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Multi-Relay Communications in the Presence of
Phase Noise and Carrier Frequency Offsets

Omar H. Salim, Member, IEEE, Ali A. Nasir, Member, IEEE, Hani Mehrpouyan,

Member, IEEE, and Wei Xiang, Senior Member, IEEE

Abstract

Impairments like time varying phase noise (PHN) and carrier frequency offset (CFO) result in loss of

synchronization and poor performance of multi-relay communication systems. Joint estimation of these

impairments is necessary in order to correctly decode the received signal at the destination. In this paper,

we address spectrally-efficient multi-relay transmission scenarios where all the relays simultaneously

communicate with the destination. We propose an iterative pilot-aided algorithm based on the expectation

conditional maximization (ECM) for joint estimation of multipath channels, Wiener PHNs, and CFOs

in decode-and-forward (DF) based multi-relay orthogonal frequency division multiplexing (OFDM)

systems. Next, a new expression of the hybrid Cramér-Rao lower bound (HCRB) for the multi-parameter

estimation problem is derived. Finally, an iterative receiver based on an extended Kalman filter (EKF) for

joint data detection and PHN tracking is employed. Numerical results show that the proposed estimator

outperforms existing algorithms and its mean square error performance is close to the derived HCRB at

differnt signal-to-noise ratios (SNRs) for different PHN variances. In addition, the combined estimation

algorithm and iterative receiver can significantly improve average bit-error rate (BER) performance

compared to existing algorithms. In addition, the BER performance of the proposed system is close to

the ideal case of perfect channel impulse responses (CIRs), PHNs and CFOs estimation.

I. INTRODUCTION

A. Motivation and Related Works

Multi-relay systems have attracted considerable research interests due to their potential to

offer an effective solution to the issues faced by next generation (5G) cellular networks, such
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as significant path loss and shadowing at millimeter-wave (mmW) frequencies [1, 2]. By em-

ploying multiple relay, one can enhance the range of mmW links, while concurrently providing 

cooperative diversity to overcome shadowing due to obstacles and humans [3, 4]. In contrast to 

single-input single-output (SISO) systems, which may result in single phase noise (PHN) and 

carrier frequency offset (CFO), the multi-relay networks have multiple distributed nodes and 

each one has its own local oscillator. Thus, this gives rise to multiple phase noises (PHNs) and 

multiple carrier frequency offsets (CFOs) at the destination.

The motivation of adopting the low-cost oscillators at source, relays and destination, and

providing high data rates in gigabits per second or even higher lead to the distortion of transmitted

signal with different impairments such as CFO and PHN. In addition, PHN has more pronounced

effect on system performance at higher frequencies, e.g., V-band/60 GHz and E-band/70-80 GHz

[5]. Thus, it is increasingly important to develop efficient and accurate estimation algorithms for

compensating the channels, PHNs, and CFOs to achieve an accurate synchronization amongst

all communication nodes.

Orthogonal frequency division multiplexing (OFDM) is employed in multi-relay systems to 

increase the transmission bandwidth efficiency a nd m itigates t he e ffect o f frequency-selective 

fading. However, the presence of multiple PHN and CFO results in a common phase error (CPE) 

and inter-carrier interference (ICI) at the destination node, and the estimation of channel impulse 

response (CIR) for each link becomes challenging [6]. On the other hand, accurate estimation 

of CIRs in the presence of PHNs and CFOs is required for coherent detection at the destination. 

OFDMA technique can be used to assign different subcarriers to different relays. However, as 

mentioned in [7], OFDMA is restricted approach and may result in significant loss of spectral 

efficiency.

Many algorithms for a joint channel, PHN and/or CFO estimation in SISO and MIMO systems 

are proposed in [8–17]. However, the system models in [8–17] only consider a single oscillator 

at the transmitter and the receiver and thus requires the estimation of single PHN and/or single 

CFO parameter. In contrast, each relay in multi-relay systems has its own local oscillator and 

the received signal at the destination is affected by multiple PHN and CFO parameters. Thus, 

the estimation algorithms in [8–17] cannot be applied to estimate the required multiple PHN and 

CFO parameters at the destination of a multi-relay network.
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In [18], the authors have presented general issues that need careful design for the successful 

implementation of OFDMA-based multi-hop networks. However, no estimation and detection 

algorithms are presented in [18]. In addition, the effects of PHN are not studied in [18]. In 

[19], channel estimation in the presence of CFOs is analyzed in decode-and-forward (DF) and 

amplify-and-forward (AF) cooperative systems. However, the authors in [19] do not take the 

effect of PHN into account. In [20] and [21], CFO estimation is investigated for DF and AF 

cooperative systems, respectively. However, the proposed algorithms in [20] and [21] are based 

on the assumption of perfect knowledge of channels. Moreover, in [21], a minimum mean square 

error (MMSE) equalizer is used to equalize the ICI, which is computationally very complex. In 

[22], channel estimation in the presence of PHN is investigated. However, the effect of CFOs is 

not taken into account. More importantly, [19–22] do not provide the hybrid Cramér-Rao lower 

bound (HCRB) for joint estimation of multiple impairments in multi-relay systems, which would 

provide essential information about the absolute performance of the estimation scheme and these 

bounds can be applied to obtain lower bounds on the performance of multi-relay network in 

the presence of imperfect CIR, PHN, and CFO estimation. The problem of joint channel, CFO, 

and PHN estimation is considered in the context of OFDM relay networks in [5]. However, the 

relaying approach in [5] is based on a single relay. In addition, the estimation approach in [5] 

is based on the maximum a posteriori (MAP) criterion, which is computationally very complex. 

Joint channel and CFO estimation based on the expectation-conditional maximization (ECM) 

approach was proposed in [23] for OFDMA uplink systems. However, in [23], the authors do 

not take the effect of multiple PHN parameters into account. In [7], the authors designed optimal 

training sequences for multi-user multi-input multi-output (MIMO)-OFDM systems and evaluated 

the performance of training sequences in the presence of residual PHN or residual CFO. However, 

the estimation approach in [7] depends on the orthogonality between the training sequences to 

reduce the effects of PHN or CFO. In addition, the estimation method in [7] does not provide 

any means of estimating or tracking multiple PHN and CFO parameters. Recently, we consider 

the problem of joint channel, PHN, and CFO estimation in OFDM AF and DF relay networks 

in [24, 25]. However, in [24, 25], the system model is based on time-division multiple-access 

(TDMA), which leads to a significant loss in spectral efficiency since each relay’s parameters are 

estimated turn by turn. Moreover, the problem of joint data detection and PHN mitigation for
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multi-relay systems is not presented in [24, 25]. In addition, the HCRB for joint channel, CFO, 

and PHN estimation, and the computational complexity of the estimation and detection for multi-

relay networks are not addressed in [24, 25]. Most recently, we consider the problem of joint PHN 

multi-parameter estimation and data detection for light field video transmission in MIMO-OFDM 

systems in [26]. However, the proposed algorithm in [26] is based on the assumption of accurate 

synchronization of CFOs. Moreover, the HCRB for joint estimation of mutiple impairments is 

not derived in [26]. In addition, the effects of joint channels, PHNs, and CFOs estimation on data 

detection is not addressed in [26]. Finally, in [27], a detection algorithm based on the Monte Carlo 

technique and the Bayesian approach for multi-user system in the presence of mutiple PHNs and 

CFOs has been proposed. However, the estimation algorithm in [27] requires the presence of 

multiple antennas at each transmitter and the application of STBCs with special trasnsmission 

structure. In our setup, that trasnmission is from multiple relays, where single antenna is employed 

at each relay to ensure implementation simplicity. Thus, the particular algorithm proposed in [27] 

is not applicable to our setup. In addition, no closed form expressions to estimate the channel, 

PHN, and CFO parameters are presented in [27]. More importantly, in [27], the HCRB for joint 

estimation of multiple channel, PHN and CFO parameters is not derived.

Given the time-varying nature of PHN, we need to track it not only during the training interval

but also during the data transmission interval. Hence, following the training period, a receiver

structure for joint data detection and PHN mitigation during the data transmission period is

required. In the existing literature, joint data detection and mitigation of multiple PHN parameters

is analyzed in [5, 22]. However, the PHN tracking in [5, 22] requires the application of pilots

throughout an OFDM data symbol to compensate the CPE, which adversely affects the bandwidth

efficiency and data detection performance. As will be explained in Section VII, the data detection

approach of using the pilots to track the PHN over the data packet, as used in [5, 22], has poor

BER and lower PHN estimation performance compared to the extended Kalman filter (EKF)

based detector in this paper.

B. Contributions

In this paper, a computationally efficient algorithm based on the ECM approach for joint

estimation of channels, PHNs, and CFOs in OFDM-based DF relaying systems is presented. In
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the presence of time-varying PHN, an iterative data detection algorithm is also proposed to detect 

the data symbols. The major contributions of this paper are summarised as follows: 

1) This paper addresses spectrally-efficient multi-relay transmission scenarios where the relays 

simultaneously send their signals to the destination, then the impairment parameters are 

estimated using an iterative pilot-aided algorithm based on the ECM algorithm at the 

destination. The proposed algorithm can estimate multiple unknown channel gains, PHN s 

and CFOs. In addition, we drive a closed-form estimator to obtaining the CFO and channel 

parameters. Based on simulation results, the proposed estimator is found only need few 

iterations to estimate the multiple impairments over the transmission packet. 

2) We derive the HCRB for joint CIRs, PHNs, and CFOs estimation in DP-based multi-relay 

OFDM systems. Simulation results show that the mean square error (MSE) of the proposed 

algorithm is closer to the HCRB at different signal-to-noise ratios (SNRs). 

3) An iterative data detection algorithm based on the EKF for tracking the unknown time­

varying PHNs throughout the OFDM data packet is presented. Simulations are carried out to 

investigate the performance of the proposed estimator and detector. Comparing with existing 

algorithms, the simulation results demonstrate that the combined estimation and detection 

algorithms significantly improve the MSE and the bit error rate (BER) performance. In 

addition, the BER performance of the proposed system is closer to the ideal case of perfect 

CIRs, PHNs, and CFOs estimation. 

C. Notation 

Superscripts(-)*, (·)H, and (-)T denote the conjugate, the conjugate transpose, and the transpose 

operators, respectively. Bold face small letters, e.g., x, are used for vectors, bold face capital 

alphabets, e.g., X, are used for matrices, and [X]x,y represents the entry in row x and column y 

of X. Ix, Ox xx , and lxxx denote the X x X identity, all zero, and all 1 matrices, respectively. 

The notation X(n1 : n2 , m 1 : m2 ) is used to denote a submatrix of X from row n1 to row n2 

and from column m 1 to column m2 . I · I is the absolute value operator, Ix[ denotes the element­

wise absolute value of a vector x, and diag(x) is used to denote a diagonal matrix, where the 

diagonal elements are given by vector x. X t X indicates that matrix (X - X) is positive 

semi-definite. X, x, and x represent the estimate matrix, vector, and element, respectively. lEx ,y[·] 

4 
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denotes the expectation over x and y. <{·} and ={·} denote the real and imaginary parts of

a complex quantity, respectively. ∇x and 4x
y represent the first and the second-order partial

derivatives operator, i.e., ∇x = [ ∂
∂x1
, · · · , ∂

∂xN
]T and 4x

y = ∇y ×∇T
x . N (µ, σ2) and CN (µ, σ2)

denote real and complex Gaussian distributions with mean µ and variance σ2, respectively. ⊗

denotes circular convolution. Finally, ż denotes the Jacobian of z.

D. Organization

The rest of this paper is organized as follows: Section II describes the system model, the

scenario under consideration, and the assumptions in this work, Section III derives hybrid Cramér-

Rao lower bound. Section IV derives the proposed estimator, Section V presents the joint data

detection and PHN mitigation, Section VI illustrates complexity analysis of the proposed system

while Section VII provides simulation results that investigate the performance of the proposed

estimator and detector. Finally, Section VIII concludes the paper and summarizes its key findings.

II. SIGNAL MODEL

We consider a half-duplex space-division multiple-access (SDMA) SISO multi-relay commu-

nication system with one source node, S, M relays, R1, . . . , RM , and a single destination node, D, 

as shown in Fig. 1. An OFDM packet of (S + 2) symbols as shown in Fig. 2 is considered, which 

consists of two training symbol and S data symbols. The training symbols are known by the relays 

and destination, while the data symbols consist of modulated data, where no pilots are included. 

The two training symbols are used to separately estimate the unknown CIRs and CFOs in the 

presence of unknown PHN for both transmission phases of the source to relays and relays to 

destination. As shown in Figs. 1 and 2, during the training period, the source node broadcasts the 

training symbol in the first transmission phase to M relays, then the CIR and CFO in the presence 

of PHN are estimated at each relay. In the second transmission phase, M relay nodes 

simultaneously transmit the training symbols to the destination node and the estimation of multiple 

CIR and CFO parameters in the presence of multiple PHN parameters is performed at the 

destination node. Next, during the data period, the data symbols are transmitted from the source to 

M relays in the first transmission phase, then M relays simultaneously decode, re-encode, and 

forward the source information to the destination node during the second transmission phase. The 

constant CIR and CFO are compensated by using their estimates obtained during the
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training phase, while during the data transmission, we track the time varying PHN and decode 

the data. Therefore, in order to guarantee the advantages of multi-relay diversity, there is a need 

to estimate the channel gains, time varying PHN, and CFO parameters for the received signals 

at the destination node during both transmission phases. In this paper, the following set of

S

R1

R2

RM

D
hS,R1

,θS,R1
, εS,R1

h
S,R

M ,θ
S,R

M , εS,R
M

hR1 ,D ,θR1 ,D , εR1 ,D

hRM
,D
,θRM

,D
, εRM

,D

First transmission Second transmission

y1(n)

yM(n)

Fig. 1: The system block diagram for the multi-relay communication network.

• • • • • • • • • • • • • • • • •Source to relays 

OFDM data

symbol 1 (d) 

OFDM Packet

OFDM data

symbol S (d) 

OFDM training 

symbols (d) 

Relays to destination 

Fig. 2: Timing diagram for transmission of training and data symbols within an OFDM packet.

assumptions are adopted:

A1. The channels are modeled as quasi-static Rayleigh fading channels, i.e., they are constant

and unknown over the OFDM packet duration but change from packet to packet,

A2. CFO is modeled as an unknown deterministic parameter over a packet and is assumed

to change from packet to packet.

A3. The time-varying PHN is assumed to change from symbol to symbol and is modeled

by a Wiener process, i.e., θq(n) = θq(n − 1) + δ(n), ∀ n and q ∈ {S, Rm, D}, where

θq(n) is the PHN at the nth instant, δ(n) ∼ N (0, σ2 
δ) is PHN innovation and σ2

δ is the

variance of the innovation process.

A4. The training symbol is assumed to be known at the relays and destination.

A5. The timing offsets are assumed to be perfectly estimated. Hence, it is not considered.

Note that assumptions A1, A2, A3, A4, and A5 are in line with previous studies and channel,

PHN and CFO estimation algorithms in [6, 19–22, 28–30]. Assumption A3 is also reasonable

in many practical scenarios to describe the behavior of practical oscillators [6, 28]. In addition,
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assumption A4 is adopted in the IEEE 802.11ac/ad standards to estimate channel and CFO in

[6, 31–34].

The time-invariant composite CIR between any pair of nodes a and b is modeled as ha,b(τ) =∑L−1
l=0 ha,b(l)δ(τ − lTs), where ha,b(l) is the channel gain for the lth tap, δ(x) denotes the unit

impulse function, and a, b ∈ {S,Rm, D}. L is the channel order, and Ts = 1/B, where B

represents the total bandwidth. The channel order L is the same for any pair of nodes. For

brevity, we define ha,b , [ha,b(0), ha,b(1), . . . , ha,b(L − 1)]T and the channel gains ha,b(l) are

modeled as complex Gaussian zero-mean random variables. The input data bits are first mapped

to the complex symbols drawn from a signal constellation such as phase-shift keying (PSK)

or quadrature amplitude modulation (QAM). Next, the source node, S, transmits the modulated

training symbol vector d , [d(0), d(1), . . . , d(N−1)]T to the destination during two transmission

phases. Note that, in this paper as shown in Fig. 2, a symbol, d, is used to indicate the training

vector at the relays during training period, while d̄ is used to indicate the decoded data vector

at the relays, that is transmitted further to the destination during data transmission period.

A. First Transmission Phase

The received signal at the mth relay, Rm, is given by

zm = ES,RmPS,RmFHHS,Rmd + vm, (1)

H

where zm , [zm(0), zm(1), . . . , zm(N − 1)]T is an N × 1 vector, ES,Rm , diag([e(j2πεS,Rm/N)×0, 

e(j2πεS,Rm/N), . . . , e(j2πεS,Rm/N)×(N−1)]T ) is the N ×N CFO matrix, εS,Rm denotes the normalized 

CFO between S −→ Rm, PS,Rm , diag([ejθS,Rm (0), ejθS,Rm (1), . . . , ejθS,Rm (N−1)]T ) is the N × N 

PHN matrix, θS,Rm(n) , θS(n) + θRm(n) for n = 0, . . . , N − 1 is the PHN at the nth instant 

between S −→ Rm, HS,Rm , diag(FLhS,Rm) = diag(HS,Rm [0], HS,Rm [1], . . . , HS,Rm [N − 1]) is 

the N × N frequency-domain channel coefficient matrix, FL is an N × L DFT matrix, i.e., FL , 

F(1 : N, 1 : L), F is an N × N DFT matrix, i.e., [F]l,v , (1/
√
N)e−j(2πvl/N) for v, l = 0, 1, · · · , N − 

1. Note that HS,Rm(n) , ejθ¯S,Rm (0) ¯
S,Rm(n), and θS,Rm(n) , θ¯S,Rm(n) − θ¯S,Rm(0), this model 

helps to distinguish between the phase disturbance caused by PHN and the channel phase for the 

first sample, which in turn resolves the phase ambiguity in the joint estimation problem as 

indicated in Section IV, D , diag(d), d = [d(0), d(1), . . . , d(N − 1)]T is the N × 1

kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at IEEE Transactions on Communications, published by IEEE. Copyright restrictions may apply. doi: 10.1109/TCOMM.2016.2622704



8

modulated training vector during training period and data vector during data transmission period, 

and vm = [vm(0), vm(1), . . . , vm(N − 1)]T is AWGN vector at the mth relay, Rm.

The estimation and detection problem between S −→ Rm can be solved using source-to-

relay estimation and detection techniques proposed for OFDM SISO systems in [35] and is not

presented here to avoid repetition.

B. Second Transmission Phase

As shown in Fig. 2, in this phase, the relays apply the DF protocol on the received signals and

forward them to the destination while the source is silent 1. The received signal at the destination,

D, for the training period can be defined as

r =
M∑
m=1

ERm,DPRm,DFHDmFLhRm,D + w, (2)

where r , [r(0), r(1), . . . , r(N − 1)]T is an N × 1 vector, ERm,D , diag([e(j2πεRm,D/N)×0, 

e(j2πεRm,D/N), . . . , e(j2πεRm,D/N)×(N−1)]T ) is an N × N CFO matrix, εRm,D denotes the normal-

ized CFO between Rm −→ D, PRm,D , diag([ejθRm,D(0), ejθRm,D(1), . . . , ejθRm,D(N−1)]T ) is the

N × N PHN matrix, θRm,D(n) , θRm(n) + θD(n) for n = 0, . . . , N − 1, is the PHN at

the nth instant between Rm −→ D, hRm,D , [hRm,D(0), hRm,D(1), . . . , hRm,D(L − 1)]T is a
L × 1 CIR vector between Rm −→ D, Dm , ΛmD is an N × N matrix, D , diag(d) is an N × N 

training matrix, d is an N × 1 training symbol vector from the relay, Λm =

diag(1, ej2π(L+1)m/N , . . . , ej2π(L+1)(N−1)m/N ) is an N × N frequency modulation matrix and can 

be viewed as a frequency modulation and used to achieve the orthogonality between the training

sequences at the destination [7]. w is is an N × 1 AWGN vector at the destination.

Equation (2) can be rewritten as follows

r =
[
Ψ1,Ψ2, . . . ,ΨM

]︸ ︷︷ ︸
Ψ

hR,D + w, (3)

where Ψ ,
[
Ψ1,Ψ2, . . . ,ΨM

]
is an N ×ML matrix, Ψm , ERm,DPRm,DFHDmFL is an N ×L

matrix, for m = 1, . . . , M, and hR,D , [hTR1,D
, . . . , hTRM ,D

]T is a ML × 1 CIR vector.
1The relays can also apply a precoding or beamforming approach at this stage to further enhance the system performance, but

such approaches are beyond the scope of this work.
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III. DERIVATION OF THE HYBRID CRAMÉR-RAO BOUND

In this section, the HCRB for joint estimation of channel, PHN, and CFO parameters is 

presented. Since the overall parameters of channel , hR,D, PHNs, θR,D, and CFOs, εR,D, need to be 

estimated, the parameter vector of interest, λ, is given by

λ = [θTR,D <{hR,D}T ={hR,D}T εTR,D]T , (4)

where λ comprises of both random and deterministic parameters, i.e., PHNs, θTR,D , [θTR1,D
, . . . ,

R ,D R,D

θTRM ,D
]T , θTRm,D , [θRm,D(0), . . . , θRm,D(N − 1)]T are random, while CIRs, hR,D , [hTR1,D

, . . . , 

hT 
M 

]T , and CFOs, εT , [εR1,D, . . . , εRM ,D]T , are deterministic parameters. Thus, the HCRB

instead of standard CRB is needed to be derived. The accuracy of estimating λ is lower bounded

by the HCRB (Ω) as [36, pp. 1-85]

Er,θR,D|hR,D,εR,D

[
(λ̂(r)− λ)(λ̂(r)− λ)T

]
� Ω. (5)

Let us define Ω , B−1. Here, B is an M(N + 2L) ×M(N + 2L) hybrid information matrix

(HIM), which is determined according to the following theorem.

Theorem 1: The closed-form HIM for joint estimation of CIR, PHN, and CFO is given by

B =
2

σ2
w

<




B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44




, (6)

where B11 , Q̄H
1 Q̄1 + Λ is the M(N − 1) × M(N − 1) HIM for the estimation of θR,D,

Q̄1 =
[
Φ̄1, . . . , Φ̄M

]
, Φ̄m , Φm(2 : N, 2 : N), Φm = jdiag(ERmDFHDmFLhRmD) for m =

1, . . . ,M , Λ is an M(N − 1) × M(N − 1) tridiagonal matrix with diagonal elements given

by σ2
w

2σ2
δ
[1, 2, . . . , 2, 1] and off-diagonal elements given by −σ2

w

2σ2
δ

[1, . . . , 1], B22 , QH
2 Q2 is an

ML × ML information matrix for the estimation of real part of hR,D, Q2 =
[
γ1, . . . ,γM

]
,

γm = ERmDFHDmFL for m = 1, . . . ,M , B33 , QH
2 Q2 is an ML ×ML information matrix

for the estimation of imaginary part of hR,D, B44 , QH
3 Q3 represents the information for

the estimation of CFOs, εR,D, Q3 =
[
β1, . . . ,βM

]
, βm = ÉRmDFHDmFLhRmD, ÉRmD ,

diag([0, j2π
N
e(j2πεRmD/N), . . . , j2π(N−1)

N
e(j2πεRmD/N)×(N−1)]T ) for m = 1, . . . ,M , B12 = BH

21 ,

−jQ̄H
1 Q̄2, Q̄2 =

[
γ̄1, . . . , γ̄M

]
, γ̄m = γm(2 : N, 1 : L) for m = 1, . . . ,M , B13 = BH

31 ,
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Q̄H
1 Q̄2, B14 = BH

41 , Q̄H
1 Q̄3, Q̄3 =

[
β̄1, . . . , β̄M

]
, β̄m = βm(2 : N) for m = 1, . . . ,M ,

B23 = BH
32 , jQH

2 Q2, B24 = BH
42 , jQH

2 Q3, and B34 = BH
43 , QH

2 Q3.

Proof: The proof is given in Appendix A.

Finally, the HCRB, Ω, is given by the inverse of the HIM. i.e., Ω = B−1. Note that the HCRB

of the channel, hR,D, is obtained by adding the HCRB for real and imaginary parts of channels,

i.e., HCRB{hR,D} = HCRB{<{hR,D}} + HCRB{={hR,D}} [37].

IV. ITERATIVE ESTIMATION

The parameter vector of interest in (4) can be rearranged into groups , i.e., λ , [λT1 , . . . ,λ
T
M ]T ,

where λTm , [θTRm,D,h
T
Rm,D

, εRm,D]T , for m = {1, . . . ,M}. During the estimation process using

ECM, each group, λm, is updated while keeping the remaining groups fixed at their latest updated

values 2. In addition, for each group a hidden data set is selected [38]. In this case, the hidden

data set denoted by ym for λm is given by

ym = ERm,DPRm,DFHDmFLhRm,D + wm, (7) where wm is the N × 1 AWGN vector. The updating 

process for λm at the ith iteration in the proposed ECM estimator consists of the E- and M-Steps.

A. E-Step

In this step, a hidden data set is calculated from the received signal, r, in (2) and depends

on the latest CIR, PHN, and CFO estimates obtained from the previous iteration. Thus, while

setting λ` = λ̂
[i]

` , ∀` 6= m, the expectation of the log-likelihood function (LLF) of the hidden

data set for the parameter λm, N(λm|λ̂
[i]

` ) is determined as

N(λm|λ̂
[i]

) , E
{

log p(ym|λm,
{
λ̂

[i]

`

}
`6=m

)

∣∣∣∣r, λ̂[i]

`

}
, (8)

where

p(ym|λm,
{
λ̂

[i]

`

}
`6=m

) = p(ym|λm) =
1

πσ2
w

exp
{
‖ym − ERm,DPRm,DFHDmFLhRm,D‖2

σ2
w

}
.

(9)

2The convergence is analyzed later.
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Substituting (9) into (8), we obtain 

N(Am[~[i]) = C1 - O"l; IE { [[Ym - ERm,DPRm ,DFHDmFLhRm,D[l 2 1r, ~1i]} 

=Ci - O"l; IE { JJy~ - ERm,DPRm,DFHDmFLhRm,Dll
2 
}, 

where C1 = log( 1m;) is a constant and 

(10) 

[i] /:-. { A [i]} A A H A ( ~ A A H A ) Ym = IE Ym[r, A = ERm,DPRm,D F DmFLhRm,D + r - £:t. ERc,DPRc,D F DRFLhRc,D 

(11) 

B. M-Step 

In this step, the CIR, CFO, and PHN parameters between the mth relay and the destination 

In order to further reduce the complexity associated with the M-step of the EM algorithm, the 

ECM scheme [39] is applied in this section, where the cost function in (11) is minimized with 

respect to one of the parameters of interest while keeping the remaining parameters at their most 

recently updated values [39, 40]. The steps of the ECM approach as follows. 

I) PHN estimation: in this step, ot~b can be determined as follows. The nth symbol of 

the signal vector, yJQ(n) in (11), is first multiplied by e-j2xf.Wm,Dn/N for n = {O, 1, ... , N - 1 }, 

where E~m,D is the latest CFO estimate obtained from the previous iteration. Next, the signal 

um(n) 6 e-j2m€Wm ,D !Ny~(n) is used to estimate the PHN vector. The signal um(n) can be 

written as 

where sJQ(n) is the nth symbol of the vector, sJQ 6 FHDFLht,v, /j.€Rm,D 6 ERm,D - Et,D, 
!:-. ·2 A[i] /N 

&m(n) = o:m(n) e-J xmRm,D and o:m(n) is the nth symbol of the overall noise vector, am. am 

is the result of thermal noise and residual interference from the relays and as shown in [23], it 

is nearly Gaussian distributed with zero-mean and some variance O"~. For the proposed problem, 

the state and observation equations at time n are given by 

11 
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()Rm,D(n) = ()Rm,D(n - 1) + bRm,D(n), 

Um(n) = 9m(n) + O:m(n) = ejfhm,D(n)sm(n) + Om(n), 

(14) 

(15) 

respectively. Since the observation equation in (15) is a non-linear function of the unknown 

state vector 8 Rm,D' the EKF is used instead of a simple Kalman filter. Based on Taylor series 

expansion, the EKF can linearize the non-linear observation equation in (15) about the current 

estimates [41]. Thus, the Jacobian of 9m(n) is evaluated by computing the first order partial 

derivative of 9m(n) with respect to ()Rm ,D(n) as 

. 8gm(()Rm D(n)) I . A • ·e'[iJ ( I 1) A 9m(n) = B() ' = Jg(()Rm,D(nln - 1)) = ye1 Rm,D nn- sm(n), 
Rm,D(n) &Rm,D(n)=BRm,D(n/n-1) 

(16) 

where !Jm denotes the Jacobian of 9m evaluated at ()Rm,D(n). The first and second moments 

of the state vector at the (i + l)th iteration denoted by 6J~+1b(nln - 1) and M[i+1l(nln - 1) , 
m , 

respectively, are given by 

6J[i+l] (n ln - 1) = 6J[i+l] (n - lln - 1) , Rm,D Rm,D 

M [i+ll (n ln - 1) = M[i+ll(n - lln - 1) + 0"2 
m m 8Rm ,D' 

(17) 

(18) 

repectively. Given the observation um(n) , the Kalman gain Km(n), posteriori state estimate 

B~~~b(nln), and the filtering error covariance, M~+11 (nln) are given by 

K m(n) = M~+ll(nln - l)g~(es,R,D(nln - 1)) 

X (9m(()Rm,D(nln - 1)) X M~+1l(n - lln - 1) X g~(()Rm,D(nln - 1)) + O'~ )-
1

, 

(19) 

et~b(nln) = e~~~b(nln - 1) + U({ Km(n)(um(n) - ej8~!.
1

,1n(n/n-l)s~(n)) }, (20) 

M~+1l(nln) = U( { M~+1l(nln - 1) - Km(n )!Jm (()Rm,D(nln - 1) ) X M~+1l(nln - 1) }, (21) 

respectively. Before starting the EKF recursion (16)-(21), ew D(llO) and M~l (llO) are initialized 
m , 

by e~l D(llO) = 0 and M~1 (1IO) = (}~ , respectively 
m> Rm,D 
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2) CFO estimation: in this step, €~:l] can be determined as follows. By setting B Rm,D and 
A [i+l] [i] 

h Rm,D to their latest updated values, BRm ,D and hRm,D' respectively, the updated value of ERm,D 

at the (i + l)th iteration, E~:~b, can be determined as 

E~:~b = arg min lly!Q - E Rm,DPRm,DFHDmFLhRm,Dll

2

19 =(}[i +1] 
t Rm ,D Rm ,D Rm,D 

h R n =fi[i] 
m , Rm ,D 

N-1 

= arg min L ll'Y~(n) - ej2uRm,nn/Neje~;;,1,Jn(n)sJQ(n)ll2 
t Rm ,D n =O 

N-1 

= arg max L ~{(y~(n))* S~(n)ej27rtRm,nn/N}, 
t Rm,D n=O 

(22) 

where s~ ( n) = ej0~
1

•1n (n) s!Q ( n). In order to handle the nonlinearity of (22), Taylor senes 

expansion can be used to approximate the term e j 27rERm ,nn/N around the pervious CFO estimate, 

E~m,D ' up to the second order term as 

e j27rtRm ,n n / N = e j27r i'Wm,nn / N + (E _ g[i] ) (J· 27r n) x ej27ri'Wm ,nn/ N 
Rm,D R m ,D N 

1 [i] ( 27r ) 
2 

. A[i] I + 2( ERm,D - ERm,D)2 j N n x e J27rtRm ,Dn N (23) 

Substituting (23) into (22), Et~b is given by 

( 
.211" ) J27r€~J Dn/N } + 1 ( . [i] )2 NL-I (¥\{ ( ' [ii( ))* S' [i+l]( ) ( .211" )

2 
_i27r€1;} Dn/N}} 1-n e =· - ER D - ER D :n y n n 1-n (:;" =· . N 2 = • => m m N 

n=O 

(24) 

Taking the derivative of (24) with respect to ERm,D and equating the result to zero, the estimate 

of ERm,D at the (i + l)th iteration is given by 

N ~nN=-01 n8'{ (yA!Q (n))* sJ:/1] (n) ej27ri'Wm ,Dn / N} g[i+l] - gliJ L,, 

R m ,D - R m ,D - 27r I::~ol n2~{ (yJ:l(n))*SJ:.+l](n)ej27rf'Wm,nn/N} · 
(25) 

3) CIR estimation: in this step, h~:~b can be determined as follows. By setting BRm,D and 
• A [i+l] A[i+l] • 

ERm,D to thetr latest updated values, BRm ,D and ERm,D' respectively, the updated value of hRm,D 

at the (i + l)th iteration, fi.~+1b is calculated. The negative log likelihood function for mth relay m, 

can be written as 

1 ( . ) - c II [i] E[i+l] p[i+l] h 112 ogp Ym, ERm,D - 2 + Ym - Rm,D Rm,Dr m R m ,D ' (26) 
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where r m 6 
FHDmFL and C2 is a constant. By taking the derivative of negative LLF in (26) 

with respect to hRm,D' the estimate of hRm,D at the (i + l)th iteration, h~:~b is given by 

hA [i+iJ = (rHr )-1rHpA [i+iJHEA [i+iJH liJ 
R m,D m m m Rm,D Rm,D Ym, (27) 

where E~:~b 6 diag( [e(j21ri~;;.
1

!n/N) xo, e(j21ri~;;.
1

,Jn/N), ... , e(j2Jr€~;;.1!n/N)x(N-l)]T), and E~:~b 1s 

obtained from (25), P~:~b 6 diag([ej0~~1,Jn(o),ejo~;;.1,Jn(1 ), ... ,ej0~;;.1,ln (N-l)]T), and Bk:~~ 6 

[B~:~b(o) ,B~:~b(l) , ... , e~:~b(N - l)]r are obtained from (20). 

Using (20), (25), (27) and reapplying the above algorithm, form = {1, ... , M}, estimates 

channel gains, multiple PHN, and CFO parameters for all the relays can be obtained at the 

destination. The iterations stop when the difference between LLFs of two iterations is smaller 

than a threshold (, i.e. 

ll
r - ~ Eli+iJ p [i+iJ r h_[i+iJ 112 - llr - ~ E[iJ p[iJ r h_[iJ 112 ~ (. (28) D R m,D Rm,D m R m,D D Rm,D Rm,D m Rm,D 

m=l m=l 

C. Initialization and Convergence 

Th . . .. l' . f CFO d CIR . A[OJ [A[OJ A[OJ A[OJ ]T d e appropriate m1tia 1zation o s an s, i.e., ER D = ER D' ER D' ... , ER D an , L 2 , M , 

A [OJ A [OJ A [OJ A [OJ T . . 
hR D = [hR D' hR D' ... , hR d can help the proposed estimator to obtam the CIRs, PHNs, ) 1, 2 , Af, 

and CFOs parameters in a few iterations. The initialization process can be summarized as follows: 

• The initial channel estimate, h~~D· is obtained by h~~D = (wH[OJqJ[OJ)-lqJH[OJ r. Here, w lOJ L 

[,r,[OJ ,r,[OJ ,r,[OJ] ,r,[OJ ~ EA [OJ FHD F d EA [OJ - EA [ 
'I" 1 ' 'I" 2 ' ... ' 'I" M , 'I" m - Rm D m Lan R D - Rm ,D A - A[O) -0. 

' m , €Rm ,D~€Rm,D~ 

• The initial CFO estimate of mth relay is obtained by applying an exhaustive search for 

the value of ERm,D that maximizes the function, q;;;r m(r~r m)-1 r~qm. Here, rm L 

ERm DFHDmFL, and 4m 6 r - "o/=1 ER1 DFHDmFLhR1 D with keeping the remaining 
' ~Cfm ' ' 

parameters, i.e., EJ4,D and h.Ri,D for f,-!=- m on the most recently updated values. Note that 

this exhaustive search needs to be only carried out at the system start up to initialize the 

estimation process. Simulations in Section VII indicate that an exhaustive search with a 

coarse step size of 10-2 is sufficient for the initialization of the proposed estimator. This 

coarse step size significantly reduces the overall complexity. 

U . A[OJ f 1 M h . . . 1 h 1 . • smg ERm,D or m = , ... , , t e m1tia c anne estimate, h_[oJ is obtained by h_[oJ = 
R,D• R,D 

(wH[0Jw[0J)-1wH[oJr. Here, E [oJ =ER DI A A[oJ . 
Rm,D m , ERm ,D=ERm ,D 
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Simulation results in Section VI show that at SNR of 20 dB or higher the proposed ECM-based 

estimator always converges to the true estimates in only 2 iterations. 

Remark 1: The convergence of proposed ECM algorithm to the global solution cannot be 

analytically shown [38]. However, in general, the ECM algorithm monotonically increase the LLF 

at every iteration and converge to a local maximum. Moreover, estimated parameters converge 

monotonically to the global solution, if the algorithm is initialized in a region suitably close to 

the global solution [38]. Based on the equivalent system model in (1) and the simulation results 

in Section VII, it can be concluded that the proposed ECM algorithm converges globally when 

the PHN vector OR,D is initialized as o~:D = [ON-l xl , ON-l xl, ... 'ON-lxllr. Note that the 
~~ ~ 

m=l 2 M 
initialization of PHN with zero vector seems to be the best choice because from initial training, 

the phase of the estimated channels incorporates the phase introduced from PHN. 

V. JOINT DATA DETECTION AND PHN MITIGATION 

In order to decode the received signal at IIJJ in the presence of PHN s and CF Os, an iterative 

detector based EKF for multi-relay cooperative systems is proposed. 

At first, using the estimates of CIRs and CFOs, :fiR,D, ER,D, the received signal, r in (2), passes 

through an iterative algorithm of data detection and PHN mitigation. We propose to use an EKF 

to track the PHN samples, B Rm,D' over the data symbols. The PHN estimation is similar to that in 

(16)-(21) and is not presented here to avoid repetition. However, instead of training-based PHN 

tracking, the process of PHN estimation is followed in decision-directed fashion for the received 

data symbols. In other words, the estimate of the data symbol in the previous iteration, d.~-1 1, 

is used to update the symbol's PHN estimate at the current iteration O~m ,D· Particularly, s~ in 

(15), is calculated as s~ = FHD~FL:fiRm,D ' where :fiRm,D is the CIR vector estimate obtained 

from the ECM estimator during the training interval, and D~ 6 Amdiag(d[il). Next, the data 

vector estimate is updated for the ith iteration. Following [29] and based on the received signal 

in (2), the negative LLF for the received signal, r, can be written as 
M 

logp(r,d , BR,D) = C + 2~;, II r ~ ~ ERm,DPRm,DYmd 11
2 + 2~d II d 11

2 + logp(BR,D), (29) 

where Y m 6 FHHRm,DAm is an N x N matrix, H Rm ,D 6 diag(FL:fiRm ,D) is an N x N matrix of 

estimated channel frequency response, ERm,D 6 diag([eU27rERm.n/N)xo, ... , eU27rERm.n/N)x(N-1)]T) 

is the N x N estimated CFO matrix of mth relay, PRm,D 6 diag([ejORm,n(O), ... , ejORm ,n(N-l)]T) 
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ˆ̄d ˆ̄d ˆ̄dis the N × N estimated PHN matrix, , [ (0), · · · , (N − 1)]T is the N × N estimate vector of the 

modulated data vector, and ξd is the average transmitted symbol power and normalized to 1.

Taking the derivative of (29) with respect to d̄ and equating the result to zero, the estimate of
ˆ̄d at the ith iteration, ˆ̄d[i] is given by

ˆ̄d[i] =

(
Ω̂
H[i]

Ω̂
[i]

+
σ2
w

ξd
IN
)−1

Ω̂
H[i]

r, (30)

where Ω̂
[i]
,
∑M

m=1 ÊRm,DP̂
[i]
Rm,D

Υ̂m , P̂
[i]
Rm,D

, diag([ejθ̂
[i]
Rm,D

(0), ejθ̂
[i]
Rm,D

(1), . . . , ejθ̂
[i]
Rm,D

(N−1)]T ),

and θ̂
[i]

Rm,D , [θ̂
[i]
Rm,D

(0), θ̂
[i]
Rm,D

(1), . . . , θ̂
[i]
Rm,D

(N − 1)]T are obtained via the EKF based estimator.

Using the EKF set of equations (16)-(21) and (30), the proposed algorithm iteratively updates

the PHN and data estimates, respectively, and stops when the difference between likelihood

functions of two iterations is smaller than a threshold ζ , i.e.,∣∣∣∣∣
∥∥∥∥∥r−

M∑
m=1

ÊRm,DP̂
[i+1]
Rm,D

Υ̂m
ˆ̄d[i+1]

∥∥∥∥∥
2

−
N−1∑
n=0

∥∥∥∥∥r−
M∑
m=1

ÊRm,DP̂
[i]
Rm,D

Υ̂m
ˆ̄d[i]

∥∥∥∥∥
2 ∣∣∣∣∣ ≤ ζ. (31)

Let ˆ̄d[0] denote the initial estimate of the transmitted data vector. Appropriate initializa-

tion of ˆ̄d[0] results in the proposed iterative detector to converge quickly. In our algorithm,

the initial data estimate is obtained using ˆ̄d[0] = (Ω̂
H[j−1]

Ω̂
[j−1]

+ σ2
w

ξd
IN)−1Ω̂

H[j−1]
r, where

Ω̂
[j−1]

,
∑M

m=1 ÊRm,DP̂
[j−1]
Rm,D

Υ̂m, and P̂
[j−1]
R,D is the PHN matrix estimate obtained from the

previous OFDM symbol. Simulation results in Section VII indicate that at SNR= 20 dB the 

proposed detector, on average, converges after 2 iterations. The overall estimation and detection 

algorithm is summarized in Algorithm 1 on the next page.

It is worth mentioning that the proposed estimation and detection algorithms in this paper can 

be extended to a more complicated system setup such as multi-user MIMO-OFDM systems. If we 

assume that multiple antenna at each user are fed by a single oscillator, as generally considered 

in MIMO setup [8–10, 27], the received signal at the BS, during uplink transmission, is affected 

by multiple PHN and CFO parameters. Therefore, the proposed algorithm in our paper can be 

easily modified and applied to a multi-user MIMO-OFDM setup, where BS can estimate multiple 

CFO and PHN parameters by employing our estimation and detection algorithms.

kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at IEEE Transactions on Communications, published by IEEE. Copyright restrictions may apply. doi: 10.1109/TCOMM.2016.2622704



This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at IEEE 
Transactions on Communications, published by IEEE. Copyright restrictions may apply. doi: 10.1109/TCOMM.2016.2622704 

Algorithm 1 PROPOSED ESTIMATION AND DETECTION ALGORITHMS 

ESTIMATION 

e~~,v(llO) = 0 and M[~,.JJ (110) = O"~Rm,D and obtain E~:D and h~:D using an exhaustive 

search with coarse step size i.e., 10-2 

while llr - M E[i+l] p[i+l] h[i+l] 112 - llr - ""M E[i] p[i] h[i] 112 
l::m=l R m,D Rm,Dr m R m,D L...,m=l Rm,D Rm,Dr m R m ,D ~ (do 

form= 1, ... , M do 

(17) - (21) 

end for 

for n = 0, 1, ... , N - 1 do 
{ 

[i] A[i+ l] j27r€[i] } 
A[i+l] _ A[i] JY y'}f~d n 8' (iJm(n))*Sm (n)e Rm,Dn/ N 

ERm.D - ERm,D - 21f { ['] A['+ l] j2rr €[i] } 

end for 
y:k'~d n2lJi (iJ,;.(n) )•S,;. (n)e Rm ,Dn/N 

end for 

end while 

DATA DETECTION 

for j = 1, ... , J do 
:0. [OJ A H[j-1] A [j-1] a:2 A H[j-1] :0. [OJ 

Obtain d = (0 0 + E; IN )-10 r , and Replace d by its hard decision. 

while llr - 'L;M= 1 ER~,Dp~~~b Y mdY+1l ll
2 

- 'L;tf~J llr - 'L;M= 1 ER"' ,Dp~l"',D Y md[i] 11
2 

I ~ (do 

form= 1, ... , M do 

yJQ = r - 2::~1 ER vP[i] T md[i] 
£f m £, Re ,D 

Using the EKF set of equation in Section IV to estimate the PHN parameters, 

end for 

d.li+1l = ( oH[iJO[iJ + ~! IN )-
1 

OH[iJr, and Replace dli+l] by its hard decision. 

J[i] = J[i+l] 

end while 

end for 

17 

kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at IEEE Transactions on Communications, published by IEEE. Copyright restrictions may apply. doi: 10.1109/TCOMM.2016.2622704



18

VI. COMPLEXITY ANALYSIS

In this subsection, the computational complexities of the proposed ECM algorithm and iterative

receiver for data detection in multi-relay cooperative systems are analyzed. Throughout this

section, computational complexity is defined as the number of complex additions plus number

of multiplications [5]. Let us denote the computational complexity, from S → R → D, of the

ECM algorithm by CEST = C
[M ]
EST︸︷︷︸

S→R

+C
[A]
EST︸︷︷︸

S→R

+C
[M ]
EST︸︷︷︸

R→D

+C
[A]
EST︸︷︷︸

R→D

. The notations C [M ]
EST and C

[A]
EST are used

to denote the number of complex multiplications and additions, respectively. Since the link from

S→ Rm is similar to a SISO system, then by following [35, eqs. (28), (29)], the C [M ]
EST︸︷︷︸

S→R

and C [A]
EST︸︷︷︸

S→R
of the ECM estimator from S→ R, are determined, respectively, and not presented here to avoid

repetition. The C [M ]
EST︸︷︷︸

R→D

and C [A]
EST︸︷︷︸

R→D

from R→ D, are determined as

C
[M ]
EST︸︷︷︸

R→D

= M

[
(M − 1)

[
N2(3N + L) +NL

]︸ ︷︷ ︸
(11)

+
[
N︸︷︷︸
(16)

+ 5N︸︷︷︸
(19)

+ 2N︸︷︷︸
(20)

+ 2N︸︷︷︸
(21)

+ 7N︸︷︷︸
(25)

+LN(2N + 1)︸ ︷︷ ︸
(27)

+N(N2 + L(N + 1))︸ ︷︷ ︸
smin(15)

]
tECM + (M − 1)

[
N(N2 + L(N + 1))

]︸ ︷︷ ︸
q̂m,r̄−

∑M
`=1
`6=m

ÊRl,DFHD̄mFLĥRl,D

+M2L2(ML+N2 +N) +MLN︸ ︷︷ ︸
ĥ
[0]
R,D=(ΨH[0]Ψ[0])−1ΨH[0]r

+
[
L3 + L2(N + 1) +N(2L+ 1)︸ ︷︷ ︸

qHmΓm(ΓHmΓm)−1ΓHmqm

+ N(2N + L)︸ ︷︷ ︸
Γm,ÊRm,DFHD̄mFL

]
tinitialize

]
. (32)

C
[A]
EST︸︷︷︸

R→D

= M

[
(M − 1)

[
N(N − 1)(3N + L) +N(L− 1) +N

]︸ ︷︷ ︸
(11)

+
[
N︸︷︷︸

(18)

+ N︸︷︷︸
(19)

+ 2N︸︷︷︸
(20)

+ N︸︷︷︸
(21)

+ 2N + 1︸ ︷︷ ︸
(25)

+ L(N − 1)(2N + 1)︸ ︷︷ ︸
(27)

+N(N − 1)(L+ 1) +N(L− 1)︸ ︷︷ ︸
smin(15)

]
tECM + (M − 1)

[
N(N − 1)(L+ 2N) +NL)

]︸ ︷︷ ︸
q̂m,r̄−

∑M
`=1
`6=m

ÊRl,D
FHD̄mFLĥRl,D

+M3L3 +ML(N − 1)(ML+ 1) +MNL(ML− 1)︸ ︷︷ ︸
ĥ

[0]
R,D=(ΨH[0]Ψ[0])−1ΨH[0]r

+
[
L3 + (N − 1)(L2 + L+ 1) + (L− 1)(N + L)︸ ︷︷ ︸

qH
mΓm(ΓH

mΓm)−1ΓH
mqm

+N(N − 1)(L+ 2) +N(L− 1)︸ ︷︷ ︸
Γm,ÊRm,DFHD̄mFL

]
tinitialize

]
. (33)

where tECM is the number of iterations required by the ECM algorithm and tinitialize is the number

of iterations need for coarse estimation step to obtain the initial estimates of the CFOs. Similarly,

the computational complexity of the proposed EKF based data detection algorithm is denoted
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by CDET = C
[M ]
DET︸︷︷︸

S→R

+C
[A]
DET︸︷︷︸

S→R

+C
[M ]
DET︸︷︷︸

R→D

+C
[A]
DET︸︷︷︸

R→D

, where C [M ]
DET and C

[A]
DET denote the number of complex

multiplications and additions used by the detector. Following [35, eqs.(30), (31)], C [M ]
DET︸︷︷︸

S→R

and C [A]
DET︸︷︷︸

S→R
are determined and not presented here to avoid repetition. C [M ]

DET︸︷︷︸
R→D

and C [A]
DET︸︷︷︸

R→D

are determined as

C
[M ]
DET︸︷︷︸

R→D

= M

[
(M − 1)

[
N2(3N + L) +NL

]︸ ︷︷ ︸
(11)

+
[
N︸︷︷︸
(16)

+ 5N︸︷︷︸
(19)

+ 2N︸︷︷︸
(20)

+ 2N︸︷︷︸
(21)

+N(N2 + (2L− 1)(N + 1))︸ ︷︷ ︸
smin(15)

+N2(3N + 1) +N︸ ︷︷ ︸
(30)

+ 4N3︸︷︷︸
Ω̂

[i]
=
∑M
m=1 ÊRm,DP̂

[i]
Rm,D

Υ̂m

+ N(2L− 1)︸ ︷︷ ︸
Υ̂m=FHĤRm,DΛm

]
tDET

]
+ 4N3 +N2(3N + 1) +N︸ ︷︷ ︸

ˆ̄d[0]=(Ω̂
H[j−1]

Ω̂
[j−1]

+
σ2w
ξd

IN )−1Ω̂
H[j−1]

r̄

, (34)

C
[A]
DET︸︷︷︸

R→D

= M

[
(M − 1)

[
N(N − 1)(3N + L) +N(L− 1) +N

]︸ ︷︷ ︸
(11)

+
[
N︸︷︷︸
(18)

+ N︸︷︷︸
(19)

+ 2N︸︷︷︸
(20)

+ N︸︷︷︸
(21)

+N(N − 1)(L+ 1) +N(L− 1)︸ ︷︷ ︸
smin(15)

+ (N − 1)(N2 +N)︸ ︷︷ ︸
(30)

+ 4N2(N − 1)︸ ︷︷ ︸
Ω̂

[i]
=
∑M
m=1 ÊRm,DP̂

[i]
Rm,D

Υ̂m

+ N(L− 1)︸ ︷︷ ︸
Υ̂m=FHĤRm,DΛm

]
tDET

]
+ 4N2(N − 1) + (N − 1)(2N2 +N)︸ ︷︷ ︸

ˆ̄d[0]=(Ω̂
H[j−1]

Ω̂
[j−1]

+
σ2w
ξd

IN )−1Ω̂
H[j−1]

r̄

. (35)

where tDET is the number of iterations required by the proposed data detection algorithm. It
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Fig. 3: Average number of iterations and the computational complexity of proposed algorithms with the comparison

with the approach in [5] for phase noise variance σ2
δ = [10−4, 10−5] rad2, L = 4, M = 2 relays, and 16-QAM

modulation.

can be observed from the results in Fig. 3-(a) that: (i) at low SNR, i.e., SNR < 20 dB, on

average, the proposed detector converges after tDET more than 2 iterations, (ii) the number of
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iterations decreases to tECM = tDET = 2 at SNR ≥ 20 dB, and (iv) the proposed ECM algorithm

converges to the true estimates when the CFO estimates are initialized with a step size of 10−2,

i.e., tinitialize = 102. Using these values for the number of iterations, we get the computational

complexity of the proposed algorithms for multi-relay networks with M = 2 relays as shown in

Fig. 3-(b). The results in Fig. 3-(b) show that (i) at low SNR, i.e., SNR < 20 dB, the computational

complexity of the proposed algorithms dependent on the variance of the PHN process, since at low

SNR the performance of the performance of the proposed estimator and detector is dominated by

AWGN and PHN variance, while at moderate-to-high SNR, i.e., SNR > 20 dB the performance

of the system is limited by residual PHN and CFO, (ii) at moderate-to-high SNR compared to low

SNR, the proposed estimation and data detection algorithms are computationally more efficient.

These results are anticipated, since the proposed estimation and data detection algorithms require

few iterations at moderate-to-high SNRs as shown in Fig. 3-(a). In Fig. 3-(c), we compare the

proposed algorithms with the one in [5]. It is worth noting in [5] performs the estimation and

detection using a single relay. Hence, for fairness, we compare the estimation and detection by

using a single relay, i.e., M = 1, and the that of [5]. We observe from Fig. 3-(c) that for different

SNRs, the computational complexity of the proposed algorithms outperforms [5], which maybe

of practical interest for multi-relay applications with stringent performance requirements.

VII. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present simulation results to evaluate the performance of the proposed

estimation and data detection algorithms. A multipath Rayleigh fading channel with a delay of

L = 4 taps and an exponentially decaying power delay profile is assumed between each pair of

nodes. A training symbol size of N = 64 subcarriers is used, where each subcarrier is modulated

using quadrature phase-shift keying (QPSK) scheme. The Wiener PHN is generated in each node

with different PHN variances, e.g. σ2
δ = [10−4, 10−5]rad2. Note that, σ2

δ = 10−4 rad2, corresponds

to a high phase noise variance [22]. Since carrier frequency offsets from source to relays, εS,Rm ,

are carried over to the destination, εS,Rm and εRm,D have the range (-0.25,0.25) in order to limit

the total frequency offset from source to destination, εS,D to the range (-0.5, 0.5). The data

symbols are drawn from normalized 4, 16, or 64 quadrature amplitude modulation (QAM). The

simulation results are averaged over 1 × 105 Monte Carlo simulation runs. Finally, the mean-
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Fig. 4: MSE of CIRs, PHNs, and CFOs estimation for the proposed estimator compared to HCRB for phase noise

variance σ2
δ = [10−4, 10−5] rad2 with M=2.

square error (MSE) performance of ECM estimator and the bit error rate (BER) performance

of the overall multi-relay network.

A. Estimation Performance

In this subsection, we compare the performance of the proposed ECM estimator with the

HCRB in Theorem 1 and the estimation approach based on MMSE-optimal training sequences

in [7]. Figs. 4 plot the HCRB and MSE for estimating the CIR, PHN, and CFO, respectively,

using the proposed algorithm. The results lead to the following observations:

1) The HCRB and the proposed estimators MSE are dependent on the variance of the PHN

process and are lower for a lower PHN variance;

2) The results in Fig. 4 show that CIRs, CFOs and PHNs estimation performances suffer from

an error floor, which is directly related to the variance of the PHN process. This follows from

the fact that at low SNR the performance of the system is dominated by AWGN, while at high

SNR the performance of the proposed estimator is limited by PHN and the resulting ICI;

3) Fig. 4-(a) shows at different SNRs, the proposed estimator significantly outperforms the

estimator in [7]. This result is anticipated, since the orthogonality of the training sequences

proposed in [7] could not be achieved in the presence of PHN and CFO. Therefore, the estimation

approach in [7] may not be used in the presence of PHN and CFO;

4) The results in Fig. 4 show that the MSEs of the proposed estimator are close to their HCRLBs

at moderate-to-high SNRs.
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Note that since the PHN vector is initialized with zeros, the MSE of phase noise estimation

of first sample represents the MSE of channel phase estimation.

B. Impact of PHN on the cooperative performance

In the following, we examine the combined estimation and data detection performance in terms

of the BER. The following system setups are considered for comparison:

(i) Cooperative systems that applied the proposed estimation and data detection algorithms

(labelled as “Proposed Est. and Data Det.”).

(ii) The data detection based on pilots in [5, 22] (labelled as “Data Det. based Pilots [5,22]”).

(iii) As a lower-bound on the BER performance, a system assuming perfect channels, PHNs, and

CFOs estimation (labelled “Perf. CIRs, PHNs & CFOs est.”).

Note that the BER performance of proposed algorithm is compared with that one in [5] and 

[22] since the detection approach based on pilots in [5] and [22] could be used to mitigate the 

PHNs by estimating the CPE which is similar to all subcarriers. Moreover, no BER compersion 

with other basic relevant works is presented in the paper since the system model in our paper 

considers multiple PHN and CFO parameters estimation and the existing system models only 

consider a single PHN and CFO parameter estimation.
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Fig. 5: BER performance for PHN variance, σ2
δ = [10−4, 10−5] rad2 and 16-QAM modulation with M=2.

Fig. 5 shows the BER performance with M = 2 for PHN variance, σ2
δ = [10−4, 10−5] rad2

and 16-QAM modulation. The following observations can be made from Fig. 5:
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1) The BER performance using the proposed algorithm significantly outperforms the existing 

data detection based on pilots in [5, 22] at different SNRs. This result is anticipated, since 

the detection method in [5, 22] depends on the pilots, which are effected by the ICI and the 

interference signals between the antennas. Therefore, the detection approach in [5 , 22] maybe 

only used for cooperative systems with a single relay as in [5] or for multi-relay systems based 

on TDMA transmission as in [22]. Thus, the pilot approach for data detection in [5, 22] may 

not be used for the joint estimation and data detection for multi-relay systems based on SDMA 

transmission. 

2) Compared to an ideal case of perfect CIR, PHN and CFO estimation, the BER performance 

using the proposed algorithms is close to ideal case of perfect CIR, PHN and CFO estimation 

when (jl = 10-5 rad2
• However, at high PHN variance, i.e., (jl = 10-4 rad2

, the BER performance 

suffer from an error floor at high SNR. This result is anticipated, since at high PHN variance, the 

performance of a cooperative OFDM system is dominated by PHN, which cannot be completely 

eliminated. 

C. Impact of increase number relays on cooperative performance 

In this subsection, we examine the performance of the proposed algorithms compared to "Perf. 

CIRs, PHN s & CF Os est." performance with the increase of number of relays and subcarriers in 

the multi-relay network. Moreover, we compare the performance of multi-relay systems with a 

single relay equipped with mutiple antennas (N R). 

Figs. 6, 7, 8, and 9 respectively show (i) the BER performance at different number of relays, 

M = [1, 2, 4], (ii) the BER performance of the multi-relay systems and a single relay equipped 

with multiple antennas (NR), (iii) different number of relays, M = [1, 2, 4, 6], and SNR = 35 

dB, and (iv) different number of subcarriers, N = [64, 128, 256], and SNR = 35 dB, for PHN 

variance, (jl = [10-4
, 10-5 ] rad2 and 16-QAM modulation. The following observations can be 

made from Figs. 6, 7, 8, and 9: 

1) The results in Figs. 6 and 8 show that at low PHN variance, i.e., (jl = 10-5rad2 , the multi­

relay systems using the combination of the proposed estimation and data detection algorithms 

outperforms a single relay system. More importantly, the BER performance improves as the 

number of relays increases. For instance, at BER= 10-2
, the SNR gain for the multirelay systems is 

almost 3 dB compared to the performance of a single relay system. In addition, 
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the performance of multi-relay 1s closer to the ideal case of perfect CIRs, PHNs, and CFOs 

estimation. For example, in Fig. 6, a performance gap of 1.6 dB at BER= 10-2 . 

2) In Fig. 6, at high PHN variance, i.e., at = 10- 4 rad2
, the BER performance degrades with 

increase of number of relays. This result is anticipated, since at high PHN variance, the proposed 

ECM estimator demonstrate poor performance due to the considerable residual PHN and CFO 

estimation error from source to relays, which is forwarded to the destination. Therefore, in the 

presence of high PHN variance, the cooperative system can achieve significant BER performance 

by combining the proposed estimation and data detection algorithms and using few relays. 
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However, this approach maintains higher BER performance at the expense of a loss in the range 

of network links which could be enhanced by using multi-relay to overcome the blockage issues 

in some communication systems such as mmW systems [42]. Therefore, in the presence of PHN 

and CFO, the increasing of number of relays could enhance the network range at the expense of 

degradation in the BER performance. 

3) The results in Fig. 7 show that a single relay with multiple antennas has better BER perfor­

mance than that of the multi-relay systems for different values of considered PHN variances. 

However, the deployment of multi-relay system, as proposed in this paper, particularly has very 

important advantages. For example, consider a scenario, if a relay becomes in-active or gets badly 

blocked due to some reason, the presence of other relays can still make a link to the receiver. 

This is specifically very important in mmW systems to overcome high blockage issues. Thus, 

our proposal of estimation and detection algorithms for multi-relay system is highly relevant and 

important. 

4) The results in Fig. 8 show that at moderate PHN variance, i.e., O"~ = 10- 5 rad2
, a multi-relay 

system has better BER performance than a single relay system. As per expectation from general 

multi-relay system which assumes perfect CFO, PHN, and CHN estimation, the diversity gain is 

achieved by adding relays. Our particular contribution is that even in the presence of multiple 

impairments and moderate PHN variance (10- 5 rad2
), the application of our proposed estimation 

and detection algorithms succeed to achieve the diversity gain. However, at high PHN variance, 

i.e., O"l = 10-4 rad2
, the BER performance deteriorates as we increase the number of relays. 

This implies that presence of strong phase noise hinders the achievement of multi-relay diversity 

gain. This result leads to a very important research opening as millimeter wave communication 

technology in 50 expects strong phase noise due to high frequency transmission. Our findings 

show that millimeter wave communication cannot easily enjoy the multi-relay diversity gam 

unless very sophisticated phase noise estimation and tracking algorithm is employed. 

5) Fig. 9 shows that BER performance deteriorates by increasing the number of subcarriers due 

to decrease in the effective subcarrier spacing. 

D. Impact of modulation on cooperative pelformance 

Fig. 10 evaluates the BER performance of the multi-relay system at differnt modulations, i.e., 

4-QAM, 16-QAM and 64-QAM. The following observations can be made from Fig. 10: 
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Fig. 10: BER performance for a multi-relay system at different modulations, 4-QAM, 16-QAM, and 64-QAM, PHN 

variance, a~ = [10-4 , 10-5] rad2 and M=2. 

1) Even for denser constellation, i.e., 64-QAM, the proposed estimation and data detection 

algorithms achieve BER performance that is closer to the ideal case of perfect CIRs, PHN s, 

and CFOs estimation. For example, as shown in Fig. 10, at BER of 10- 2 and a PHN variance 

of 10-5 rad2 and 64-QAM, the performance of multi-relay system is close with 2.5 dB to the 

ideal case of perfect CIRs, PHNs, and CFOs estimation. 

2) The results in Fig. 10 show that for 64-QAM modulation and the presence of strong PHN 

variance of 10-4 rad2
, the overall BER performance of a multi-relay system suffers from an 

error floor which is higher than 10- 2 at high SNRs. This is because the subcarriers in 64-QAM 

become closely spaced and more sensitive to the noise caused by the channel and the ICI from 

the residual PHN and CFO, even at high SNRs. Meanwhile, at high PHN, i.e., az = 10- 4 , the 

application of 16-QAM modulation still yield high BER since the BER is affected by the ICI 

from the residual PHN and CFO which cannot be completely eliminated. 

3) The proposed algorithm achieves an overall BER performance lower than 10-2 at SNR > 20 

dB if the modulation order is reduced to 4-QAM. This is anticipated since 4-QAM has lower 

sensitivity to the noise caused by the channel and ICI. 

VIII. CONCL USION 

In this paper, we address the joint estimation of unknown multiple channel, phase noise (PHN), 

and carrier frequency offset (CFO) parameters for DP-relaying cooperative OFDM systems. A 
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new iterative estimator is proposed and found to be computationally efficient s ince i t estimate 

the desired parameters in few iterations. Simulation results show that the performance of the 

proposed estimator is close to the derived HCRB at differnt signal-to-noise ratios (SNRs). Next, 

an iterative algorithm for joint data detection and PHN mitigation is proposed for the OFDM data 

symbols. The proposed algorithm employs an EKF based approach to track the time-varying PHN 

parameters throughout the OFDM data symbols. Numerical results show that the combination 

of proposed ECM based estimator and the iterative data detection algorithm can enhances the 

performance of cooperative systems to be closer to the ideal case of perfect CIRs, PHNs and 

CFOs estimation in terms of BER. The performance analysis for the multi-relay OFDM system in 

the presence of multiple PHN, CFO and channel estimation is an open future research problem. 

APPENDIX A

DERIVATION OF THE HCRB

The hybrid information matrix B can be written as [36, pp. 1-85]

B = ΞD + ΞP , (A.1)

where ΞD , Eθ [Ψ(θR,D,<{hR,D},={hR,D}, εR,D)] with Ψ(θR,D,<{hR,D},={hR,D}, εR,D) ,

Er|θR,D,<{hR,D},={hR,D},εR,D
[
−∆λ

λ log p(r|θR,D,<{hR,D}, ={hR,D}, εR,D)|,<{hR,D},={hR,D}, εR,D
]

denoting the Fisher’s information matrix (FIM) and ΞP , EθR,D|,<{hR,D},={hR,D},εR,D
[
−∆λ

λ log

p(θR,D|,<{hR,D},={hR,D}, εR,D)|, εR,D
]

is the prior information matrix with p(θR,D|hR,D, εR,D)

denoting the prior distribution of PHN vector given the CIR and CFO. Thus, we first obtain

expressions for matrices ΞD and ΞP .

A. Computation of ΞD , Eθ [Ψ(θR,D,<{hR,D},={hR,D}, εR,D)]

To compute FIM, first, the likelihood function p(r|θR,D,<{hR,D},={hR,D}, εR,D) is given by

p(r|θR,D,<{hR,D},={hR,D}, εR,D) = C exp
[
−1

σ2
w

(r− µ)H(r− µ)

]
, (A.2)

where C , (πσ2
w)−N . Given θR,D, hR,D, and εR,D, r is a complex Gaussian vector with

mean vector µ =
∑M

m=1 ERm,DPRm,DFHDmFLhRm,D and covariance matrix σ2
wIN . The FIM,

Ψ(θR,D,<{hR,D},={hR,D}, εR,D), will be M(N+2L)×M(N+2L) matrix for joint estimation

of M(N − 1) PHNs parameters θR,D, 2ML channels parameters <{hR,D} and ={hR,D} and M

CFOs parameters εR,D. Using (A.2), the (i, j)th entry of Ψ can be written as [41]

[Ψ]i,j =
2

σ2
w

<
{
∂µH

∂λi

∂µ

∂λj

}
, (A.3)

kimberlyholling
Text Box
This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at IEEE Transactions on Communications, published by IEEE. Copyright restrictions may apply. doi: 10.1109/TCOMM.2016.2622704



28

where

∂µH

∂λi
=



[
Φ̃1, . . . , Φ̃M

]H
, is an MN ×N matrix, (λi = θR,D)[

γ̃1, . . . , γ̃M
]H
, is an ML×N matrix, (λi = <{hR,D})

j
[
γ̃1, . . . , γ̃M

]H
, is an ML×N matrix, (λi = ={hR,D})[

β̃1, . . . , β̃M
]H
, is an M ×N matrix, (λi = εR,D)

(A.4)

Φ̃m = diag(ERmDFHDmFLhRmD)ai, γ̃m = ERmDPRmDFHDmFLel, β̃m = ÉRmDPRmDFHDmFLhRmD,

ai = [0, 01×i−1, je
jθR,Di , 01×N−i]

T for i = 1, . . . , N−1, el = [01×l−1, 1, 01×L−1]T for l = 1, . . . , L,

ÉRmD , diag([0, j2π
N
e(j2πεRmD/N), . . . , j2π(N−1)

N
e(j2πεRmD/N)×(N−1)]T ), and m = 1, . . . ,M .

Substituting (A.4) into (A.5), and calculating the explicit expectation over θR,D, the matrix

ΞD is obtained as

ΞD =
2

σ2
w

<




Q̄H

1 Q̄1 −jQ̄H
1 Q̄2 Q̄H

1 Q̄2 Q̄H
1 Q̄3

jQ̄H
2 Q̄1 QH

2 Q2 jQH
2 Q2 jQH

2 Q3

Q̄H
2 Q̄1 −jQH

2 Q2 QH
2 Q2 QH

2 q5

Q̄H
3 Q̄1 −jQ̄H

3 Q2 QH
3 Q2 QH

3 Q3




, (A.5)

where Q̄1 =
[
Φ̄1, . . . , Φ̄M

]
, Φ̄m = Φm(2 : N, 2 : N), Φm = jdiag(ERmDFHDmFLhRmD),

Q2 =
[
γ1, . . . ,γM

]
, γm = ERmDFHDmFL, Q̄2 =

[
γ̄1, . . . , γ̄M

]
, γ̄m = γm(2 : N, 1 : L),

Q5 =
[
β1, . . . ,βM

]
, βm = ÉRmDFHDmFLhRmD, Q̄5 =

[
β̄1, . . . , β̄M

]
, β̄m = βm(2 : N),

ÉRmD , diag([0, j2π
N
e(j2πεRmD/N), . . . , j2π(N−1)

N
e(j2πεRmD/N)×(N−1)]T ), and m = 1, . . . ,M .

B. Computation of ΞP , Eθ|h,ε
[
−∆λ

λ log p(θ|h, ε)|h, ε
]

The second factor in HIM, defined in (A.1), can be written as:

ΞP = Eθ|h,ε
[
−∆λ

λ log p(θ|h, ε)|ε
]
,


ΞP11 ΞP12 ΞP13 ξP14

ΞP21 ΞP22 ΞP23 ξP24

ΞP31
ΞP32

ΞP33
ξP34

ξP41
ξP42

ξP43
ξP44



=



Eθ

[
−∆θ

θ log p(θ)
]

Eθ

[
−∆

<{h}
θ log p(θ)

]
Eθ

[
−∆

={h}
θ log p(θ)

]
Eθ [−∆ε

θ log p(θ)]

Eθ

[
−∆θ

<{h} log p(θ)
]

Eθ

[
−∆

<{h}
<{h} log p(θ)

]
Eθ

[
−∆

={h}
<{h} log p(θ)

]
Eθ

[
−∆ε

<{h} log p(θ)
]

Eθ

[
−∆θ

={h} log p(θ)
]

Eθ

[
−∆

<{h}
={h} log p(θ)

]
Eθ

[
−∆

={h}
={h} log p(θ)

]
Eθ

[
−∆ε

={h} log p(θ)
]

Eθ

[
−∆θ

ε log p(θ)
]

Eθ

[
−∆

<{h}
ε log p(θ)

]
Eθ

[
−∆

={h}
ε log p(θ)

]
Eθ [−∆ε

ε log p(θ)]


,

(A.6)

where p(θ) is the prior distribution of θ.
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1) Computation of ΞP11 , Eθ

[
−∆θ

θ log p(θ)
]
: From [43, eq.(19)], we obtain the M(N − 1) ×

M(N − 1) matrix Eθ

[
−∆θ

θ log p(θ)
]

as

ΞP11 =
−1

σ2
δ



−1 1 0 · · · 0

1 −2 1 0
...

0
. . . . . . . . . 0

... 0 1 −2 1

0 · · · 0 1 −1


. (A.7)

2) Computation of remaining terms in (A.6): Since CFO is a deterministic parameter and no prior

knowledge of h is assumed, we have ΞP12 = ΞT
P21

= 0M(N−1)×ML, ΞP13 = ΞT
P31

= 0M(N−1)×ML,

ΞP22 = ΞP33 = ΞP23 = ΞP32 = 0ML×ML, ΞP14 = ΞT
P14

= 0M(N−1)×1, ΞP23 = ΞT
P32

= 0ML×M ,

ΞP24 = ΞT
P42

= ΞP34 = ΞT
P43

= 0ML×M , and ΞP44 = 0M×M .

Using the above results, we can evaluate the HIM in (6), since B11 = ΞD11 + ΞP11 , B22 =

ΞD22 + ΞP22 = ΞD22 , B33 = ΞD33 + ΞP33 = ΞD33 , B44 = ΞD44 + ΞP44 = ΞD33 , B12 = BH
21 =

ΞD12 + ΞP12 = ΞD12 , B13 = BH
31 = ΞD13 + ΞP13 = ΞD13 , B23 = BH

32 = ΞD23 + ΞP23 = ΞD23 ,

B14 = BH
41 = ΞD14 + ΞP14 = ΞD14 , B24 = BH

24 = ΞD24 + ΞP24 = ΞD24 , and B34 = BH
43 =

ΞD34 + ΞP34 = ΞD34 .
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