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ABSTRACT 

An algorithm is constructed to use snow-depth estimates, derived from repeat 

airborne LiDAR (Light Detection and Ranging), to identify the sampling strategy that 

requires the fewest total measurements to estimate the total snow volume in the Dry 

Creek Experimental Watershed (DCEW) Idaho. LiDAR is used to map snow cover by 

differencing the digital elevation models (DEMs) obtained from a snow-covered 

overflight and a snow-free overflight. Sixteen independent variables known to influence 

snow distribution are derived from a LiDAR digital elevation dataset, obtained during 

snow-free conditions, and used to predict snow distribution via binary regression trees. 

Variable ranges leading to the terminal nodes are used to segment the watershed. The 

algorithm calculates the minimum total number of samples needed to meet pre-defined 

accuracy thresholds for estimating total basin snow volume. It uses an iterative process 

to incrementally assign depth measurements to the region that maximizes the reduction in 

the mean absolute deviation (MAD) of snow volume. It identifies the best combination 

of regions by constraining the size ofthe terminal nodes in the binary regression tree and 

repeating the sampling code for each set of discrete regions. The combination of regions 

that requires the fewest samples to achieve the desired level of accuracy is suggested for 

use. Thus, during future field campaigns, an optimal number of point measurements of 

snow depth can be gathered, averaged, and distributed throughout each region. Each 

unit's snow volume can then be summed to estimate the total basin snow volume. This 

method assumes that the snow distribution measured on one day in early April 2009 is 

v 



representative ofthe snow distribution on a given date during a future field campaign. 

Snow-volume estimates can be combined with snow density measurements to estimate 

snow-water equivalent (SWE). This method should decrease field time and improve the 

accuracy of basin estimates of SWE by optimizing snow-depth sampling, which is 

significantly more variable than snow density. To validate this approach, the relative 

snow distribution measured during two intensive basin-wide field campaigns is compared 

to the relative distribution identified by the most accurate binary regression tree. Results 

show that: 1) elevation, total solar radiation, and local roughness exert the strongest 

controls on the spatial distribution of snow in the DCEW, 2) tree complexity is directly 

related to the maximum attainable accuracy, 3) the combination of regions that minimizes 

sample requirements depends on the desired level of accuracy, and 4) the relative 

distribution of snow seems to persist in time. 
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CHAPTER 1: INTRODUCTION 

Spatially distributed snow depth estimates in mountainous terrain are important 

for many applications, but challenging to obtain. Reliable hydrologic models require 

accurate estimates of precipitation and in mountainous regions, and snow is often a large 

fraction of the annual precipitation in many areas. The spatial distribution of snow 

influences landscape ecology (Jones, 1999) and the timing and magnitude of stream 

discharge (Elder et aI., 1991). Snowmelt runoff from mountainous regions contributes 

about 75% of the streamflow in the western United States and is a staple for agricultural, 

municipal, industrial, and recreational needs (Doesken and Judson, 1996). 

1 

Field measurements of snow depth over large areas are not practical. A common 

method used to spatially distribute point estimates of snow depth is to relate snow 

distribution, measured in relatively small representative areas, to landscape properties 

over larger scales. Linear regression has been used in several studies to examine 

correlations between snow and topography, and model snow depth as a linear function of 

topographic variables (Elder, 1991; Hosang J, 1991; Bloschl G, 1992). However, success 

was limited because snow depth is often non-linearly related to topography (Anderton, 

2000). Alternatively, binary regression trees, which predict a dependent variable in a 

hierarchical process by recursively splitting the dataset into increasingly similar groups in 

a non-linear fashion, can be used to estimate the spatial distribution of snow (Elder, 1998, 

Balk, 2000), leading to superior estimates when sufficient data is available (Erxleben, 



2002). However, these studies were in relatively small basins and used limited samples 

due to the difficulties of working in mountainous terrain. Larger scale snow distribution 

data is needed for operational physically-based hydrologic modeling. 

Binary regression trees can be spatially restrictive because, unlike multiple 

regressions, which can predict values outside of the sample space, binary regression can 

only predict values that were measured. Therefore, they require a large number of 

samples from the entire region of interest and cannot be extrapolated to regions 

containing mean values outside the data used to build the tree. Thus, the data 

requirements are unattainable at large scales if snow data is collected using field 

measurements. 

2 

Aerial light detection and ranging (LiDAR), which is capable of mapping snow 

depth at large scales (i.e. >200 km2), combined with binary regression trees, can provide 

information necessary to improve field sampling strategies and expand the spatial extent 

of detailed snow surveys. Airborne laser scanning is a remote sensing tool used to 

measure surface elevations by combining knowledge of the speed of light, the location of 

the laser head in space, and the time from laser pulse transmission to reception (Deems, 

2006). Differencing a snow free LiDAR digital elevation model (DEM) from a snow 

covered DEM can provide an estimate of snow depth at sub-meter horizontal spatial 

resolution, with vertical accuracy of ~30 cm, and over spatial extents compatible with 

basin-scale hydrologic needs, provided vegetation can be accurately filtered. Hopkinson 

et al. (2004) used aerial LiDAR to map snow depth beneath forest canopies with a mean 

error of 6 cm. LiDAR data from snow-free conditions can be used to derive topographic 

parameters known to control snow distribution, such as slope, bare-ground elevation. 
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vegetation height, solar radiation, curvature, surface roughness, and aspect at sub-meter 

resolutions. Thus, high resolution topographic data derived from a snow-free LiDAR 

dataset can be used in binary regression trees to delineate snow covered areas into regions 

with similar snow distributions. 

Identification of land units with similar snow distribution would be advantageous 

during future field campaigns because mean snow depth and density for each unit can be 

calculated from relatively few point measurements, collected from easily accessible 

locations. If the relative distribution of snow is fairly constant in time, then the terminal 

nodes in the regression tree can be adapted to future dates, provided that a sufficient 

number offield measurements are obtained to capture each region's mean accurately. 

Mean SWE for each unit can be estimated from the mean measured depth and density of 

each unit and summed to determine the total basin SWE. 

A number of factors influence the marginal benefit of an additional measurement. 

Regions with deeper snow and larger extents contribute more to total basin estimates than 

do regions with shallow snow and small extents. Similarly, some variability exists within 

each discrete region, and the number of measurements needed to accurately estimate the 

mean snow depth is directly proportional to its snOW-depth variance. Therefore, the most 

efficient sampling strategy must account for the marginal benefit of an additional depth 

measurement when defming sample requirements for each region. Virtual snow depth 

sampling strategies can be tested using high-resolution LiDAR data. Accuracy thresholds 

can be imposed to determine the number of samples required from each region to achieve 

each threshold. The sampling strategy that requires the fewest samples to achieve the 

.iesired level of accuracy can be implemented during future surveys. This method could 



decrease field time and improve the accuracy of basin SWE estimates for watershed 

analyses. 

The objectives of this thesis are to 1) demonstrate the ability of LiDAR to map 

snow distribution, 2) determine the relative importance of various topographic variables 

for estimating snow depth using binary regression trees with LiDAR snow data, and 3) 

use the LiDAR snow depth map to design optimal snow sampling strategies for future 

field campaigns. 

4 
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CHAPTER 2: SITE DESCRIPTION 

The Dry Creek Experimental Watershed is located in the semi-arid southwestern 

region of Idaho, USA, and is approximately 16 km northeast of Boise, ID. The DCEW is 

26.9 km2 of mountainous and foothills topography with elevations ranging from 1,000 

meters at the outlet of Dry Creek to 2,100 meters at the headwaters. Winters in this 

region are moderately-cold to cold. Precipitation falls mostly as snow in the highlands 

and rain in the lowlands. Annual snow survey data show that snow depth is primarily 

controlled by elevation and aspect. Above 5,000 feet elevation, snow usually begins 

accumulating in November and persists through May on high elevation, north-facing 

slopes. Snow depth averages approximately 55 em and rarely exceeds two meters. 

Vegetation along the Boise Front varies with elevation, geology, microclimate, soil type, 

and topography. At lower elevations, grass and shrubs dominate, with cottonwoods and 

ponderosa pine lining the fluvial channels. Upper elevations are dominated by ponderosa 

pine and Douglas-fir with patches of lodge pole pine and aspen. Middle elevations range 

from grass and shrubs to open forest communities of ponderosa pine and Douglas-fir. 

Above approximately 4,000 ft., dense Ceanothus stands are common. Multiple sites in 

the watershed are instrumented for ongoing investigations into geochemistry, 

groundwater recharge, infiltration, basin precipitation partitioning, soil water distribution, 

streamflow generation, and runoff at multiple scales. The DCEW was selected because it 

is home to extensive ongoing hydrologic research and modeling efforts that can benefit 

from improved estimates of snow distribution (Aishlin and McNamara, 2011). 
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CHAPTER 3: METHODS 

3.1 Airborne LiDAR Surveys 

Two airborne LiDAR surveys were perfonned over the study site by Watershed 

Sciences Inc: the first just prior to snow accumulation on November 10, 200S, 

henceforth, called the snow-off data, and the second near the time of maximum snow 

accumulation on March IS, 2009, henceforth, called the snow-on data. The Leica ALSSO 

Phase II laser system, with a sensor scan angle of ± ISO from nadir, was used for both 

surveys. The pulse rate was calibrated to yield an average native density of~ 6 points/m2 

for the snow-off survey and ~ 4 points/m2 for the snow-on survey. The watershed was 

surveyed with an opposing flight line side-lap of~ SO% (~100% overlap) to reduce laser 

shadowing and increase surface laser painting. For both flights, the system recorded up 

to four range measurements per pulse, and all discernible laser returns were processed for 

the output dataset. To accurately solve for laser point position, the aircraft position was 

measured at a rate of2 Hz by an onboard differential GPS unit, and the aircraft attitude 

was measured at 200 Hz as pitch, roll, and yaw by an onboard inertial measurement unit 

(IMU). The raw data was calibrated by comparing it to differential GPS ground 

measurements and aligning flight overlap using TerraScan v.S.OOI and TerraMatch 

v.S.OOI software. It was delivered as LAS v. 1.1 files. Each point contained a 

corresponding scan angle, return number, intensity, and x, y, z infonnation. 
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3.2 LiDAR Point Classification and Bare-Ground DEM Generation 

Point data were classified as ground or vegetation using a combination of 

automated and manual procedures. The publicly available Boise Center Aerospace 

Laboratory (BCAL) LiDAR tools were used to initially classify the points as ground or 

vegetation and to derive a preliminary bare ground digital elevation model. These tools 

are a publicly available ENVI programs (Environment for Visualizing Images), ITT 

Visual Information Solution, Boulder, CO, USA; 

(http://bcal.geology.isu.eduiEnvitools.shtml; Streuker and Glenn, 2006). The height 

filtering algorithm embedded in the BCAL LiDAR tools uses an iterative windowed 

spatial filtering technique to classify points as a function of their relative elevations and 

the user-defined canopy spacing parameter. A canopy spacing parameter defines the 

length and width of the moving window used to locate ground points to correspond to the 

linear distance between ground points in dense vegetation. The tool initially locates the 

lowest return within the area of interest, equal to the size of the canopy spacing window, 

and classifies it as ground. All other points are classified as vegetation. It repeats the 

process for the 8 neighboring cells of equal size. It then fits a surface to the ground 

points of all 9 cells and reclassifies all points that lie under the initial surface as ground. 

This process repeats until no more points exist under the surface or for a maximum of 15 

iterations. 

The BCAL height-filtering algorithm accurately classifies bare ground points in 

the gently rolling grass and sagebrush dominated lower portion of the watershed. At 

small canopy spacings, the tool also accurately classifies topographic ridge and peak 

points as ground, but misclassifies a large number of vegetation points as ground, leading 
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to excessive commission errors. When the window size is small and the canopy is thick 

the tool is unable to find true ground points, but still classifies the lowest elevation points 

as ground. DEMs created from such a dataset have well defined topography and good 

ground point density, but numerous artificial elevation spikes caused by misclassified 

vegetation points that float several meters above the true ground surface (Figures 1 a - c). 

Figure la: Artificial vegetation mounds exist in forested locations when the 
DCAL LiDAR tools classify ground points using 2.5 meter canopy spacing. Green 

dots are misclassified ground points. 

Figure Ib: Close-up of the artificial vegetation mounds and misclassified points 
caused by the 2.5 meter canopy spacing. Orange is the bare ground surface created 

using only the DCAL classified ground points. Green dots are the misclassified 
ground points that caused the artificial vegetation mounds. 
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Figure Ic: Accurate representation of topographic features using 2.5 meter 
canopy spacing to classify points in areas with rapid slope transitions. 

Conversely, at large canopy spacings, the tool more accurately classifies 

vegetation points as non-ground because it has more area to search for true ground points. 

but misclassifies ridges and peaks as non-ground and suffers from poor ground point 

density. This occurs because the tool locates the lowest elevation returns within the large 

window sizes, which often span both sides of ridges. Therefore, the initial ground points 

are those that are furthest down slope on both sides of the ridge, so the surfaces that are 

fit to the initial points are always below the elevation of the ridge points. The resulting 

DEMs are mostly free of artificial elevation spikes, but have flat ridges and peaks and fail 

to capture subtle changes in topography (Figures 2a and 2b). 
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Figure 2a: The dataset from the 7 meter canopy spacing contained significantly 
less commission errors than the 2.5 meter spacing. Green dots are misclassified 

ground points (decided by visual inspection). 

Figure 2b: 7 meter canopy spacing caused ground points on ridges to be 
classified as vegetation, resulting in flat ridges, which led to unrealistic snow depths. 

To improve ground point classification accuracy, manual editing tools and 

automated routines embedded in Quick Terrain Modeler v7.1.1 (QTmodeler) that classify 

LiDAR points were used in combination with three different ENVI classified datasets 

with decreasing canopy spacings. QTmodeler enables a user to classify points by visual 

inspection and to filter and classify points by above ground level (AGL) and a host of 

other parameters. Combining the ENVI and QTmodeler toolsets made it possible to 
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systematically increase the true ground point density, remove misclassified vegetation 

points, add topographic ridge and peak points, and retain information about subtle 

topographic changes by reclassifying the points misclassified by the BeAL tools. 

Snow-off and snow-on DEMs, with vegetation removed, were created using the 

following workflow to improve the accuracy of the DEMs, by reducing commission and 

omission errors in the bare ground dataset (Figures 3a - c). 

Figure 3a: Snow free DEM interpolated from all points. 

Figure 3b: Snow-free bare ground DEM created from only ground points, 
defined by DeAL LiDAR tools, using 2.5m canopy spacing. Light color is the bare 

ground surface. Dark color is the vegetation. 
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Figure 3c: Snow free bare ground DEM created from multi-level filtering, Steps 
1-12. 

1) Process point data using BeAL tools and a 7m canopy spacing. This spacing 

was large enough to remove the majority of vegetation, but suffered from 

significant ground point omission errors, especially on ridges. 

2) Specify gridding extent and origin. Interpolate the ground points using natural 

neighbors and cell sizes that are equal to the average point spacing. 

3) Use the artificial vegetation mounds in the DEM from Step 2 to locate the 

misclassified ground points from Step 1 and manually reclassify them. This 

removed commission errors. Mounds were considered to be artificial if the slope 

of the interpolated surface was greater than 80 degrees at the location of the point. 

If they formed a rounded shape with no clear apex, they remained in the ground 

class. 

4) Interpolate the remaining points from Step 3 using same method, origin, and 

spacing as Step 2. 

5) Process the raw point data using a 4 meter canopy spacing. This canopy spacing 

significantly reduced omission error, but increased commission error (with respect 

to the ground point class). 

6) Use the bare ground estimate created in Step 4 to calculate an above ground 

height for each ground point classified in Step 5. 

7) Remove all ground points from Step 6 that are greater than 1 meter above the 

ground DEM created with the 7m canopy spacing. This reduced commission 

~rrors because they mostly occurred in canopies of dense conifer stands, with 
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AGL values greater than 1 meter. The 1 meter threshold also minimized omission 

error because most of the misclassified ground points were on ridges and areas 

with subtle topographic changes and were almost always less than 1 meter above 

the DEM created in Step 4. 

8) Interpolate the remaining points from Step 7 using same method as Step 2. 

9) Use the DEM from Step 8 to locate the misclassified points causing artificial 

vegetation mounds and manually reclassify them. Mounds were considered to be 

artificial when the interpolated surface was greater than 80 degrees at the location 

of the point. At this step, false ground points were primarily located in the dense 

ceanothus patches, with returns coming from the large woody stems of the plant. 

10) Interpolate the remaining points from Step 9 using same method as Step 2. 

11) Process raw point data using a 2.5 meter canopy spacing. 

12) Repeat steps 6 - lOusing the processed data from Step 11. 

3.3 LiDAR Estimates of Snow Depth 

Snow depths were initially calculated by differencing the DEMs from the snow­

off and snow-on flights, after the DEMs were interpolated to a regular grid with the same 

spacing and origin. This improved snow depth estimates (relative to unaligned grids), 

especially in steep terrain, because only points within the same spatial domain were 

interpolated and differenced. This differs from previous studies (Deems et aI., 2006) in 

which one DEM point cloud was interpolated to the locations of the point cloud in the 

second flight (only 1 DEM was interpolated). 

Six different snow depth maps were created to determine the canopy spacing that 

produces the most accurate snow-depth estimates, and to evaluate if increasing the 
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ground point density and DEM resolution improves snow-depth estimates. LiDAR snow 

depth error statistics were calculated for each map by comparing the LiDAR and 

measured snow depths. 

To determine the optimal canopy spacing, snow depth DEMs were created from 

7,4, and 2.5 meter windows and interpolated using just the BCAL classified ground 

points, edited for commission errors using the appropriate components of Steps 1-12 

above. These spacings were chosen because they correspond to the range of canopy 

densities observed in the watershed. 

To determine the effect of ground point density, all points within 10 cm of the 

cleaned bare ground estimate were re-classified as ground for all three canopy spacings. 

The effect of adding ground points was important to examine because the ENVI filter 

classifies only the lowest points in a window as ground, removing information about 

subtle topographic changes (Figures 4a). 

Figure 4a: Yellow points are classified ground points using BeAL tools and a 4 
m canopy spacing, cleaned using Steps 1-10. Background DEM is the interpolated 

surface of all points. 
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Figure 4b: Green points are ENVI classified ground points using BeAL tools and a 
4 m canopy spacing, cleaned using Steps 1-10, with the addition of all points within 
10 cm of the interpolated surface. Background DEM is the interpolated surface of 

all points. 

Therefore, reclassifying all points within 10 cm AGL significantly increased 

ground point density, revealing small-scale topography, important to snow depth 

estimates, with only minor increases in commission error. The 10 cm threshold was 

chosen because it captured the majority of road points, without including any obvious 

vegetation points in surrounding areas (Figure 4b) and should therefore decrease 

omission errors. Each of the six datasets was interpolated to cell sizes equal to the 

average ground point spacing. 

An analysis of the snow-free region from all 6 resulting DEMs of difference 

(DOD) revealed a vast number of non-zero values (>95%). To identify any systematic 

bias in the snow-depth estimates, 50,000 random points were selected from a paved road 

within the study area, which was snow free during both flights. At each point, error (any 

non-zero value), slope, aspect, elevation, easting, northing, curvature, and elevation were 

extracted. Error was plotted against each topographic variable. Easting, northing, slope, 

and elevation had the strongest correlations with error (Figures 5a-d). 
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Figure 5a-d: Values from the differenced LiDAR DEMs, extracted from Bogus 
Basin road, plotted against: 5a: elevation 5b: slope 5c: eastoess 5d: northness 

Robust multiple regression, an iterative process used to weight points as a 
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function of their distance from the predicted best fit line, was then used to predict error as 

a function of the four independent variables in a least squares sense. This improved error 

prediction by minimizing the influence of outliers caused by misclassified points or 

differences in LiDAR return locations within each cell, between flights, in extremely 

rough terrain. Since the range and magnitude of errors varied slightly between the six 

snow-depth maps, a unique offset map was calculated for each one. The offset maps 

were used to estimate the expected error for each cell of the corresponding snow depth 



17 

maps. The resulting offset equation for the snow depth map used in the final analysis had 

an RMSE of 0.095 (Equation 1) and was used to construct a grid of offset values for the 

4mR98cm snow depth map (Figure 6). The offsets ranged from -0.58 to 0.07 meters. 

Snow O~I" Olfwl 1m' 

Offset = Slope * -

0.00030927 + Northness 

• 0.0357 - Easbless· 

0.0675-Elevatian • 

0.00057218 +0.5946 

Figure 6: Snow Depth offset for 4mR98cm snow depth map. 

The final snow depth maps were derived by subtracting the offsets from the 

original maps. The snow depth estimates from all six corrected maps were then 

compared to the measured snow depths to calculate bias and to determine the single best 

map for use in the binary regression tree (Table 1). 

Table 1: Statistics for LiDAR snow depth errors for all models, using 82 
measurements and 5 transects. Note: first number is canopy spacing parameter. 
Second number is the raster resolution. For example, 7mRlm = 7 meter canopy 
spacing and a 1 meter cell size. Bad Pixel = snow depth < -0.30 (2x absolute vertical 
accuracy of raw point cloud) or snow depth> 3.0m (1.9 meters greater than 
maximum observed snow depth). 

7mRlcm 7mR72cm 4mR98cm 4mR67cm 2.5mR91cm 2.5mR63cm 
Mean -0.054 -0.038 -0.019 -0.063 -0.086 -0.074 
Mode -0.117 -0.106 0.053 -0.007 -0.107 0.013 
Median -0.086 -0.063 0.002 -0.052 -0.073 -0.056 
Variance 0.053 0.050 0.047 0.051 0.061 0.062 
Std Dev 0.231 0.223 0.217 0.226 0.246 0.249 
Inter Quartile 
Range 0.291 0.273 0.242 0.2676 0.2968 0.2645 
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Skewness 0.478 0.545 0.371 0.536 0.493 0.412 
Kurtosis 3.760 3.923 4.829 4.373 4.826 4.040 
Percent Bad 
Pixels 2.976 2.946 0.601 0.585 0.492 0.322 

The error offset from the regression equation was chosen over a standard offset, 

equal to the bias, because although they both decreased the bias, the regression offset 

decreased the range and variance of snow-depth errors. 

3.4 LiDAR Estimates of Topography 

Topographic parameters were calculated from the snow-off dataset at a 1 meter 

resolution using automated procedures in ENVI and ArcGIS and the point data that 

corresponded with the spatial extent of each 1 m2 raster cell. Slope, aspect, total solar 

radiation, direct solar radiation, diffuse solar radiation, duration of direct solar radiation, 

plan curvature, cross-sectional curvature, and profile curvature were calculated in 

ArcGIS. 

The curvature tool embedded in ArcMap's Spatial Analyst toolbox estimates 

curvature as the second derivative of slope for a surface fit through a point of interest and 

its 8 neighboring cells. Curvature values were calculated from a 2 m2 DEM because at 

finer resolutions, the linear distance between neighboring cells was too small to capture 

the shape of ridges, depressions, and channels and resulted in a chaotic distribution of 

curvature values with no discernible relationship to topographic features. The coarser 

resolution produced a more continuous DEM with pronounced ridges and depressions. 

SOLARFLUX, an ESRI tool used to calculate solar insolation for complex 

surfaces based on solar angle, surface orientation, slope, shadowing due to topographic 
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features, and atmospheric attenuation, was used to calculate all four solar radiation 

parameters, assuming clear sky conditions. For fine resolution DEMs, SOLARFLUX 

requires significant processing time (3 days to process the 27 km2 watershed using 1 m2 

cells for a 24 hour solar radiation estimate), making cumulative seasonal radiation 

estimates impractical. Initially, solar radiation values were calculated for the 18th of 

every month, starting in November and ending in March. However, when the summed 

values were used in the regression trees, total incoming solar radiation was only 

minimally important. As a result, it was assumed that the relative distribution of solar 

radiation at the onset of the melt season is more important for predicting snow 

distribution on March 18th than its distribution during the accumulation period. 

Therefore, solar radiation values were averaged for March 151, 9th
, and 18th and used as an 

index to solar radiation inputs at the onset of the melt season. This improved the 

predictive ability of the solar radiation variables. The shade produced by canopy 

structure was not captured in the SOLARFLUX calculation. However, mean vegetation 

height and local roughness were used as potential analogs to canopy effects. 

The BeAL LiDAR tools were used to calculate the mean vegetation height, 

absolute roughness, local roughness, and vegetation roughness. Local roughness is the 

standard deviation of elevation for each point, de-trended for slope. Absolute roughness 

is the standard deviation of elevation. Vegetation height is the mean above ground height 

for all non-ground classified points. Vegetation roughness is the standard deviation of 

above ground height for all non-ground points. 

Molotch et aI., 2003, found that the addition of northness (=cos (aspect) * 

sin(slope)) improved regression tree performance in the Tokopah Basin, NY. Therefore, 
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northness was calculated from 1 meter resolution slope and aspect maps and added as a 

predictor variable. 

3.5 Measured Snow Depths 

On the day of the snow-on flight, 82 georeferenced snow depths were collected in 

5 different transects using a depth probe and a Trimble 5700 differential GPS unit (Figure 

7). 

In Situ Measurements and LiDAR 
UDAR Snow Depth 1m) 

High : 1.5 

\.ow : 0 

" ... m" .. ",,, of Snow Depth 

Figure 7: Locations of measured snow depths shown on top of the LiDAR snow 
depth map that used for the final analysis. 

The locations were selected to capture the range of snow depths expected in the 

watershed based on previous basin wide snow surveys. Snow-water equivalent 

measurements were made at the endpoints of each transect using a Federal snow sampler. 

3.6SWEMap 

Snow water equivalent (SWE) was calculated for every pixel as follows: 
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SWEp = dp * (Ps -:- Pw) (2) 

where dp (m) is the LiDAR snow-depth estimate for the pixel of interest, ps (kg m-3) is the 

mean snow density measured on 3/18/09, pw is the mean density of water (kg m-3
). Mean 

snow density was used in place of modeled estimates because the sample size was too 

limited for spatially distributed estimates and because previous studies have shown that 

snow density is significantly less variable than snow depth (Figures 8a-b). 

Figure 8a: 
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Distribution of depth measurements from basin-wide survey, 3-18-
2009. 
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Figure 8b: Distribution of density measurements from basin-wide survey, 3-18-
2009. 

3.7 Binary Regression Trees 

Binary recursive partitioning was used to bin a random sample of 5 million snow 

depths into increasingly homogeneous subsets as a function of the 16 corresponding 

topographic variables. All independent variables were examined at each decision split, 

and the single variable that minimized deviance in the resulting subsets was selected. 

Nodes were split when it minimized the total class variance and the children contained a 

predefined minimum number of observations. 

The optimal tree size depends on the purpose of the regression and there can be a 

tradeoff between accuracy and tree size. The optimal tree suggested here for operational 

snow sampling campaigns discretizes the watershed into regions that require the least 

samples to achieve accuracy thresholds for total basin snow volume. To find the optimal 

tree size, minimum leaf requirements of 1-12% of all LiDAR observations were imposed 

using the MA TLAB code discussed below. Henceforth, individual regression trees are 
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named by the fraction of total snow depths that were used as minimum leaf requirements 

during their construction. 

All regression trees were initially grown to over-fit the data (Chambers and 

Hastie, 1993). Ten-fold cross-validation was then used to calculate the cost (MSE) 

associated with each node, as well as, the total cost associated with all trees sizes. The 

final trees were constructed by pruning decision splits so that the resultant trees' MSE 

was within one standard error of the minimum cost sub tree (Breimen et. al, 1984). 

3.8 Estimation of Appropriate Sample Sizes 

An algorithm was created in MA TLAB to perform virtual snow sampling 

campaigns on the LiDAR data, to identify the optimal snow survey strategies. The 

optimal survey for a set of discrete regions allocates samples efficiently and minimizes 

the sample size needed to meet accuracy thresholds for the total basin snow volume 

estimates. One approach is to locate easily accessible subsections of each discrete region, 

identified by the regression trees, collect enough random samples to obtain an acceptable 

estimate of the true mean, and multiply the estimated mean snow depth by each region's 

area. Then, each region's snow volume estimate can be summed to estimate the basin's 

total snow volume. 

The code accounts for the variability of marginal benefits from an additional 

sample and identifies the optimal sampling strategy by identifying the combination of 

discrete regions and corresponding sample sizes that require the fewest measurements to 

meet total basin snow volume accuracy thresholds. It uses 5 million randomly selected 

snow depths and sixteen topographic parameters to create a regression tree and then 

utilizes the pruned and cross-validated tree to assign each pixel to a discrete region, as a 
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function of the corresponding topographic parameters. The 5 million points (~26% of the 

positive snow depths) are subset for this portion of the code because, with the addition of 

topographic variables, the dataset overwhelms computational resources. 

For each discrete region, a Monte-Carlo simulation is performed to randomly 

locate a single point in each region. It uses the random sample from the 5 million 

extracted points to locate the original cell in the gridded dataset, and uses the grid to draw 

1 + n (n= 1 : 121) random samples from all points within the region that are also within 5 

meters of the initial point, and calculates the mean absolute deviation (MAD) of the 

difference between the mean of all n samples and the true mean. The 5 meter threshold 

was chosen because it coincides with an area that is easy to sample in the field. The 

MAD of snow volume was used because it captures the positive and negative bias. This 

simulation repeats 5,000 times for each sample size and then calculates the mean of the 

mean absolute deviations from the 5,000 mean snow depth estimates of each sample size. 

To calculate the mean absolute snow volume error for each sample size, the mean 

absolute deviation of each sample size is multiplied by each region's corresponding area. 

Because the 5 million points were randomly sampled from the entire snow covered area, 

it was possible to estimate each region's area by multiplying the fraction of samples 

located in each region by the total snow covered area. The marginal benefit of an 

additional sample is defined as the reduction in the MAD of snow volume per additional 

sample. It is estimated by differencing the mean absolute snow volume error of sample 

size n and n+ 1 for n= 1: 121. However, in some regions, random effects were strong 

enough that an increase of only 1 measurement sometimes led to slight local increases in 

bias (Figure 9a). Therefore, points would no longer be assigned to these regions because 
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it seemed to increase the error, even though the overall trend was a decrease in bias with 

increasing sample size. To minimize the influence of random effects, the MAD of snow 

volume estimates is modeled as a function of sample size with a non-parametric 

smoothing function using a bisquare kernel of three samples (Figure 9b). 

Figure 9a: 
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To estimate the marginal benefit of an additional point, the modeled estimates for 

the MAD of snow volume are evaluated and differenced at sample size n and n + 1. The 

region with the maximum marginal benefit is assigned an extra point. The code then uses 

the sample sizes from each region to fmd the 5,000 corresponding snow volume estimates 

that were calculated in the previous Monte-Carlo simulations. For 1,500 loops, the mean 

snow volume estimates that correspond to each region's assigned sample size are 

randomly sampled and summed to estimate the basin's total snow volume at the current 

loop's sample size. For each of the 1,500 estimates of total basin snow volume, the 

fraction of bias is calculated by dividing the random sample's estimate of the total basin 

snow volume by the true basin snow volume and subtracting one. If less than 95% of the 

total basin snow volume estimates are within the current loop's accuracy threshold (± 8 

% : ± 50% of the true snow volume), the marginal benefit for the region that received an 

extra point is recalculated and the process repeats until 95% of the snow volume 

estimates are within the accuracy threshold for total basin snow volume. 

Once the thresholds are met, the samples from each region are summed and the 

code repeats with new minimum leaf requirements of 1 %: 12% of the total dataset 

(henceforth, trees are identified by their minimum leaf requirements). The total sample 

requirements from each regression tree and accuracy threshold are compared. The 

combination of discrete regions and sample sizes that minimize total sample requirements 

for each threshold is suggested for use during future field campaigns. 

3.9 Validation of Discrete Regions 

Basin-wide field surveys were performed on March 2,2011 and April 8, 2011. 

They were designed to determine the variability in the relative distribution of snow at 
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near peak: accumulation. Tree 2%'s thirty-four discrete regions were sampled. This tree 

was chosen because it contained the most regions that a six person field crew could 

sample in a day. 

Within each region, easily accessible locations were selected to sample (Figure 

lOa and b). 

Snow Survey 3_2_11 
• o.nsity_3_2011 

• Transecl5_March_2011 

, , , I ! , , 

Figure lOa: Sample locations for the 2 basin-wide snow survey (3/2/11). 
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Snow Survey 4~-2011 

• TransectsPts4_8_2Dll 

• Densrty_Apnl8_2011 

• Regiona~~eans_4_8_11 
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Figure lOb: Sample locations for the 2 basin-wide snow survey (4/8/11). 

At each location, sixty random depth measurements were collected within a 5 

meter radius. Twenty-one additional fifty meter transects were surveyed for another 

study. All points were georeferenced and the topographic parameters that were used to 

make the regression tree were extracted at the location of each sample. The values of the 

topographic variables were evaluated using Tree! % to assign each point to a discrete 

region. These points were combined with the randomly sampled depths to estimate the 

mean snow depth for each discrete region. 

To compare the relative snow distribution between the LiDAR survey and the two 

field surveys, the mean depth for each region and date was normalized by the depth of the 

region with the maximum mean snow depth on the corresponding date. 
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3.10 Variable Importance 

To improve our understanding ofthe topographic controls on snow depth, the 

regression tree was used to estimate the predictive ability of each variable as follows: 

2 nparent U k) 2 nchildlU.k) 2 
I G) = E ( (J parent G, k) * N' - ( (J childl (j, k) * N + (J child2 (j, k) * 

nChild2)) (3) 
N 

where j = the jth independent variable and k = the kth instance of the jth variable in the 

regression tree. 

Tree 1 %' s pruned tree was used for the variance reduction calculations because it 

was the least constrained and most accurate. 

3.11 Accuracy Assessment 

To assess the performance of the regression trees, a validation dataset of5 million 

random points was fit to each tree as a function of the topographic parameters, using 

MA TLAB' s eval function. Prediction error was defmed as the difference between the 

LiDAR depth estimate and the regression trees' modeled estimates and was calculated as 

follows: 

Errorpixel = Snow Depthpredicted - Snow DepthLiDAR (4) 

Statistics were calculated for the distribution of errors for modeled depth 

estimates and tabulated in Table 2. 

Table 2: Error statistics for the regression tree snow depth models 

Tree9 Tree1 
Tree1% Tree2% Tree3% Tree4% TreeS% Tree6% Tree7% Tree8% -10% 1-12% 

# 
Leaves 69 34 22 18 14 12 10 9 7 6 

R2 0.680 0.654 0.639 0.612 0.610 0.593 0.589 0.580 0.557 0.525 
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\.l error 0.008 0.009 
(m) 0.0081 0.0083 0.0084 0.0086 0.0086 0.0088 0.0088 0.0089 8 0 
Media 
n error 0.023 0.026 0.028 0.031 0.032 0.033 0.033 0.035 0.035 0.042 
a20f 
Error 0.049 0.053 0.055 0.059 0.059 0.063 0.063 0.064 0.067 0.068 
aof 
error 0.221 0.229 0.234 0.243 0.244 0.250 0.250 0.253 0.260 0.261 

MSE 0.049 0.053 0.055 0.059 0.059 0.063 0.063 0.064 0.068 0.068 
IQ 
Range 0.243 0.253 0.262 0.274 0.274 0.282 0.282 0.290 0.298 0.300 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 LiDAR Snow Depth Map 

The LiDAR-derived snow depth map (Figure 9) and SWE map (Figure l1a) agree 

reasonably well with field-mapped estimates of SWE (Figure 11 b). 

Snow Water Equivalent Map 

SWE(m) 
High: 0.48 

Low:O 

Figure lla: LiDAR estimates ofSWE, using measured mean density of 0.30. 
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Figure llb: Mean measured depths at 1,000 meter elevation bands converted to 
SWE using mean density of 0.30. 

The surveyed SWE map was constructed by dividing the watershed into elevation 

bands and averaging the depth and density measurements located within each bin. 

Consequently it lacks the detail within elevation zones that are evident in the LiDAR 

SWE map. Elevation alone is insufficient to discretize the watershed into homogeneous 

snow units. Total snow and SWE estimates for March 18, 2009 were calculated by 

summing the cell values in the corresponding maps. LiDAR estimates were 7.81E+06 m3 

of snow, 2.34E+06 m3 ofSWE, and an average SWE depth of 13 cm, while surveyed 

estimates were 5.50E+06 m3 of snow, 1.65E+06 m3 ofSWE, and an average SWE depth 

of 11.4 cm. 

4.2 LiDAR Snow Depth Accuracy Assessment 

The multi-level point classification process (Steps 1-12) decreased point 

classification errors, enabling the creation of maps with both, well-defined topography 

and few misclassified vegetation points. Decreasing the canopy spacing and increasing 
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the ground point density and raster resolution decreased the number of bad pixels in all 

models, but had variable effects on the accuracy of snow depth estimates (Table 1). Bad 

pixels are defined as snow depths less than -0.3 or greater than 3 meters. Decreasing the 

cell size decreased the number of unrealistic snow depths because only LiDAR points 

with close proximity were interpolated and differenced. This was important because in 

steep terrain, like the DCEW, elevation varies significantly with small horizontal 

differences in position. Therefore, smaller cells increased the horizontal resolution and 

improved the vertical accuracy, resulting in fewer pixels with extreme values. Similarly, 

as ground point density increased and cell size decreased, the accuracy of snow depth 

estimates improved for the maps derived from the 2.5 and 7 meter canopy spacings, but 

diminished as points were added to the 4mR98cm map to create the 4mR67cm map. An 

investigation into this discrepancy is beyond the scope of this paper. 

Decreasing the canopy spacing increased ground point classification accuracy in 

rough terrain and at slope transitions such as road edges and ridges, improving 

topographic representations and the accuracy of the related snow depths. As the canopy 

spacing decreased, the number of bad pixels correspondingly decreased. Therefore, 

maps created from the 4 and 7 meter canopy spacings contained more pixels with 

unrealistically large positive and negative values at slope breaks because true ground 

points were sparse and erratic. Future studies may benefit from a point classification 

algorithm, capable of automatic local canopy spacing parameter adjustments, which 

responds to differences in vegetation density and terrain features. 

Snow depths from the 4mR98cm map lined up the best with physical 

measurements. However, the 4mR98cm map contained 86% more bad pixels at slope 
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breaks, which are important to snow distribution, than the 2.5mR63cm DEM. To get the 

best possible snow depth map, snow depths from ridges were extracted from the 

2.5mR63cm map (Steps 1-12), resampled to 98cm, and mosaiced with the non-ridge 

portion of the 4mR98cm DEM. 

Ridges were extracted by gridding the bare earth data points to 10 meter cells to 

provide a buffer for the ridge features, calculating the flow direction, and then calculating 

the flow accumulation for each cell using ArcGIS 9.2. Cells with flow accumulation 

values of zero (Figure 12) were considered ridges and used as a mask to extract snow 

depths from the 2.5mR98cm snow depth map. 

Figure 12: Ridges classified by flow accumulation values. Red = flow 
accumulation = 0 = Ridges. The snow depths from the 2.5mR98cm DEM were 

extracted from cells with no flow accumulation and merged with snow depths from 
the 4mR98cm map's non-ridge locations to maximize the accuracy of snow depth 

estimates. 
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The appropriate sections of the two maps were mosiaced and the resulting map 

(Figure 9) was used in the subsequent analysis because it contained both, well-defined 

peaks and ridges from the 2.5mR98cm map, and the more accurate snow-depth estimates 

in non-ridge areas from the 4mR98cm map. Error statistics for the combined DEM are 

the same as the 4mR98cm DEM because no snow depths were measured at the ridge 

locations. 

Snow depth offsets from the robust regression equation improved the accuracy 

and precision of the snow-depth estimates (Figure 13a and b). 
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Figures 13a and b: LiDAR errors (LiDAR depths - measured depths). 13a) Lidar 
snow depth errors, pre offset, for the mixed 4mR98cm and 2.5mR98cm maps. 13b) 



Lidar snow depth errors, post offset, for the mixed 4mR98cm and 2.5mR98cm 
maps. 
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A comparison of the corrected LiDAR snow-depth estimates from the combined 

snow depth map and measurements from the same locations shows that the LiDAR 

estimates are relatively unbiased, with a median error of 1 cm, 50% of the data within 20 

cm of the true value, and 95% of the data between + 30 cm and -70 cm. This indicates 

that 1) LiDAR may only be viable for point estimates in deep snow because depending 

on the application, the magnitude of error may be considered negligible, compared to the 

snow depths, and 2) LiDAR can be used in shallow snowpacks for accurate areal 

estimates because the errors are relatively unbiased, but not for point estimates because 

the magnitude of the errors are on par with snow depths. 

The large negative snow depth errors have two likely sources. Over 50% of the 

measured snow depths were from open locations, with good GPS signals, at higher 

elevations. which is home to Ceanothus (Figure 14a and b). 

Figure 14a and b: Photos of Ceanothus patch during snow free conditions. 
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During the snow-off flight, it is likely that few LiDAR pulses were able to 

penetrate the thick Ceanothus patches and that some returns from the woody stems were 

misclassified as ground. As a result, the bare ground surface elevation was probably 

over-estimated in these locations. However, during the snow-on LiDAR flight, the 

weight of the overlying snow compressed the Ceanothus and forced it to flatten out on 

the ground (Figures 15c and d). Therefore, when the two DEMs were differenced, snow 

depths were likely under-estimated in locations with dense Ceanothus. 



38 

Figures 15a & b: 15a: Photo of same Ceanothus patch, but covered by snow. 
15b: Ceanothus is completely flattened under the weight of snow. 

4.3 Regression Tree Performance 

The most common metric for regression tree performance comparisons is the 

coefficient of determination (Molotch et aI., 2003, Erxleben et aI. 2002, WinstraI et aI. , 

2002, Balk and Elder, 2000, Elder et aI., 1995). However, comparisons to previous 
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studies are tenuous because different tree sizes are used for different applications, and R2 

values typically increase with the number of terminal nodes (Figure 16). 
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Figure 16: Number of terminal nodes vs. coeficient of determination for all 
regression trees. 

Nonetheless, in this study, model fit ranged between R2 = 0.52 - 0.68, depending 

on tree size, which indicates that LiDAR derived snow depths can be modeled by binary 

regression trees at the basin scale, in complex mountainous terrain. with reasonable 

accuracy (Table 2), (Figure 17). 

Table 2: Error statistics for the regression tree snow depth models 

Tree9 
Teel% Tree2% Tree3% Tee4% TreeS% Tree6% Tree7% Tree8% -10% 

# Leaves 69 34 22 18 14 12 10 9 7 

RZ 0.680 0.654 0.639 0.612 0.610 0.593 0.589 0.580 0.557 
Il error 0.008 
(m) 0.0081 0.0083 0.0084 0.0086 0.0086 0.0088 0.0088 0.0089 8 

Tree1 
1-12% 

6 

0.525 
0.009 

0 
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Median 
error 0.023 0.026 0.028 0.031 0.032 0.033 0.033 0.035 0.035 0.042 
02 of 
Error 0.049 0.053 0.055 0.059 0.059 0.063 0.063 0.064 0.067 0.068 
o of 
error 0.221 0.229 0.234 0.243 0.244 0.250 0.250 0.253 0.260 0.261 

MSE 0.049 0.053 0.055 0.059 0.059 0.063 0.063 0.064 0.068 0.068 

IQRange 0.243 0.253 0.262 0.274 0.274 0.282 0.282 0.290 0.298 0.300 
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Figure 17: LiDAR snow depths vs. snow depths modeled using Tree1 %. 

Model fit was better than previous studies, which used field-based measurements 

of snow depth to estimate the spatial distribution of snow in smaller catchments, and thus 

had far fewer data points to construct regression trees. Balk and Elder (2000) modeled 

snow depth in a 6.9 km2 catchment using an 18 terminal node tree with an R2 of 0.59. 

Wintstral et al. (2002) modeled snow depth in a 2.25 km2 basin with an R2 0fO.5. 

Molotch et al. (2003) used binary regression trees to model snow depths over a 3 month 

period in the 19.1 km2 Tokopah basin using an average of9.6 terminal nodes, achieving 
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an average R2 of 0.44. Erxleben et al. (2002) modeled snow distribution in the forested 

terrain of the Colorado Rocky Mountains with an average R2 of 0.25. This study was 

able to account for more variability than previous works because more samples were 

available and the datasets used to train and validate the regression trees were evenly 

distributed throughout the snow covered area. Previous studies relied on field campaigns 

to gather measurements. However, snow travel is inherently difficult and sometimes 

dangerous, limiting the number of samples that can be gathered in a day, as well as, the 

locations from which measurements can be safely collected. The snow covered area in 

the LiDAR dataset contained ~28 million snow depth estimates. The amount of data 

from which the regression trees were constructed and validated (5 million random 

samples) was limited only by the available computational resources (Intel Core2 Quad 

Q9300 processor, 8GB RAM). 

Mean squared errors for the entire basin ranged between 4.9 and 6.8 cm 

(depending on the number of terminal nodes). However, the measurements of dispersion 

suggest that the variability in the dataset can be a large fraction of the mean snow depth. 

It may be inferred that the regression trees produce reliable areal estimates of mean snow 

depth, but should not be used for point estimates. 

4.3 Optimal Sampling Strategies 

Tree 1 % produced the most accurate estimates of snow distribution, requiring 183 

strategically placed samples to be 95% certain that the estimated total snow volume was 

within 9% of the true snow volume (Figure 18). 
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Figure 18: Sample size vs. accuracy requirements for total basin snow volume 
estimates. 

Conversely, Tree 1 1-12% (same tree for both minimum leaf constraints) required 

only six measurements to be 95% certain that estimates were within 35% of the true snow 

volume. For future surveys, participants should choose the sampling strategy associated 

with Treesl-12% that balances their project's need for accuracy with their available 

survey resources. 

The optimal tree depended on the accuracy threshold. Each tree had an accuracy 

limitation that could not be exceeded, regardless of how many samples were added. 



43 

There was a direct relationship between the number of tenninal nodes and the maximum 

attainable accuracy. However, with several exceptions, the simplest tree usually required 

the least samples when the accuracy threshold was within the limits of the tree. The 

tradeoff between maximum attainable accuracy and minimum sample requirements 

occurred because as accuracy levels increased, more discrete regions were required to 

reduce snow-depth variance. However, every additional region required a minimum of 

one extra measurement, even if the region contributed minimally to the total basin snow 

volume. Therefore, results suggest that on average, the simplest tree that meets the 

desired level of accuracy should be used to design the snow survey. 

There were two notable exceptions to this trend. Between the 25 and 45% 

accuracy thresholds, Tree 5% required an average of 5 more samples than Tree4%. Also, 

Tree9-l0% required more samples than Trees 4%, 6%, and 8% over certain threshold 

intervals. These exceptions occurred because larger minimum leaf constraints forced 

dissimilar regions to combine, increasing snow depth variance and required sample sizes. 

This effect was profound when the combined regions contributed significantly to total 

snow volume and the difference between their mean snow depths was large. 

The plot of the mean MAD of snow volume versus sample size shows substantial 

marginal benefits from ~ 1-8 samples, then approaches zero asymptotically (Figure 19). 
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Figure 19: MAD of mean snow depth estimates vs. sample size. 

Because of this phenomenon, large increases in accuracy were initially achieved 

with only a few measurements. However, there was a steep decline in marginal benefits, 

and a total accuracy limitation was rapidly encountered. 

A plot of each region's total snow volume versus its assigned sample size shows 

that, on average, regions that contained more snow were assigned more samples (Figure 

20). 
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Figure 20: Sample reguirements for each region as a function of contributing 
snow volume. 

This occurred for two reasons: 1) total basin snow volume estimates improved 

more when mean depth estimates for regions with lots of snow improved, and 2) regions 

with more snow tended to be deeper. Since mean snow depth and variance are positively 

correlated (Figure 21), the marginal benefits for regions with lots of snow were greater on 

average (holding sample size constant) than regions with comparatively less snow. 
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Figure 21: Variance vs. mean snow depth, using Tree! %. 

Low accuracy thresholds were met by only allocating samples to regions with the 

most snow and least variability (Figure 21). 
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Figure 22: Sample reguirements for regions in Tree 1 % at 75% accuracy level 
vs. each region's snow volume. 

However, as the accuracy threshold increased and points were added to the most 

productive regions, their marginal benefits decreased and points were added to regions 

with less snow and variability (Figure 20). 

4.4 Validation Snow Surveys 

The relative distribution of snow during the LiDAR survey and the two field 

surveys was comparable (Figures 23a and b). 
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Figure 23a: Snow distribution during LiDAR survey versus March 3, 2011 survey. 
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Figure 23b: Snow distribution during LiDAR survey versus AprilS, 2011 survey. 

This suggests that the relative distribution of snow, identified by the regression 

trees, is temporally persistent, at least during the period of near maximum snow 

accumulation. It is therefore suggested that the survey strategies previously outlined be 

adapted to future near peak accumulation dates to make the surveys more efficient and to 

improve the accuracy of total basin snow volume estimates. 

The slope of 1.1 for the linear fit of both plots indicates that the basin-wide 

surveys tended to overestimate mean snow depths, relative to the distribution during the 

LiDAR survey. However, during the two surveys, the snow was ripe and air 

temperatures were well above freezing through-out the afternoon. The melting snow 

softened the ground, making it difficult to locate the snow-ground boundary, especially 

during the April survey. Therefore, the snow surveys likely overestimated snow depths. 

The box plots of differences between the relative distributions of snow during the 

field and LiDAR surveys (Figure 24) show nearly unbiased distributions for both dates. 
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Figure 24: Boxplots of the difference between relative distribution of regional 
mean depths. Mean depths for each region were normalized as a fraction of the 

watershed's maximum mean regional snow depth for the survey date. Error is the 
difference in each region's proportion of maximum mean snow depth between the 

LiDAR flight and the field surveys. 

This suggests that during specific temporal intervals, it may be possible to 

estimate total basin snow volume by estimating regional mean snow depths for 

unmeasured regions using just the mean depth for a single region (or limited number of 

regions), and the relative spatial distribution, identified by the regression trees. 

4.5 Importance of Independent Variables 

Although the best predictor variable for a given branch depended on the minimum 

leaf requirements (Figures 25a-d, Tables 3a-j), results from the variable importance 

calculations indicate that elevation and total incoming solar radiation were the most 

important. 
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Figure 25a: Tree 3%. ST= total solar radiation (w/m2), DS = direct solar radiation 
(w/m2), Z=elevation (m), VegZ= mean vegetation height (m), DDS= duration of 

direct solar radiation (hrs), Asp=aspect (degrees). 
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Figure 25b: Tree 5% 

Figure 25c: Tree 7% 



Figure 25d: Tree 9-10% 

Tables 3a-j: Independent variable importance, defined as the regression tree's 
total reduction in the variance of snow depths that can be attributed to each 
independent variable. 

Table 3a Tree 1% 

Independent 
Variable Importance Independent Variable Importance 

Elevation 0.000346929 Aspect 4.87E-06 

Total Solar 3.17E-OS Slope 3.43E-06 

Mean Vegetation 
Height 2.82E-OS Diffuse Solar 3.38E-06 

Direct Solar 2.78E-OS Local Roughness 2.47E-07 

Duration of Direct Solar 1.80E-OS Northness 0 

51 
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Table 3b Tree 2% 

Independent 
Variable Importance Independent Variable Importance 

Elevation 0.000676054 Slope 1.22E-05 

Total Solar 6.35E-05 Aspect 6.82E-06 

Mean Vegetation 
Height 5.81E-05 Diffuse Solar 2.68E-06 

Direct Solar 5.49E-05 Local Roughness 0 

Duration of Direct Solar 3.49E-05 Northness 0 

Table 3c Tree 3% 

Independent 
Variable Importance Independent Variable Importance 

Elevation 0.001040386 Slope 1.90E-05 

Total Solar 9.73E-05 Aspect 7.80E-06 

Direct Solar 8.04E-05 Local Roughness 0 

Mean Vegetation 
Height 6.43E-05 Diffuse Solar 0 

Duration of Direct Solar 5.06E-05 Northness 0 

Table 3d Tree 4% 

Independent 
Variable Importance Independent Variable Importance 

Elevation 0.001274169 Aspect 9.58E-06 

Total Solar 0.000119487 Slope 0 
Mean Vegetation 
Height 7.82E-05 Local Roughness 0 

Direct Solar 7.31E-05 Diffuse Solar 0 

Duration of Direct Solar 6.21E-05 Northness 0 

Table 3e Tree 5% 

Independent 
Variable Importance Independent Variable Importance 

Elevation 0.001638785 Aspect 1.24E-05 

Total Solar 0.000122879 Slope 0 

Direct Solar 9.47E-05 Local Roughness 0 
Mean Vegetation 
Height 8.80E-05 Diffuse Solar 0 

Duration of Direct Solar 6.41E-05 Northness 0 
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Table 3f Tree 6% 

Independent 
Variable Importance Independent Variable Importance 
Elevation 0.00189105 Diffuse Solar 1.9SE-05 

Total Solar 0.00014425 Aspect 1.44E-05 

Direct Solar 0.000111179 Slope 0 
Mean Vegetation 
Height 6.74E-05 Local Roughness 0 

Duration of Direct Solar 5.47E-05 Northness 0 

Table 3g Tree 7% 

Independent 
Variable Importance Independent Variable Importance 
Elevation 0.002288767 Slope 0 

Total Solar 0.000174618 Local Roughness 0 

Direct Solar 0.00013227 Diffuse Solar 0 
Mean Vegetation 
Height 8.16E-05 Northness 0 

Duration of Direct Solar 6.62E-05 Aspect 0 

Table 3h Tree 8% 

Independent 
Variable Importance Independent Variable Importance 
Elevation 0.002288301 Slope 0 

Total Solar 0.000174618 Local Roughness 0 

Direct Solar 0.000122717 Diffuse Solar 0 
Mean Vegetation 
Height 8.16E-05 Northness 0 

Duration of Direct Solar 6.62E-05 Aspect 0 

Table 3i Tree 9-10% 

Independent 
Variable Importance Independent Variable Importance 
Elevation 0.003237754 Local Roughness 0 

Total Solar 0.000255211 Diffuse Solar 0 
Mean Vegetation 
Height 0.000119246 Direct Solar 0 

Duration of Direct Solar 9.68E-05 Northness 0 

Slope 0 Aspect 0 



54 

Table 3j Tree 11-12% 

Independent 
Variable Importance Independent Variable Importance 

Elevation 0.003826436 Diffuse Solar 0 
Mean Vegetation 
Height 0.000140246 Direct Solar 0 

Duration of Direct Solar 0.000114399 Total Solar 0 

Slope 0 Northness 0 

Local Roughness 0 Aspect 0 

These findings agree with other studies (Elder et al., 1995, Molotch et al., 2003). 

Elevation is reasonable because of its inverse correlation with temperature and positive 

correlation with total precipitation in the DCEW. Historical records for the catchment 

indicate that higher elevations receive more precipitation, that more precipitation falls in 

the form of snow, and that melt rates are slower because of colder temperatures. 

All four solar radiation variables were better predictors than the radiation analogs 

like aspect and northness. The SOLARFLUX algorithm used in this study accounts for 

the effects of slope, aspect, and topographic shading on solar insolation, creating a more 

robust estimate. The difference in importance between direct and diffuse solar radiation 

can be attributed to their relative contribution to total solar radiation in the DCEW, 

comprising an average of72% and 28%, respectively, for the dates used in this study. 

Although northness was included in the minimum cost sub-tree (for trees 1 % and 

2%), it was removed after pruning. Its lack of importance is contrary to previous 

findings, which suggested regression tree improvements from the inclusion of northness 

(Molotch et at, 2003). Additionally, the omission of vegetation roughness, eastness, and 

all three curvature parameters indicates that they were not primary controls on the spatial 

distribution of snow in the DCEW at the scales examined in this study. 
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CHAPTER 5: CONCLUSION 

This research demonstrates that binary regression trees can be used with Airborne 

LiDAR estimates of snow depth to divide snow covered areas into regions of similar 

snow distribution and construct objective sampling strategies for extents that would 

otherwise be too large to thoroughly sample. Since the relative distribution of snow was 

similar on all three survey dates, the sampling strategies outlined in this paper are 

recommended when snow accumulation is near peak. However, new snow surveys 

should be performed throughout the accumulation and melt season to estimate the within 

season temporal variability in the relative distribution of snow depth. 

These sampling strategies should improve the accuracy of total basin snow 

volume estimates and increase the efficiency of snow surveys in the DCEW because they 

minimize the number of samples required to meet each accuracy threshold, efficiently 

distribute point estimates through space, balance accuracy requirements with survey 

resources, and allow sample collection from easily accessible locations. The high 

resolution LiDAR dataset made it possible to design optimal sampling strategies and 

indentify the topographic controls on the spatial distribution of snow in a manner that was 

not feasible with surveyed measurements. Using the marginal benefits to define the 

spatial distribution of sample densities was important because it decreased total sample 

requirements and directed the use of limited survey resources towards the most important 

regions. 
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In locations where the relative spatial distribution of snow persists during specific 

periods, it may be feasible to estimate snow distribution in unmeasured regions as a 

function of the mean depths at easily measured locations, provided the relative spatial 

distribution is known. In some locations, this could expand the spatial extent and 

improve the accuracy of snow estimates. This approach would also be helpful in regions 

that are difficult to access, dangerous to sample, or when sample requirements exceed 

available resources. 

Future research on the relative spatial and temporal distribution of snow density 

could improve SWE estimates. Jonas et aI., (2009) used calibrated depth-density 

relationships to estimate snow density and calculate SWE from depth measurements 

alone. Their model's uncertainty was of the same order of magnitude as the variability of 

repeated density measurements at one site. Therefore, the combination of the two 

strategies could feasibly lead to further improvements in survey efficiency and total basin 

S WE estimates. 

LiDAR's accuracy for gridded snow depth estimates ± -20 cm (0 from Table 1) 

limits the viability of this technique in shallow, patchy snowpacks because the noise in 

the LiDAR data is on par with the snow depths. The proposed method will be most 

beneficial in large, inaccessible regions with deep snow. This is because only small, 

easily accessible, safe subsections of each region need to be sampled to determine the 

snow distribution for large regions, and errors in LiDAR depth estimates will be small 

compared to the actual snow depths. 
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Recommended Steps for Future Surveys 

1) Decide which combination of discrete regions to use (Figure 18). More regions = 

more accurate but requires more sample resources (people, depth probes, SWE 

tubes). 

Note: Trees 2, 4, 8, 10, 12, and 15% have been converted into maps 

(LiDAR_DEMIDiscrete_Snow_Regions). All other regression trees need to be converted 

into maps before they can be used for surveys. 

2) Import the file of discrete regions into ArcMap and symbolize each region with a 

different color. 

3) Create a new points class shapefile (using a projection ofNAD83, Zone 11North) 

and select easily accessible locations within each of the discrete regions. Since 

the accuracy of hand-held GPS units is usually around 5-20 meters, select sample 

locations that are well inside of the discrete snow regions. 

4) Record the x and y positions, as well as the discrete region number and enter these 

values on the field survey sheets to be filled in by surveyors. 

5) Take 8-12 depth measurements within a 5 meter radius in each discrete region. 

Note: After about 10 measurements, the value of an additional point decreases 

rapidly (Figure 19). 

6) Average the depth and density measurements for each discrete region and 

multiply to get average SWE for each region. 

7) Open ArcMap, import each ofthe discrete regions' files (every cell should = 1). 

Open raster calculator (in spatial analyst). Multiply each region by its average 

SWE value. 
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8) Open the Mosaic to New Raster tool and select each of the files created in Step 7 

as input rasters. The result is a SWE map of the entire watershed. 
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