


















and Bergman 1991; Heaman et al. 2004; Skinner and
Marsh 2004; Sparks et al. 2006; Wilson and Head
2007; Cas et al. 2008).
The lamprophyre breccia at WhiteMountain was

initially thought to be a CUC injectite (Malone et al.
2014a) until thin sections, heavy-mineral analysis,
and XRF data became available. The CUC injectites
are SiO2 poor (7%) andCaO rich (38%) andhave large

loss-on-ignition values (∼30%; seeCUC injectiteXRF
data in Craddock et al. 2012), whereas the lampro-
phyre breccia is SiO2 rich (46%) and CaO rich (24%)
and ultramafic in composition. The lamprophyre
breccia contains olivine (forsterite), Cr-diopside, chro-
mite, pyrope garnet, sphene, spinel, zircon, apatite, and
secondary aragonite and analcime. Heavy-mineral
separations yield significant amounts of pyrite, mag-
netite, ilmenite, and hematite, plus euhedral, weakly
zoned zircons. The lamprophyre breccia contains
euhedral, single-phase zircons, whereas many of the
zircons in the CUC are rounded and polished and
foundwith euhedral spinel. The breccia textures are
chaotic but weakly foliated, with mantled lapilli,
pyroxene with apatite needles, and rolled analcime
clasts with included Cr-diopside, sphene, and di-
amonds (fig. 5). The diamonds (30–50 mm in diam-
eter) are found in green clinopyroxenite and are pink
in color. Raman spectroscopy (fig. 6) identifies a
1301-nm diamond peak, confirmed by ion micro-
probe and in situ X-ray diffractometry (2v p 47.77
and 907).
Whole-rock compositional analyses yielded results

comparable to those for other North American lam-
prophyres (fig. 6; Cullers andMedaris 1977; Laughlin
et al. 1986; LeCheminant et al. 1987; Sage 1987;
Wyman and Kerrich 1989, 1993; Barrie and Shirey

Figure 6. A, Major-element oxides from the White
Mountain lamprophyre (diamonds) and published North
American lamprophyres (plus signs). North American lam-
prophyre data compiled from the GEOROC (GEOchemistry
of Rocks of the Oceans and Continents) database (Cullers
andMedaris 1977; Laughlin et al. 1986; LeCheminant et al.
1987; Sage 1987; Wyman and Kerrich 1989, 1993; Barrie
and Shirey 1991; Fitton et al. 1991; Wyman et al. 1995;
Hattori et al. 1996; Sevigny andThériault 2003;Tappe et al.
2004, 2008). B, Laser Raman spectroscopy of diamonds
present in figure 5.

Figure 7. Log Zr-versus-Nb (ppm) plot comparing the
White Mountain lamprophyre to alkaline igneous rocks
in Montana. The plot shows that the White Mountain
lamprophyre resembles a subtype of lamprophyre called
a minette. Diagram after Hearn (2004), with lamprophyre
and minette fields from Mitchell and Bergman (1991) and
kimberlite and orangeite fields from Mitchell (1995).
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1991; Fitton et al. 1991; Wyman et al. 1995; Hattori
et al. 1996; Sevigny and Thériault 2003; Tappe et al.
2004, 2008). With the exception of CaO, all other ma-
jor elements fit within the compositional ranges of
published North American lamprophyre data. The
high CaO values may be a result of a sampling bias,
with disproportionately high clinopyroxenewithin the
sample. Trace elements Zr and Nb show that the
rocks fromWhite Mountain are similar to minettes
(fig. 7), which are associated with arc magmatism
(Hearn 2004). Compositional and petrologic evidence
suggests that the rocks onWhiteMountain are likely
a diamond-bearing lamprophyre and that the rocks
likely originated from the subcontinental lithospheric
mantle.

Geochronology. Lamprophyre breccia–derived zir-
cons are euhedral, without older cores, and were
originally dated at 48.9 5 0.5 Ma, as part of sample
11WY-55 (White Mountain injectite, as reported by
Malone et al. 2014a), with LA-ICPMS techniques at
the University of Arizona Laserchron Center. Sam-
ple 11WY-55 included zircons separated from sev-
eral CUC injectites. As zircons for each individual
injectite dike were sparse, the data from the set of
dikes were compiled, and a resultant age was de-

termined. Sample 11WY-55 also contained zircons
separated from the lamprophyre diatreme. These same
zircon crystals were reoccupied with laser spot anal-
yses for a suite of trace elements including REEs, Y,
Ti, Nb, Ta, Hf, Th, and U. Figure 8 illustrates the
trace-element concentrations of lamprophyre breccia
zircons and Orapa kimberlite megacryst, superim-
posed on the compositions of a diverse suite of ig-
neous zircons fromBelousova et al. (2002). The trace-
element compositions of the Orapa kimberlite zircon
megacryst clearly overlap the distinctive fields of
kimberlite zircon geochemistry defined by Belou-
sova et al. (2002), typified by relatively high Hf con-
tents, low REE and U contents, low Nb/Ta, and the
lack of a Eu anomaly in the REE pattern. Compared
to kimberlitic zircons, the lamprophyre breccia zir-
cons span a larger range of correlated temperatures
and Eu anomalies, indicative of magmatic differen-
tiation in the presence of feldspar. The lamprophyre
breccia zircons are clearly distinct from kimberlite
zircon compositions, with higher REE contents, a mi-
nor negative Eu anomaly, and higher U contents and
Nb/Ta. The geochemical characteristics of the lam-
prophyre breccia zircons do, however, overlap the
compositions of lamproite zircon from Belousova

Figure 8. Trace-element geochemistry of lamprophyre breccia zircon crystals with respect to measurements of the
Orapa kimberlitic zircon megacryst, and the ranges of compositions for a diverse suite of igneous zircons from
Belousova et al. (2002). The compositions of the Orapa kimberlite and White Mountain lamprophyre zircons are
themselves distinct but overlap the fields of kimberlite and lamproite zircon, respectively, from Belousova et al.
(2002).
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et al. (2002), being less trace element enriched than
most granitoid zircons.
On the basis of cathodoluminescence imagery

andLA-ICPMS results, a selection offive grainswere
plucked from the epoxy mounts and analyzed via
CA-IDTIMS. All grains yielded concordant and equiv-
alent isotope ratioswith aweightedmean 206Pb/238U
date of 49.195 0.02(0.04)[0.06]Ma (fig. 9). Given the
consistency of this result and the simplicity of the
zoning and compositions of this population of zir-
cons, we interpret this result as estimating, within
its analytical uncertainty, the emplacement age of
the lamprophyre diatreme.

Rock Fabrics. Anisotropy of magnetic suscepti-
bility (AMS) is a sensitive magnetic technique used
as a proxy for measuring magmatic flow. Craddock
et al. (2009) report a subhorizontal flow fabric (NW-
SE) in the CUC basal layer, and we report here the
results of AMS measurements in four CUC injec-
tites and the lamprophyre (fig. 10; table S5). White
Mountain injectites 1, 2, and 4 (fig. 2) represent one
sample each from the vertical base of the structure,
and injectite 3 has results from the bottom, middle,
and top spanning ∼100 m of relief. We also have one
sample from the injectite at Silver Gate, 50 km to
the northwest. There is no flow fabric in any of the
CUC injectite AMS results except the top of White
Mountain injectite 3, where the Kmax values are all
subvertical and the Kmin values are subhorizontal
and normal to the injectite. The AMS results for the

lamprophyre preserve a Kmax flow fabric parallel to
the lamprophyre dike (N557E, 907).
Additional orientedmarble and vein samples were

collected from White Mountain to complement the
calcite strain results in Craddock et al. (2009; fig. 11;
table S6). Samples 2a (marble) and 5 (limestone) pre-
serve the pre–Heart Mountain layer–parallel short-
ening strain of the Sevier orogeny (Craddock and van
der Pluijm 1989; Craddock et al. 2000). Sample 5
remained autochthonous with the E-W shortening
orientation, whereas sample 2a has been rotated
about a vertical axis by the landslide. Sample 6 is
a calcite vein discovered in the footwall of White
Mountain (N-S, 907) that is truncated by the detach-
ment and preserves a preslide horizontal shortening

Figure 9. U-Pb concordia and ranked-age plots of chem-
ical abrasion–isotope dilution TIMS results for zircons
from lamprophyre breccia sample 11WY-55. The 49.195
0.02 Ma date significantly refines the age of lamprophyre
intrusion and is within the error of the 48.95 0.5 age for
carbonate ultracataclasite zircons at Silver Gate (Malone
et al. 2014a).

Figure 10. Lower-hemisphere projections of AMS (an-
isotropy of magnetic susceptibility) data (filled circles are
for Kmax, open circles for Kmin; large circles illustrate ori-
entations of the lamprophyre, injectites, or detachment).
See figure 2 for sample locations and table S5, available
online, for a summary. CUCp carbonate ultracataclasite.
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strain parallel to the vein with no strain overprint.
Sample 1 is Madison Group marble (N557E, 557NW)
in contact with the lamprophyre margin, sample 2b
is the strain overprint (NEV) from the marble of sam-
ple 2a, and sample 4 is a detachment-parallel calcite
vein; all three record a vertical shortening strain re-
lated to postslide burial. Differential stress magni-
tudes are remarkably consistent (235 MPa) for twin-
ning events that were tectonic or related to postslide
burial. Electron backscatter diffractometry was mea-
sured on the basal CUC (n p 183) in contact with

Bighorn Dolomite (n p 169); neither material pre-
serves an optic axis fabric (fig. 12).

Discussion

EnigmaticWhiteMountain, with its allochthonous
marbles and its comparatively thick basal layer (2m
of CUC), now reveals additional information re-
garding the initiation and dynamics of the Eocene
Heart Mountain slide. Detailed field mapping has
documented the eight CUC injectites, which be-

Figure 11. Schematic cross section of White Mountain and calcite twinning-strain data (table S6) plotted on lower-
hemisphere projections (ε1 p shortening axis; ε2 p intermediate axis; ε3 p extension axis). Sample details: 1. Madison
Formation marble in contact with lamprophyre; 2a. Madison marble with pre–Heart Mountain layer–parallel short-
ening (N507E); 2b. vertical-shortening overprint (negative expected values); 3. calcite vein parallel to the lamprophyre
margin; 4. vertical shortening in detachment-parallel vein; 5. Pre–Heart Mountain layer–parallel shortening in foot-
wall limestones; and 6. Laramide shortening in a vein truncated by the slide. AMS p anisotropy of magnetic suscep-
tibility); CUC p carbonate ultracataclasite.
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come listric (and/or join) with the basal CUC, and
the presence of older intrusions (diorite, granodio-
rite; 49.9 5 0.5 Ma) and the younger lamprophyre
suite (breccia, clinopyroxenite, lamprophyre). Zir-
cons in the lamprophyre breccia and CUC (injec-
tites and basal layer; Malone et al. 2014a) are the
same age (49.19 Ma 5 0.02 Ma TIMS age) and are

thereby also genetically and dynamically related.
We suggest that the emplacement of the lampro-
phyre diatremewas the triggeringmechanism for the
catastrophic Heart Mountain slide and that White
Mountain represents a remnantof the eruptioncenter.

Eruption and Landslide Dynamics. Figures 13 and
14 portray the interpreted sequence of events at

Figure 12. Electron backscatter diffraction pole results for the CUC (carbonate ultracataclasite; top) and Bighorn
Dolomite (bottom) contact.
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White Mountain. The diorite-granodiorite intruded
at 49.95 0.5Ma and thermallymetamorphosed the
host carbonate rocks. The lamprophyre diatreme
intrusion at 49.19 5 0.02 Ma is preserved as a
dike oriented at N557E, 907. The lamprophyre dike
pinches out to the northeast, suggesting that thewest
end of the dike was connected to the main diatreme
body. The lamprophyre diatreme intrusion, which
triggered the emplacement of the Heart Mountain
slide, included generation of the CUC fault gouge
and injection (!120 m) of CUC into the upper plate.
The AMS proxy for magmatic flow preserves a south-
eastward, subhorizontalflow in theCUCbasal layer
(Craddock et al. 2009) and chaotic flow in the injec-
tites, except at the top of injectite 3. The lampro-
phyre AMS results suggest intrusion to the north-
east (N557E), as theKmax directions are subhorizontal
and parallel to the intrusion. ThisAMSflowproxy is
also parallel to the pre–Heart Mountain slide layer–
parallel shortening strain preserved in the host Mis-
sissippianMadison limestones, whichwere oriented
N907E (Craddock et al. 2000) before the landslide.
This means that the lamprophyre erupted in an E-W
direction and then slid down the bedding-plane por-
tion of the slide to its resting place at White Moun-
tain (N557E), which requires a horizontal rotation
about a vertical axis and a minimum of 357 of coun-
terclockwisemotion. Alternatively, theWhiteMoun-
tain allochthon could have rotated to N557E early in
its motion and slid into place heading to the south-
east, as the detachment striations and AMS fabric
(Kmax) at White Mountain trend S407E.

Gentle N-S folds are present in the marble of
western White Mountain. The marbles are termi-
nated against the lamprophyre suite and preserve a
vertical shortening strain. The lamprophyre-margin
sheared calcite vein preserves a horizontal short-
ening strain parallel to the lamprophyre dike and no
strain overprint; this is presumably deformation
related to shearing along the lamprophyre margin
during emplacement (fig. 11). Preslide calcite veins
preserve a Laramide shortening strain (Craddock and
van der Pluijm 1989) and no strain overprint. Themar-
bles away from the lamprophyre preserve a vertical
shortening-strain overprint (NEVs), and the coeval
vein preserves vertical shortening; these are both in-
terpreted to be related to postslide burial by younger
Eocene volcanic rocks.

The lower-plate (subsurface) location of the lam-
prophyre diatreme is unknown and presumed to be
west or northwest of White Mountain. The lampro-
phyre and CUC along the base of the slide and as-
sociated injectites were part of the same intrusion-
landslide collapse event, as their zircons are the
same age.

Figure 13. Schematic sequence of events atWhiteMoun-
tain (modified fromMalone et al. 2014a; not to scale). Before
the initiation of the Heart Mountain slide, a diorite stock
intruded a succession of Paleozoic carbonate and Eocene vol-
canic rocks at ∼49.9 Ma. The emplacement of a lampro-
phyre intrusion at∼49.19Ma caused failure and collapse of
theupper plate.This slabwas catastrophically emplaced to
the south and east into the adjacent Bighorn and Absaroka
Basins. The basal layer carbonate ultracataclasite (CUC)
contains cataclastic carbonate material derived from the
upper plate, euhedral and abraded zircons from the lam-
prophyre and other intrusions, and delicate volcanic glass.
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Regional Field Relations. Heart Mountain and
McCullough Peaks are the most obvious and distal
upper-plate slide blocks of Madison Group lime-
stones in the Bighorn Basin. It is now apparent that
the vertical volcaniclastic rocks atop Squaw Peaks
in the southern Bighorn Basin are also part of the
Heart Mountain slide run-out, along with Eocene
volcanic rocks in the upper South Fork Shoshone
River Valley and Carter Mountain (Malone 1995,
1996, 1997; Malone et al. 2014b, 2014c). The Ab-
saroka volcanic field covers an area of ∼8,000 km2

with a composite thickness of ∼5 km extruded be-
tween 55 and 38 Ma (Sundell 1993). This extensive
mafic-intermediate outpouring may in some way
be related to Eocene rollback of the Farallon Plate

(Humphreys 1995; Smith et al. 2014) and is an anom-
alous thick, horizontal cap in northwest Wyoming,
especially when compared to the variety of other al-
kaline Eocene intrusions in the area (Sundell 1993;
Feeley and Cosca 2003)

CO2 Generated by the Heart Mountain Slide. The
emplacement of the Heart Mountain slide has been
proposed to be the result of a reduction in friction
along the detachment, perhaps accommodated by
CO and CO2 generated by limestone-on-limestone
sintering (Han et al. 2007; Mitchell et al. 2015) and
the introduction of mantle CO and CO2 when the
lamprophyre erupted.Wehave calculated the amount
of CO2 generated by the Heart Mountain slide to be
7 billion kilograms (0.07 gigatons), which is a mi-

Figure 14. Map view schematic of the sequence of events at White Mountain. These diagrams are not to scale; the
area shown is 5–10 km2. At ∼50 Ma, trachyandesite lavas and other volcanic rocks were deposited on Paleozoic
carbonate rocks. The carbonate rocks preserve the Sevier Laramide E-W layer parallel strain. A diorite stock was
emplaced at ∼49.9 Ma. At ∼49.19 Ma, during eruption, a lamprophyre diatreme intruded the diorite stock and host
carbonate rock, with a Kmax flow direction parallel to the to the Sevier-Laramide E-W layer parallel strain. The
eruption caused the upper plate to fail, and the allochthonous rocks at White Mountain were transported to the
southeast while rotating counterclockwise about a vertical axis of rotation, before coming to rest at their current
location. LPS p layer-parallel shortening.
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nuscule amount of CO2 when compared to the an-
nual human (29 gigatons) and oceanic (332 gigatons)
CO2 emissions. The observation and interpretation
that a lamprophyre eruption occurred and triggered
the event provides an answer to the question, what
caused this slab of rock tomove to beginwith? Once
the emplacement was triggered, the various mech-
anisms suggested by Beutner and Gerbi (2005), Aha-
ronov and Anders (2006), Craddock et al. (2009), and
Anders et al. (2010) that aided continued movement
may have operated.

Conclusions

Our understanding of the Heart Mountain slide has
been refined during the past decades. There are now
data for (1) the structure and stratigraphy of the rocks
involved (Pierce 1973; Malone 1995, 1996, 1997),
(2) emplacement duration (Craddock et al. 2000, 2009),
(3) emplacement timing (Malone et al. 2014a; this
report), (4) areal extent (Malone et al. 2014b, 2014c),
(5) the relationship between theSouthFork andHeart
Mountain slide masses (Craddock et al. 2015), (6) the
characteristics of theCUC (Beutner andCraven 1996;
Beutner and Gerbi 2005, Craddock et al. 2009, 2012;
Anders et al. 2010), and (7) the regional paleogeog-
raphy at the time of collapse (Rhodes et al. 2007;
Malone et al. 2014b, 2014c; Craddock et al. 2015).

White Mountain, with its allochthonous marble,
has always been an anomaly within the chaos of the
Heart Mountain slide. We argue that the marble is
the result of contact metamorphism adjacent to an
older diorite intrusive suite and that the younger
lamprophyre was the triggering mechanism for the
volcanically induced landslide at ∼49.19 Ma. Zir-
cons in the lamprophyre breccia and resultant CUC
(basal layer and injectites) are the same age and
thereby genetically related. A supersonic lampro-
phyre eruption helps explain earlier computations
about the mechanism and rapid initiation speed
(100 m/s) of the landslide, which also makes plau-
sible the increase in the chaotic, rotational run-out

of the slide (∼5000 km2) to include the Eocene vol-
caniclastic rocks at Squaw Peaks and Hominy Peak
(100 km to the west). The location of the lampro-
phyre root remains unknown but is presumed to be
upgradient to the west of White Mountain and is
part of the regional grouping of Cretaceous-Eocene
alkaline and ultramafic intrusions that intruded as
the Farallon slab rolled back to the southwest be-
tween 50 and 45 Ma.

It is interesting that wemay have come full circle
with respect to an explanation for the initiation of
theHeartMountain slide. Bucher (1933)was thefirst
to suggest that Heart Mountain was propelled to the
east by a gigantic volcanic explosion. His explana-
tion was

The writer thinks it possible that the limestone-plates
which constitute the thrust-masses of this region were
thrust eastward and scattered much as they are today by
the horizontal component of the force of a large volcanic
explosion . . . volcanic gases, perhaps largely pent-up steam,
exploded in such a way as to shear off large sheets of
limestone from the highly micaceous Cambrian shales
and to drive them eastward (or, perhaps better, south-
eastward) down the pediment slope into the plain.
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