range o f Army MOS

to a s s e s s S o l d i e r job performance . As part o f the Phase I

e f f o r t , JPS i s bu i l d i ng a s imu la t i on f o r one Army MOS. In t h i s

e f f o r t JPS i s deve lop ing a 10 step proce s s f o r c r e a t i on o f the

s imu la t i on s .</ abs t r a c t>

6 <agency>ARMY</agency>

<program>SBIR</program>

8 <phase>1</phase>

<year>2007</ year>

10 <company>JOB PERFORMANCE SYSTEMS, INC .</company>

< r i></ r i>

12 <agency−t r a ck ing>A072−048−0409</agency−t r a ck ing>
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<top ic−code>N/A</ top ic−code>

14 <woman−owned>No</woman−owned>

<minority−owned>No</minority−owned>

16 <hubzoned−owned>No</hubzoned−owned>

<award−id>81417</award−id>

18 </Award>

Listing 5.3: Duplicate phase I award with a sbir.gov ID of 206202 and an award-id of

81417.

5.2.4 Award Meta Data

Individual awards consist of two independent id’s. The first ID is an index into the

main sbir.gov database and is unique across all granting agencies. The second ID

(award-id) is an index back into the granting agency’s program and is only guaranteed

to be unique within the specific agency making the grant. This discrepancy is caused

by the decentralized administration across the granting agencies. The agency award

id is critical when correlating phase I and phase II awards. Fortunately, the corpus

consists of only 36 awards with a blank award-id. Thus, these awards are filtered out

due to the fact that they cannot be properly correlated.

In addition to the awards with blank id’s there were 707 phase II awards listed

in the database that did not have a corresponding phase I award. According to the

laws that govern the SBIR/STTR program, it is not possible to go directly to a

phase II award. We attempted to find the missing phase II awards in the corpus

by matching other features of the award such as the award title, abstract, agency,

program, year, company, research institution, agency tracking number, topic code,

woman owned, minority owned, HUBZoned owned, and award id. However, after
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searching the entire corpus it appears that the phase I awards simply do not exist

in the corpus downloaded for sbir.gov. We removed the orphaned phase II awards

from the tuned corpus.

Finally, the award metadata that indicates if an award is woman, minority, or

HUBZoned owned is rife with discrepancies. Figure 5.2 shows an example of a problem

award. We can see that for the award shown, the small business is listed as woman

owned in one section and not woman owned in another section. Looking across the

entire corpus it appears that the second listing is incorrect as all three properties are

“No” for every single award. Thus, when extracting the data from sbir.gov, we will

only look at data from the first section.

5.2.5 Time Gap between Phase I and Phase II Award

A phase I award is generally 6 months or less in time and a phase II is no more than

two years. Thus, when looking for awards that have moved from a phase I to a phase

II it is logical to assume a 1-year cutoff window to know if a phase I award has in

fact been moved to phase II. This is important to note in order to avoid miss-labeling

phase I awards as negative examples. Looking at past award data shown in Figure 5.3,

we see a maximum time gap between phase I and phase II of 10 years with a minimum

time gap of less than a year. The bulk of the awards fall within the predicted 1 year

window. Therefore, as the data shows, we set a cutoff window of 3 years to maximize

our accuracy when looking for phase I awards that have moved to phase II. Given

that our maximum year in the corpus is 2009, the cutoff for all phase I awards that

do not have a corresponding phase II award is set to 2007.

As we can see in Figure 5.4, we first find all phase I awards that are within the

cutoff window. Once we have the phase I awards, we can look for a corresponding
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Figure 5.2: Award metadata as extracted from the sbir.gov website showing inconsis-
tent data. You can see that the company is reported as woman owned in one section
and not woman owned in a separate section.
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Figure 5.3: Time gap between a phase I and phase II award. As shown above, the
bulk of the phase I to phase II awards fall within a 1 year window.

phase II award. We will look for phase II awards outside of the cutoff window so we

can accurately label phase I awards that are within the cutoff window. Observe that

Figure 5.4 shows two positive phase I awards and one negative phase I award. We

can see in order to properly label the award represented by the yellow arrow we went

outside the cutoff window to find the corresponding phase II award. When labeling

the award represented by the blue arrow, we searched the entire corpus and found no

corresponding phase II award, thus we labeled the award as a negative example.

5.3 The Tuned and Labeled Corpus

We construct a tuned and labeled corpus that is suitable for training classifiers as

follows. First, we took the raw corpus and constructed a table of phase I and phase

II award pairs. Then, we filter out the award pairs for missing abstracts, duplicate

awards, missing metadata, and that are outside the cutoff window as described in the
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Figure 5.4: Labeling phase I awards as positive or negative. Each arrow represents
an award. The black and yellow arrows represent a phase I that was labeled positive.
The blue arrow represents a phase I award that was labeled negative. The red arrows
represent phase I awards that are excluded from the corpus because they are beyond
the cutoff window.

sections above. It is important to note that award pairs are removed from the corpus

based on the phase I information. We are interested in finding properties of phase I

awards that may indicate success. Thus, if we have a phase I and phase II award pair

and the phase I award has a missing abstract, the award pair is removed regardless

of what information is in the phase II.

Figure 5.5 shows that for the years 2000 and earlier, there are large numbers of

awards with missing abstracts that we cannot use. When we filter out phase I awards

due to missing abstracts, we are left with a very large number of negative examples

from the years 1983-2000 giving a very unbalanced dataset. Thus, a cutoff is set at

2001, which is after the peak of missing abstracts. This gives us a final year range of

2001-2007, a 7 year range.

The tuned corpus as shown in Figure 5.6 will be the corpus that all experiments
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Figure 5.5: Phase I awards that are missing abstracts in the SBIR-STTR corpus

are executed against. The tuned corpus consists of 32,885 awards with 14,293 awards

that were moved from a phase I to a phase II (positive examples) and 18,592 awards

with only a phase I (negative examples). With any set of labeled data, it is possible

to calculate the default accuracy of each class. The default accuracy is found by

taking the number of documents in the class of interest divided by the total number

of documents. Thus, our default accuracy rate for awards that were only granted

a phase I is 57% (18, 592/32, 885) and 43% (14, 293/32, 885) for awards that were

granted a phase II.

5.4 Tuned Corpus Results

Using the tuned corpus, we look at the possible features that may indicate if a phase

I award will move to a phase II. Four different aspects of an award were examined:

the amount of money the award requests, the properties of the proposal as defined

in Section 5.4.2, the name of the primary investigator, and the text of the submitted
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Figure 5.6: SBIR-STTR tuned and labeled corpus showing the total number of
positive and negative awards.

abstract. Each section below details the setup and the results. Section 5.5 gives a

summary of all the results.

5.4.1 Amount of Money Requested

When submitting an SBIR-STTR proposal, the company submitting has to compile

a budget worksheet with estimated costs of the project. Phase I awards normally do

not exceed 150,000 dollars in total costs for a period of 6 months. While the budget

worksheet is not publicly available, the amount of money that the company requested

is public record. Using the tuned corpus described in Section 5.3, we examined all

phase I awards that were successfully moved to phase II and take note of the award

amount requested. We then compared this to the phase I awards that were not moved

to phase II to see if there is a difference in the amount requested.
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Results

Figure 5.7 shows the amounts awarded, grouped in 20,000 dollar increments. The

majority of phase I and phase II awards fall in the range of 60,000 - 80,000 dollars.

The tuned dataset contains 2,649 awards that reported an award amount of zero. This

is clearly an error in the dataset and is excluded from the results. It is interesting

to note that there were 434 awards from the phase I to phase II collection and 1,258

awards from the phase I only collection that reported an amount in excess of 160,000

dollars. However, this discrepancy is due to how certain agencies, such as the NIH,

report the funding amount for each organization [34]. Table 5.2 shows the top three

amounts as percentages. We see that 32% of awards that are within the 60,000 -

80,000 dollar range and 24% within the 40,000 - 60,000 dollar range and 17% are in

the 80,000 - 100,000 range.

Without access to the full budget of the award, it is not known what percentage

of the award is for labor, materials, and overhead. Thus, it is feasible to assume

that awards that are asking for more money may have higher material and overhead

costs than the less expensive awards. For example, in the field of computer science,

a proposal that needs to lease access to a supercomputer to complete the feasibility

study would be more expensive than a proposal that can be conducted on a standard

desktop machine. Given that the positive and negative awards are clustered around

the same amounts, we can conclude that the award amount doesn’t appear to have

any impact when moving from a phase I to a phase II.
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Award Amount Percent awards moved to a phase II

80,000 - 100,000 17%
40,000 - 60,000 24%
60,000 - 80,000 32%

Table 5.2: Top three amounts for phase I awards moved to phase II.
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Figure 5.7: Award amounts for both phase I and phase II.

5.4.2 Properties of the Proposal

Looking at the tuned dataset, we can now look at the properties of the proposal as a

factor in determining the likelihood of moving from a phase I to a phase II. Individuals

that compete for SBIR/STTR awards are required to detail traits of the submitting

company’s ownership and location. Traits include whether the company is woman or

minority owned and if it is located, or has branches, in a HUBZone. While statistics

are available on sbir.gov regarding the total number of such awards, there has not

been, to our knowledge, an analysis of these properties done on awards that have
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moved from phase I to phase II.

Results

Figures 5.8, 5.9, 5.10, and 5.11 each show the number of phase I awards that were

moved to a phase II and awards that received only a phase I. For awards that are

not listed as woman, minority, or HUBZoned owned there are, on average, 43%

of the submitted phase I awards moved to a phase II, which is the same as the

default accuracy of the class. Looking at minority and woman owned businesses the

percentage of awards moved to a phase II drops to 37% and 42%, respectively, which

is slightly below the default accuracy. HUBZoned owned business are the only group

of awards that has a higher percentage of phase I awards moved to a phase II at 48%.

Higher conversion rates should be expected for HUBZone companies because they get

a 10% price evaluation preference and the federal government has a goal of awarding

3% of all dollars to HUBZoned certified businesses.

Based on the data from sbir.gov, it appears that locating a company in a

HUBZone can significantly increase the possibility that you are moved to a phase

II after receiving a phase I award. Table 5.3 summarizes the data and gives the base

rate of a phase I award moving to a phase II. It is important to note that these

properties are attached to the submitting company, not the primary investigator. For

example, there may be a minority owned company that is submitting a proposal with

a non-minority primary investigator.

The SBA is currently, as of October 1, 2012, aware of the lower number of

awards granted to women and minority owned business. According to the SBIR

Policy Directive [14], each SBIR Federal agency must use 3% of its SBIR budget

to attempt to increase participation by Small Disadvantaged Business (SDB)s and
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Figure 5.8: Awards moved to phase II that are not woman, minority, or HUBZoned
owned

Women Owned Small Businesses (WOSB) in the SBIR Program. Thus, our findings

are correlated with what the SBA is already aware of and trying to rectify.

Award Property Percent moved to phase II Confidence Interval

Minority owned 37% 2.25
Woman owned 42% 1.85
Default Rate 43% n/a
NONE 43% .58
HUBZoned owned 48% 4.15

Table 5.3: Percentage of awards that were move to a phase II based on the awards
properties. Confidence Intervals are at a 95% desired confidence level.

5.4.3 Name and Title of the Primary Investigator

We now look at the surname origin and title of the primary investigator listed on

the award to see if there are any features that we can extract that indicate if an

award will move from a phase I to a phase II. We derive the name origin using

the primary investigators surname and information listed on ancestry.com. While
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Figure 5.9: Awards moved to phase II with a minority owned company
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Figure 5.10: Awards moved to phase II with a woman owned company
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Figure 5.11: Awards moved to phase II with a HUBZone owned company

ancestry.com has a very large database of name origins, there are an staggering

number of possible name spellings, names that have been hyphenated, and names

with multiple origins. Any name that cannot be accurately resolved is labeled as

UNKNOWN and is excluded from the analysis. As well as the surname origin, we

group awards by the title of the primary investigator. The title is any variation

(lower case, upper case, and punctuation) of PHD, DR, MD, and PE when choosing

the awards to include.

Results

The database at ancestry.com contains very fine-grained name origins. For example,

there are names listed as “South German” and “Northern German.” While this level

of detail is often needed when tracing back relatives (which is what ancestry.com

is tuned for), it is far too detailed for our needs. Thus, we will take the name

origins by country and place them in five broad regions: Asia , Americas, Caribbean,

Europe, and the Middle East. Unfortunately, there are names within the database
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that are listed as belonging to multiple regions. The name “Ramila Philip” is listed as

having an origin of “Scottish, Dutch, English, South Indian, etc.” which would place

the name in both the European (Scottish, Dutch, English) and Asia (South Indian)

categories. To solve the problem of multiple name origins, we place the name in the

category with the most records listed on ancestry.com. For the name “Philip,” we

see that as of January 2013, Scotland is listed as the top origin for the name with 64

entries and only 16 entries from the South Indian origin. Thus, “Philip” is placed in

the European category for the SBIR-STTR corpus.

Figure 5.12 and 5.13 show the results of awards that were moved from a phase I to

phase II and awards that only received a phase I. We broke out the results from Europe

into a separate chart because Europe was the dominate category, thus making direct

visual comparisons difficult. Table 5.4 shows the success rate of awards moving from a

phase I to phase II for each region. When compared with the base rate of the corpus,

names with origins from the Americas and Europe region have a better conversion

rate than names originating from the Caribbean and Middle Eastern region.

Name origin Percent moved to phase II Confidence Interval

Middle East 38% 9.81
Caribbean 39% 9.07
Asia 43% 3.97
Default Rate 43% n/a
Europe 44% .63
Americas 45% 10.7

Table 5.4: Percentage of awards that were move to a phase II based on the primary
investigators name origin.Confidence Intervals are at a 95% desired confidence level.

In the tuned corpus, we found 268 names with a title such as DR, PHD, MD, and

PE. The award database at sbir.gov does not have a specific field for the primary

investigators title, thus it is not known if the 268 names extracted include all possible
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Figure 5.12: Awards moved to Phase II grouped by region
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Figure 5.13: Awards moved to Phase II grouped from Europe
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Figure 5.14: Awards moved to Phase II grouped by the title of the primary investi-
gator

results. If the full award were available to the public, it would be possible to extract

the title of the primary investigator from the biography section. The information that

we do have allows us to at least make an educated guess on the impact a title may

have on the success of moving from a phase I to a phase II. Figure 5.14 shows that

awards that have a title listed with the primary investigators name have a conversion

rate lower than the default rate. The default rate for the class is 43% and when

looking at awards with titles listed, we find that only 38% of awards are moved from

a phase I to a phase II.

5.4.4 Predicting a Phase II Award with Document Classification

Finally, we look at trying to predict a phase II award using document classification

techniques. First, we load the tuned corpus into TAT and train a Naive Bayes,

MaxEnt, and Decision Tree classifier from MALLET. Once we have trained classifiers,

we evaluate their effectiveness as outlined in Chapter 2. We then determine if there

are any textual properties that the classifiers can derive from the abstracts that can
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give an indication of success.

Results

Even with all the work in removing duplicate awards, awards with blank abstracts,

and awards with missing or incorrect metadata, we still have problems that can have

an impact when training classifiers. One problem that stands out is the slightly

unbalanced nature of the training examples. In an ideal corpus, you want to have

a balanced number of positive and negative examples from which to train. In our

corpus, we have 14,293 positive examples and 18,592 negative examples. There are

approximately 4,299 more negative examples than positive examples in the tuned data

set. Thus, it is possible to cheat by biasing your guess toward the largest category.

While this is not uncommon in real-world datasets, it presents a problem when trying

to train a classifier.

Classifier Precision Recall F-Measure
Naive Bayes 47% 68% 56%
MaxEnt 46% 46% 46%
Decision Tree 35% 27% 35%
Default Rate of 43%

Table 5.5: Classifier Precision, Recall, and F-Measure for phase I to phase II awards
using the SBIR-STTR tuned corpus.

Table 5.5 shows the results of running three different classifiers against the tuned

SBIR-STTR corpus. We can immediately see that the Naive Bayes Classifier performs

the best with a F-Measure of 56%. The worst performer for this corpus is the Decision

Tree classifier with an F-Measure of 35%. Thus, with a Naive Bayes classifier, we can

see that we have a slightly better chance than the default rate at predicting if an award

will move to phase II. It is important to note that the complete proposal could include
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proprietary methods, trade secrets, or intellectual property that a company does not

want released to the public. When submitting a proposal, the submitting company

has the option of removing this critical information from the abstract. The removed

information in some cases could be the deciding factor when selecting winners [10].

5.5 Summary

Over the course of this chapter, we have evaluated the SBIR-STTR corpus and

evaluated features of awards that have been moved from a phase I to a phase II. We

found that companies that are located in a HUBZone or have primary investigators

with surnames with an origin from Europe or the Americas have slightly higher

conversion rates from a successful phase I. We also found that a Naive Bayes classifier

trained against the corpus can give a better indication of success than the base rate.
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CHAPTER 6

CONCLUSIONS
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6.1 Document Classification

Over the course of this thesis, we have reviewed the overall process of document

classification. We first looked at the classification process in Chapter 2, which consists

of how to represent the document, weigh the documents features, and algorithms used

for training and classifying. We discussed problems that could impact the precision,

recall, and overall accuracy such as feature selection, word stemming, and stop word

removal.

An important topic in document classification is the selection and building of

a corpus, which was reviewed in Chapter 3. Without a collection of documents,

researchers would be forced to generate artificial corpora that may not accurately

represent real-world data. We reviewed several popular datasets that are commonly

used in research as well as introducing a new dataset for the document classification

community to use.

The core topic of this thesis was an overview of TAT given in Chapter 4. The

application modes and characteristics were enumerated along with the three plug-in

points (Classifier, Corpus, and Change Tracking). Releasing TAT for use by re-

searchers working on corpora construction and document classification saves years of

development time and allows researchers to be productive quickly.

We saw in Chapter 5 that real-world data is fraught with problems and incon-

sistencies. It is important to take these problems into account when working on

developing new classification algorithms, methods, and corpora. Ensuring that the

working corpus that is used to train classifiers is of the highest quality possible is

critical for success. If you are training on poor quality data, you will also classify

poorly. Finally, we gave the analysis of the SBIR-STTR dataset and released both
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the raw data and tuned data that can be used for further analysis.

6.2 Future Directions and Work

As with all projects, there is never enough time to do everything that is needed. We

have compiled a small list of enhancements to TAT and further research that can

use the software and data generated. This includes, but is not limited to, extensions

to TAT, further analysis of the SBIR-STTR dataset, and use of TAT to annotate or

maintain existing datasets.

6.2.1 Extend TAT with Additional Classification Engines

TAT provides an excellent platform for language analysis and corpora construction

and maintenance. To further improve the quality, bindings for other machine learning

engines can be developed. There are a number of packages that provide a command

line only interface that can benefit from a user friendly front end. Additionally, there

are toolkits such as WEKA [15] that provide a powerful GUI interface into a range

of classifiers that can be plugged into the TAT classifier module. Embedding the

existing WEKA interface into TAT would further enhance both platforms.

6.2.2 Further SBIR-STTR Analysis

As seen in Section 5, a more detailed analysis of the SBIR/STTR reporting methods

can provide value to the grant-seeking community. We found a large number of

missing abstracts in the central sbir.gov repository for awards prior to 2002. As with

most government run projects, there are numerous other sources that we can leverage

to improve the corpus. Each granting agency typically has their own propriety
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interface into the awards granted as well as those maintained by agencies such as

the Small Business Administration. Thus, it would be interesting to download all

the awards data directly from each agency to see if the quality of the corpus can be

improved. This is an inherently hard and long task due to the disparate methods of

reporting and changes to the SBIR/STTR legislation over the years.

6.2.3 Reuters Corpora Plug-in

Due to the popularity of the corpora released by the Reuters corporation, it would

be valuable to provided a default plug-in for TAT to allow researchers to use the

RCV-1, RCV-2, and older Reuters-21578 corpora. The plug-ins could be configured

to produce some of the more common training and test data splits used throughout

the literature, eliminating the need to repeat this tedious work before results can be

generated. TAT is ideally suited for corpora such as the RCV-1 and RCV-2 due to

the restrictions put in place by the Reuters corporation.

6.3 Final Wrap up

We hope that the artifacts delivered over the course of this thesis provide value to

the research community and help further the field of Document Classification. TAT

and the new SBIR-STTR dataset are intended to to meet the needs of the research

community and facilitate the progression of the science.
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QUICKSTART
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A.1 Overview

Getting up and running with TAT is a straight forward process. You can choose

to download and build the application from source or install from pre-built binary

installations. The following sections detail all the dependencies needed to get a

complete running system.

A.2 Database Setup

The plug-ins provided out of the box depend on a working MySQL installation. Once

you have MySQL installed add a new database named “tapp core.” The default user

name is “bsu” with a password of “bsu.” The user name and password can be updated

once everything is installed and running. Give the user “bsu” access to the Schema

“tapp core” with all Object, DDL, and Other Rights. This will allow all necessary

tables to be automatically managed by the application.

A.3 TAT

With a working MySQL installation, you can download the installer that is appro-

priate for your platform from trac.boisestate.edu. Figures A.1, A.2, A.3, and A.4

show the installer screens that you should see when running the installer. Figure A.5

shows the default window setup once the installation is complete with Figure A.6

showing the initial indexing of the SBIR-STTR tuned corpus. Finally Figure A.7

shows a document from the corpus being edited.
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Figure A.1: Installer first screen

Figure A.2: Installer second screen
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Figure A.3: Installer third screen

Figure A.4: Installer fourth screen
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Figure A.5: Default windowing setup after clean install
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Figure A.6: Indexing the SBIR-STTR corpus after install
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Figure A.7: Editing a document after install
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APPENDIX B

PLUG-IN INTERFACES
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B.1 Corpus Plug-in

package edu . b o i s e s t a t e . s e r v i c e s . corpus ;

2

import java . net .URI ;

4 import java . u t i l . Co l l e c t i o n ;

import java . u t i l . L i s t ;

6 import org . openide . windows . InputOutput ;

8 /∗∗

∗ Provides an i n t e r f a c e in to the de s i r ed Corpus .

10 ∗ @author Shane Panter

∗/

12 pub l i c i n t e r f a c e ICorpus {

14 /∗∗

∗ Given a query re turn a l i s t o f matching IText Objects

16 ∗ @param query A plug−in de f ined query

∗ @param f i e l d The f i e l d to query

18 ∗ @param f i r s t R e s u l t the f i r s t r e s u l t to re turn

∗ @param maxResult the maxResult

20 ∗ @param gold return only gold a r t i c l e s .

∗ @return

22 ∗/

pub l i c L i s t<IText> f i nd ( S t r ing query , S t r ing f i e l d , i n t f i r s tR e s u l t ,

i n t maxResult , Boolean gold ) ;

24

/∗∗

26 ∗ Gets a l l the s ea r chab l e f i e l d s that t h i s corpus supports

∗ @return the supported f i e l d s
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28 ∗/

pub l i c L i s t<St r ing> g e tF i e l d s ( ) ;

30

/∗∗

32 ∗ Remove the s e l e c t e d text from the corpus

∗ @param t the l i s t o f t e x t s to remove

34 ∗/

pub l i c void removeText ( IText t ) ;

36

38 /∗∗

∗ Update a g ive t ext

40 ∗ @param t the text to update .

∗/

42 pub l i c void updateText ( IText t ) ;

44 /∗∗

∗ Get a l l the t ex t s owned by a s p e c i f i c user

46 ∗ @param loginName the name o f the user

∗ @param f i r s t the u s e r s f i r s t name

48 ∗ @param max the maximum number o f a r t i c l e s to re turn

∗ @return the t ex t s found

50 ∗/

pub l i c Co l l e c t i o n<IText> getTextsForUser ( S t r ing loginName , i n t f i r s t

, i n t max) ;

52

/∗∗

54 ∗ Get a l l the t ex t s annotated f o r a s p e c i f i c user

∗ @param annotat ions the annotat ions o f i n t e r e s t

56 ∗ @param s t a r t The date to s t a r t l ook ing
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∗ @param f i n i s h The data to f i n i s h

58 ∗ @param f i r s t R e s u l t the f i r s t r e s u l t to re turn

∗ @param max the maximum number o f a r t i c l e s to re turn

60 ∗ @return the t ex t s found

∗/

62 pub l i c L i s t<IText> getTextsForAnnotat ions ( ITextFacet f ace t , i n t

f i r s tR e s u l t , i n t max) ;

64

/∗∗

66 ∗ Build a Search index ac ro s s the corpus

∗ Note: t h i s may not be nece s sa ry depending on the

68 ∗ i n t e r n a l needs o f the plug−in

∗/

70 pub l i c void bui ldSearchIndex ( ) ;

72 /∗∗

∗ Get a l l f a c e t s o f a s p e c i f i e d type

74 ∗ @param type the type o f f a c e t to get

∗ @return a l i s t o f f a c e t s

76 ∗/

pub l i c L i s t<ITextFacet> getAllFacetsOfType ( St r ing type ) ;

78

80 /∗∗

∗ Al l the top l e v e l annotat ions . I f you annotat ions

82 ∗ are not h i e r a r c h i c a l then t h i s would j u s t re turn

∗ a l l a v a i l a b l e annotat ions .

84 ∗ @return

∗/
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86 pub l i c L i s t<ITextFacet> getAl lTopLevelAnnotat ions ( ) ;

}

Listing B.1: Corpus plug-in Interface

1 package edu . b o i s e s t a t e . s e r v i c e s . corpus ;

3 import java . i o . S e r i a l i z a b l e ;

import java . u t i l . Set ;

5

/∗∗

7 ∗ Represents a body o f t ex t in the system .

∗ @author Shane Panter

9 ∗/

pub l i c i n t e r f a c e IText extends S e r i a l i z a b l e {

11

/∗∗

13 ∗ The date o f the Text

∗ @return

15 ∗/

pub l i c S t r ing getDate ( ) ;

17

/∗∗

19 ∗ Returns a d e s c r i p t i o n o f the text

∗ @return A shor t d e s c r i p t i o n

21 ∗/

pub l i c S t r ing getDesc ( ) ;

23

/∗∗

25 ∗ The gold standard s t a tu s o f a t ext

∗ @return true i f t h i s t ex t i s a gold standard
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27 ∗/

pub l i c Boolean getGoldStandard ( ) ;

29

/∗∗

31 ∗ The Id o f a t ext . Typ i ca l l y a unique i d e n t i f i e r

∗ @return the id

33 ∗/

pub l i c S t r ing get Id ( ) ;

35

/∗∗

37 ∗ The main body o f the text

∗ @return The body text

39 ∗/

pub l i c S t r ing getText ( ) ;

41

/∗∗

43 ∗ The t i t l e o f the text . Can be the same as the d e s c r i p t i o n

∗ @return the T i t l e

45 ∗/

pub l i c S t r ing g e tT i t l e ( ) ;

47

/∗∗

49 ∗ The Url o f the text i f t h i s i s a web r e sou r c e

∗ @return the URL

51 ∗/

pub l i c S t r ing getUr l ( ) ;

53

/∗∗

55 ∗ Extension po int f o r the plug−i n s

∗ @return
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57 ∗/

pub l i c Object getWrappedData ( ) ;

59

/∗∗

61 ∗ Return a l l annotat ions ( l a b e l s or f a c e t s ) f o r t h i s t ex t

∗ @return the annotat ions

63 ∗/

pub l i c Set<ITextFacet> getAnnotat ions ( ) ;

65

/∗∗

67 ∗ Sets the data o f the text

∗ @param date the date to s e t

69 ∗/

pub l i c void setDate ( S t r ing date ) ;

71

/∗∗

73 ∗ Sets the Desc r ip t i on o f the text

∗ @param desc

75 ∗/

pub l i c void setDesc ( S t r ing desc ) ;

77

/∗∗

79 ∗ Sets the text o f the text

∗ @param text the text to s e t

81 ∗/

pub l i c void setText ( S t r ing text ) ;

83

/∗∗

85 ∗ Sets the t i t l e o f the text

∗ @param t i t l e the t i t l e
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87 ∗/

pub l i c void s e tT i t l e ( S t r ing t i t l e ) ;

89

/∗∗

91 ∗ Sets the URL of t h i s t ex t

∗ @param ur l the URL

93 ∗/

pub l i c void s e tUr l ( S t r ing u r l ) ;

95

/∗∗

97 ∗ Updates t h i s t e x t s go ld standard s t a tu s

∗ @param goldStandard true i f t h i s t ex t i s a gold standard

99 ∗/

pub l i c void setGoldStandard ( Boolean goldStandard ) ;

101

/∗∗

103 ∗ Sets the Id o f t h i s t ex t .

∗ @param Id the ID

105 ∗/

pub l i c void s e t I d ( S t r ing Id ) ;

107

/∗∗

109 ∗ Adds a new Annotation to t h i s t ex t

∗ @param prop the annotat ion property

111 ∗ @param obj the annotat ion ob j e c t

∗/

113 pub l i c void addAnnotation ( ITextFacet f ) ;

115

/∗∗



108

117 ∗ Removed an annotat ion from th i s t ex t

∗ @param f the annotat ion to remove

119 ∗/

pub l i c void removeAnnotation ( ITextFacet f ) ;

121

}

Listing B.2: Text or Document plug-in Interface

package edu . b o i s e s t a t e . s e r v i c e s . corpus ;

2

/∗∗

4 ∗ Provides an i n t e r f a c e f o r a text f a c e t ( annotat ion )

∗ @author Shane Panter

6 ∗/

pub l i c i n t e r f a c e ITextFacet {

8

/∗∗

10 ∗ Number r ep r e s en t i ng the id o f the f a c e t . This could be a d i r e c t

index in to

∗ a database or some other i d e n t i f i e r .

12 ∗ @return The id o f the Facet

∗/

14 pub l i c S t r ing get Id ( ) ;

16 /∗∗

∗ Returns the property o f t h i s f a c e t

18 ∗ @return the property

∗/

20 pub l i c S t r ing getProperty ( ) ;
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22 /∗∗

∗ Returns the Object o f t h i s f a c e t

24 ∗ @return the f a c e t ob j e c t

∗/

26 pub l i c S t r ing getObject ( ) ;

28

/∗∗

30 ∗ Sets the id o f the TextFacet

∗ @param id The id to s e t

32 ∗/

pub l i c void s e t I d ( S t r ing id ) ;

34

/∗∗

36 ∗ Sets the f a c e t property

∗ @param property the property to s e t

38 ∗/

pub l i c void se tProper ty ( St r ing property ) ;

40

/∗∗

42 ∗ Set the Object Property

∗ @param ob j e c t the Object to s e t

44 ∗/

pub l i c void se tObjec t ( S t r ing ob j e c t ) ;

46

/∗∗

48 ∗ Custom extens i on po int f o r plug−in

∗ @return

50 ∗/

pub l i c Object getWrappedData ( ) ;
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52

}

Listing B.3: Annotation plug-in Interface

B.2 Classifier Plug-in

package edu . b o i s e s t a t e . s e r v i c e s . c l a s s i f i c a t i o n ;

2

import edu . b o i s e s t a t e . s e r v i c e s . corpus . IText ;

4

/∗∗

6 ∗ This i n t e r f a c e prov ide s a l l the nece s sa ry methods needed to a l low any

∗ c l a s s i f i e r to be plugged in to the framework

8 ∗ @author Shane Panter

∗/

10 pub l i c i n t e r f a c e I C l a s s i f i e r {

12 /∗∗

∗ The name o f the c l a s s i f i e r . A good cho i c e f o r the name in c l ud e s

the

14 ∗ a lgor i thm + corpus that i t was t ra in ed on

∗ @return A human readab le name

16 ∗/

pub l i c S t r ing getName ( ) ;

18

/∗∗

20 ∗ The ID o f the c l a s s i f i e r . This f i e l d i s used f o r sav ing the

c l a s s i f i e r
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∗ and index ing t h i s should be unique and i s depending on how the

c l a s s i f i e r

22 ∗ i s saved ( i . e . saved to a database or d i sk )

∗ @return A unique ID

24 ∗/

pub l i c S t r ing getID ( ) ;

26

/∗∗

28 ∗ The s e l f r epor ted accuracy o f the c l a s s i f i e r

∗ @return The Accuracy

30 ∗/

pub l i c S t r ing getAccuracy ( ) ;

32

/∗∗

34 ∗ The s e l f r epor ted r e c a l l o f the c l a s s i f i e r

∗ @return The Reca l l

36 ∗/

pub l i c S t r ing ge tReca l l ( ) ;

38

/∗∗

40 ∗ The s e l f r epo r t p r e c i s i o n o f the c l a s s i f i e r

∗ @return The Pr e c i s i on

42 ∗/

pub l i c S t r ing g e tP r e c i s i o n ( ) ;

44

/∗∗

46 ∗ The s e l f r epor ted F−measure s co r e

∗ @return The F−measure

48 ∗/

pub l i c S t r ing getFMeassure ( ) ;
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50

/∗∗

52 ∗ The data the c l a s s i f i e r was l a s t t r a in ed

∗ @return A formatted Date

54 ∗/

pub l i c S t r ing getDate ( ) ;

56

/∗∗

58 ∗ Addit iona l in fo rmat ion s p e c i f i c to t h i s c l a s s i f i e r

∗

60 ∗ @return Any other important data

∗/

62 pub l i c S t r ing getOther ( ) ;

}

Listing B.4: Classifier plug-in Interface

1 package edu . b o i s e s t a t e . s e r v i c e s . c l a s s i f i c a t i o n ;

3 import edu . b o i s e s t a t e . s e r v i c e s . corpus . IText ;

import java . u t i l . L i s t ;

5

/∗∗

7 ∗ I n t e r f a c e in to the c l a s s i f i c a t i o n eng ine

∗

9 ∗ @author Shane Panter

∗/

11 pub l i c i n t e r f a c e I C l a s s i f i c a t i o n {

13 /∗∗

∗ Get a l l t r a ined c l a s s i f i e r s that the system knows about
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15 ∗ @return t ra in ed c l a s s i f i e r s

∗/

17 pub l i c L i s t< I C l a s s i f i e r> g e t C l a s s i f i e r s ( ) ;

19 /∗∗

∗ Given a l i s t s o f t e x t s and a C l a s s i f i e r c l a s s i f y each

21 ∗ t ex t in the l i s t with the g iven c l a s s i f i e r

∗ @param t the l i s t o f t e x t s to c l a s s i f y

23 ∗ @param c the c l a s s i f i e r to use

∗ @return the c l a s s i f i e d t ex t s

25 ∗/

pub l i c L i s t<IText> c l a s s i f yT e x t s ( L i s t<IText> t , I C l a s s i f i e r c ) ;

27

/∗∗

29 ∗ Trains a new c l a s s i f i e r

∗ @param t The l i s t o f t e x t s to t r a i n on

31 ∗ @param type the type o f c l a s s i f i e r to t r a i n

∗ @param customOptions opt ions to pass to the c l a s s i f i e r

33 ∗ @param t r a i n the t r a i n i n g s e t s p l i t percentage

∗ @param t e s t the t e s t s e t s p l i t percentage

35 ∗ @return

∗/

37 pub l i c I C l a s s i f i e r t r a i n C l a s s i f i e r ( L i s t<IText> t , S t r ing type ,

S t r ing customOptions , double t ra in , double t e s t ) ;

39 /∗∗

∗ Remove a c l a s s i f i e r from the engine

41 ∗ @param c the c l a s s i f i e r to remove .

∗/

43 pub l i c void r emoveC l a s s i f i e r ( I C l a s s i f i e r c ) ;
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45 /∗∗

∗ r e tu rn s a l i s t o f supported c l a s s i f i e r s f o r t h i s plug−in

47 ∗ @return A l i s t o f supported c l a s s i f i e r s

∗/

49 pub l i c L i s t<St r ing> s u pp o r t e dC l a s s i f i e r s ( ) ;

}

Listing B.5: Classification plug-in Interface

B.3 Change Tracking Plug-in

1 package edu . b o i s e s t a t e . s e r v i c e s . tappcore ;

3 import java . i o . S e r i a l i z a b l e ;

import java . u t i l . Date ;

5

/∗∗

7 ∗ Represents an event in the System . This r ep r e s en t s the core change

t rack ing

∗ f u n c t i o n a l i t y .

9 ∗ @author Shane Panter

∗/

11 pub l i c i n t e r f a c e IEvent extends S e r i a l i z a b l e {

13 /∗∗

∗ The event Id . Typ i ca l l y unique

15 ∗ @return the events Id

∗/

17 pub l i c In t eg e r get Id ( ) ;
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19 /∗∗

∗ The user that t h i s event i s l i nked to

21 ∗ @return The user ob j e c t f o r t h i s event

∗/

23 pub l i c IUser getUser ( ) ;

25 /∗∗

∗ The date o f the event

27 ∗ @return

∗/

29 pub l i c Date getDate ( ) ;

31 /∗∗

∗ The Old Value o f the document be f o r e t h i s event occured

33 ∗ @return the o ld value

∗/

35 pub l i c S t r ing getOldValue ( ) ;

37 /∗∗

∗ The Property o f t h i s event i f t h i s was an annotat ion event

39 ∗ @return the event property

∗/

41 pub l i c S t r ing getEventProperty ( ) ;

43 /∗∗

∗ The Object o f t h i s event i f t h i s was an annotat ion event

45 ∗ @return the event ob j e c t

∗/

47 pub l i c S t r ing getEventObject ( ) ;
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49 /∗∗

∗ The text to which t h i s event app l i e s

51 ∗ @return the text id

∗/

53 pub l i c S t r ing getTextId ( ) ;

55 /∗∗

∗ The ac t i on the user took

57 ∗ @return the ac t i on

∗/

59 pub l i c S t r ing getUserAct ion ( ) ;

61 /∗∗

∗ Get the s t a r t i n g o f f s e t i n to the text

63 ∗ @return The o f f s e t

∗/

65 pub l i c In t eg e r getTextStart ( ) ;

67 /∗∗

∗ Get the ending o f f s e t i n to the text

69 ∗ @return the ending o f f s e t

∗/

71 pub l i c In t eg e r getTextEnd ( ) ;

73 /∗∗

∗ Sets the user o f t h i s event

75 ∗ @param u the user ’ s name

∗/

77 pub l i c void se tUser ( S t r ing u) ;
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79 /∗∗

∗ Sets the date o f t h i s even

81 ∗ @param d the date

∗/

83 pub l i c void setDate (Date d) ;

85 /∗∗

∗ Set the Old Value o f t h i s event

87 ∗ @param old the o ld value

∗/

89 pub l i c void setOldValue ( St r ing o ld ) ;

91 /∗∗

∗ Set the events property

93 ∗ @param prop the property

∗/

95 pub l i c void setEventProperty ( S t r ing prop ) ;

97 /∗∗

∗ Sets the event ob j e c t

99 ∗ @param obj the ob j e c t

∗/

101 pub l i c void setEventObject ( S t r ing obj ) ;

103 /∗∗

∗ Set the text Id o f the event

105 ∗ @param id the id o f the event

∗/

107 pub l i c void setTextID ( St r ing id ) ;



118

109 /∗∗

∗ Set the Action that the user took

111 ∗ @param act i on The us e r s ac t i on

∗/

113 pub l i c void setUserAct ion ( St r ing ac t i on ) ;

115 /∗∗

∗ Set the the s t a r t i n g o f f s e t i n to the text

117 ∗ @param s t a r t the s t a r i n g o f f s e t

∗/

119 pub l i c void se tTextStar t ( In t eg e r s t a r t ) ;

121 /∗∗

∗ Set the ending o f f s e t i n to the text

123 ∗ @param end the ending o f f s e t

∗/

125 pub l i c void setTextEnd ( In t eg e r end ) ;

}

Listing B.6: TAT event plug-in Interface

package edu . b o i s e s t a t e . s e r v i c e s . tappcore ;

2

import java . i o . S e r i a l i z a b l e ;

4 import java . u t i l . L i s t ;

6 /∗∗

∗ Represent a user

8 ∗ @author Shane Panter

∗/
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10 pub l i c i n t e r f a c e IUser extends S e r i a l i z a b l e {

12 /∗∗

∗ The Id o f the user

14 ∗ @return The use r s id

∗/

16 pub l i c In t eg e r get Id ( ) ;

18 /∗∗

∗ The l o g i n name o f the user

20 ∗ @return The use r s l o g i n name

∗/

22 pub l i c S t r ing getLoginName ( ) ;

24 /∗∗

∗ The Ful l name o f the user

26 ∗ @return the u s e r s f u l l name

∗/

28 pub l i c S t r ing getRealName ( ) ;

30 /∗∗

∗ The password o f the user

32 ∗ @return The use r s encrypted password

∗/

34 pub l i c S t r ing getPassword ( ) ;

36 /∗∗

∗ Get a l i s t o f events a s s o c i a t ed with t h i s user ob j e c t

38 ∗ @return A l i s t o f events

∗/
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40 pub l i c L i s t<? extends IEvent> getEventLi s t ( ) ;

42 /∗∗

∗ Sets the id o f the user

44 ∗ @param id The new user id

∗/

46 pub l i c void s e t I d ( In t eg e r id ) ;

48 /∗∗

∗ Sets the l o g i n name o f the user

50 ∗ @param name The us e r s new l o g i n name

∗/

52 pub l i c void setLoginName ( St r ing name) ;

54 /∗∗

∗ Sets the u s e r s Real name

56 ∗ @param name The r e a l name o f the user

∗/

58 pub l i c void setRealName ( St r ing name) ;

60 /∗∗

∗ Sets the encrypted password o f the user

62 ∗ @param pass the u s e r s password

∗/

64 pub l i c void setPassword ( St r ing pass ) ;

66 }

Listing B.7: TAT User plug-in Interface

package edu . b o i s e s t a t e . s e r v i c e s . tappcore ;
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2

import java . u t i l . Date ;

4 import java . u t i l . L i s t ;

import java . u t i l . Set ;

6

/∗∗

8 ∗ Cont r o l l e r f o r the Change t rack ing system

∗

10 ∗ @author Shane Panter

∗/

12 pub l i c i n t e r f a c e ITappCore {

14 /∗∗

∗ Creates a new user

16 ∗ @param l o g i n The l o g i n name o f the user

∗ @param userName the r e a l name o f the user

18 ∗ @param pass the u s e r s password

∗ @return A new User ob j e c t

20 ∗/

pub l i c IUser c reateUser ( S t r ing log in , S t r ing userName , S t r ing pass ) ;

22

/∗∗

24 ∗ Creates a new user us ing the password o f the host system

∗ @param l o g i n The l o g i n name o f the user

26 ∗ @param userName the r e a l name o f the user

∗ @return A new User ob j e c t

28 ∗/

pub l i c IUser c reateUser ( S t r ing log in , S t r ing userName ) ;

30

/∗∗
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32 ∗ Creates a new user us ing the password o f the host system

∗ and the r e a l name from the host system

34 ∗ @param l o g i n the l o g i n name o f the user

∗ @return A new User ob j e c t

36 ∗/

pub l i c IUser c reateUser ( S t r ing l o g i n ) ;

38

/∗∗

40 ∗ Looks up a user with the s p e c i f i e d l o g i n name

∗ @param loginName the l o g i n name o f the user

42 ∗ @return A found user or nu l l i f no user e x i s t s

∗/

44 pub l i c IUser lookupUser ( S t r ing loginName ) ;

46 /∗∗

∗ Removes a user from the system

48 ∗ @param loginName the l o g i n name o f the user to d e l e t e

∗ @return True i f the user can be de l e t ed

50 ∗/

pub l i c boolean de l e t eUse r ( S t r ing loginName ) ;

52

/∗∗

54 ∗ Get a l l the Events that are logged f o r the g iven text id

∗ @param textID the id o f the text to look f o r

56 ∗ @return A l i s t o f found events

∗/

58 pub l i c L i s t<? extends IEvent> getEventsForText ( S t r ing textID ) ;

60 /∗∗

∗ Create a new concre t e event
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62 ∗ @param user the user name

∗ @param date the date o f the event

64 ∗ @param oldValue the value to save o f f

∗ @param property the property o f the event

66 ∗ @param ob j e c t the ob j e c t o f the event

∗ @param text Id the text to a s s o c i a t e t h i s event to

68 ∗ @param UserAction the ac t i on the user took

∗ @param tex tS t a r t The s t a r t o f f s e t i n to the text

70 ∗ @param textEnd The end o f f s e t i n to the text

∗ @return

72 ∗/

pub l i c IEvent addEvent ( S t r ing user , Date date , S t r ing oldValue ,

S t r ing property , S t r ing object , S t r ing textId , S t r ing UserAction

, I n t eg e r t extStar t , I n t eg e r textEnd ) ;

74

/∗∗

76 ∗ Remove an event from the system

∗ @param entry The event to remove

78 ∗ @return true i f the event can be removed

∗/

80 pub l i c boolean de le teEvent ( IEvent entry ) ;

82 /∗∗

∗ Get a l l the u s e r s cu r r en t l y known in the system

84 ∗ @return A l i s t o f u s e r s

∗/

86 pub l i c L i s t<? extends IUser> getUsers ( ) ;

88 /∗∗

∗ Get a l l the cu r r en t l y known events in the system
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90 ∗ @return A l i s t o f known events

∗/

92 pub l i c L i s t<? extends IEvent> getEvents ( ) ;

94 /∗∗

∗ Get a l l the events f o r a s p e c i f i c user

96 ∗ @param loginName The l o g i n name o f the user to f e t ch

∗ @param f i r s t The f i r s t r e s u l t to re turn

98 ∗ @param max The max number o f r e s u l t s to re turn

∗ @return A l i s t o f events found

100 ∗/

pub l i c L i s t<? extends IEvent> getEventsForUser ( S t r ing loginName , i n t

f i r s t , i n t max) ;

102

/∗∗

104 ∗ Get A l i s t o f a l l the t ext Ids by user

∗ @param loginName The user to look f o r

106 ∗ @param f i r s t the f i r s t r e s u l t to re turn

∗ @param max the max number o f r e s u l t s to re turn

108 ∗ @return A se t o f t ex t i d s

∗/

110 pub l i c Set<Long> getAl lTextIdForUser ( S t r ing loginName , i n t f i r s t ,

i n t max) ;

112 /∗∗

∗ Get a l l the events f o r a s p e c i f i c user and text

114 ∗ @param loginName the l o g i n name to look f o r

∗ @param tex t i d the id o f the text to look f o r

116 ∗ @return A l i s t o f events

∗/
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118 pub l i c L i s t<? extends IEvent> getEventsForUserAndText ( S t r ing

loginName , S t r ing t e x t i d ) ;

}

Listing B.8: Core controller plug-in Interface




