
Boise State University Boise State University

ScholarWorks ScholarWorks

Computer Science Faculty Publications and
Presentations Department of Computer Science

4-21-2023

In-Vitro Validated Methods for Encoding Digital Data in In-Vitro Validated Methods for Encoding Digital Data in

Deoxyribonucleic Acid (DNA) Deoxyribonucleic Acid (DNA)

Golam Md Mortuza
Boise State University

Jorge Guerrero
North Carolina A&T State University

Shoshanna Llewellyn
Boise State University

Michael D. Tobiason
Boise State University

George D. Dickinson
Boise State University

See next page for additional authors

Publication Information Publication Information
Mortuza, Golam Md; Guerrero, Jorge; Llewellyn, Shoshanna; Tobiason, Michael D.; Dickinson, George D.;
Hughes, William L.; Zadegan, Reza; and Andersen, Tim. (2023). "In-Vitro Validated Methods for Encoding
Digital Data in Deoxyribonucleic Acid (DNA)". BMC Bioinformatics, 24, 160. https://doi.org/10.1186/
s12859-023-05264-6

Golam Md Mortuza and Jorge Guerrero have contributed equally to this work.

https://scholarworks.boisestate.edu/
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs_facpubs
https://scholarworks.boisestate.edu/cs
https://doi.org/10.1186/s12859-023-05264-6
https://doi.org/10.1186/s12859-023-05264-6

Authors Authors
Golam Md Mortuza, Jorge Guerrero, Shoshanna Llewellyn, Michael D. Tobiason, George D. Dickinson,
William L. Hughes, Reza Zadegan, and Tim Andersen

This article is available at ScholarWorks: https://scholarworks.boisestate.edu/cs_facpubs/352

https://scholarworks.boisestate.edu/cs_facpubs/352

In‑vitro validated methods for encoding
digital data in deoxyribonucleic acid (DNA)
Golam Md Mortuza1†, Jorge Guerrero3†, Shoshanna Llewellyn1, Michael D. Tobiason2, George D. Dickinson2,
William L. Hughes4, Reza Zadegan3* and Tim Andersen1*    

Introduction
Based on an ever-increasing rate of data creation, the amount of global digital data is
projected to reach 175 zettabytes (ZBs) by 2025 [1]. Currently, a data center capable of
storing 1 exabyte (EB) requires hundreds of megawatts of power and more than 100 bil-
lion USD to build and maintain for 10 years [2]. Extrapolating these costs to 175 ZB
projects costs of millions of megawatts and over 175 trillion USD just for information
storage, which is not sustainable. Thus cheaper and more energy efficient technologies
for storing digital information are needed to avert an information storage crisis [3].

With current technologies for electronic and magnetic memory approaching their
physical and economic limits, it is unlikely that current approaches for reducing cost and
increasing efficiency will successfully address these issues [1, 4]. However, living organ-
isms exhibit highly efficient information storage systems, and methods using deoxyribo-
nucleic acid (DNA) based information storage may prove efficient enough to address this
crisis [4, 5]. These considerations are based on three key properties of DNA: (1) Under
proper conditions, DNA is known to retain data for hundreds of thousands of years [6].
(2) An individual molecule of single-stranded DNA is theoretically capable of storing
information at a density of 455 EBs per gram [7], implying that 0.5 kg of DNA could be
sufficient to store all global digital data expected in 2025. (3) DNA’s energy of operation
is many orders of magnitude less than current electronic memories (Table 1) [6]. Con-
sequently, DNA based information storage has become an international research focus

Abstract 

Deoxyribonucleic acid (DNA) is emerging as an alternative archival memory technol-
ogy. Recent advancements in DNA synthesis and sequencing have both increased the
capacity and decreased the cost of storing information in de novo synthesized DNA
pools. In this survey, we review methods for translating digital data to and/or from DNA
molecules. An emphasis is placed on methods which have been validated by storing
and retrieving real-world data via in-vitro experiments.

Keywords:  Nucleic acid memory, DNA, Data storage, Information encoding, Error
correction

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

REVIEW

Mortuza et al. BMC Bioinformatics (2023) 24:160
https://doi.org/10.1186/s12859-023-05264-6

BMC Bioinformatics

†G. Md Mortuza and J. Guerrero
have contributed equally to this
work

*Correspondence:
rzadegan@ncat.edu;
tandersen@boisestate.edu

1 Department of Computer
Science, Boise State University,
Boise, Idaho, USA
2 School of Materials Science,
Boise State University, Boise,
Idaho, USA
3 Department
of Nanoengineering, Joint
School of Nanoscience
and Nanoengineering, North
Carolina A&T State University,
Greensboro, NC, USA
4 School of Engineering,
Kelowna, University of British
Columbia, Kelowna, British
Columbia, Canada

http://orcid.org/0000-0002-0279-2422
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05264-6&domain=pdf

Page 2 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160

[2, 8, 9], incurred investment nationally [10, 11], and has been identified as an emerging
industrial opportunity [6, 12].

Survey of in‑vitro validated storage methods
In his 1959 lecture titled “Plenty of Room at the Bottom”, Richard Feynman recognized
the potential of using DNA to store information [13]. To the knowledge of the authors,
information was first stored using synthetic DNA circa 1988 [14]. In the following dec-
ades, advances in DNA sequencing and synthesis technologies –primarily driven by the
Human Genome Project– led to an increased interest in storing information in DNA.
Numerous methods for writing and reading information from DNA have been reported
since. In the following paragraphs, several recently reported representative methods
with explicit in-vitro validation are introduced. The methods are presented in chrono-
logical order, showing how the field has progressed in terms of volume and complexity
of data, and sophistication of storage methods. The encoding process used for in-vitro
validation is restated as a procedure with the mapping algorithms (i.e., algorithms which
convert from a sequence of digital values to a sequence of DNA bases) separated from
other logic as much as possible.

The earliest of the methods was reported by Church et al. [7]. This method was used
to store 659 kilobytes of data containing a book. The encoding process for this method
can be described as the following procedure shown in Fig. 1. First, the data was split into
sequentially addressed data blocks each containing 96 bits. Each block was then pre-
pended with a 19 bit indexing address. This 115-bit sequence was coverted to a 115-base
sequence by mapping 0 to Adenine (A) or Cytosine (C) and 1 to Guanine (G) or Thymine
(T). The 115-base sequence was then flanked with a pair of 22 base primer sequences
for amplification and sequencing purposes. This resulted in a set of 159-base sequences
which collectively encode the data.

The next method was reported by Goldman et al. [15]. This method was used to store
five files which totaled 757,051 bytes and included two text files, a pdf, a photograph,
and an mp3. The encoding process for this method can be described by the follow-
ing procedure shown in Fig. 2. The data was provided as a list of files. An index was
assigned to each file and each file was represented as a sequence of bits (base-2 values).
The bit-sequence for each file was converted to a sequence of trits (base-3 values) using
a Huffman-code. This trit sequence was then converted to a base sequence according

Table 1  Comparison between established memory technologies and cellular DNA

This table was adapted from the work of Zhirnov et al. [6]

Memory
(type)

Retention
(years)

ON power
(W/GB)

Areal density
( bit/cm2)

Volumetric
density
( bit/cm3)

Latency
( µs/bit)

Error rate
(error/bit)

Flash 10 0.01 – 0.04 10
10

10
16 100 10

−15 [7]

Hard drive > 10 0.04 10
11

10
13

3 ∗ 10
3 –

5 ∗ 10
3

10
−15 [15]

Magnetic tape 30 [15] 0.004 [16] 10
9 – 1010[19] N/A 60–200 [19] 10

−18 – 10−21 [15]

Cellular DNA > 100 < 10
−10

10
22

10
22[4] < 100 10

−9 – 10−8 [20]

Page 3 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160 	

to a rotating mapping code (“Mapping Scheme” in Fig. 2). This yielded a single base
sequence encoding the entire file, which was then split into indexed segments contain-
ing 100 bases and overlapping by 75 bases. The base sequence of every other segment
was replaced with its reverse-complement (i.e., A/T swapped, G/C swapped, and then
reversed). The following additional bases were then added to each 100-base sequence:

01100110011..........

12 bytes

01010100101.......... 10010110101..........

12 bytes 12 bytes

......................

..........00000010 01010100101..........

19 bits

Index bits

96 bits

.........0001001010100101..........

AACCAACA

DNA strand of 159 nts

Synthesis

Mapping scheme

0 - A/C
1 - G/T

Choose randomly and have not
more than 3 homopolyer run

and ~50% GC content

Convert binary into nts

Fig. 1  Diagram of the encoding algorithm reported by Church et al. [7]. Data is split into data blocks and
attached to index bits. The resulting binary sequence is then directly mapped to a base sequence

Mapping scheme

C G T A

G T A C

T A C G

0

1

2

A C G T

Previous nucleotide

Ternary digit
to encode

10001... 00001... 01011... 10011...

TAGAT... GTGTA... CAGAC... TACGC...

20112... 20200... 02110... 10002...

Base 3 conversion
(Huffman code)

Convert ternary code
into DNA bases

25 bp

Indexing information
 and parity code for

error detection

.................
..................................

Sequence segments are overlapped
with each other for redundancy

Synthesis

...........

...........

Fig. 2  Diagram of the encoding algorithm reported by Goldman et al. [15]. A rotating mapping algorithm
is used to avoid homopolymers. A parity code ensures the integrity of each segment. Every alternating
segment is reverse complemented for data security (shown in violet color)

Page 4 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160

(1) Two bases to indicate the file index, (2) twelve bases containing the index of the seg-
ment, (3) two bases indicating if the sequence has been reverse-complemented, (4) one
parity base for detecting errors. This resulted in a set of 153,335 117-base sequences col-
lectively encoding the data.

The third method was reported by Grass et al. [16]. This method was used to store two
text files totaling 83 kilobytes. The encoding process for this method can be described
by the following procedure shown in Fig. 3. First, the digital data was converted into a
number within the Galois Field (GF) of size 47 (GF(47)). These numbers were then put
into a block of 594 × 30 values (this can be seen in the encoding block of Fig. 3). The first
RS parity information was added to each row in the form of 119 values from the GF(47).
This section was referred to as the outer block (Redundancy A in the diagram). Next, an
index section containing three values was added. Next, a second level of RS parity was
added. This section containing six values was referred to as the inner block (Redundancy
B in the diagram). Each column consisted of 39 base-47 values which were converted
to a base sequence according to a word-based mapping code depicted by the wheel in
Fig. 3. Two constant base-sequences used as primers were then attached to each 117-
base sequence, yielding a set of 4,991 158-base sequences which collectively encode the
data.

The fourth methods was reported by Blawat et al. [17]. This method was used to store
a 22 megabyte video file. According to the understanding of the authors, the encoding
process for this method can be described by the following procedure shown in Fig. 4.
First, the digital file was split into segments of non-overlapping bit sequences. A 39-bit
sequence used for segment addresses was encoded using a (63,39) Bose-Chaudhuri-
Hocquenghem (BCH) code and prepended to the segment’s bit sequence. A 16 bit cyclic
redundancy check code was then calculated and appended to the bit-sequence. The bit-
sequence was then represented as a byte-sequence and converted to a base-sequence
using the following mapping algorithm. The pre-determined mapping code associates
each byte value with at least 2 and at most 3 5-base sequences. The first six bits of the
byte determine the bases in positions 1, 2, and 4 depending on the table labeled “map-
ping scheme a” in Fig. 4. The last two bits of each byte encode bases 3 and 5 using the
table labeled “mapping scheme b” in Fig. 4. Valid 5-base sequences satisfied two rules: 1)
The first three bases cannot be the same, and 2) the last two bases cannot be the same.

Fig. 3  Diagram of the encoding algorithm reported by Grass et al. [16]. Binary data is converted to base 47
and packaged into 713× 39 character matrices. Each column is then encoded as a DNA sequence with each
character encoded as a codon according to the mapping scheme

Page 5 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160 	

This mapping algorithm yielded 190-base sequences, to which a pair of 20 base primer
sequences were attached. This resulted in 225,000 230-base sequences which collectively
stored the data. The authors mention the presence of a Reed Solomon (RS) code to pro-
tect blocks of consecutive sequences, however, we were unable to determine the exact
nature and location of this code from the text of the manuscript.

The fifth method was reported by Bornholt et al. [18, 19]. This method was used to
store four image files totaling 151 kilobytes of data. The encoding process of this method
can be described by the following procedure shown in Fig. 5. First, a pair of base-
sequences for use as primers and a base-sequence for use as a file address were chosen
from an existing library. The bit sequence of the file was converted to a trit sequence
using a Huffman code. The trit sequence was then converted to a base-sequence accord-
ing to a rotating mapping code. This base-sequence was then split into non-overlapping
segments. The following were then added to each segments: 1) the two 9-base primer
sequences, 2) the file address sequence, 3) two bases to indicate if the sequence has been
reverse-complimented. These sequences were then added to the list of sequences to syn-
thesize. For redundancy, additional sequences were calculated by using an exclusive or
operation to combine two segments into a single sequence. These additional sequences
were included such that all segments were present in one direct sequence and one exclu-
sive-or sequence.

The sixth method was reported by Organick et al. [20]. This method was used to
store 35 files totaling 200 megabytes of data. The encoding process for this method
can be described by the following procedure shown in Fig. 6. First, the digital data was

Fig. 4  Diagram of the encoding algorithm reported by Blawat et al. [17]. The binary sequence is split into
bytes, which are encoded to 5-base sequences using a combination of the two mapping schemes (a,b)

Page 6 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160

partitioned into files and each file was assigned a pair of 20-base sequences for use as
primers. The bit-sequence of each file was then randomized by performing an exclu-
sive or operation with bits generated from a pseudo random number generator. The
randomized bit-sequence for each file was then partitioned into indexed rectangular
matrices containing 16-bit cells. Each matrix contained 10 rows and up to 55,000 col-
umns. For error correction, a RS code was applied to each row, and these bits were
included as additional columns. Next, each column was treated as a sequence of bits
and the address information (the matrix index and column index) were appended to
this bit-sequence. This bit-sequence was converted to a trit-sequence, which was sub-
sequently converted to a base-sequence using a rotating mapping code. Two 20-base
primer sequences indicating the file index were then attached to each sequence.

The seventh method was reported by Erlich and Zielinski [21]. This method was
used to store a single tarball file representing 2.14 megabytes of data. The encoding
process for this method can be described by the following procedure shown in Fig. 7.
First, the file was represented as a bit-sequence and partitioned into equally-sized,
non-overlapping segments of 256-bits. A random 32-bit value was generated and
used to initialize two Pseudo Random Number Generators (PRNG). The first PRNG
was created over a Robust Soliton probability distribution and was used to choose the
number of data segments to store in the droplet. The second PRNG was created over

Fig. 5  Diagram of the encoding algorithm reported by Bornholt et al. [19]. A key component of this method
is the inclusion of the XOR operation. A rotating mapping algorithm was used to avoid homopolymers

Fig. 6  Diagram of the encoding algorithm reported by Organick et al. [20]. A key component of this method
is the RS code used for generating redundant sequences

Page 7 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160 	

a uniform distribution and was used to select which segments to include in the drop-
let. The selected segments were combined into a single 256-bit sequence using an
exclusive-or operation. The 32-bit seed was then prepended to the bit-sequence and
the resulting 288-bit sequence was encoded using a RS code which appended 16 addi-
tional bits for error-correction. This 304-bit sequence was then converted to a 152-
base sequence according to a direct mapping code where {00, 01, 10, and 11} map to
{A, C, G, and T}, respectively. At this point, the base-sequence was rejected if it had
unacceptable GC content or a long stretch of consecutive identical bases. Otherwise,
the base-sequence was accepted and added to the list of valid base-sequences. Base-
sequences were generated by repeating this process (starting at the generation of a
new 32-bit seed) until 7% redundancy had been achieved. At this point, the 72,000
152-base-sequences encoded the 2.14 megabyte file at an information density of 1.57
bits/base. Two 24-base primer sequences were then attached to each base-sequence,
bringing the length of each sequence to 200 bases and the information density down
to 1.19 bits/base.

An eigth method was reported by Anavy et al. [22]. This method was used to store
a single zip file totaling 6.4 megabytes of data. The encoding process for this method
can be described by the following procedure shown in Fig. 8. The following procedure
specifically describes encoding into the 6-letter composite base alphabet. First, the file
was represented as a bit-sequence and partitioned into equally-sized, non-overlapping
segments of 320-bits. A random 28-bit value was generated and used to initialize two

Fig. 7  Diagram of the encoding algorithm reported by Erlich and Zielinski [21]. A combination of fountain
code and RS code was used to provide robustness against dropout

Page 8 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160

Pseudo Random Number Generators (PRNG). The first PRNG was a Robust Soliton dis-
tribution used to choose the number of data segments to store in a given droplet. The
second PRNG was a uniform distribution used to select which segments to include in
a given droplet. The selected segments were combined using the exclusive-or operation
into a given droplet as a single 320-bit sequence. This 320-bit sequence was mapped to a
sequence of composite bases according to a word-based mapping code which associated
each 5-bit sequence with a 2-composite-base sequence. Composite bases do not repre-
sent a specific base (i.e., A, T, C, or G), but instead represent the distribution of bases at
this position following synthesis. The formal definition of composite bases can be found
in the work of Anavy et al. [22]. A single base was appended to this 128-composite-
base sequence to bring it’s length to 129 bases. A systematic RS code over Galois field
73 was used to append 6 composite-bases of error correction to this sequence, bringing
its total length to 135 bases. A RS code over Galois field 42 was used to append 4 bits of
error correction to the 28-bit random seed, bringing this bit-sequence to 32-bits. This
32-bit sequence was then converted to a (non-composite) 16-base sequence according
to a direct mapping code where 00, 01, 10, and 11 map to A, C, G, and T, respectively.
The 16-base sequence was appended to the 135-composite-base sequence, yielding a
151-base sequence containing both composite and non-composite bases. At this point
any base-sequences were rejected which contained composite letters not in the origi-
nal 6-letter composite alphabet. The following base-sequences were then attached to the
151-base sequence: 1) a pair of 20 base sequences used as primers, and 2) a single 3-base

Fig. 8  Diagram of the encoding scheme reported by Anavy et al. [22] a. Each 8-bit binary string is encoded
as a DNA sequence containing a specific fraction of bases (60% C and 40% G in the example). b. A binary
file is encoded using RS error correction and a Fountain Code. The droplets are then split into binary strings,
which are converted into composite letters

Page 9 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160 	

sequence used to identify the file or experiment. Multiple droplets (with associated ran-
dom seed, error correction code, primers, and file ID) were generated by repeating this
process (starting at the generation of a new 28-bit seed) until 8% redundancy had been
achieved.

More recently, Ping et al [23] report a method, the Ying Yang Coding algorithm (YYC),
that eliminates long homopolymer runs (allowing for runs of at most 3 nt). Their algo-
rithm also rejects encoded strands with gc content less than 40% or greater than 60%,
and strands with free energy greater than − 30 kJ mol−1 . The algorithm achieves this
through a flexible codec based on Goldman’s rotating code that provides a total of 1536
different transcoding schemes for encoding binary sequences.

The algorithm starts by segmenting the binary file into equally sized segments. This is
followed by an interative loop where two segments are randomly selected at the begin-
ning of the loop. For each pair of selected segments, each bit of the both segments are
processed sequentially, with the first segment’s ith bit used to choose one of two possible
nucleotide pairings, where 0 maps to 1 of two possible nt combinations, and 1 maps to
the remaining two nt combinations (there are 6 possible nt pairings for this codec). This
is followed by the application of a rotating code that selects a nt pairing based on the
last encoded nt and the ith bit of the 2nd segment (giving 256 possible encodings at this
step). The intersection of these two nt pairs is chosen as the next nt in the encoded out-
put (the construction of the codecs ensures that there is only one nt in the intersection
of these two nt pairs), and the process iterates. The process terminates and rejects the
encoded sequence if the gc content of the encoded sequence falls outside of a prescribed
range, if a homoplymer run of 4 or greater is detected, or if the free energy is greater
than than − 30 kJ mol−1 . One drawback of their approach is that only 65% of randomly
selected segment pairs are able to pass their screening tests in general, and this percent-
age drops drastically for extremely 0 or 1 biased file segments (although this can be miti-
gated by compressing the file before processing).

Recurring or notable strategies
Information has been stored in DNA base-sequences using a variety of methods, includ-
ing those surveyed in section "Survey of in-vitro validated storage methods". However,
certain themes are present in most, if not all, of these methods. The following sections
discuss several notable themes and the different strategies used to address them.

Codes mapping a digital‑sequence to a base‑sequence

In one sense, all methods discussed here encode digital-data to base-sequences. How-
ever, for most methods, there exist a sub-process (i.e., a mapping algorithm) where a
sequence of digital values is converted to a sequence of DNA bases such that a set of
encoding rules (i.e., a mapping code) is satisfied. The following notable mapping codes
were found in the literature.

Some known methods utilize mapping codes where a single digital value maps to
a single base-value [21, 22, 24]. Referred to as direct mapping codes, such codes are
notable primarily due to their simplicity and the fact they can sometimes be applied
without a decrease in information density. For example, the method reported by

Page 10 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160

Erlich and Zielinski [21] utilizes a mapping code where {0, 1, 2, 3} are mapped to {A,
C, G, T}, respectively.

Some known methods utilize mapping codes where a digital value can map to one
of several bases. The primary benefit of such mapping codes is the freedom to map a
given digital-sequence to one of several base-sequences, which can be used to select
experimentally desirable sequences (i.e., balance GC content, avoid secondary struc-
tures, or eliminate homopolymers). The primary disadvantage of such mapping codes
is the decrease in information density they cause. One example of such mapping
codes is present in the method reported by Church et al. [7]. In this specific code, 0 is
mapped to A or C, and 1 is mapped to G or T. This results in a 50% reduction in infor-
mation density.

Several known methods utilize mapping codes where a digital value maps to a
specific base-sequence, or one of several base-sequences [16, 17, 22]. Referred to as
word-based mapping codes, such codes can enable the exclusion of undesired base-
sequences (such as homopolymers) at the cost of decreased information density.
One example of a word-based mapping code is present in the method reported by
Grass et al. [16]. The value/base-sequence mappings for this code are depicted using a
wheel-like diagram and shown in Fig. 3.

Several known methods utilize mapping codes where a digital value is mapped to a
base depending on context (such as the value of the previous base)[15, 18–20, 23, 25].
Referred to as rotating mapping codes, several methods have used such codes to elim-
inate homopolymers at the cost of a decrease in information-density. For example, in
the method reported by Goldman et al. [15] a sequence of trits (base-3 values) is con-
verted to a sequence of bases using the following mapping algorithm. The first trit in
the sequence is mapped to a base according to {0,1,2} -> {C,G,T}, respectively. After the
first base, the prior base is used to choose one of four direct mapping codes (“mapping
scheme” in Fig. 2). The next trit is mapped to a base using this direct code. This process is
repeated until the entire sequence has been encoded. This rotating mapping code causes
a 25% drop in information density. However, other rotating codes have been designed
that have higher information density of 1.75 bits/nt [23]. A novel rotating mapping code
which utilizes a chained hash function that enables robust error correction was reported
by Press et al. [25] and is discussed in greater detail in section "Error correction" below.
The ability to choose the coding rate for this method enables one to increase information
density at the cost of decreased error correction if necessary.

Handling errors

DNA is a noisy communications channel in the sense that errors occur relatively fre-
quently in this medium. Methods for storing digital data in DNA employ a variety of
strategies to mitigate or correct these errors. The following notable strategies were
found in the literature. Here, strategies for handling errors were generally divided into
two categories: Error correction (i.e., strategies for identifying and correcting errors
after they have occurred) or error mitigation (i.e., strategies for minimizing the occur-
ance of errors). Most known methods simultaneously utilize both mitigation and cor-
rection strategies.

Page 11 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160 	

Expected errors

Errors encountered while storing information in DNA typically manifest as sequence
dropout (an entirely missing sequence), single nucleotide variant (SNV) (substitution
of a single base), indels (insertion or deletion of a single base), or truncations (removal
of several bases from one end of a sequence). The following mechanisms are known to
cause such errors: imperfect synthesis, degradation, imperfect polymerase chain reac-
tion amplification, or imperfect sequencing. Error rates have been noted to depend on
factors such as the exact synthesis, storage, and sequencing methods utilized. Overall,
DNA as a storage medium exhibits much higher error rates than conventional storage
medium (Table 1, right column). For example, Church et al [7] reported error rates of 1
bit per 0.7 megabytes (MBs), which is much higher than error rates of 1 bit per 10–1000
terabytes (TBs) exhibited by electronic memories. However, typical error rates may be
much higher than this; Bornholt et al. [18] reported an error rate of approximately 1%
and Organick et al. [20] reported error rates of up to 10%.

Certain structural patterns are known to exhibit higher synthesis and sequencing
errors. Schwartz et al. [26] noted that base-sequences with more than 60% GC content
exhibit higher dropout rates. Yazdi et al. [27] reported that base-sequences that main-
taining 50% GC content ratio reduces synthesis/sequencing errors. Several studies have
reported errors associated with homopolymer runs (such as AAAAA or TTT​TTT​).
Specifically, Ross et al. [28] noted that homopolymer runs of more than 4 bases correlate
with additional indel errors. Ananda et al. [29] noted PCR errors which rapidly increases
with homopolymers greater than 4 bases. Both Poon et al. [30] and Xu et al. [31] noted
that homopolymers of six or more bases exhibit high enough thermal stability to make
sequencing difficult [30, 31].Chen et al. [32] discovered a relationship between spatial
location on synthesis chips and synthesis bias, and also determined that PCR amplifica-
tion can lead to stochastic variation, resulting in up to 2% data loss per amplification.
Church et al. [7] noted their errors generally occurred within homopolymer runs near
the end of sequences.Blawat et al. [17] observed that long sequences of repeated digi-
tal values in their data lead to periodically repeating 10-base sub-sequences and caused
high dropout rates for the associated base-sequences.

Error correction

Many known methods for storing digital data in DNA incorporate well-known algo-
rithms for error detection or correction. The following notable strategies for detecting
or correcting errors were found in the literature. Table 2 compares the most popular
error correction algorithms used to store data in DNA, comparing both the types of

Table 2  Comparison of different error correction algorithms

 This table was adapted from the work of Regulapati [55]

Repetition code Hamming code RS BCH LDPC

Error correction Multiple bits Single bit Multiple bits Multiple bits Multiple bits

Error detection Multiple bits Two bits Multiple bits Multiple bits Multiple bits

Error types Scatter + burst Scatter Burst Scatter Scatter

Soft bit decoding Yes No No No Yes

Page 12 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160

errors they can detect/correct and how many bit errors they can detect/correct. This
table utilizes Regulapati’s terminology to describe these errors, with indels correspond-
ing roughly to burst errors and substitutions corresponding roughly to scatter errors.

Several known methods utilize repetition codes for error detection and correction [15,
18]. In repetition codes, a block of data is repeated multiple times. If during decoding,
a data block is found to differ from the other copies of the same block, majority voting
is used to determine the correct data block. Repetition codes are one of the most basic
(and common) error correction strategies, and are naturally present in many known
storage methods due to the fact that DNA synthesis techniques typically produce multi-
ple copies of each DNA molecule. While repetition codes are simple, they are inefficient
since only a fraction of the data blocks represent unique data. This leads to a decrease
in information density. The method reported by Goldman et al. [15] utilized a repeti-
tion code where each data-segment was repeated 4 times, resulting in a 75% decrease
in information density. The method reported by Bornholt et al. [18] utilizes a repetition
code involving an exclusive-or operation where each segment is repeated 1.5 times, and
the decrease in information density is approximately 33%.

Some known methods addressed errors using a Hamming code [24]. A hamming code
is a member of the linear block code family, which was developed in 1950 by Richard W.
Hamming [33]. Hamming codes can detect at most two bits of error in the data block
and can fix one bit of error in the data block. Because of these limitations, hamming
codes have rarely been used in DNA based storage systems. Takahashi et al. [24] used
a (31, 26) hamming code for DNA data storage. However, errors like deletion and read
truncation can make data retrieval difficult. Out of 25,592 reads reported by Takahashi,
16 were perfect reads and eight were corrupted but correctable.

Several known methods address errors using Reed Solomon (RS) codes [16, 17, 20–22,
34]. RS codes are a special class of BCH codes [35, 36]. These are widely used in error
correction algorithms and are capable of correcting both burst errors and erasures. They
have been widely applied for data storage or digital communication applications such
as CD, DVD, QR codes, and mobile/satellite communications [37]. RS codes are more
effective for indel errors rather than SNV errors. If the message size is n bytes, RS codes
add redundant data of size k bytes at the end of the message. RS codes can detect k bytes
of errors at arbitrary locations and can correct up to ⌊ k

2
⌋ bytes of errors at arbitrary loca-

tions. One of the advantages of RS codes over the other error correction algorithms is
the length of redundant code block k can be changed depending on the usage or by ana-
lyzing prior error patterns.

Methods which utilize RS codes include both the method reported by Erlich and Zie-
linski [21] and the method reported by Organick et al. [20]. In the method reported
by Erlich and Zielinski [21], an RS code was applied within each sequence to verify
the integrity of the sequence. This enabled this method to quickly discard corrupted
sequences, which helped simplify decoding. In the method reported by Organick et al.
[20], a RS code was applied to blocks of data such that new sequences just for error cor-
rection were introduced. These redundant sequences were observed to effectively handle
sequence dropout and other high-level errors. However, it has been observed that RS
codes work best for small data sizes [21, 38], and this approach necessitated relatively
large data sizes.

Page 13 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160 	

Several known methods address errors using Low Density Parity Check (LDPC) codes.
[39–41] LDPC [42] codes are a class of linear error correction codes developed by Rob-
ert G. Gallagher in 1962. Such codes have gained popularity because of their ability to
provide the probability of a bit being 0 or 1, referred to as soft-decoding, which is some-
times advantageous over hard-bit decoding (where only a value of 0 or 1 is provided).

Known storage methods which utilize LDPC codes include the storage method
reported by Shubham et al. [40]. This method utilizes three different error correction
algorithms. At the first level, LDPC codes were used as the outer level error correction.
The block size of each individual LDPC code was 32 kilobytes. In order to handle indel
errors, a synchronization marker was inserted (the base-sequence “AGT”) in the middle
of the data block. During the decoding process, if a sequence does not have a correct
length the synchronization marker was used to recover the sequence. For example, if the
synchronization marker is shifted left by 1 base, only the right part of the marker is con-
sidered valid. The authors observed the synchronization marker improved the reading
performance by 10% and reduced information density by 2-3%.

The method reported by Press et al. [25] incorporates error correction into the map-
ping code and algorithm. This algorithm, referred to as the Hash Encoded Decoded by
Greedy Exhaustive Search (HEDGES) algorithm, leverages the constraints of a hash
algorithm-based rotating code to provide for robust error correction. In its simplest
form a half rate code is used and the algorithm directly encodes each bit bi ∈ {0, 1} by
emitting a character Ci ∈ {A,C ,G,T } corresponding to Ci = (ki + bi) modulo 4, where
Ki is the value of a hash function on some set of previously encoded bits. This reduces
the information storage capacity by 50%, since at each step only two possible bases are
available for encoding information. However, higher code-rates using the HEDGES algo-
rithm are possible. One advantage of this approach is that it creates a highly dependent
chain of encoded information that enables robust error correction. During data recov-
ery, insertions, deletions, and mutations can be detected as violations of the chained
hash values, and an attempt to correct them can be made via a minimum cost edit dis-
tance search, implemented with an A* style search algorithm. A final RS error code is
utilized to check the output of the A* search, and to correct any remaining errors. The
ability to choose the coding rate for this method enables one to increase error correction
at the cost of information density if necessary.

Zhang et al. [43] developed a path-based error correction method that uses a saturated
reverse search to guess the type of error and test three adjustment types (substitution,
insertion, deletion) at each position in a local range. This method can be computation-
ally inefficient due to the potential exponential growth of candidates. Also, this method
is limited to correcting a single error, and multiple errors can only be fixed if they are
isolated enough.

Error mitigation

Most known methods for DNA data storage avoided errors proactively using error miti-
gation strategies. The following paragraphs introduce several notable strategies which
were found in the literature.

Several known methods utilized freedom afforded by the mapping algorithm to avoid
extreme GC content, homopolymers, or long repeating sequences [7, 15, 16, 18, 20, 23].

Page 14 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160

The method reported by Organick el al. [20] additionally used rationally designed
20-base sequences as file addresses. The process used to generate these sequences
avoided high GC contents, some secondary structures, and maintained a minimum
hamming distance of six. These authors speculated that the current method could be
used to generate a maximum library size of 14,000 20-mers. However, recently devel-
oped algorithms for generating large sets of orthogonal and experimentally viable primer
sequences may be able to increase this maximum library size [44–49].

The methods reported by Erlich and Zielinski [21] and Anavy et al. [22] both take
advantage of a fountain code to mitigate error-prone sequences. Since the fountain code
enables them to randomly generate an arbitrary number of different encoding options,
sequences that do not maintain a GC content ratio of 45-55% or that have long homopol-
ymer runs are simply discarded. Zhang et al. [43] utilized a graph-based approach to
reduce the occurrence of sequences that violate biological constraints. To achieve this,
they proposed an algorithm called SPIDER-WEB, which initializes by screening out ver-
tices that correspond to sequence violating the constraints. The algorithm then recur-
sively trims the vertex set to improve its efficiency.

Several methods utilize either file compression or exclusive-or operations to eliminate
structure in the data to store. For example, the method reported by Organick el al. [20]
randomizes the input data by exclusive-or (XOR) with a pseudo-random sequence. As
another example, the method reported by Takahashi et al. [24] appends the last 12 bits of
the secure hash algorithm - 256 (SHA-256) hash of the original message to the original
data, which is then XORed with a one time pad to increase the entropy of the data. This
XOR operation reduces the possibility of repetition and hence long homopolymer runs.

Performance considerations
In the following section, key performance considerations are identified and the advan-
tages of different storage methods are discussed.

Information density

For some applications, the highest possible information density is desired. Methods
which store information in sequences of A/T/C/G have a theoretical maximum informa-
tion density of 2 bits/base (or equivalently 2 bits/nucleotide) [7]. Several processes can
decrease this information density, including: mapping algorithms, the addition of bases
for addressing, or the addition of bases for error correction.

Of the in-vitro validated methods, the method reported by Erlich and Zielinski [21]
exhibits the highest information density at 1.19 bits/base. (Calculation of this value
included the primer sequences necessary for experimental validation, making this value
lower than the 1.57 bits/base reported elsewhere.) The relatively high information den-
sity of this method can be explained by the coupling of several efficient components (i.e.,
the direct mapping code, the RS error correction code, and the fountain code with rela-
tively low redundancy).

An alternative take on information density was proposed by Anavy et al. [22]. The
associated method utilizes composite DNA letters to yield more bits per synthesis cycle
than achievable using traditional A/T/C/G encodings. These authors reported in-silico
densities as high as 6.4 bits per cycle, and in-vitro densities as high as 4.29 bits per cycle.

Page 15 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160 	

However, the use of composite letters to store information has two key limitations. For
one, effective use of composite letters depends on balancing the size of the composite
alphabet with the tolerances of the sequencing and synthesis technologies. This presents
an experimental limit on the composite alphabet size, and thus the logical density of
the DNA, which will need to be addressed by improved sequencing and synthesis tech-
nologies. Additionally, the use of composite letters necessitates decreased physical data
densities, which is evidenced by the tenfold decrease in physical density noted by the
authors.

Storage capacity

All known coding schemes have inherent limitations which restrict the maximum stor-
age capacity. For most of these methods, this limitation arises from the finite number of
addresses available to address data blocks. For such methods, the theoretical capacity is
given by B · 2n , where n is the number of bits in the address system and B is the number
of bytes stored per address. For instance, if we employ a storage system that uses 8 bits
for addressing, with each address referring to a data block of size 32 bytes, then the over-
all capacity of the system would be given by 32 ∗ 2n bytes.

The storage method with the highest demonstrated capacity was reported by Organick
et al. [20] and was used to store 200 megabytes of data. This method also has the high-
est theoretical capacity, and may be able to store multiple terabytes of data. Further, it is
possible that recently developed algorithms for generating larger sets of address base-
sequences may help further boost this capacity [44–49].

Random access

Random access provides the ability to read specific information from storage. For
applications where a large number of independent files are stored, it may be desirable
to recover only select files in a given read cycle. However, several of the known meth-
ods require one to recover all the data before any can be accessed. Alternatively, some
schemes are well suited for efficiently accessing just part of the stored data, potentially
reducing sequencing time and costs.

One method with relatively high random-access is the method reported by Bornholt
et al. [18]. This method uses a key-value scheme to allow random access to the data. This
technique uses PCR to amplify only the desired data. For each DNA oligo, the key cor-
responds to the lower part of the address, and the value corresponds to the stored data.
The key points to a small set of DNA strands that share that initial part of the address.
Then, the primers are designed to match with the key, so by adding the desired primers,
the strands addressed by them will be amplified, and after sampling, the majority of the
sample corresponds to the target data.

The method reported by Organick et al. [20] allows an even higher degree of random
access by including two addresses per DNA strand: One named File-ID (which uses a
20-base sequence as an address and groups the strands which belong to the same file),
and one strand-specific address (which indicates data block and column index). Random
access is achieved by using PCR to amplify only strands with primers that match the
File-ID.

Page 16 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160

In their study, Banal et al. [50] introduced a novel method for random access that does
not require PCR amplification. The system encodes information in DNA sequences,
which are encapsulated in silica particles. Each file contains a file sequence and address-
ing barcodes used to identify the file via hybridization. Unique single-stranded DNA
barcodes label the files and enable Boolean-logic-based selection on the entire data pool
via simple hybridization. The system uses physical sorting to retrieve specific files or
arbitrary subsets of files, without requiring amplification. To select target subsets of the
complete data pool, fluorescence-activated sorting (FAS) is employed by annealing fluo-
rescent oligonucleotide probes that are complementary to the barcodes used to address
the database.

Rewrite ability

Most known methods for storing digital data in DNA base-sequences use a write-once
process and can not be edited once written. However, the method proposed by Yazdi
et al. [27] reported a novel DNA-based system capable of rewriting data at arbitrary
locations (Fig. 9). To accomplish this, data was logically organized into blocks and
indexed by address strings. The address strings are encoded to maximize Hamming dis-
tance. In this method, rewriting is accomplished using the gBlock or Overlap Extension

Fig. 9  Diagram of the storage method reported by Yazdi et al. a. The data was encoded in blocks of 1000
bps, in which the beginning and ending 20 bps correspond to address strings, and the remaining 960 bps are
composed of 12 sub-blocks of 80 bps that encode the digital data on six code words. The encoding is done
such that the sequence is uncorrelated with itself, i.e. no shifts will overlap the sequence with itself b. DNA
rewriting procedures. The gBlock method for short rewritings and OE-PCR for longer blocks

Page 17 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160 	

Polymerase Chain Reaction (OE-PCR) method, which are used for long or short strings
respectively as shown in Fig. 9b. Lin et al. [51] showed a set of file operations that can
be performed within the DNA storage system, including locking, unlocking, renaming,
and deleting. The renaming process involves mixing the original file strand with a 40 nt
single-stranded DNA oligo that binds to the original file’s address, resulting in a new
overhang that corresponds to the new address of the renamed file. This process ensures
that only the accessing oligo with the overhang complementary to the new address can
effectively separate the file strands, while also blocking any other oligos that are not
designed for the renamed file. Deletion uses a 20 nt oligo complementary to the file’s
original address to block the overhang of the file strand or extract it from the database.
This ensures no leftover strands are spuriously accessed in the future.

Cost

Although storing data in DNA has several advantages over current storage media, cost
remains one of the most prominent disadvantages. One estimate indicates the current
cost to store data using DNA is approximately $800 million per TB [52], while tape costs
is approximately $16 per TB [53]. However, DNA synthesis and sequencing costs are
dropping at an exponential rate of 5- and 12-fold per year respectively [7, 54]. The cost of
storing data into DNA directly depends on the efficiency of the encoding/decoding algo-
rithm. In 2013 Goldman et al. [15] required USD 12,400 to encode 1 megabyte while their
encoding efficiency was 0.88 bits/base. However, if they were able to achieve an encoding
efficiency of 0.94 bits/base their cost would have been reduced to 7440 USD/MB. In 2017
Erlich and Zielinski [21] encoded information at the cost of 3500 USD/megabyte, which
is almost one-fourth the cost of Goldman et al. [15]. In 2019, Anavy et al. [22] used com-
posite DNA in the synthesis cycle, which increased the logical density of the DNA and
further reduced the cost by up to 52% to an (estimated) cost of 1,700 USD/MB. Although
the cost of writing data to DNA remains much higher than established methods such as
tape, the maintenance cost of DNA is significantly lower once written.

Conclusion
Numerous in-vitro validated methods for storing digital data in DNA have been
reported. These methods address a several recurring themes (i.e., mapping to base-
sequence and handling of errors) using a variety of strategies. We find the relative advan-
tages and disadvantages of the methods to be highly application specific. For example,
some methods have relatively high information densities [16, 20, 21], some methods
provide a relatively high degree of random-access [18, 20], and some provide relatively
high physical densities [21, 27]. Table 3 summarizes key criteria for select methods.

Unfortunately, none of the discussed methods are suitable for storing the magnitude
of data necessary to address the potential information storage crisis. However, several
key advancements may help make DNA data storage more cost effective. Foremost, the
cost of DNA synthesis must be reduced or coding schemes that are more efficient per
synthesis cycle must be developed (similar in principle to the work of Anavy et al. [22]).
Approaches for addressing the later objective include the development of more effective
error mitigation methods or more efficient error correction methods. Promising meth-
ods for improving both error mitigation and error-correction have been proposed, but it

Page 18 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160

is critical that these methods be validated in-vitro so that their performance can be fairly
assessed. For error-mitigation, this includes methods which focus on decreasing synthe-
sis errors, improving avoidance of problematic sequences, and decreasing sequencing
errors. For error-correction, this includes methods which focus on increased efficiency
such that high information densities can be maintained.

Abbreviations
A	� Adenine
BCH	� Bose-chaudhuri-hocquenghem
bp	� Base-pair
C	� Cytosine
CRC​	� Cyclic redundancy check
DNA	� Deoxyribonucleic acid
EB	� Exabyte
ECC	� Error correction code
G	� Guanine
GF	� Galois field
LDPC	� Low density parity check
LFSR	� Linear-feedback shift register
MB	� Megabyte
MSA	� Multiple sequence alignment
nt	� Nucleotide
OE-PCR	� Overlap extension polymerase chain reaction
oligo	� Oligonucleotide
PB	� Petabyte
PCR	� Polymerase chain reaction
PRNG	� Pseudorandom number generator
RS	� Reed-solomon
SHA-256	� Secure hash algorithm - 256
T	� Thymine
TB	� Terabyte
XOR	� Exclusive-OR
ZB	� Zettabyte

Table 3  A comparison of selected methods for storing information in DNA

This table was adapted from the work of Erlich and Zielinski [21]

Method File size (MB) Error handling Information
density (bits/
base)

Physical
density
(PB/g)

Key contribution

Church et al. [7] 0.65 Repetition 0.60 1.28 Increased data capac-
ity

Goldman et al. [15] 0.75 Repetition 0.33 2.25 Introduced data
redundancy

Grass et al. [16] 0.08 RS 1.14 25 Utilized RS code,
reduced data redun-
dancy

Yazdi et al. [27] 0.017 Yes – 4.9× 10
5 Increased random

access, introduced
rewrite ability

Blawat et al. [17] 22 RS 0.92 – Error free retrieval of
larger scale data

Bornholt et al. [18] 0.15 Repetition 0.88 – Reduced redundancy,
increased random
access

Erlich and Zielinski
[21]

2.14 Fountain & RS 1.19 214 First fountain code,
increased data density

Organick et al. [20] 200.2 RS 1.1 – Increased data capac-
ity

Anavy et al. [22] 21.4 Fountain & RS – 20–30 Introduced composite
DNA letters

Page 19 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160 	

Acknowledgements
Not applicable.

Author contributions
GMM, JG, SL, GDD, MDT wrote the manuscript. GMM and JG contributed equally. GMM, JG, SL created the figures. WLH,
RZ, TA supervised this work. All authors read and approved the final manuscript.

Funding
This work was funded in part by the National Science Foundation (ECCS 1807809 and MCB 2027738), the Semiconduc-
tor Research Corporation, and the State of Idaho through Idaho Global Entrepreneurial Mission and Higher Education
Research Council (Grant No. 2227626).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 16 November 2021 Accepted: 30 March 2023

References
	1.	 Schechtman B, Peterson D, Qualls W, Rector M, Scheuer P, Walker B, Wideman R, Wultich T, Woito D. International

magnetic tape storage roadmap part I: applications & systems (November) 2011.
	2.	 Extance A. How DNA could store all the world’s data. Nature. 2016. https://​doi.​org/​10.​1038/​53702​2a.
	3.	 Reinsel D, Gantz J, Rydning J. The Evolution of data to life-critical don’t focus on big data. IDC White Paper: Focus on

the data that’s big; 2017.
	4.	 Semiconductor industry association: international technology roadmap for semiconductors, 2015 Results. Itrpv

0(March), 1–37 (2016).
	5.	 Semiconductor research corporation: SemiSynBio consortium and roadmap development (2017). https://​www.​src.​

org/​progr​am/​grc/​semis​ynbio/​semis​ynbio-​conso​rtium-​roadm​ap/.
	6.	 Zhirnov V, Zadegan RM, Sandhu GS, Church GM, Hughes WL. Nucleic acid memory. 2016. https://​doi.​org/​10.​1038/​

nmat4​594.
	7.	 Church GM, Gao Y, Kosuri S. Next-generation digital information storage in DNA. 2012. https://​doi.​org/​10.​1126/​scien​

ce.​12263​55.
	8.	 Patel P. Tech Turns to Biology as Data Storage Needs Explode (2016). https://​www.​scien​tific​ameri​can.​com/​artic​le/​

tech-​turns-​to-​biolo​gy-​as-​data-​stora​ge-​needs-​explo​de/#:​~ :​text=​Resea​rcher​s have decod​ed the genom​es,in the
past few years.​ &​text=​Compu​ter scien​tists​ and engin​eers have,resil​ience​ for stori​ng digit​al data.

	9.	 Ping Z, Ma D, Huang X, Chen S, Liu L, Guo F, Zhu SJ, Shen Y. Carbon-based archiving: current progress and future
prospects of DNA-based data storage. GigaScience 8(6) (2019). https://​doi.​org/​10.​1093/​gigas​cience/​giz075. giz075.
https://​acade​mic.​oup.​com/​gigas​cience/​artic​le-​pdf/8/​6/​giz075/​28848​471/​giz075.​pdf.

	10.	 Angell C, Xie S, Zhang L, Chen Y. DNA nanotechnology for precise control over drug delivery and gene therapy.
Small. 2016. https://​doi.​org/​10.​1002/​smll.​20150​2167.

	11.	 National science foundation (NSF): Semiconductor synthetic biology for information processing and storage tech-
nologies (SemiSynBio). Technical report, NSF (2017). https://​www.​nsf.​gov/​pubs/​2017/​nsf17​557/​nsf17​557.​htm.

	12.	 Zadegan RM, Hughes WL. CAGE: chromatin analogous gene expression. ACS Synthet Biol. 2017;6(10):1800–6.
https://​doi.​org/​10.​1021/​acssy​nbio.​7b000​45.

	13.	 Feynman RP. There’s plenty of room at the bottom [data storage]. J Microelectromech Syst. 1992;1(1):60–6. https://​
doi.​org/​10.​1109/​84.​128057.

	14.	 Davis J. Microvenus. Art J. 1996. https://​doi.​org/​10.​2307/​777811.
	15.	 Goldman N, Bertone P, Chen S, Dessimoz C, Leproust EM, Sipos B, Birney E. Towards practical, high-capacity, low-

maintenance information storage in synthesized DNA. Nature. 2013. https://​doi.​org/​10.​1038/​natur​e11875.
	16.	 Grass RN, Heckel R, Puddu M, Paunescu D, Stark WJ. Robust chemical preservation of digital information on DNA in

silica with error-correcting codes. Angewandte Chemie Int Ed. 2015. https://​doi.​org/​10.​1002/​anie.​20141​1378.
	17.	 Blawat M, Gaedke K, Hütter I, Chen XM, Turczyk B, Inverso S, Pruitt BW, Church GM. Forward error correction for DNA

data storage. In: Procedia Computer Science 2016. https://​doi.​org/​10.​1016/j.​procs.​2016.​05.​398.
	18.	 Bornholt J, Lopez R, Carmean DM, Ceze L, Seelig G, Strauss K. A DNA-based archival storage system. ACM SIGARCH

Comput Archit News. 2016;44(2):637–49. https://​doi.​org/​10.​1145/​29800​24.​28723​97.
	19.	 Bornholt J, Lopez R, Carmean DM, Ceze L, Seelig G, Strauss K. Toward a DNA-based archival storage system. IEEE

Micro. 2017. https://​doi.​org/​10.​1109/​MM.​2017.​70.

https://doi.org/10.1038/537022a
https://www.src.org/program/grc/semisynbio/semisynbio-consortium-roadmap/
https://www.src.org/program/grc/semisynbio/semisynbio-consortium-roadmap/
https://doi.org/10.1038/nmat4594
https://doi.org/10.1038/nmat4594
https://doi.org/10.1126/science.1226355
https://doi.org/10.1126/science.1226355
https://www.scientificamerican.com/article/tech-turns-to-biology-as-data-storage-needs-explode/#:%7e%20:text=Researchers%20have%20decoded%20the%20genomes,in%20the%20past%20few%20years.%20&text=Computer%20scientists%20and%20engineers%20have,resilience%20for%20storing%20digital%20data
https://www.scientificamerican.com/article/tech-turns-to-biology-as-data-storage-needs-explode/#:%7e%20:text=Researchers%20have%20decoded%20the%20genomes,in%20the%20past%20few%20years.%20&text=Computer%20scientists%20and%20engineers%20have,resilience%20for%20storing%20digital%20data
https://www.scientificamerican.com/article/tech-turns-to-biology-as-data-storage-needs-explode/#:%7e%20:text=Researchers%20have%20decoded%20the%20genomes,in%20the%20past%20few%20years.%20&text=Computer%20scientists%20and%20engineers%20have,resilience%20for%20storing%20digital%20data
https://doi.org/10.1093/gigascience/giz075
https://academic.oup.com/gigascience/article-pdf/8/6/giz075/28848471/giz075.pdf
https://doi.org/10.1002/smll.201502167
https://www.nsf.gov/pubs/2017/nsf17557/nsf17557.htm
https://doi.org/10.1021/acssynbio.7b00045
https://doi.org/10.1109/84.128057
https://doi.org/10.1109/84.128057
https://doi.org/10.2307/777811
https://doi.org/10.1038/nature11875
https://doi.org/10.1002/anie.201411378
https://doi.org/10.1016/j.procs.2016.05.398
https://doi.org/10.1145/2980024.2872397
https://doi.org/10.1109/MM.2017.70

Page 20 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160

	20.	 Organick L, Ang SD, Chen YJ, Lopez R, Yekhanin S, Makarychev K, Racz MZ, Kamath G, Gopalan P, Nguyen B, Taka-
hashi CN, Newman S, Parker HY, Rashtchian C, Stewart K, Gupta G, Carlson R, Mulligan J, Carmean D, Seelig G, Ceze L,
Strauss K. Random access in large-scale DNA data storage. Nat Biotechnol. 2018. https://​doi.​org/​10.​1038/​nbt.​4079.

	21.	 Erlich Y, Zielinski D. DNA Fountain enables a robust and efficient storage architecture. Science. 2017. https://​doi.​org/​
10.​1126/​scien​ce.​aaj20​38.

	22.	 Anavy L, Vaknin I, Atar O, Amit R, Yakhini Z. Data storage in DNA with fewer synthesis cycles using composite DNA
letters. Nat Biotechnol. 2019. https://​doi.​org/​10.​1038/​s41587-​019-​0240-x.

	23.	 Ping Z, Chen S, Zhou G, Huang X, Zhu SJ, Zhang H, Lee HH, Lan Z, Cui J, Chen T, Zhang W, Yang H, Xu X, Church GM,
Shen Y. Towards practical and robust DNA-based data archiving using the yin-yang codec system 2(4), 234–242.
https://​doi.​org/​10.​1038/​s43588-​022-​00231-2. Number: 4 Publisher: Nature Publishing Group. Accessed 2023-03-06.

	24.	 Takahashi CN, Nguyen BH, Strauss K, Ceze L. Demonstration of End-to-End Automation of DNA Data Storage. Sci
Rep. 2019. https://​doi.​org/​10.​1038/​s41598-​019-​41228-8.

	25.	 Press WH, Hawkins JA, Jones SK, Schaub JM, Finkelstein IJ. Hedges error-correcting code for dna storage corrects
indels and allows sequence constraints. Proceedings of the National Academy of Sciences. 2020;117(31):18489–96.
https://​doi.​org/​10.​1073/​pnas.​20048​21117. www.​pnas.​org/​doi/​pdf/​10.​1073/​pnas.​20048​21117.

	26.	 Schwartz JJ, Lee C, Shendure J. Accurate gene synthesis with tag-directed retrieval of sequence-verified DNA mol-
ecules. Nat Methods. 2012;9(9):913–5. https://​doi.​org/​10.​1038/​nmeth.​2137.

	27.	 Tabatabaei Yazdi SMH, Yuan Y, Ma J, Zhao H, Milenkovic O. A Rewritable, random-access DNA-based storage system.
Sci Rep. 2015. https://​doi.​org/​10.​1038/​srep1​4138. arxiv:​1505.​02199.

	28.	 Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB. Characterizing and measuring
bias in sequence data. Genome Biol. 2013;14(5):51. https://​doi.​org/​10.​1186/​gb-​2013-​14-5-​r51.

	29.	 Ananda G, Walsh E, Jacob KD, Krasilnikova M, Eckert KA, Chiaromonte F, Makova KD. Distinct mutational behaviors
differentiate short tandem repeats from microsatellites in the human genome. Genome Biol Evol. 2012;5(3):606–20.
https://​doi.​org/​10.​1093/​gbe/​evs116.

	30.	 Poon K, Macgregor RB. Unusual behavior exhibited by multistranded guanine-rich DNA complexes. Biopolymers.
1998;45(6):427–34. https://​doi.​org/​10.​1002/​(sici)​1097-​0282(199805)​45:​6<​427::​aid-​bip2>3.​0.​co;2-r.

	31.	 Xu C, Zhao C, Ma B, Liu H. Uncertainties in synthetic DNA-based data storage. Nucleic Acids Res. 2021;49(10):5451–
69. https://​doi.​org/​10.​1093/​nar/​gkab2​30.

	32.	 Chen Y-J, Takahashi CN, Organick L, Bee C, Ang SD, Weiss P, Peck B, Seelig G, Ceze L, Strauss K. Quantifying molecular
bias in DNA data storage. Nat Commun. 2020. https://​doi.​org/​10.​1038/​s41467-​020-​16958-3.

	33.	 Hamming RW. Error detecting and error correcting codes. Bell Syst Tech J. 1950;29(2):147–60. https://​doi.​org/​10.​
1002/j.​1538-​7305.​1950.​tb004​63.x.

	34.	 Lopez R, Chen Y-J, Ang SD, Yekhanin S, Makarychev K, Racz MZ, Seelig G, Strauss K, Ceze L. DNA assembly for nanop-
ore data storage readout. Nat Commun. 2019. https://​doi.​org/​10.​1038/​s41467-​019-​10978-4.

	35.	 Reed IS, Solomon G. Polynomial codes over certain finite fields. J Soc Ind Appl Math. 1960;8(2):300–4. https://​doi.​
org/​10.​1137/​01080​18.

	36.	 Bose RC, Ray-Chaudhuri DK. On a class of error correcting binary group codes. Inf Control. 1960;3(1):68–79. https://​
doi.​org/​10.​1016/​s0019-​9958(60)​90287-4.

	37.	 Wicker SB, Bhargava VK. Reed-Solomon Codes and Their Applications. New Jersey: Wiley; 1999.
	38.	 Byers JW, Luby M, Mitzenmacher M. A digital fountain approach to asynchronous reliable multicast. IEEE J Sel Areas

Commun. 2002;20(8):1528–40.
	39.	 Yim AK-Y, Yu AC-S, Li J-W, Wong AI-C, Loo JFC, Chan KM, Kong SK, Yip KY, Chan T-F. The essential component in DNA-

based information storage system: Robust error-tolerating module. Front Bioeng Biotechnol. 2014. https://​doi.​org/​
10.​3389/​fbioe.​2014.​00049.

	40.	 Chandak S, Ji H, Tatwawadi K, Lau B, Mardia J, Kubit M, Neu J, Griffin P, Wootters M, Weissman T. Improved read/write
cost tradeoff in DNA-based data storage using LDPC codes. In: 2019 57th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton) 2019. https://​doi.​org/​10.​1109/​aller​ton.​2019.​89198​90.

	41.	 Fei P, Wang Z. LDPC codes for portable DNA storage. In: 2019 IEEE International Symposium on Information Theory
(ISIT) 2019. https://​doi.​org/​10.​1109/​isit.​2019.​88498​14.

	42.	 Gallager R. Low-density parity-check codes. IEEE Trans Inf Theory. 1962;8(1):21–8. https://​doi.​org/​10.​1109/​tit.​1962.​
10576​83.

	43.	 Zhang H, Lan Z, Zhang W, Xu X, Ping Z, Zhang Y, Shen Y. SPIDER-WEB enables stable, repairable, and encryptible
algorithms under arbitrary local biochemical constraints in DNA-based storage. arXiv (2022). https://​doi.​org/​10.​
48550/​ARXIV.​2204.​02855. https://​arxiv.​org/​abs/​2204.​02855.

	44.	 Wu J, Zheng Y, Wang B, Zhang Q. Enhancing Physical and Thermodynamic Properties of DNA Storage Sets With
End-Constraint. IEEE Transactions on NanoBioscience. 2022;21(2):184–93. https://​doi.​org/​10.​1109/​TNB.​2021.​31212​
78. Conference Name: IEEE Transactions on NanoBioscience.

	45.	 Cao B, Ii X, Zhang X, Wang B, Zhang Q, Wei X. Designing uncorrelated address constrain for DNA storage by DMVO
algorithm. IEEE/ACM transactions on computational biology and bioinformatics 19(2), 866–877 2022. https://​
doi.​org/​10.​1109/​TCBB.​2020.​30115​82. Conference Name: IEEE/ACM Transactions on Computational Biology and
Bioinformatics

	46.	 Rasool A, Qu Q, Wang Y, Jiang Q. Bio-constrained codes with neural network for density-based DNA data storage.
Mathematics. 2022;10(5):845. https://​doi.​org/​10.​3390/​math1​00508​45. Number: 5 Publisher: Multidisciplinary Digital
Publishing Institute. Accessed 2022-12-21.

	47.	 Yin Q, Cao B, Li X, Wang B, Zhang Q, Wei X. An intelligent optimization algorithm for constructing a DNA storage
code: NOL-HHO. Int J Mol Sci. 2020;21(6):2191. https://​doi.​org/​10.​3390/​ijms2​10621​91. Accessed 2022-12-21.

	48.	 Cao B, Zhang X, Wu J, Wang B, Zhang Q, Wei X. Minimum free energy coding for DNA storage. IEEE Trans Nano-
Biosci. 2021;20(2):212–22. https://​doi.​org/​10.​1109/​TNB.​2021.​30563​51. Conference Name: IEEE Transactions on
NanoBioscience.

https://doi.org/10.1038/nbt.4079
https://doi.org/10.1126/science.aaj2038
https://doi.org/10.1126/science.aaj2038
https://doi.org/10.1038/s41587-019-0240-x
https://doi.org/10.1038/s43588-022-00231-2
https://doi.org/10.1038/s41598-019-41228-8
https://doi.org/10.1073/pnas.2004821117
http://www.pnas.org/doi/pdf/10.1073/pnas.2004821117
https://doi.org/10.1038/nmeth.2137
https://doi.org/10.1038/srep14138
http://arxiv.org/abs/1505.02199
https://doi.org/10.1186/gb-2013-14-5-r51
https://doi.org/10.1093/gbe/evs116
https://doi.org/10.1002/(sici)1097-0282(199805)45:6<427::aid-bip2>3.0.co;2-r
https://doi.org/10.1093/nar/gkab230
https://doi.org/10.1038/s41467-020-16958-3
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1038/s41467-019-10978-4
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://doi.org/10.1016/s0019-9958(60)90287-4
https://doi.org/10.1016/s0019-9958(60)90287-4
https://doi.org/10.3389/fbioe.2014.00049
https://doi.org/10.3389/fbioe.2014.00049
https://doi.org/10.1109/allerton.2019.8919890
https://doi.org/10.1109/isit.2019.8849814
https://doi.org/10.1109/tit.1962.1057683
https://doi.org/10.1109/tit.1962.1057683
https://doi.org/10.48550/ARXIV.2204.02855
https://doi.org/10.48550/ARXIV.2204.02855
https://arxiv.org/abs/2204.02855
https://doi.org/10.1109/TNB.2021.3121278
https://doi.org/10.1109/TNB.2021.3121278
https://doi.org/10.1109/TCBB.2020.3011582
https://doi.org/10.1109/TCBB.2020.3011582
https://doi.org/10.3390/math10050845
https://doi.org/10.3390/ijms21062191
https://doi.org/10.1109/TNB.2021.3056351

Page 21 of 21Mortuza et al. BMC Bioinformatics (2023) 24:160 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	49.	 Yin Q, Zheng Y, Wang B, Zhang Q. Design of constraint coding sets for archive DNA storage. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 19(6), 3384–3394 2022. https://​doi.​org/​10.​1109/​TCBB.​2021.​31272​71.
Conference Name: IEEE/ACM Transactions on Computational Biology and Bioinformatics.

	50.	 Banal JL, Shepherd TR, Berleant J, Huang H, Reyes M, Ackerman CM, Blainey PC, Bathe M. Random access DNA
memory using boolean search in an archival file storage system. Nat Mater. 2021;20(9):1272–80. https://​doi.​org/​10.​
1038/​s41563-​021-​01021-3.

	51.	 Lin KN, Volkel K, Tuck JM, Keung AJ. Dynamic and scalable DNA-based information storage. Na Commun. 2020.
https://​doi.​org/​10.​1038/​s41467-​020-​16797-2.

	52.	 Dong Y, Sun F, Ping Z, Ouyang Q, Qian L. DNA storage: research landscape and future prospects. Natl Sci Rev.
2020;7(6):1092–107. https://​doi.​org/​10.​1093/​nsr/​nwaa0​07.

	53.	 FontanaJr RE, Decad GM. Moore’s law realities for recording systems and memory storage components: Hdd, tape,
nand, and optical. AIP Adv. 2017;8(5): 056506.

	54.	 Carr PA, Church GM. Genome engineering. Nat Biotechnol. 2009;27(12):1151–62.
	55.	 Regulapati V. Error correction codes in NAND flash memory. https://​repos​itori​es.​lib.​utexas.​edu/​handle/​2152/​33302.

(Accessed on 05/19/2022) 2015.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TCBB.2021.3127271
https://doi.org/10.1038/s41563-021-01021-3
https://doi.org/10.1038/s41563-021-01021-3
https://doi.org/10.1038/s41467-020-16797-2
https://doi.org/10.1093/nsr/nwaa007
https://repositories.lib.utexas.edu/handle/2152/33302

	In-Vitro Validated Methods for Encoding Digital Data in Deoxyribonucleic Acid (DNA)
	Publication Information
	Authors

	In-vitro validated methods for encoding digital data in deoxyribonucleic acid (DNA)
	Abstract
	Introduction
	Survey of in-vitro validated storage methods
	Recurring or notable strategies
	Codes mapping a digital-sequence to a base-sequence
	Handling errors
	Expected errors
	Error correction
	Error mitigation

	Performance considerations
	Information density
	Storage capacity
	Random access
	Rewrite ability
	Cost

	Conclusion
	Acknowledgements
	References

