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Mesoscale simulation techniques have helped to bridge the length scales and time scales

needed to predict the microstructures of cured epoxies, but gaps in computational cost

and experimental relevance have limited their impact. In this work we develop an open-
source plugin epoxpy for HOOMD-Blue that enables epoxy crosslinking simulations of

millions of particles to be routinely performed on a single modern graphics card. We
demonstrate the first implementation of custom temperature-time curing profiles with
dissipative particle dynamics and show that reaction kinetics depend sensitively on the

stochastic bonding rates. We provide guidelines for modeling first-order reaction dy-

namics in a classic epoxy/hardener/toughener system and show structural sensitivity to
the temperature-time profile during cure. We conclude with a discussion of how these

efficient large-scale simulations can be used to evaluate ensembles of epoxy processing
protocols to quantify the sensitivity of microstructure on processing.
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1. Introduction

Epoxy thermosets are widely used in industrial applications as adhesives and coat-

ings1, for encapsulated electronics1, and as matrices for advanced carbon fiber

composite materials2,3. The widespread use of epoxies derives from the low cost

precursor components and the ease with which they may be cured into materi-

als with high chemical resistance, high strength, and low density4. During cure,

epoxy monomers are mixed with monomers of hardening agents, reacting to form

a crosslinked network that transforms from a liquid to a gel, and finally to a vit-

rified glass phase5–7. The highly crosslinked topology of the epoxy-hardener net-

work gives the thermoset excellent hardness and thermal stability, but with low

ductility and low fracture toughness8. In order to enhance the fracture toughness,

thermoplastic toughening agents are added6,8–11. Cure-induced phase separation

of toughener from reacting epoxy and amine suggests that thermoset morphology

depends on how fast polymerization-induced phase separation occurs in relation

to glassy vitrification12. To engineer composites from toughened epoxy thermosets

with customizable mechanical properties, we require a fundamental understanding

of how the cured morphology depends on its ingredients and how it was processed.

Understanding how to control epoxy morphology is important because the me-

chanical properties and reliability of parts made from epoxies depend sensitively on

their microstructure12,13. Raghava studied the effects of poly(ether sulphone)(PES)

molecular weight on phase separation in a tetrafunctional epoxy resin cured with

aromatic anhydrides and concluded that the phase separation of the toughening

agent from the epoxy matrix was a minimum condition for improved fracture tough-

ness of the thermoset matrix14. At weight fractions of 10% PES toughener in a

biphenyl epoxy resin, Mimura et al.15 observed semi continuous phase separated

networks with PES domain sizes of 50-80 nm which corresponded to a 60% increase

in fracture toughness compared to the neat epoxy resin. At 20% PES weight fraction

a continuous interpenetrating network with domain sizes of 1 µm was formed and

the fracture toughness was observed to be 90% greater than the neat epoxy15. The

differences in the fracture toughness of toughened thermosets have been attributed

to the phase separated morphology6,9–11. Domains ranging from 5 nm to 12 µm

have been observed and a number of studies have found that the largest increase in

fracture corresponded to a co-continuous interpenetrating network morphology of

thermoset and thermoplastic12,13,15–17.

In addition to the composition of toughened epoxy blends, the processing path-

way of the material has a significant impact on phase separation of toughen-

ing agents, making the ingredient-processing-performance parameter space compli-

cated. Zhang et al. studied the effects of heating rate during cure on the morphology

of PES toughened multifunctional epoxy systems and observed as the heating rate

is increased the diameter of microphase separated PES domains increased from 9.67

µm to 11.41 µm18. Exploring this landscape through synthesis and processing of

these materials is costly and labor-intensive and points to a clear need for predic-
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tive capabilities to help narrow the scope of viable materials and processes to meet

targeted materials performance.

In principle, computer simulations should be able to assist in the exploration of

processing protocols, but in practice it is challenging to predict epoxy morphology

because of the disparate time scales and length scales that matter. Using atom-

istic models to represent toughened epoxy thermoset structures is impractical be-

cause tens of millions of atoms are needed to represent structures on 100 nm length

scales12,13,15–17,19. Recent atomistic simulations using ReaxFF and LAMMPS mod-

eled crosslinking polymers networks of 4,284 atoms for which mechanical properties

were calculated20,21. The cubic volumes in these simulations are around 4 nm long.

More efficient polymer-specific schemes such as Polymatic22 and template-based

polymerization23 have been devised to tackle the issue of high computational cost

of atomistic reaction modelling. Both of these models generated crosslinked net-

works of hundreds of reactive units where system sizes reach a few nm, but these

length-scales are far from the experimentally relevant length-scales (100’s to 1000’s

of nm). These models also require customization for simultaneous diffusion dynam-

ics. For epoxy microstructure simulations, we therefore require more coarse-grained

models.

Two types of coarse-grained models have been used to model epoxy curing. The

first type involves mapping specific chemical moieties within a monomer to coarse-

grained beads such that a single monomer may be represented by more than one

coarse-grained simulation elements, also known as “beads” in the context of poly-

mer science. Yang et al.24,25 represented a tetra-functional epoxy phenol novolac

(EPN) monomer and bisphenol-A (BPA) monomer using an 8 bead and 3 bead CG

model respectively. Komarov et al.26 simulated the curing of cycloaliphatic epoxy

resin (CAER) where the epoxy monomer and curing agent monomer were repre-

sented by a 7 site and 3 site CG model respectively. The coarse-grained beads in

these models typically use an LJ-like non-bonded interaction. The nature of these

“hardcore” models makes it suitable to study mechanical properties of cured epoxies

since it allows for entanglements27. However, this very nature of “hardcore” models

also make them difficult for modelling reaction induced phase seperation (RIP) of

toughened epoxies due to energetic traps that prevent phase separation. The second

type of coarse-graining involve mapping entire monomers to coarse-grained beads.

These models have typically used either an LJ-like potential28 or Dissipative Parti-

cle Dynamics (DPD)19,29 for the non-bonded interactions. The DPD potential30,31

models fluidic elements which can pass through each other making it suitable for

modelling RIP in toughened epoxies. Liu et al. developed DPD simulations with

stochastic bonding routines with 248,832 coarse-grained simulation elements, and

achieved cures of around 80% in 1× 106 steps19. Stochastic bonding routines have

been successfully applied to polystyrene polymerization, where thermostat sensi-

tivity to the bonding model was observed29. The work of Ref. 32 takes a similar

stochastic reaction approach in DPD, but shows that the conversion profiles in sim-

ulations are orders of magnitude too fast with respect to experiments. Langeloth et
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al. achieve nearly 80% cure with CG simulations accessing as much as 32 × 10−9

s and 10 nm length-scales33,34. Free radical living polymerization reaction kinetic

sensitivity to bonding rates are shown in systems of 24,000 DPD spheres35. In

Ref. 36 DPD simulations with 108,062 particles are carried out for 8 × 105 steps

and in Ref. 37 the same procedure is used to achieve 92% crosslinking. In short,

reactive models of epoxies are approaching 10-100 nm lengths and experimental

cure fractions, but additional work is needed to simultaneously resolve reaction and

diffusion dynamics for systems with more than a few hundred thousand particles.

To maximize experimental relevance, it is desirable for epoxy curing simulations

to (1) represent dozens, if not thousands, of nanometers, (2) simultaneously model

reaction and diffusion, (3) model experimental temperature-time curing profiles,

and (4) allow high-throughput screening of thousands of experiments per week.

Atomistic simulations cannot meet criterion 1. Criteria 2 and 3 can be met by im-

proving or extending reaction models with mesoscale methods, and is the focus of

the present work. Criterion 4 is desirable because isolated simulation trajectories are

not adequate for studying nonequilibrium dynamics with equilibrium-based tech-

niques such as DPD. That is, we require high-throughput simulations that enable

calculations of uncertainties in simulated results and efficient evaluation of large

parameter spaces to validate models and inform engineering processes.

In this work we implement an open-source plugin to HOOMD-Blue38,39 that

enables high-throughput simulation of crosslinking epoxy thermosets. HOOMD-

Blue is a molecular dynamics engine written in C++ and CUDA with an easy to

user python API. This allows users to leverage the easy to use nature of Python

and the speed of graphic processing units. We fully describe our crosslinking algo-

rithm and provide access to our plugin’s source code. We characterize how different

bonding rates influence the overall bonding kinetics and give guidelines for match-

ing experimental rates. We model a classic toughened epoxy thermoset diglycidyl

ether of bisphenol A (DGEBA40) epoxy with amine hardener 4-4’-diaminodiphenyl

sulphone (DDS4-4’41), and PES toughener and demonstrate its morphology depen-

dence on processing. In sum, we present a new computational tool that enables for

the first time high throughput simulations representing millions of atoms over tens

of millions of steps that achieve over 95% cure in a few hours.

2. Methods

We implement an open-source (GNU General Public License v3.0) dynamic bond-

ing plugin that stochastically adds epoxy-amine bonds during dissipative particle

dynamics performed with the HOOMD-Blue simulation engine. The source code is

available at https://bitbucket.org/cmelab/epoxpy42.

2.1. HOOMD-Blue

High-throughput molecular simulations now routinely leverage graphics process-

ing units (GPUs) to parallelize and therefore speed up computational bottlenecks.

https://bitbucket.org/cmelab/epoxpy
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Packages including HOOMD-Blue, LAMMPS, and AMBER have demonstrated

speedups between 2x to 10x, depending on which systems are used as benchmarks

and how many core kernels are parallelized38,43–45. We use HOOMD-Blue to per-

form the DPD simulations implemented here. HOOMD-Blue is used here for its

combination of performance, accessibility, and extendibility. After initializing on the

CPU, HOOMD-Blue simulations with thousands to millions of simulation elements

can easily be performed on a single modern GPU (e.g., NVIDIA Tesla K20 or P100)

with negligible communication to the host CPU. This ability to perform large-scale

simulations on a single hardware accelerator is favorable for high-throughput sim-

ulation studies on modern supercomputers. Modern supercomputers with multiple

GPUs per CPU enable multiple, asynchronous molecular simulations to be per-

formed in parallel on a single node. Because HOOMD-Blue is an importable python

module the scientific computing capabilities of other python libraries (e.g. numpy

and scipy) are easily leveraged for structuring simulation set-up and analysis.

While python enables quick implementation of complex modeling ideas, often-

times performance improvements to python routines can be realized by using ma-

chine code optimized and compiled for specific hardware. HOOMD-Blue’s plugin

API makes it relatively straightforward to add C++ or CUDA routines that impose

constraints or add functionality to molecular simulations. In this work we describe

performance improvements necessary for high-throughput simulations of reacting

epoxies via python and C++ implementations of our dynamic bonding algorithm.

2.2. Dissipative particle dynamics

We model reacting mixtures of DGEBA, DDS and PES toughener using

coarse-grained representations and dissipative particle dynamics19,30. Difunctional

DGEBA epoxides are modeled with a single coarse-grained simulation element

(“bead”), as are tetrafunctional amine molecules, and monomers of PES (Figure 1).

Each bead is a spherical simulation elements of the same size (diameter = 1σ). Here

we consider PES chains of 10 repeat units. Throughout this work we will use the

colors red, blue, and green to distinguish these three chemical species, respectively

(A=amine=red, B=epoxy=blue, C=toughener=green). Throughout this work we

consider equifunctional blends of amine and epoxy, with one 10-mer chain of C per

10 beads of A, so the overall species ratios A:B:C are 1:2:2, or 20% A, 40% B, and

40% C.

The DPD implementation in HOOMD-Blue46 provides parallel force calcula-

tions and position integrations of the method originally developed by Hoogerbrugge

and Koelman30. The force on bead i from neighbors j (where rij ≤ 1) depends on

three types of forces (Equation 1).

Fi =
∑
i6=j

FCij + FRij + FDij (1)

The conservative force

FCij = aijω
C(rij)r̂ij (2)
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Amine Epoxy Toughener

A B C

DDS DGEBA PES

Fig. 1: Amine, epoxy, and toughener monomers are represented with spherical sim-

ulation elements (“beads”).

is a soft repulsive force along the center-to-center vector r̂ij, where rij = ri − rj,

rij = |rij| and r̂ij = rij/|rij|. The force has a maximum value of aij and ωC is a

weight function, typically

ωC(rij) =

{
1− r

rij
(r ≤ rc)

0 (r > rc)
(3)

,where rc = 1 is the bead center-to-center cutoff distance past which beads do

not interact. This linearly ramping soft repulsive force makes it easy to initialize

random configurations for polymer systems and allows for relatively large timesteps

(dt ≤ 0.04)31.

The random force

FRij = σωR(rij)ζij∆t
−1/2r̂ij (4)

models random fluctuations due to thermal noise and the dissipative force

FDij = −γωD(rij)(r̂ij.vij) (5)

models viscous drag. The amplitudes σ and γ of the random and viscous forces,

respectively, are related to each other by the fluctuation-dissipation theorem σ2 =

2γkBT
47.

Here we determine the repulsion parameters aAA, aAB , aAC , aBB , aBC , and

aCC from atomistic molecular dynamics simulations. Solubility parameters

δi =
√
Eicoh/Vi (6)

are calculated from the cohesive energy density Ecoh and specific volume Vi of

molecules in atomistic NPT simulations equilibrated at 11 temperatures ranging

from 273 K to 600 K (Appendix A). These data are used to solve for the Flory-

Huggins interaction parameters

χij =
V

kBT
(δi − δj)2 (7)

and the DPD interaction parameters

aij =
75kBT

ρn
+ ∆a (8)



7

via an empirical relationship

χij = 0.286∆a (9)

determined for number density ρn = 3, which we also employ here31.

The morphologies obtained with all-atom MD simulations using the OPLS-2005

force field are then compared with that of the coarse grained DPD model for valida-

tion48. The DPD interaction parameters averaged over the temperatures sampled

between 273 K and 600 K are used here (Table I). The mass unit M = 278.82

Table I: Repulsion parameters aij for amines (A), epoxies (B), and toughener (C)

beads determined by Hildebrand solubility parameters from atomistic molecular

dynamics.

A B C

A 25.000 30.729 25.003

B 25.000 30.532

C 25.000

g/mol is calculated from the weighted average of the masses of the A, B and C

beads M = MA ∗φA+MB ∗φB +MC ∗φC , where MA = 248.3 g/mol, MB = 340.42

g/mol, and MC = 232.46 g/mol. Ratios of A:B:C are 1:2:2 throughout this work.

The average volume V is calculated as M/ρ for the temperature of interest.

The length scale is calculated as L = (V ρn)1/3 where ρn is the reduced number

density of beads. The energy unit kBT used here corresponds to TC = 439 K. The

fundamental units of energy, mass and distance are 0.873 kcal/mol, 272.82 g/mol,

and 1.06 nm, respectively, where the calibration temperature TC = 439.36 K. The

derived units of time (τ) and force (F ) are 9.29 ps and 5.7e-12 N respectively.

We use signac and signac flow for data collection and job submission49,50.

DPD simulations are initialized using mBuild51 followed by a 5000-step NVE sim-

ulation at 1760 K to generate unique random configurations for each run. Velocity

distributions consistent with the starting temperature of a desired run are then set.

Bonds between toughener monomers and between epoxies and amines are modeled

with harmonic springs, with kharmonic = 4kBT/r
2
c and equilibrium spacing r0 = 0 as

in Ref. 52 and Ref. 53. We employ velocity-Verlet integration of Newton’s equations

of motion (dt = 0.01) in the NVE ensemble54. Unless otherwise stated, the fiducial

simulation parameters listed in Table II describe each simulation in this work.

2.3. Reaction model

Epoxy-amine crosslinking is modeled by the addition of bonds during DPD simu-

lations, similar to the method of Liu et al. (Algorithm 1)19. Every τB steps we call

the bonding routine, wherein a fraction I = nB
NB

of the number of the total creatable
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Table II: Fiducial simulation parameters

N 50,000

L 25.54 σ

dt 0.01 τ

ρn 3

γ 4.5 M/τ

kharmonic 4 kBTC/r
2
c

r0 0 σ

nB 0.000025 NB
τB 1 dt

Ea 1 kBTC

bonds NB are added (Figure 2). The bonding reactions occur stochastically as in

Fig. 2: During a bonding step, candidate bonds (dashed lines) are stochastically

converted to bonds (solid lines) between amine/epoxy pairs that have reactive sites

remaining and are sufficiently close.

Refs. 19 and 29, where the probability of forming a bond

p(Ea) = e
− Eaα
kBT (10)

depends on the activation energy Ea. Here, α describes the relative activation energy

of secondary (and higher order) reactions to primary bond formation

α =

{
1 if [R(pi) or R(pj)] < 1

α2 otherwise
(11)

, where R(pX) gives the bond rank of particle pX . Here, α2 = 3.
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Algorithm 1 Amine-Epoxy bonding

1: nB ≥ 1, τB ≥ 1

2: repeat every τB time steps

3: for each bond attempt i in nB do

4: pi is a randomly chosen particle of type A or B

5: if pi can bond then

6: Distance sort neighbors of complimentary type to pi
7: for each neighbor pj do

8: if pj can bond and dist(pi, pj) < rbond then

9: Calculate p(Ea, α) using Equation 10 and Equation 11

10: if p(Ea) > random(0, 1) then

11: Bond pi and pj
12: break

13: end if

14: end if

15: end for

16: end if

17: end for

18: until t == tend

The dist function in line 8 gives the distance between the particles pi and pj .

random in line 10 produces a uniform random number between 0 and 1.

3. Results

We perform DPD simulations of reacting epoxy thermosets with three aims. First,

we identify the minimum system size necessary to observe toughener phase separa-

tion using simulated scattering experiments. Second, we vary A to determine which

bonding frequencies best match experimental reaction kinetics. Third, we test two

curing protocols and demonstrate morphological sensitivity to processing.

We also profiled the performance of three implementations of Algorithm 1 to

optimize its performance while attempting the least amount of coding. After opti-

mization, simulations with N = 5 × 104 achieve 95% cure in about 45 wall-clock

minutes and the N = 2× 106 simulations achieve 95% cure in about 7.5 wall-clock

hours. We note that this ability to simulate large simulation volumes in reason-

able amounts of time enabled the identification of a minimum system size neces-

sary to observe microstructural features using this model. A detailed description

of performance profiling and optimization strategies we employ are given in the

Supplementary Information (SI).
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3.1. Morphology Characterization

We characterize the degree of toughener phase separation by inspecting the C-

C structure factor at low wave number, calculated using diffractometer from

Ref. 55. Five independent replicate simulations with system sizes between 5 × 104

and 3× 106 were run using the fiducial parameters (Table II) to obtain these C-C

structure factors. Figure 3 summarizes our finding that large simulation volumes

are needed to observe the length scales over which phase separation occurs by

comparing C-C structure factors. In all seven cases 95% cure fraction is achieved,

but the ≈ 35 nm-wide toughener domains in the N ≥ 1 × 106 simulations appear

as macrophase separation occurring in the N ≤ 5× 105 cases where the simulation

volume is not large enough to resolve 35 nm features.

Fig. 3: C-C structure factors show ≈ 35 nm toughener domains emerge for N >

1×106 system sizes, while N = 5×104 systems demonstrate macrophase separation.

Blue stars indicate the wavenumber corresponding to half the box length (the largest

resolvable length scale with a periodic simulation volume), and red dots indicate

local scattering maxima corresponding to the phase-separated feature size. The

error bars indicate standard error.

Figure 4 reveals the average feature size(〈qmax〉) of this system to be 0.17 nm−1

or 37 nm. In order to resolve this feature size using the diffractometer, it is

necessary to have a system with L/2 ≥ 37 nm which is satisfied by N ≥ 1.2× 106.

The fact that this feature size remains intact over a large range of system sizes

indicate that this is a characteristic size of this model and not a simulation artifact.
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Fig. 4: C-C structure factors forN = 5×104 toN = 3×106 show that microstructure

can consistently be detected for N ≥ 1.2 × 106. The blue stars indicate the wave

vector corresponding to the half box length and the red dot indicates the detected

first peak. The structure factor intensities are shifted up in intensity for visibility.

The average wave vector corresponding to the characteristic feature size (〈qmax〉 =

0.17nm−1) is shown in dotted line and the color bar indicates N.

These results show that co-continuous domains of thermoset and thermoplastic

can be efficiently simulated with the coarse-grained model and bonding algorithm

used here. We pause to emphasize that these particular feature sizes and morpholo-

gies are not meant to be predictive for DGEBA/DDS/PES, because the model

used here lacks key features specific to those chemistries, but serves as a qualitative

validation that features important to epoxies are accessible. The 37 nm toughener

domains observed here are a factor of 40 smaller than the micron-scale domains ob-

served in some experiments, but represent the largest domains observed to date in

reactive DPD models. This discrepancy in system sizes for microstructure detection

reinforces the importance of large-scale volumes for predicting these morphological

features.

3.2. Calibration of Reaction Kinetics

Simulation of bonding dynamics with coarse-grained models requires the simulated

reaction kinetics to be matched to experimental time scales. The reaction rate con-

stant

k = He
−Ea
RT (12)

depends on the reaction activation energy Ea and prefactor H. Due to the ac-

celerated dynamics in coarse-grained models, it is not necessarily the case that

experimentally-determined Ea and H will model the desired kinetics in a model
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trajectory. The degree of cure X measures the fraction of possible bonds that have

formed in a curing epoxy, and its rate of change

dX

dt
= k(t)f(X) (13)

is modeled by the k and f(X), which is a polynomial in X describing reaction

kinetics56. For example, f(X) = X∞ − X for first-order (FO) reaction kinetics,

f(X) = (X∞ − X)2 for second-order (SO), f(X) = (X∞ − X)(1 + CX) for self-

accelerated first-order (SAFO), and f(X) = (1−X)(X∞−X)(1 +CX). Here, X∞
is the degree of cure at t = ∞ and C is a temperature-independent acceleration

constant. In the reaction model implemented here, the prefactor H is related to the

number of bonds we attempt per call to the bonding routine (nB) and the steps

between bonding routine calls (τB).

To determine reaction sensitivity to the ratio A = nB
τB

, we perform high-

throughput DPD simulations with dynamic bonding. Isothermal curing simula-

tions are performed until α∞ = 0.95 is achieved, using the fiducial parame-

ters, except nB , τB and kBT are varied. The number of bonds to attempt per

bonding-step is expressed as a fraction of the total number of bonds (NB) that

can be formed from initial concentrations of amines and epoxy monomers. Here,

nB ∈ {0.000025NB , 0.00005NB , 0.0001NB , 0.01NB}, τB ∈ {1, 2, 10, 20, 40, 80, 100},
and kBT ∈ {0.2, 0.5, 1, 2, 3, 4, 5, 6}, for a total of 224 parameter combinations. At

each parameter combination we perform twenty repeat trials, for a total of 4480 cal-

ibration simulations performed over three weeks. After each simulation completes,

the cure profile X(t) is fit with FO, SO, SAFO, and SASO models and the mean

square deviation R2 is calculated for each of the four models. A representative

cure profile and associated amine concentrations is shown in Figure 5. The Python

plotting library Matplotlib is used to generate the plots within this work57. For

a given bonding rate A we average the R2 across the simulated temperatures to

get an aggregate measure
〈
R2
〉

for how well each kinetic model matches simulated

reaction kinetics.
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Fig. 5: Representative cure fraction (dashed) and amine concentration trajectories.

An indicates an amine with n formed bonds.

Fig. 6: Average fit metric
〈
R2
〉

for the four kinetic models as a function of bond

frequency A = nB
τB

.

Figure 6 summarizes kinetic model sensitivity to bonding rate A. We find the

first-order kinetic model matches our simulation results near perfectly, and has

the best fit when A ≤ 1. It is expected that the FO model would best fit our

reaction model because we do not model heat release with each formed bond and



14

because equimolar ratios of unbonded A and B are maintained as the reaction

proceeds. We note that experimentally, we would expect the exothermic reactions

of the amine and epoxy modeled here to give rise to SASO kinetics56. With the

exception of the SASO model, the general trend is towards higher accuracy fits with

lower A. The observation that simulated bonding kinetics so sensitively depend on A

suggests that coarse-grained simulations of dynamically crosslinked epoxies require

characterization and justification of stochastic bond frequencies. The sensitivity of

bonding kinetics to A is highlighted between Figure 7(a) and Figure 7(b), where

changing A from 2 to 0.1 causes cure fractions drop significantly over the same time

scale. For the first order reaction model we find a general trend of improved accuracy

with smaller A(Table III). When A ≤ 1, the average quality of fit is greater than

0.9945, but rapidly decreases for A > 1. We find that the accuracy of the FO model

is best for temperatures close to the calibration temperature 0.5kBTC < kBT <

4kBTC . We note that the optimal A values obtained in this study are sensitive to

the time step (dt). Further studies will aim to explore the sensitivity of A to dt.

Again we emphasize that A < 1 is not necessarily the optimal choice for modeling

DGEBA/DDS crosslinking, but that reaction kinetics can be calibrated to desired

experimental kinetics with high throughput simulations. A fundamental challenge

with using DPD to simultaneously model reaction and diffusion arises from the fact

that particles diffuse as fast as momentum, rather than a factor of 1000 slower31,

so simulation timescales derived from mass, distance, and energy are not straight-

forward to interpret. The ability to independently tune reaction timescales with

bonding frequency A and diffusion timescales with γ offer promise for developing

reactive DPD simulations that are at least empirically informed and predictive, if

not broadly transferable.
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(a) A = 2.0 (b) A = 0.1

Fig. 7: FO model fits of simulated XT for (a) A = 2.0 and (b) A = 0.1. Reducing

A increases R2 and decreases XT .
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Table III: Fit quality (R2) for the FO model

A kBT Best τB
Best nB

(Fraction of NB)
H R2 < R2 >

0.1

0.5 40 1.0e-4 0.0164 0.9823

0.9954

1.0 40 1.0e-4 0.0081 0.9979

2.0 20 5.0e-4 0.0090 0.9991

4.0 10 2.5e-5 0.0100 0.9992

6.0 20 5.0e-5 0.0103 0.9986

0.4

0.5 5 5.0e-4 0.0194 0.9793

0.9932

1.0 10 5.0e-4 0.0251 0.9928

2.0 10 1.0e-4 0.035 0.9992

4.0 10 1.0e-4 0.0389 0.9979

6.0 5 1.0e-4 0.04 0.9970

0.8

0.5 5 1.0e-4 0.0262 0.9785

0.9917

1.0 5 1.0e-4 0.0491 0.9932

2.0 5 1.0e-4 0.0672 0.9983

4.0 5 1.0e-4 0.0745 0.9954

6.0 5 1.0e-4 0.0764 0.9932

1.0

0.5 1 2.5e-5 0.0297 0.9759

0.9907

1.0 1 2.5e-5 0.0611 0.9947

2.0 1 2.5e-5 0.0830 0.9978

4.0 1 2.5e-5 0.0910 0.9943

6.0 1 2.5e-5 0.0940 0.9910

2.0

0.5 1 5.0e-4 0.0495 0.9691

0.9832

1.0 1 5.0e-4 0.1155 0.9962

2.0 1 5.0e-4 0.1538 0.9929

4.0 1 5.0e-4 0.1662 0.9817

6.0 1 5.0e-4 0.1691 0.9765

4.0

0.5 100 1.0e-2 0.0943 0.9776

0.9661

1.0 1 4.0e-2 0.2142 0.9959

2.0 100 1.0e-2 0.2650 0.9774

4.0 100 1.0e-2 0.2743 0.9464

6.0 100 1.0e-2 0.2729 0.9333

5.0

0.5 80 4.0e-2 0.1165 0.9791

0.9537

1.0 80 4.0e-2 0.2555 0.9943

2.0 80 4.0e-2 0.3114 0.9646

4.0 80 4.0e-2 0.3140 0.9260

6.0 80 4.0e-2 0.3151 0.9045

10.0

0.5 40 4.0e-2 0.2157 0.9879

0.8808

1.0 40 4.0e-2 0.4407 0.9785

2.0 40 4.0e-2 0.4646 0.8940

4.0 40 4.0e-2 0.4429 0.7945

6.0 40 4.0e-2 0.4293 0.7490
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3.3. Cure Path Dependence

Two temperature profiles are tested to characterize how structural evolution of

epoxy networks depend on the temperature history during cure (Figure 8). Isother-

mally cured samples are initialized at the cure temperature and maintained there

throughout the simulation (1× 107 steps). Linearly ramped samples are initialized

at 300 K and then linearly heated to the final cure temperature over 1× 107 steps.

The bonding is stopped when the sample is cured 95 % (Xcut = 0.95). The linearly

ramped simulation at 850 K reaches this cure fraction at ≈ 5 × 106 timesteps as

seen in Figure 8. Curing simulations with each temperature profile are performed

with fiducial simulations with the exception of Ea=2 kBTC at each of five final tem-

peratures T ∈ {200, 425, 600, 850, 1000} K. Ten independent replicate simulations

are performed at each cure temperature for both temperature profiles to quantify

uncertainties.

Fig. 8: Isothermal curing results in higher cure fraction as a function of time during

the first half of the simulation at 850 K, while linear ramps allow for more structural

rearrangements at the point each cure protocol reaches the same cure fraction.

As expected, the lower average temperature of the linearly ramped cures results

in lower curing at fixed cure time before reaching Xcut as seen in Figure 8.

In each simulation we monitor the sizes of the largest and second largest

molecules using NetworkX58. In simulations where the molecular weights of these

two molecules diverge, we deem the divergence time the gel point. The largest and

second-largest molecule sizes are useful metrics for measuring gelation because once

a percolating cluster exists it is more likely for clusters to bond to the percolating

cluster than to grow independently. Therefore, a divergence in the first and second

largest cluster sizes is a good proxy for when a percolating cluster exists. Average

final cure percentages and gel points for each temperature are shown in Figure 9.
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Both profiles show Xgel ≈ 0.5 for all temperatures. It is expected that Xgel should

depend on the functionality and initial concentrations of the reacting molecules,

but be independent of temperature and processing.56,59 Gelation for the chemical

species considered in our model is known to occur experimentally around 0.6 cure

fraction59,60 and this property is a consequence of the percolation threshold. The

Xgel reported here are lower than expected for with DGEBA/DDS blends. Because

our current dissipative dynamics do not capture chain entanglements and because

we omit the exothermic reaction effects it is not surprising that Xgel does not pre-

cisely match experiments. At a low temperature of 200 K,the energetic favorability

of amines to prefer mixing with tougheners rather than with epoxy(Table I), in com-

bination with the slower diffusion of particles from a fully mixed initial condition,

the linear ramp curing resulted in a higher cure fraction(Figure 9).

Fig. 9: Except for 200 K, all the samples reach Xcut = 0.95. We observe Xgel ≈ 0.5

for all temperatures.

Figure 10(b) shows that the isothermal cures give rise to larger feature sizes

than the linear ramped case where the toughener completely phase separate from

the resin. As expected, the standard error of structure factors for the macro phase

separated samples in Figure 10 are lesser than the samples which are not macro

phase separated.
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(a) Cure Fraction = 0.10 (b) Cure Fraction = 0.95

Fig. 10: Structure evolves differently for the samples cured with different temper-

ature profiles. C-C structure factors are shown for samples taken at 10% cure and

95% cure. The error bars show standard error.

We observe differences in how structures evolve between the isothermal and

linear ramp cures. At 10% cure, the linearly cured samples have larger feature sizes

compared to the isothermally cured samples based on the higher intensity at low

wave numbers(Figure 10(a)). This is in contrast to the final structures for the two

curing protocols, where isothermal cure results in larger sized features.

The observation that two different temperature histories give rise to different

morphologies at the same cure fractions is important because this is a qualitative

modeling feature needed to understand via simulations how processing influences

structure. The low standard error for the structure factors further reinforce that

the temperature histories curing a cure cycle has a strong influence on the resul-

tant microstructure. The ability to set generic temperature-time histories for curing

epoxies at 90 nm length scales enables the application of high throughput simula-

tions to this problem of industrial interest. Cure path sensitivities reported here

are not expected to hold for DGEBA/DDS/PES systems in particular, though we

expect calibrated models using the techniques reported here will advance towards

being predictive.

4. Conclusions

DPD simulations of millions of reacting particles can be performed with

experimentally-relevant temperature profiles in a few hours using epoxpy and

HOOMD-Blue on K20 and P100 GPUs from NVIDIA. Even though the bonding

algorithm is written specifically as a plugin for HOOMD-Blue, it should be fairly

straightforward to implement it in other MD tools such as LAMMPS as long they

permit adding bonds on-the-fly and provides access to their neighborlist. Given the
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object-oriented nature of epoxpy, extending it for other MD packages is also fea-

sible. With coarse-grained beads representing reactive monomers, million-particle

simulations approach representation of cubic volumes with 100 nm sides, and de-

sired reaction kinetics can be tuned by adjustment of the stochastic bonding rates,

an essential validation step. Here we find that to match first order reaction kinet-

ics, very small bond rates (0.002% of possible bonds) are required. Irrespective of

the kinetic model, our findings support the heuristic that low bonding rates are

necessary to match cure kinetics because of the fast transport enabled by DPD.

These observations inform a possible two-step process for calibrating nonequilib-

rium bonding simulations of reactive polymers: (1) Match cure kinetics to exper-

iments with stochastic reaction rates, and (2) use the dissipative drag parameter

γ to match structural relaxation times. We demonstrate the present model cap-

tures temperature history dependence on microstructure, that co-continuous do-

mains spontaneously phase separate of crosslinking with gelation transitions that

all qualitatively match experiments. We also find that a minimum system size of

1.2 × 106 particles is necessary to clearly detect the peak in the C-C structure

factor which characterizes microphase separation. With this ability to capture the

relevant structure and dynamics of crosslinking polymers, future work will focus on

developing and validating models for specific reacting systems and incorporating

interaction potentials that enable chain entanglements to be modeled.
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Environmental impact assessment of aviation emission reduction through the

implementation of composite materials, International Journal of Life Cycle As-

sessment 20(2):233–243, 2015. doi:10.1007/s11367-014-0824-0.

4. Xu Y, Hoa SV, Mechanical properties of carbon fiber reinforced epoxy/clay

http://www.grandviewresearch.com/industry-analysis/epoxy-resins-market
http://www.grandviewresearch.com/industry-analysis/epoxy-resins-market


REFERENCES 21

nanocomposites, Composites Science and Technology 68(3-4):854–861, 2008.

doi:10.1016/j.compscitech.2007.08.013.

5. Wang X, Gillham JK, Competitive primary amine/epoxy and secondary

amine/epoxy reactions. Effect on the isothermal time-to-vitrify, Journal of

Applied Polymer Science 43(12):2267–2277, 1991. doi:10.1002/app.1991.

070431216.

6. Mimura K, Ito H, Fujioka H, Toughening of epoxy resin modified with in situ

polymerized thermoplastic polymers, Polymer 42(22):9223–9233, 2001. doi:

10.1016/S0032-3861(01)00460-8.

7. Ming Z, Xuefeng A, Bangming T, Xiaosu Y, TTT Diagram Used to Control

Phase Structure of 2/4 Functional Epoxy Blends for Advanced Composites, Chi-

nese Journal of Aeronautics 22(4):449–452, 2009. doi:10.1016/S1000-9361(08)

60124-7, URL http://dx.doi.org/10.1016/S1000-9361(08)60124-7.

8. Levita G, Petris S, Marchetti a, Lazzeri a, Crosslink density and fracture tough-

ness of epoxy resins, Journal of Materials Science 26(9):2348–2352, 1991. doi:

10.1007/BF01130180.

9. Iijima T, Miura S, Fukuda W, Tomoi M, Effect of cross-link density on mod-

ification of epoxy resins by N-phenylmaleimide-styrene copolymers, European

Polymer Journal 29(8):1103–1113, 1993. doi:10.1016/0014-3057(93)90317-9.

10. Di Pasquale G, Motto O, Rocca A, Carter J, McGrail P, Acierno D,

New high-performance thermoplastic toughened epoxy thermosets, Polymer

38(17):4345–4348, 1997. doi:10.1016/S0032-3861(96)01031-2, URL http://

www.sciencedirect.com/science/article/pii/S0032386196010312.

11. Blanco I, Cicala G, Faro CL, Recca A, Development of a toughened

DGEBS/DDS system toward improved thermal and mechanical properties by

the addition of a tetrafunctional epoxy resin and a novel thermoplastic, Journal

of Applied Polymer Science 89(1):268–273, 2003. doi:10.1002/app.12179.

12. Yamanaka K, Inoue T, Structure development in epoxy resin modified with

poly(ether sulphone), Polymer 30(4):662–667, 1989. doi:10.1016/0032-3861(89)

90151-1.

13. Brooker RD, Kinloch AJ, Taylor AC, The Morphology and Fracture Proper-

ties of Thermoplastic-Toughened Epoxy Polymers, The Journal of Adhesion

86(7):726–741, 2010. doi:10.1080/00218464.2010.482415, URL http://www.

tandfonline.com/doi/abs/10.1080/00218464.2010.482415.

14. Raghava R, Development and characterization of thermosetting-thermoplastic

polymer blends for applications in damage-tolerant composites, Journal of Poly-

mer Science Part B: Polymer Physics 26(1):65–81, 1988.

15. Mimura K, Ito H, Fujioka H, Improvement of thermal and mechanical properties

by control of morphologies in PES-modified epoxy resins, Polymer 41(12):4451–

4459, 2000. doi:10.1016/S0032-3861(99)00700-4.

16. Kim YS, Kim SC, Properties of polyetherim-

ide/dicyanate semi-interpenetrating polymer network having the morphology

spectrum, Macromolecules 32(7):2334–2341, 1999. doi:10.1021/ma981083v.

http://dx.doi.org/10.1016/S1000-9361(08)60124-7
http://www.sciencedirect.com/science/article/pii/S0032386196010312
http://www.sciencedirect.com/science/article/pii/S0032386196010312
http://www.tandfonline.com/doi/abs/10.1080/00218464.2010.482415
http://www.tandfonline.com/doi/abs/10.1080/00218464.2010.482415


22 REFERENCES

17. Yu Y, Zhang Z, Gan W, Wang M, Li S, Effect of polyethersulfone on the me-

chanical and rheological properties of polyetherimide-modified epoxy systems,

Industrial and Engineering Chemistry Research 42(14):3250–3256, 2003. doi:

10.1021/ie0210309, URL http://www.scopus.com/inward/record.url?eid=

2-s2.0-0037999910{&}partnerID=40{&}md5=

ca1fbe669aabe01f1dcd08d6b57c3e4e.

18. Zhang J, Guo Q, Fox BL, Study on thermoplastic-modified multifunc-

tional epoxies: Influence of heating rate on cure behaviour and phase

separation, Composites Science and Technology 69(7-8):1172–1179, 2009.

doi:10.1016/j.compscitech.2009.02.016, URL http://dx.doi.org/10.1016/j.

compscitech.2009.02.016.

19. Liu H, Li M, Lu ZY, Zhang ZG, Sun CC, Cui T, Multiscale Simulation Study

on the Curing Reaction and the Network Structure in a Typical Epoxy System,

Macromolecules 44(21):8650–8660, 2011. doi:10.1021/ma201390k, URL http:

//pubs.acs.org/doi/abs/10.1021/ma201390k.

20. van Duin ACT, Dasgupta S, Lorant F, A GW, ReaxFF: A Reactive Force Field

for Hydrocarbonds, Journal of Physical Chemistry A 105(41):9396–9409, 2001.

doi:10.1021/jp004368u.

21. Odegard GM, Jensen BD, Gowtham S, Wu J, He J, Zhang Z, Predicting me-

chanical response of crosslinked epoxy using ReaxFF, Chemical Physics Let-

ters 591:175–178, 2014. doi:10.1016/j.cplett.2013.11.036, URL http://dx.

doi.org/10.1016/j.cplett.2013.11.036.

22. Abbott LJ, Hughes JE, Colina CM, Virtual synthesis of thermally cross-linked

copolymers from a novel implementation of polymatic, Journal of Physical

Chemistry B 118(7):1916–1924, 2014. doi:10.1021/jp409664d.

23. Gissinger JR, Jensen BD, Wise KE, Modeling chemical reactions in classical

molecular dynamics simulations, Polymer 128:211–217, 2017. doi:10.1016/j.

polymer.2017.09.038, URL https://doi.org/10.1016/j.polymer.2017.09.

038.

24. Yang S, Qu J, Coarse-grained molecular dynamics simulations of the ten-

sile behavior of a thermosetting polymer, Physical Review E 90(1):012601,

2014. doi:10.1103/PhysRevE.90.012601, URL https://link.aps.org/doi/

10.1103/PhysRevE.90.012601.

25. Yang S, Cui Z, Qu J, A coarse-grained model for epoxy molding com-

pound, Journal of Physical Chemistry B 118(6):1660–1669, 2014. doi:10.1021/

jp409297t.

26. Komarov PV, Yu-Tsung C, Shih-Ming C, Khalatur PG, Reineker P, Highly

Cross-Linked Epoxy Resins: An Atomistic Molecular Dynamics Simulation

Combined with a Mapping/Reverse Mapping Procedure, Macromolecules

40(22):8104–8113, 2007. doi:10.1021/ma070702+, URL http://dx.doi.org/

10.1021/ma070702+.
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