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ABSTRACT

The use of rotation numbers in the classification of regular closed curves in
the plane up to regular homotopy sparked the investigation of winding numbers
to classify regular closed curves on other surfaces. Chillingworth [1] defined
winding numbers for regular closed curves on particular surfaces and used them
to classify orientation preserving regular closed curves that are based at a fixed
point and direction. We define geometrically a group structure of the set of
equivalence classes of regular closed curves based at a fixed point and direction.
We prove this group structure coincides with the one introduced by Smale [9]
via a weak homotopy equivalence. The set of equivalence classes of orientation
preserving regular closed curves is a subgroup. This thesis investigates the
relationship between this subgroup and the winding number of each element.
Specifically, it is proven that this subgroup is isomorphic to the direct product
of the integers with the group of orientation preserving closed curves up to
homotopy where the isomorphism sends an equivalence class to its winding
number and corresponding homotopy class. Using this result, we describe the

subgroup for several surfaces by depicting representatives of generators.
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CHAPTER 1

INTRODUCTION

Whitney [11] launched the investigation of rotation numbers of regular closed
curves in the plane. Geometrically, the rotation number is the net angle the
tangent vector rotates through as the curve is traversed. He used rotation
numbers to classify regular closed curves in the plane up to regular homotopy
and gave a simple method of calculating the rotation number of a given regular
closed curve in the plane. These results allow us to easily find representatives

of each regular homotopy class.

It later became the goal of Reinhart [8] and Chillingworth [1] to extend these
results by defining a winding number for regular closed curves on other surfaces.
Using his definition of winding number, Chillingworth classified orientation
preserving regular closed curves on a surface with a continuous, nonzero vector

field up to regular homotopy.

In this thesis, we describe the geometric group structure of the set of regular
homotopy classes of regular closed curves on surfaces. Using the definition of
winding number given by Chillingworth, we focus our attention on surfaces with
continuous, nonzero vector fields. For these surfaces, we prove the function that
maps the set of regular homotopy classes of orientation preserving regular closed

curves into the integers by the winding number is a homomorphism. Using this



homomorphism, we provide a different proof of Chillingworth’s classification
theorem. Lastly, we prove that the set of regular homotopy classes of orientation
preserving regular closed curves is isomorphic to the direct product of the
homotopy classes of orientation preserving closed curves with the integers. With
this result, we are able to describe the generators of the group of regular
homotopy classes of orientation preserving regular closed curves on several

surfaces.



CHAPTER 2

GROUP STRUCTURE OF 7R(M,v,,)

2.1 Definitions

We begin with definitions of the main structures used throughout this thesis.

The first two definitions are those given by Guillemin and Pollack [3, p. 1-11].

Definition 2.1.1. (Local Diffeomorphism of x € M C R™). A local diffeo-
morphism of x is a smooth bijection £ : V' — U where V is an open subset
of the half-space H*, U C M is open where M is given the subspace topology,
x € U, and £ is smooth. If for each x € M there exists a local diffeomorphism

& : Vi, — U, where V, C H*, then we say M is locally diffeomorphic to H¥.

Definition 2.1.2. (Tangent Space at v € M C R™). Let £ : V — U be a local
diffeomorphism of = where £(v) = x . Then, the tangent space at x € M, or the

fiber over z, is d&,(R¥) where d¢, : R¥ — R™ is the usual derivative mapping

defined by

v h) —&(v
dgv(y):}géé( +yh) §(v)

for each y € R¥. We label this T'M,.

Definition 2.1.3. (Riemannian Manifold). M C R™ is a k-dimensional Rie-

mannian manifold if it is locally diffeomorphic to H* and each tangent space is



assigned an inner product that varies smoothly over M. Here, we assign the
inner products by restricting the dot product on R™ to each tangent space.
Although some structures defined in this thesis use the inner products, the

results presented are independent of the choice of inner products.

Equivalently, we could have defined a Riemannian manifold to be a second
countable, Hausdorff topological space that is locally homeomorphic to H* and
is equipped with a smooth atlas and a smoothly varying choice of inner products
on the tangent bundle. Then, by the Nash embedding theorems, we can choose
an embedding of the topological space into some R™ that preserves the inner
product on each tangent space. As a result of the Whitney embedding theorem,

any two embeddings are isotopic if we choose m > 2k + 1.

Definition 2.1.4. (Surface). A surface is a connected 2-dimensional Rieman-

nian manifold.

Compact surfaces are classified using three criteria: orientability, the number
of boundary components, and the Euler characteristic. So two compact surfaces
are diffeomorphic if and only if they are both orientable or both non-orientable,
they have the same number of boundary components, and the same Euler

characteristic (Hirsch [6, p. 207]).

Definition 2.1.5. (Derivate Mapping of a Function Between Manifolds). Let
f: N — M where N C R” and M C R™ are [-dimensional and k-dimensional
Riemannian manifolds respectively. For z € N, there exists a local diffeomor-
phism £ : V — U where £(0) = . Similarly, for f(z) € M, there exists a local
diffeomorphism ¢ : V' — U’ where ((0) = f(x). For V small enough, we have

that



is a commutative diagram. Then, df, : TN, — T My, is a linear transformation

of tangent spaces defined by df, = d¢, o djy o d&;".

Theorem 2.1.6. (Guillemin and Pollack [3, p. 11]). Let N, M, L be Riemannian
manifolds and f - N — M, g: M — L. For each x € N,

d(go f)z = dgsem) o dfz.

Definition 2.1.7. (Tangent Bundle of M). The tangent bundle of M, denoted
TM, is
{ve = (z,0,) € M x R™ : 0, € TM,}.

As a subset of R” x R™, the tangent bundle of M is given the subspace topology.

Definition 2.1.8. (Projection of TM onto M). The projection of the tangent
bundle onto M is a function P : TM — M where for each v, € TM, P(v,) = z.
Note P~'({z}) = TM, where we identify {z} x TM, C TM with T'M,.

Definition 2.1.9. (Spherical Tangent Bundle of M). We denote the spherical
tangent bundle of M as ST M. 1t is

{ve = (2,02) € TM - [[0a]] = 1}



where || ||, : TM, — R is the norm determined by the inner product assigned
to T'M,. As a subset of R™ x R™, the spherical tangent bundle of M is given

the subspace topology.

Throughout the thesis, v,, is a fixed point of ST M.

Definition 2.1.10. (Projection of STM onto M). The projection of the

spherical tangent bundle of M onto M is p: ST M — M where p = P|STM.

Definition 2.1.11. (Fiber over x in STM). The fiber over x in STM is
STM, ={v, € TM : ||0g|], = 1}.
Equivalently, STM, = p~'({z}).

The spherical tangent bundle of M is clearly dependent upon the choice of
inner products on the tangent spaces. Suppose the tangent spaces of M are
assigned different inner products that vary smoothly over M. We denote the
spherical tangent bundle of M taken with respect to these inner products as
STM'. STM' is bundle isomorphic to ST M. That is, there exists a continuous
function x : STM' — ST M such that

. STM!, — STM,

k| STM,

is an isomorphism for each x € M. This function is defined by

N Uy
T, V) > Ty |-
(=, 02) ( ’Hvax)



It is this bundle isomorphism that allows our results to be independent of the

choice of inner products.

Definition 2.1.12. (Closed Curve). A closed curve is a continuous function

f: St — M. S'is thought of as the unit circle in R? oriented counterclockwise.

Definition 2.1.13. (Closed Curve Based at xo or vs,). A closed curve f is
based at zy € M if f((1,0)) = zo. [ is based at v, if f((1,0)) = zp and
df1,0)((0,1)) = 75, We use €, to represent the set of closed curves on M

based at zg.

Definition 2.1.14. (Regular Closed Curve). A closed curve f is regular if
fSt— U T M) defined by f'(t) = df;((0,1)) is continuous and f'(t) # 0

tesSt
for each t € S'. The topology of U TMyy) C R™ is the subspace topology.
teSt
Equivalently, f is a closed curve with continuously varying, nonzero tangent at
each point t € S1. We let I',,, be the set of all regular closed curves based at

Ugg -

Definition 2.1.15. (Homotopy). Consider continuous functions f,g: W — Z
where W, Z are topological spaces. A homotopy between f and g is a continuous
function H : W x I — Z such that H(—,0) = f and H(—,1) = g. When
convenient, we also notate homotopies as the family of maps hs : W — Z where
hs = H(—,s) for each s € I. A homotopy is based at z; € Z if for some fixed
wo € W, hg(wg) = 2o for each s € I. Let ~ rel {2y} denote a homotopy between

two functions where the homotopy is based at z.

Definition 2.1.16. (Regular Homotopy Between Regular Closed Curves f and

g). A regular homotopy between f and ¢ is a homotopy H : S' x I — M



between f and g such that h, : St — M is a regular closed curve for each s € I.

o~

A regular homotopy is based at vy, if hs((1,0)) = zo and h,((1,0)) = Uy, for
each s € I. Let ~p rel {v,,} denote a regular homotopy between two regular

closed curves where the homotopy is based at v,,,.

If any part of the image of a regular closed curve is contained within the
boundary of M, we can apply a regular homotopy to the function to obtain
a regularly homotopic function that is contained in the interior of M. Thus, we
assume the image of a regular closed curve is contained within the interior of

M as this will simplify later arguments.

In order to define the composition of closed curves based at xy, we use an

alternate definition of a closed curve based at zy that is defined on I. Let
QIO ={f:1— M‘f is continuous and f(0) = f(1) = xo}

and ¢ : I — S* where ¢(t) = (cos(7(t)),sin(7(t))) where 7:[0,1] — [0, 27] is a

bijection defined by
7(t) = (=47 + 2)t* + (67 — 3)t* + t.
7 is defined such that (f o ¢)’ is continuous, nonzero, and
(f2q)(0) = (foq)(1) =14

where f is a regular closed curve based at v,,. This behavior is needed to make

precise an alternate definition of a regular closed curve based at v, .



Since ¢ is continuous and ¢(0) = ¢(1) = (1,0), f o q € Q,, for each f € Q.
Hence, we define Qq : Q,, — on by Qao(f) = foq. We claim Qg defines a
one-to-one correspondence between 2, and €. First, it is clear that for each
fig € Qu, foq=goqimplies f = g. So Qq is one-to-one. To show that
Qq is onto, choose h € on. Then, ho ¢ € Q,, where ¢ : S — I is defined by
qg= (q’[o’l))_l. Therefore, when convenient, we use elements in on as closed

curves based at xg.

Similarly, we have a one-to-one correspondence between I',, and szo where
vao is the set of functions f : I — M such that f € on,f’ I — UTMf(t)
defined by f'(t) = dfi(1) is continuous and nonzero, and f'(0) = f’ﬁg = Ugy-
Here, the one-to-one correspondence is given by Qr : 'y, — vao defined by

Qr(f) = fogq. Thus, we also use elements of szo as regular closed curves based

at vg,.

Definition 2.1.17. (Composition of Closed Curves Defined on I). Consider
closed curves f,g : I — M based at xy € M. That is, f(0) = f(1) = 2 and

g(0) = g(1) = zg. The composition of f and g is f-g: 1 — M where

2t) if 0 i
=g TSI

for each t € I. Since f and g are based at zq, f - g is well-defined at t = % and

based at zg.

Definition 2.1.18. (Reverse of a Closed Curve Defined on I). We define the

reverse of a closed curve f : I — M to be f: I — M such that for each t € I,
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ft)=f1=1).

For closed curves f,g: I — M based at xg, we let [f], [g] represent the based
homotopy classes of each function respectively. Then, [f],[g] € m1 (M, x¢) and
we define [f] - [g] = [f - g]. m1 (M, z0) is a group under the operation - where
the homotopy class of the function ¢, : I — M defined by ¢, (t) = zy is the

identity of the group and [f]~' = [f].

Definition 2.1.19. (7r(M,v,,)). We define mg(M,v,,) as the set of equiva-
lence classes of I',,  under regular homotopy based at v,,. For each f € T’

Vzq )

we use [f]g to represent the based regular homotopy class of f.

Tr(M, vy, ) is equivalent to mo(I',, ), the set of path components of I',, when
Iy, is assigned the following topology. Consider any metric d:TMxTM — R*

on TM where R* is the set of non-negative real numbers. For f, g € L'y, , define

a(f.9) = max {d( (£, f'(1), (9(t). 6'(1)) ) : t € 5},
Then, d is a metric and T’ is given the topology induced by d (Smale [9]).

For M of dimension 1, 2, or 3, mr(M,v,,) does not depend on the smooth
structure of M. This is because, in these dimensions, two manifolds that are
homeomorphic are also diffeomorphic. Clearly the equivalence classes that con-
stitute mr(M, vy, ) are preserved under a diffeomorphism of M. Thus, 7g(M, v,,)

only depends on the topology of M.
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2.2 An Alternate View of myp(M, v,,)

Smale [9] defined a specific weak homotopy equivalence to prove mg(M, v, )
is in one-to-one correspondence with w1 (ST M, v,,). To define a weak homotopy
equivalence, we need to define the higher homotopy groups of a topological space
Z with respect to a basepoint zy. For each non-negative integer n, m,(Z, o) is a
partition of the set of continuous functions from 5™ into Z that are based at z.
The set is partitioned using the equivalence relation of based homotopy. That
is, f,g:S™ — Z are equivalent if and only if there exists a homotopy between

f and g that is based at zy. We use [f] to represent the based homotopy class
of f.

For n # 0, m,(Z, z) is the nth homotopy group and for n > 1, m,(Z, zo) is
abelian. Hatcher [4, p. 340] describes the group structure of these homotopy
groups. mo(Z, zp) is not necessarily a group but is the set of path components

of Z.

Definition 2.2.1. (Weak Homotopy Equivalence). For topological spaces W
and Z, a weak homotopy equivalence is a continuous function ¢ : 2 — W
that induces isomorphisms of all homotopy groups. That is, ¢, : m,(Z, z0) —
(W, ¢(20)) defined by ¢.([f]) = [¢ o f] for each [f] € m,(Z, 20) is a bijection

for each n and an isomorphism for n # 0.

With Smale’s weak homotopy equivalence, some aspects of the study of reg-
ular closed curves on M classified up to regular homotopy were simplified to the
study of closed curves on STM classified up to homotopy. Since m; (ST M, v,,) is

group, a group structure can be induced on mg (M, v,,) using the weak homotopy
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equivalence. We give a geometric description of this induced group structure in

the next section.

To define the function Smale proved to be a weak homotopy equivalence, let
vao be the set of closed curves on ST M based at v, . vao is given the compact
open topology (Hu [7, p. 73]). Let ¢ : I, — ,,  be defined as follows. For
each f €T, ,let ¢(f): Sl — STM be defined by

f'(t)

of)(t) = (f ®), W)

Theorem 2.2.2. (Smale [9]). ¢ is a weak homotopy equivalence between Ty,

and $,,, .

In particular, taking n = 0, the induced function ¢. : mo(I'y, ) — mo( 2y, ) de-
fined by ¢.([f]) = [¢(f)] for each [f] € mo(Ty,,) is a bijection. Since (L', ) =
Tr(M, vyy) and mo(2,,,) = 71 (ST M, v, ), Theorem 2.2.3 follows from Theorem

2.2.2.

Theorem 2.2.3. (Smale [9]). ¢, : mr(M,v,,) — m(STM,v,,) defined by
o.([f1r) = [0(f)] is a bijection.

Accordingly, regular closed curves f and g are regularly homotopic based at v,,

if and only if ¢(f) and ¢(g) are homotopic based at v, .

For the remainder of the thesis, we use M to denote a surface. f and g will
be used to denote regular closed curves on M based at v,, = (xg, Uy,) € STM

unless otherwise stated.
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2.3 Group Structure of wx(M,v,,)

We would like to use the function defined by ([f]r,[9]r) — [f - g]r as the
group operation on wr(M,v,,). However, f-g: I — M is not based at v,, but
at (xg,204,). Thus, we define an orientation-preserving reparameterization, r,
of I such that 7'(0) = /(1) = 3. We prove both for and gor are regular closed

curves based at (2o, 305,) and their composition (f or)-(gor) is based at vy,.

Let r : I — I be defined by r(t) = —t*+ 3t* + 3¢. Since r’/(t) = —3t*+ 3t + 3,
we use the quadratic formula to check that 7/(¢) # 0 for each t € I. Since
r(0) = 0, (1) = 1, and r'(¢) # 0 for each ¢t € I, r is an increasing bijection.
Therefore, r is a reparameterization of the unit interval. Lastly, we check that
r'(0) = % and /(1) =

1 1
2 2°

Lemma 2.3.1. for is a reqular closed curve based at (xg, %17;0) eTM.

Proof. First, we show f or is a closed curve. From the definition of r,

(for)(0) = f(0) = zo = f(1) = (for)(1).

Since both f and r are continuous, f or is also continuous. Thus, for is a

closed curve.

We next prove (f or)" is continuous and nonzero. From the chain rule in
Theorem 2.1.6, (for)'(t) = (r'(t)) (f’or)(t). Then, (for) is continuous because
r, ', and f’ are continuous. Since f is regular, f’ o r is nonzero on I and we
have already seen ' is nonzero on I. Consequently, (f or)’ is never zero so for

is a regular closed curve.
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We have shown (f or)(0) = (f or)(1) = xy. Then, because

(f o) (0) = O (r(0)) = 57'(0) = 37

and
/ / / 1 ’ 1_
(Fory(1) =P (r(1)) = 3(1) = 5,

foris based at (zo, 30z,)-

Lemma 2.3.2. (for)-(gor) is a reqular closed curve based at vy, .

Proof. Because for and gor are closed curves such that (for)(0) = (for)(1) =
xg and (gor)(0) = (gor)(1) =xg, (for) -(gor) is a closed curve such that

((for)-(gor))(0)=((for)-(gor))(1) =zo. From the chain rule,

IN
N | —

2r'(2t) f'(r(2t)) if 0<¢

((for)-(gor)(t) =
2r'(2t — 1)g'(r(2t — 1)) if

<t

IA
—

It is clear from the previous lemma that the derivative is everywhere nonzero.
Since (for)’ and (gor)’ are continuous, we now only need to check ((for)- (gor))

is well-defined at t = 1 and ((for)- (gor)) (0)= ((for)-(gor) )/(1 to prove

))) = Un,g

N |

(for)-(gor) is aregular closed curve. Taking t = 1, 21" (2(3)) f ( (2(

and 2r'(2(2) = 1)¢/ (r(2(4) = 1)) = @, Similarly,
21" (2(0)) f' (r(Z(O))) =iy = 27(2(1) — 1)g/ <r(2(1) - 1)).

Thus, (for)-(gor) is a regular closed curve. Since
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((for)-(gor)(0)=((for) (gor))(1) =

and

((for)-(gor)(0) =05 = ((for)-(gor) (1),

(for)-(gor)is based at vy,. O

Now consider the operation on mg(M,v,,) defined by

e lgle = [(for)-(gor)|r

This will be used as the group operation on 7g(M,v,,). To check this is a
well-defined function from 7g(M,v,,) X Tr(M,v,,) to Tr(M, vy,), let f ~g
frel {vao} and hy, : I — M be a regular homotopy between f and fbased at
Ugo. Similarly, let g ~p g rel {v,,} and hy, : I — M be a regular homotopy
between g and g based at v,,. Obviously, (hs or)- (hy, or) is a homotopy. It

follows from Lemma 2.3.2 that this is a regular homotopy based at v,,. Thus,

o~

[(for)-(gon)r=[(for) - (Gor)],
Theorem 2.3.3. mg(M,v,,) is a group under the operation defined by
[flr-lglr=1[(for) (gor)r

Proof. We begin by showing that the operation is associative. For regular closed

curves f,g,J based at v,,, we compare

(f1r-lglr) - Ule = [(((For) - (gom) or) - (Gom)]

R



and

[flr - ([Q]R'[ﬂR) = [(for)- (((gor) . (jor)) orﬂ )

R

By definition,

(for)(2r(2t)) if 0<
<(((for)~(go7’))or>~(jor))(t): (gor)(Qr(%)—l) if iﬁt
: <

(jor)(2t —1) if

VAN VAN VAN
— M= =

~

and

(for)(2t) if
((for)- (((gor)-(jor)) or)) (t) = (gor)(2r(2t — 1)) if
(jor)(2r(2t —1)—1) if

IA A IA
~

IA AN IA

— Sl NI

Let ¢ : I — I such that

i) if 0<t< 3
pt)=q Lrt(r2t-1)+1) if L<e<?
r2t—1) if 3<t<1

where 7~! : [ — I is the inverse function of . We claim

(0 = (((on - tger) or) - Gon) (1= 9)pt) +s1)

is a regular homotopy from (for)- <((gor)-(jor))or> to (((for)-(gor))or) -(jor)
based at vy, .

First, ¢ is a bijection that maps [0, %] to [O, l}, [%, %J to [}l, %}, and [%, 1}

16
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to [%, 1}. It follows that
to=(((7or)-on)er)-ton)e) = ron) - (((gon)-Gior) or)

and hy = (((for) (gor)) o7“> -(jor). Tt is clear that hg is a homotopy between

the two functions based at xg.

To check that hg is a regular homotopy, we first show ¢ is continuous and
1

r(t)

check ¢'(t) is well-defined at t = 3,2 and ¢'(0) = ¢/(1). In fact, ¢'(3) = 2,

nonzero. From the inverse function theorem, (r=1)'(t) = Using this, we
¢'(2) =2, and ¢'(0) = ¢/(1) = 1. Now it is clear that ¢’ is continuous. Since

" is nonzero, it follows that (')’ and in turn ¢’ are nonzero.

As a result of Theorem 2.1.6,

/

h;(t) = ((1 — S)(p(t) + St),(<((f 07’) . (g o r)) o r) . (j o 7’)) ((1 — 8)90(25) + St).

It is clear that A/ is continuous and

(<((f or) - (gor)) or) (4 or))/((l —s)p(t) + st)

is nonzero. Thus, 1(t) = 0 only if ((1—s)p(t) —i—st)/ = 0. However, this implies
(1—s5)¢'(t)+s=0s0¢(t) = 1_—_85 But ¢'(t) is always positive. Therefore,
h'(t) # 0 for each t € I and hy is regular for each s € I. Since ¢'(0) = ¢/(1) =1,
it follows that h’(0) = h.(1) = 0., and the regular homotopy is based at v,.

Thus, we have proven the operation is associative.

We next prove there exists an identity element in mz(M, v,,). In a neighbor-
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hood of x( that is diffeomorphic to a disk, we place the regular closed curve e

that is based at v,, and pictured in Figure 2.1. To show [e]g is the identity,

Vg

Figure 2.1: The regular closed curve e representing the identity of
Tr(M, vy, ).

choose any [f]gr € mr(M,v,,). We can apply a regular homotopy to f to ensure

f does not intersect itself in a small neighborhood around xy. Thus, we assume

Figure 2.2: f is assumed to not intersect itself in a neighborhood of xy as
depicted.

f has the behavior depicted in Figure 2.2. This is done to simplify later figures.

In Figure 2.3, [e]g - [f]r is represented by the first curve and shown to be
equal to [f]g. Similarly, [f]g - [e]r is represented by the first curve and shown

to be equal to [f]g in Figure 2.4. Hence, [e]g is the identity of mr(M, vy,).

To prove each element has an inverse, we will use the closed curves v and §
defined in a neighborhood of xj. See Figure 2.5. These are not regular closed

curves since 7/(0) = v,, and ¢'(0) = —v,, but /(1) = —0,, and §(1) = v,,.
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rel {v,, }
e e
rel {v,, }
-
e 1 {v,}
:r re 20
\\_#‘_&{_/_)

/7/ rel {v,, }
]

rel {v,, }

v ‘ rel {vg,}

Figure 2.4: Regular homotopy based at v,, between (for)-(eor) and f.
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v 0!

II '.- !
= Ug, “Uzo—

Figure 2.5: Closed curves v and §. We let —v,, = (20, =V, )-

Using arguments similar to ones used in previous lemmas, it can be shown that

[(fy or) - (((7 or)-(dor))o r)} is well-defined. We prove this is the inverse
R

of [f]r. Since 7’(0) = —1gy, we can apply a regular homotopy to f and assume

f has the behavior of Figure 2.6.

I -
/”/
- _.--""-’-//

Figure 2.6: f is assumed to not intersect itself in a neighborhood of z; as
depicted.

(yor)- <((7 or)-(dor))o r) is the first regular closed curve in Figure 2.7.

Consequently, Figure 2.8 shows [(7 or) - (((?o r)-(6or))o r)]R- [flr = l€]r-
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: - [ )
\ ~p | | - rel {vg, }
§ \

( Y g rel {vg, }
‘.——f”/

~p /i rel {v,,}
~p ﬂ rel {v,,}
~n el {r,)
~pR QO rel {vz, }

Figure 2.8: Regular homotopy showmg (yor) ( (for)-(60 r)) ) 7’)} .
[fIr = [el
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The following homotopy from the series of homotopies in Figure 2.8 requires

explanation:

rel {v,, }

Figure 2.9: Regular homotopy from Figure 2.8.

Here, the first regular closed curve is f - f except at the ends of f and f there
are loops used to connect the ends and preserve regularity. Obviously, this
is homotopic to a constant map so the regular closed curve is in a neighbor-
hood that is diffeomorphic to a disk. When the line connecting the two loops
is contracted, the orientation of both loops is preserved because the disk is
orientable. Therefore, the regular homotopy of Figure 2.9 holds. Similarly,
(flr - [(7 or) - (((?o r)-(6or))o rﬂR = [e]g. This is shown in Figure 2.10.

Therefore, mr(M,v,,) is a group. O
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rel {v,, }

rel {v,,}

rel {v,,}

rel {v,,}

rel {v,,}

Figure 2.10: Regular homotopy showing [f]r - [(fy or)- (((?o r)-(6or))o

).

[G]R.
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Corollary 2.3.4. Smale’s bijection ¢, : mr(M,vy,) — T (ST M, v,,) is a group

1somorphism.

Proof. First note that ¢, ([f]r - [g]r) = [6((fo7) - (go7))]. Since

7

f'(r(2t))
L 26) | pory 20

((for)(2t) ) if 0<t<4

o((for)-(gor))(t) =
g (r(2t — 1))
g (72t = 1))l (gory@t-1)

K ((907")(275—1) > if L<t<i

and

72
(f ) @ e
(6(f) - 0(9))(t) = ,

(2t — 1
(g(2t—1), ,g( ) ) it L<t<1
\ g’ (2t — 1)“9(215—1)

) it 0<t<

Qb((for)‘(gor)) is just a reparameterization ofgb(f).qs(g)_ So [cb((for)-(gor)ﬂ _
[6(f) - ¢(g)]. Consequently,

S0 ¢, is a homomorphism. Since ¢, is also a bijection, the result follows. O]
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2.4 Regular Homotopy Classes within a Homotopy Class

Regular homotopy refines homotopy. In this section, it is proven that within
each homotopy class there are infinitely many regular homotopy classes for all
surfaces other than S? and RP2. We begin by proving a few results for exact

sequences.

Definition 2.4.1. (Section of a Surjective Map). For sets B, C' and surjection
v: B — C, asection of v is a function s : C' = B such that v o s is the identity

function on C.

Note that for any surjection there exists a section. This is because for each

¢ € C, we can choose some b € B such that v(b) = ¢. Then, s can be defined
such that s(c) = b so v(s(c)) = v(b) = c.
Lemma 2.4.2. Consider groups A, B, C with the exact sequence

1 A-Fp v ¢ 1.

Then, for each section s of v, s: A x C — B defined by s(a,c) = k(a)s(c) is a

bijection.

Proof. We first show s is one-to-one. Suppose there exists (a, ¢), (a/,) € AxC

such that s(a,c) = 5(d’, ). Consequently,
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Applying v to both sides of the equation, v(k((a’)’%z)) = v(s(c’)s(c)’l). As

a result of exactness, im k = kerv so v(k((a’)‘%t)) = 1. Then,

where the last equality holds because k is injective. Hence, (a,c) = (¢/,¢’) and

S is injective.

Next, we prove s is surjective. Consider b € B. Since v(b) € C, we let

¢ =wv(b). So s(c)”! € B and the product bs(c)™' € B. Then,

Hence, bs(c)™! € kerv. Again since im k = ker v, there exists a € A such that

k(a) = bs(c)~!. Therefore,

S(a,c) = k(a)s(c) = bs(c)'s(c) =b
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and s is surjective. m

The next theorem holds for any surface M other than S? and RP? because
mo(M,x9) = 1 for M # S?, RP?2. To see this, we first assume that the surface
has no boundary since omitting any boundary circles results in a surface of the
same homotopy type and without boundary. If we let @ : M — M be the

universal cover of M, then o (M, x0) = mo(M, %) where T(Tg) = x¢ (Hatcher

[4, p. 342]). Thus, we focus our attention on calculating (M, 7).

If M is not compact, then the second homology group of M is trivial (Vick [10,
p. 152]). By the Hurewicz theorem, the second homology group of M is isomor-
phic to 7y (M,Tg). Thus, in the case where M is not compact, m(M,7g) = 1.
If M is compact, then M = S? and my(M, %) = Z. However, if M is compact,
then M is compact and M is either S? or RIP? since they are the only compact
surfaces without boundary that have S? as a universal cover. Therefore, if

M # S? RP?, then mo( M, x) = 1.

Theorem 2.4.3. For any surface M other than S? and RIP?, there exists a

one-to-one correspondence between m (M, xo) X Z and wr(M, vy,).

Proof. By Theorem 2.2.3, it suffices to show there exists a bijection between
T (M, zo) x Z and 7, (ST M, v,,). From the homotopy sequence of the fibration

p: STM — M based at v,,, the sequence

Uy D+
7T2(M, LEQ) — WI(STMz()"U:pO> — 7T1(STM, Uzo) — 7T1(M, SL’Q) — 7TO<STM107U:EO>
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is exact where ¢ : ST M,, — ST M is the inclusion of the fiber and i,, p. are the
induced homotopies of i, p respectively (Hu [7, p. 152]). Since M # 5% RP?
(M, x9) = 1. Because STM,, is isomorphic to S, m (ST M,,,vs,) = Z and
mo(ST My, vsy) = 1. Then, it follows from the previous lemma that there is a

bijection between 71 (M, zq) x Z and 7 (ST M, vy, ). O

Consider [f]r € 7mr(M,v,,). For a section s of p,, Theorem 2.4.3 implies
there exists n € m (ST M,,,v,,) and a € 7 (M, ) such that 5(n, ) = [o(f)].

Moreover,

1= p([6(1)]) = p:(3(n, @) = p.(is(n)-5(a)) = pu(is(n)) ps(s(a)) = [eag] -0 = a.

Therefore, the bijection maps (v, n) € w1 (M, zg) X Z to a regular homotopy class
with homotopy class a. Since this is true for each n € m (ST M,,, vs,) = Z,

within each homotopy class there are infinitely many regular homotopy classes.
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CHAPTER 3

WINDING NUMBERS

3.1 Orientations

In order to define the winding number and prove results related to it, the
concept of orientation is needed for vector spaces, linear transformations, closed
curves, and fibers of the spherical tangent bundle. In this section, we define

these orientations.

Definition 3.1.1. (Orientation of a Real, 2-Dimensional Vector Space). We
first define an equivalence relation ~ on the set of ordered bases of a real,
2-dimensional vector space V. Let (ay,as) ~ (b1,be) if and only if det A > 0
where A is the change of basis matrix. Then, there are two equivalence classes
in the set of ordered bases. Assigning one equivalence class + and the other —

is an orientation of V.

We will refer to the standard orientation on R?. This is the orientation where
the equivalence class of the standard basis (e;,e2) = ((1,0), (0,1)) is assigned

+.

Definition 3.1.2. (Orientation Preserving and Reversing Linear Transforma-
tions). For oriented real, 2-dimensional vector spaces V', W and a linear function

T:V — W, T is orientation preserving if the basis (T'(v1),T'(v2)) is in the +
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equivalence class of ordered bases on W where (v, v2) is an ordered basis of V'
that is in the + equivalence class. T is orientation reversing if (7'(vy), T (v9)) is

in the — equivalence class of ordered bases on W.

The last two definitions are well-defined (Guillemin and Pollack [3, p. 95]).

Definition 3.1.3. (Orientation Double Covering). The orientation double

covering of M is the covering space 7 : M — M where

M = {(z,*):x € M and x* is an orientation of T'M,}

and 7 is defined by 7(z,*) = x. To describe the topology of M , we describe
an element of the basis of the topology. For B C M to be a basis element,
it has to meet the following requirements. First, the restriction 7|z must be
injective and 7w(B) C M must be open. Suppose for each x € 7(B) the vector
space T'M, is given the orientation % where (x,%) € B. Then, there must
exist a local diffcomorphism £ : V' — U of each x such that U C = (B) and
dé, : R* — T'Mg, is orientation preserving for each v € V where R? is given

the standard orientation.

To define orientation preserving and orientation reversing closed curves, we
again view closed curves as functions defined on I. Then, for each closed curve
f 1 — M, there exists a lift f of f (Hatcher [4, p. 61]). That is a continuous

function f: I — M such that 7o f: f.

Let 0 and —o be the two possible orientations of a real, 2-dimensional vector
space. Since the image of 0 € [ under any lift of a closed curve based at xg is

only one of two possibilities, (xg, 0) or (zg, —0), it follows from the unique lifting
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property that there are only two possible lifts of any closed curve (Hatcher [4,
p. 62]). Again as a result of the unique lifting property, if for some lift f of
f. f(0) = f(1), then, without loss of generality, f(0) = f(1) = (x0,0) and
£.(0) = £.(1) = (0, —0) where f, is the second lift of f. Similarly, if for some

lift £(0) # f(1), then, without loss of generality, f(0) = (o, 0), f(1) = (zo, —0)

and £,(0) = (zo, —0), f.(1) = (0, 0).

Definition 3.1.4. (Orientation Preserving Closed Curve). A closed curve f :

I — M is orientation preserving if f(()) = f(l) where fis a lift of f.

Definition 3.1.5. (Orientation Reversing Closed Curve). A closed curve is
orientation reversing if f(0) # f(1) where f is a lift of f. In view of the
last paragraph, this can be equivalently stated as a closed curve is orientation

reversing if and only if it is not orientation preserving.

Let hs : I — M be a homotopy where hg = f and hy(0) = hs(l) = zo
so that each stage of the homotopy is a closed curve based at zy. Let f be
a lift of f. By the homotopy lifting property, there exists a unique homotopy
he + I — M that is a lift of hs where };O = ]}v This lifted homotopy fixes
the end points so hy(0) = f(0) and hy(1) = f(1) (Hatcher [4, p. 61]). Since
being an orientation preserving or orientation reversing closed curves is only
dependent on the end points of a lift of the closed curve, any homotopy of an
orientation preserving closed curve is orientation preserving and any homotopy
of an orientation reversing closed curve is orientation reversing. Therefore, we
can define 79" (M, o) to be the set of homotopy classes that contain orientation

preserving closed curves and 7]¢(M, ) to be the set of homotopy classes that

contain orientation reversing closed curves.
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Recall the isomorphism ¢, : mr(M, v,,) — 7 (STM, v,,) and the homomor-
phism p, : m (ST M, v,,) — m (M, zo) induced by the projectionp : STM — M.
Consider the homomorphism p, o ¢, : wr(M,v,,) — m(M,z). For each
[flr € mr(M,vs), (po ¢u)([flr) = [f]. We define 7§ (M,vg,) = (ps 0
6.) " (w7 (M, 0)) and wif (M, va,) = (p2 0 6.) (w1 (M. zy)).

Lemma 3.1.6. 7{"(M,zo) is a subgroup of m (M, xzo) and 7% (M, v,,) is a

subgroup of Tr(M,v,,).

Proof. Let p : m (M, xy) — Zs be defined by [f] — 0 for [f] € 7" (M, xy) and

[f] = 1 for [f] € m}Y (M, xp). It will first be shown that p is a homomorphism.

For [f],[g] € mo" (M, o), we claim [f] - [g] € 79" (M, x). There exists a lift f
of f such that f(0) = f(1) = (x0,0). Similarly, there exists a lift § of g such
that §(0) = g(1) = (o, 0). Then, f-§is alift of f-g and (f-g)(0) = (f-3)(1) =
(o, 0). Therefore, f - g is orientation preserving and [f] - [g] € 79" (M, 20). So
p([f] - [g]) = 0 = p([f]) + p([g]).

Using a similar method, it is easy to show for [f] € 7¢"(M,zo) and [g] €
(M, x0), [f] - [g] € (M, xo) and [g] - [f] € m1*(M, x0). So p([f]-[g]) =
1= p([f])+p([g]) and p([g]-[f]) = 1 = p([g]) + p([f])- For [f], [g] € 71**(M, zo),
the same method can again be used to show [f]-[g] € 7" (M, x4) so p([f]-[g]) =
0 = p([f]) + p(lg]). Thus, p is a homomorphism and ker p = (M, z) is a
subgroup of 1 (M, ). pops o ¢y : Tr(M,vs,) — Zs is a homomorphism with

kernel 7% (M, vy, ). Thus, 7% (M, v,,) is a subgroup of mr(M, vy, ). O

Lastly, we define the orientation of ST'M,. This will be needed to define the

winding number.



33

Definition 3.1.7. (Orientation of STM,). Since STM, = S, we can orient
S counterclockwise and use the isomorphism to transport the orientation to
STM,. That is, as S! is traversed in the counterclockwise direction, the
direction in which the image moves is the assigned orientation of ST'M,. Note,

this is dependent upon the choice of isomorphism.

3.2 Definition of Winding Number

Now, let f : S* — M be a closed curve based at v,,. For simplicity, we

identify (1,0) € S* as 1. There exists the pullback bundle

f(STM) = {(t,v) € S* x STM : f(t) = p(v)}.

Then, the diagram

[if
F(STM) STM
p! p
St M
f

commutes where p/ : f*(STM) — S' is defined by (¢{,v) — t and u; :
f*(STM) — STM is the isomorphism on each fiber defined by (t,v) — v.
Let

FH(STM), = {{t,v) € {t} x STAML : f(t) = p(v)}.

Then, since p is an isomorphism on each fiber, f*(STM); = ST M.
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f*(STM) is either bundle isomorphic to the torus 7' or the Klein bottle
K depending on whether f is orientation preserving or orientation reversing.
That is, when the torus is viewed as a bundle over the base space S and f is
orientation preserving, we claim there exists a homeomorphism ¢ : f*(STM) —

T such that ¢ is an isomorphism for each t € S and p/ = py oy where

f*(STM)t
pr is the projection of the torus onto its base space S'. Similarly, when the
Klein bottle is viewed as a bundle over the base space S! and f is orientation
reversing, we claim there exists a homeomorphism s : f*(STM) — K such
that 3| . o7, 18 an isomorphism for each t € S' and p/ = pg o s where pg is

the projection of the Klein bottle onto its base space S*.

Lemma 3.2.1. If f is orientation preserving, f*(STM) is bundle isomorphic
to the torus. If f is orientation reversing, f*(STM) is bundle isomorphic to

the Klein bottle.

Proof. Let the pullback of the tangent bundle by f be

FHTM) = {(t,v) € §' x TM : f(t) = p(v)}.

The set of pullbacks of the tangent bundle by closed curves up to bundle
isomorphism is classified by mo(GLa(R)) = Zs. The set consists of the trivial

bundle S* x R? and a nontrivial bundle (Hatcher [5, p. 25]).

If f*(TM) corresponds to the trivial element of Zy, then f*(T'M) is ori-
entable and f*(STM) C f*(T'M) is bundle isomorphic to the torus. Otherwise,
f*(TM) corresponds to the nontrivial element of Zs, is non-orientable, and

fX(STM) C f*(T'M) is bundle isomorphic to the Klein bottle. This classifi-



35

cation of f*(STM) follows immediately from the description of the torus and

Klein bottle as quotients of the cylinder.

f is orientation preserving if and only if f(O) = ]7(1) where f is a lift of f.
That is, the orientation of 7'M, at the beginning and end of the lift of f to the
orientation covering is the same. Hence, the orientation of 7'M, is extended
along the curve. So the lift to the orientation covering precisely places an
orientation on each fiber of f*(7"M) and thus defines an orientation of f*(7°'M).
Then, f*(STM) is bundle isomorphic to the torus. Therefore, if f is orientation

preserving, f*(ST M) is bundle isomorphic to the torus.

f is orientation reversing if and only if ]?(O) F# f(l) where [ is a lift of f.
That is, the orientation of 7'M, at the beginning and end of the lift of f to the
orientation covering is not the same. Hence, the orientation of T'M,, cannot be
extended along the curve. Consequently, an orientation of f*(7'M) cannot be
defined. So f*(T'M) is non-orientable. Thus, f*(STM) is bundle isomorphic to

the Klein bottle when f is orientation reversing. O]

We will define a relative winding number between two vector fields along a

closed curve.

Definition 3.2.2. (Vector Field along a Closed Curve). A vector field along
a closed curve f is a map Y : S' — STM such that p(Y(t)) = f(¢) for each

te St

We will assume all vector fields Y along a closed curve f are continuous and

based at v,, meaning Y (1) = v,, where we are identifying (1,0) € S* as 1.
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For vector fields Y;,Y> along f, we know Yi(t),Y2(t) € ST My for each
t € S'. Thus, we can define sections Y*, Yy of f*(STM). Fori = 1,2, Y;* :
St — f*(STM) is defined by Y*(¢) = u;l(Yi(t)). Since Y7, Y5 are based at vy,
Ve(1) = V3 (1). Let e = Y{(1) = Yy (1). Then, V7], [¥5] € m(f*(STM), ).

Consider the homomorphism pf : 7 (f*(STM),eq) — m(S*, 1) induced by
p/. Since Y}* and Y5 are sections of f*(STM), [Yy] - [Y*]™! € ker p/. From the
homotopy sequence of the fibration p/ : f*(STM) — S! based at e, there is

the exact sequence

il /
2(S1, 1) —— (ST M1, e0) — s 71 (F*(STM), e0) —— 71(S7,1)

where i/ : f*(STM); — f*(STM) is the inclusion map (Hu [7, p. 152]). As

a consequence of exactness and (S, 1) = 1, there exists a unique element

n € m(f*(STM)i,e) such that if (n) = [Y5] - [Y] 7L

Fixing an orientation of ST'M,,, we orient f*(STM); by transporting the

orientation of ST'M,, under the isomorphism (u s . Since f*(STM), is

)_I‘STMZO
isomorphic to St w1 (f*(STM)1,ey) = Z. Consider the homotopy class of the
function from S! to f*(STM); where as S! is traversed in the counterclockwise
direction, the image traverses f*(STM); once in the direction in which it is
oriented. Let the isomorphism from 7 (f*(STM)1,ep) to Z be the one that
maps this homotopy class to 1 € Z. So n can be thought of as an integer. The
winding number of f relative to Y; and Y5 is defined to be n. We denote this

w(f;Y1,Ys) =n.

Lemma 3.2.3. For a closed curve f based at v,, with vector fields Yi,Ys, }?1, )?2

where Y1 ~ Y, el {vy,} and Yy ~ Yy rel {vy,}, w(f; Y1, Ya) = w(f; Y1, Ya).
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Proof. Since Y; ~ Y; el {v,,} for i = 1,2, [Y;] = [2} Consequently, [Y*] =
Vi) and [v5] - [¥7] 7 = [V2 ] - (V0] Thus, w(f; Y1, Ye) = w(fs Y3, Y). O

Now, we assume f is an orientation preserving closed curve on M based at
Uy, In this case, we have a second way of calculating the winding number of f
relative to the vector fields Yi, Y, along f. This will allow us to prove some of
the main results of the next section. Before beginning this alternate definition,

we need a few results about H-spaces.

Definition 3.2.4. (H-space). Suppose Z is a topological space and x : Z X Z —
Z is a continuous function. Z has a homotopy unit a € 7 if x(a,a) = a, the
function that maps each z € Z to x(a, z) is homotopic to the identity on Z
relative to the basepoint a, and the function that maps each z € Z to x(z,a) is
homotopic to the identity on Z relative to the basepoint a. A topological space

with a continuous function y and homotopy unit a is an H-space.

Theorem 3.2.5. (Hu [7, p. 81]). For an H-space Z with continuous function

X and homotopy unit a, m(Z,a) is abelian.

For [g],[h] € m(Z,a), define [g] x [h] = [g X h] where g x h : St — Z is
defined by

(g x h)(t) = x(g(t), h(t)).

From the continuity of x and the fact that x(a,a) = a, [g X h] € 71(Z, a) so the

mapping ([g], [A]) — [g x h] is well-defined.

Theorem 3.2.6. (Hu [7, p. 82]). For an H-space Z with continuous function

X and homotopy unit a, (g - [h] = [g] X [h] for each [g],[h] € m(Z,a).
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Any topological group under its group operation is an H-space with its
identity taken as the homotopy unit (Hu [7, p. 81]). When viewed as a subset
of the complex plane, S! is a topological group under the usual multiplica-
tion of complex numbers and with identity 1. Thus, S* is an H-space under

multiplication with homotopy unit 1.

Corollary 3.2.7. For [h] € m(S',1), [h]™' = [§] where + : S* — S' is defined

by () (1) = 45

Proof. As a result of Theorem 3.2.6 and the fact that h x % = ¢,

- (5] =< (3] =[x 3] =t = 0 o

We return to proving there is an alternate way to find the winding number of
an orientation preserving curve. Since f is orientation preserving, f*(STM) is
bundle isomorphic to S* x S! by Lemma 3.2.1. Recall, ¢ : f*(STM) — S' x S*

is a bundle isomorphism. So gp‘ F(STAD): is an isomorphism between fibers and

)
¢ induces the identity map of the base space S'. That is, p/ = p o ¢ where p :
Stx St — S'is defined by (¢, s) + t. We can choose ¢ such that p(eg) = (1,1).
The orientation of {1} x S = (f*(STM);) is chosen to be that induced by
the orientation of f*(STM); under ¢. That is, we orient {1} x S' such that

as f*(STM); is traversed in the direction in which it is oriented, the direction

in which the corresponding image under ¢ moves is the assigned orientation of

{1} x S*.
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Since Y}* is a section of f*(STM), it is of the form ¢ — (¢, a(t)) where a(t) €
f*(STM),. Similarly, Y5" is of the form ¢ — (¢, 8(t)) where §(t) € f*(STM),.
Define f* = oY for 2+ = 1,2. Since ¢ induces the identity map on the base

space, 571* is defined by ¢ — (¢, a(t)) and }72; is defined by t — (¢, B(1)).

Since Y{*(1) = Y5 (1) = e, (1, (1)) = (1, 5(1)) = eo. Because ¢(ep) = (1,1),
(1,&(1)) = (1,3(1)) = (1,1). Thus, a(1) = B(1) =1 and &, B : S* — S* have

basepoint 1. Define h : S* — {1} x S* such that

) = (1.(5-7)0)

and let j : ST — {1} x S! be defined by

i0= (1.3 2)w)

Consider the homotopy class represented by the function from S* to {1} x S*
where as S! is traversed in the counterclockwise direction, the image traverses
{1} x S* once in the direction in which it is oriented. Let the isomorphism from
m ({1} x S',(1,1)) to Z be the one that maps this homotopy class to 1 € Z.

Then, let n be the integer associated to [j] € m ({1} x S, (1,1)) = Z.

Theorem 3.2.8. w(f;Y1,Ys) = n where n is the integer associated to [j].

Proof. Consider the function Y - Yy : S' — S' x S, The first component of

Y, -Y}* wraps around S* once in the counterclockwise direction and then once in

the clockwise direction. The second component of 572* Ef/\f is E -&. Consequently,

Yy Y il oh rel {(1,1)} where il {1} x S* — S' x S is the inclusion map.
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— -
From Corollary 3.2.7 and Theorem 3.2.6, - & ~ 3 x = rel {1} in S* and
a

it follows that A ~ jrel {(1,1)} in {1} x S*. So il 0 j ~ il ohrel {(1,1)}

in 5! x S! and by transitivity, Yy - V" ~ il o j rel {(1,1)} in S* x S, Then,
27”*([]]) = [}72;} . [171*]_1. Since the diagram

({1} x S, (1,1)) &, m(S' % ST, (1,1))

P+

(¢ f*(STM)l)* P

WQ(SQ)

T (f*(STM)1, en) %f’ﬂl(f*(STM%eo) 7T1(5171)

Z* p*

is commutative and ((p is an isomorphism, it follows that

f*(STM)l)*

-1

f*(STM)l)* )([J]) = [}f/}] ) [)f/\'i;]—l'

(paoilo(p

-1

f*(STM)l)* )([]]) = [Yg*] . [Yl*]*l and by

). "([4]). Since the

Because ¢, is an isomorphism, (z{ o ((p

definition, w(f; Y1, Y2) is the integer associated to (i

f*(STM),

orientation of {1} x S* was chosen to be the orientation induced by f*(STM),

under ¢, the integer associated to (gp

f*(STM)l):l([j]) is that associated to [j].

Therefore, w(f;Y1,Ys) = n where n is the integer associated to [j]. O

3.3 Winding Numbers on a Surface with a Vector Field

In this section, it is again assumed that f is a regular closed curve based
at vy, unless otherwise stated. We will also assume M is a surface with a

continuous, nonzero vector field X.
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Definition 3.3.1. (Vector Field). A vector field is a function X : M — T M
such that P(X(z)) = z for each = € M.

The torus, the Klein bottle, non-compact surfaces, and surfaces with boundary
all have a continuous, nonzero vector field. We will assume X (zg) = vy,.
Clearly, given a continuous, nonzero vector field, a homotopy can be used to

ensure it demonstrates this behavior at xg.

Chillingworth [1] defined the winding number of f relative to a continuous,
nonzero vector field. This is just a special case of the definition given in the
previous section. Recall, for each x € M, X(zx) € TM C M x R™ and
P(X(z)) = x so X(x) = (x, )?(?)) Then, since X is continuous and nowhere

zero, X induces a vector field Yy, along f where Yy, : St — STM is defined

XU(T»
Y, () = ( f(t), —=2 ),
( X 50 )

A second vector field along f is defined from the tangent vector at each point

by

on the curve. Let Yy : ST — STM where

B 0
Yf’(”‘( A TOIT >

Taking Y7 = Yx, and Y5 = Y}/, we have Chillingworth’s definition of the winding
number for f. Since Y, and Y} only depend on f or X, the winding number

of f is relative to X only and we notate it w(f; X).

Since both S? and RP? do not have continuous, nonzero vector fields, (M, x()
is trivial for all M with a continuous, nonzero vector field. Then, from the exact

sequence
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ik P+
mo(M, o) — T (ST My, V) — T (ST M, vy,) — T (M, x0) — 7o(ST My, V)

it follows that i, is injective. Obviously, p.([Yy] - [Yx,]7") = [f] - [f]7" =
[cs,]. Consequently, there exists a unique element n € m; (ST M,,, v,,) such that
iv(n) = [Yp]-[Yx,]7'. Since STM,, = S*, 7 (ST My, vz,) = Z so we can think
of n as an integer. Consider the homotopy class represented by the function
from S to STM,, where as S! is traversed in the counterclockwise direction,
the image traverses ST'M,, once in the direction in which it is oriented. The
isomorphism from 71 (ST M,,, v,,) to Z is chosen to be the isomorphism that

takes this homotopy class and maps it to 1 € Z.

Theorem 3.3.2. w(f; X) = n where n is the unique element in 7, (ST My, vy,)

such that i,(n) = [Yp] - [Yx,] 7"

Proof. Let w(f: X) = n. So (g, 0#)(n) = pup, (V] [¥3,171) = [Vyr)- [V, 7"

From the commutativity of the diagram

if p!
7T2(Sl, ].) I Wl(f*(STM>1, 60) —— 7T1<f*(STM>,€0) — Wl(Sl, 1)
(s f*(STM)l)* K
Uy D«

7'('2(M, .CIZ'(]) —_— Wl(STMIO, Uxo)

7T1(STM, Uzo) —_— Wl(M, .I'o)

it follows that (z* o (/Lf‘f*(STM)I)*)<7’L) = [Yp] - [Yx,]™!. Because /Lf‘f*(STM)I :
f*(STM), — STM,, is an isomorphism and the orientation of f*(STM), was

= n. Therefore,

chosen from the fixed orientation of ST M,,, (1 (ST M)l)*(n)

in(n) = Y] - [Yx, ] O
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Definition 3.3.3. (Vector Field Homotopy). For two continuous, nonzero
vector fields X and X, a vector field homotopy is a homotopy hs : M — TM
between X and X such that hy is a continuous, nonzero vector field for each
s € I. We denote this X ~yr X. If the homotopy is based at v,,, that is

hs(20) = vy, for each s € I, we say X ~yp X rel {v,,}.

Lemma 3.3.4. For continuous, nonzero vector fields X, X on M where X ~yp

X rel {vg,}, w(f; X) = w(f; X).

Proof. Letting hy : M — T'M denote a vector field homotopy between X and

X based at v,,, we define h, : S' — STM by

K () ).

ho(t) = ( (), —=—=——
( s (£ 5

This is a homotopy between Y, and Yy, based at vy,. By Lemma 3.2.3,
w(f; X) = w(f; X). O
Lemma 3.3.5. For regular closed curves f, g where f ~g g rel {v,,}, w(f; X) =
w(g; X).

Proof. Let hy : S — M denote a regular homotopy between f and g based at
VUg. Then, hy : ST — STM defined by

. B ()
m“y_(maxuiﬁim@)

is a homotopy between Yy and Y. By Lemma 3.2.3, w(f; X) =w(g; X). O

Let w : 7% (M,v,) — Z such that [f]lg — w(f;X) for each [f]gr €

7% (M, v,,). By Lemma 3.3.5, this is a well-defined function.
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Theorem 3.3.6. w : 7% (M, v,,) — Z is a homomorphism.

Proof. Let [fl|r,|9lr € 7% (M, v,,). Here, f and g will be viewed as reg-
ular closed curves defined on I instead of S'. However, we still want the
pullback bundles to be subsets of S* x STM. So ¢ : I — S! defined by

q(t) = (cos((t)),sin(7(t))) where 7 : [0,1] — [0,27] is the bijection defined by
7(t) = (—4m + 2)t3 + (61 — 3)t* + ¢
and ¢ : St — I defined by ¢ = (q|[071))71 are used to identify S! and I. Then,
FH(STM) = {(t,v) € §" x STM : f(4(1)) = p(v)}

and

g (STM) = {(t,v) € S* x STM : g(4(t)) = p(v)}.

Because f and g are based at v,,, f*(STM); = g*(STM),. We only consider
regular closed curves based at v,,, so we will denote the fiber over {1} in the
pullback bundles as Fy. Since f,g are orientation preserving, f*(STM) and
g*(STM) are bundle isomorphic to S* x S'. Let ¢y : f*(STM) — S* x S* and
0y g*(STM) — S' x S* be the respective bundle isomorphisms chosen such
that <pf|E0 = @Q‘EO and ¢y(eg) = @4(e9) = (1,1). Then, the diagrams

S
{1} x St d Stx St
ng}EO Sof
Eo F(STM) STM

il Ff
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{1} x St St x st
909‘E0 Yy
Ey Z g'(STM) —— STM
are commutative.
Since [flr - [9lr = [(f or) - (g or)]gr, a similar diagram is constructed for

(for)-(gor). For simplicity, f or and g or are denoted f and § respectively.

Again, it is worth noting that f - § is defined on I rather than S* so

(f - §) (STM) = {(t,v) € S x STM : (f - §)(d(1)) = p(v)}.

We will define a bundle isomorphism ¢ , : (f-§)*(STM) — S* x S using both
¢ and @,. In order to do this, we relate the fibers of (f - §)*(STM) with the
fibers of f*(STM) and g*(STM). We identify how ¢, and ¢, are defined on
the fibers of f*(STM) and g*(STM) and use this to define ¢y ;.

For t € S* where 0 < ¢(t) < %,

(f -9 (STM), = {(t,v) € {t} x STM : f(r(24(1))) = p(v)}

SO

ppg((F - )" (STM))) = STMjaqeyy) = sy (f*(STM )gr2qce))))-

Similarly, for ¢t € S* such that £ < ¢(¢) <1,

(f - 9" (STM), = {(t,v) € {t} x STM : g(r(24(t) — 1)) = p(v)}
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SO

1y ((f - 3)(STM)y) = ST My(raq-1)) = g (97 (STM ) gr24()-1))) -

Recall p/ = pop; and p? = poy, where p : ST x ST — S is defined by (¢, s) > t.
Thus, there exists 7y : ST My — St and 0y + ST Mgy — S such that
pr(t,v) = (,mp(v) and pg(t,v) = (8 0g.(v). S0 Npgereiy) - STM i) =
St and 0 gr24(t)-1)) © ST My(r24()—1y) — S*. Let Qg (f-§)*(STM) — S x S
be defined by

(t, npaeeaoy @) i 0<4(t) <3

(T, v) =
Sof.g( ) <t <1

N |

(t, Ng.q(r(2an -1y (V) if

Then, ¢j.; is a bundle isomorphism and the diagram

{1} x §' — S x 1
Ey . (f - §)"(STM) ———— STM

il Hig

commutes.

Recall, ,uJ?l oYy, =Y3,, ,uJZl oYy =Y}, are sections of f*(STM) of the form

*

t = (t,ap(t)) and t = (2, By(1)) respectively. So oYy, =Y5 ppoYi =Y]
are of the form ¢ — (t,a(t)) and ¢t — (t,g}(t)). Similarly, ;' o Yx, =
Y3, 1yt oYy =Y are defined by t — (¢, ay(t)), t = (¢, 8,(t)) and p 0 Yy =

if;’i,@g oY) = }79’5 are of the form ¢t — (¢, (t)) and t — (t,ﬁg(t)). Note,
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ar(t) = (Y2, 00), @) = nee (Y2, (00)), Br() = nea (V7 (a0)).
gg(t) = Nyt (Yg’i (q(t))> where ¢ is again used because f and g are defined on I.

It is easy to check that YXf.g = YXf. Y, Yiggy = Y- Yy, (YXf Yx,)t =

Y;i Y%, and (Yf, Yy )t = Y]-j‘, - Y. Then, it follows from the definition of ¢,

(t, (nratzien 0 Yz,) (2a(0) ) i 0<d() <}

(so,ago(Y;; YX)) (t) =
T (ta (Wg,q<r<2q<t>—1>>OY)?g)(Zd(t)—1) if

N [—=

<q(t) <1
(ta (ﬁf,q<r(2q<t))> ° Y;’?f) (r(2d®)) ) if 0<4(t)
<t7 (Ug,qu(zq(t)fl)) o Y;?g) (r(2q(t)—1)) ) if 5<q(t)<1

<t,a?(Q(7“(2Q(t))))> if 0<g(t)<}
(b @t - 1)) i 3 < <1

\

Therefore, ¢, o (Y;}f : Yj}é) = (Y;gf, : Y;gg) is a reparameterization of the
function where ¢ — (¢, (@) - a,)(¢)). Similarly, P4 © (Y;, Y3) = (Yf*, Yy

is reparameterization the function where ¢ — (¢, (E; : gg)(t)) Then, it follows
from Theorem 3.2.8, w( fogX ) = n where n is the integer representing the

homotopy class of

in m ({1} x S, (1,1)).

Since the first component of (17]}/ 1//;’;;) . (}7; }//;g) : St — 81x S is homotopic
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to ¢, : St — S' and the second component is homotopic to

(k) (3 2)
0] = (071 %) - (091 D).

Because 71 ({1} x S*, (1, 1)) is being identified with Z under an isomorphism, the

integer associated to [j] is the sum of the integers associated to [?ﬂ . [Sffz’g] !

and [17';?] : [}7}'{9}71. Therefore, w(f - §; X) = w(f; X) + w(g; X). Equivalently,

w([flr - l9]r) = w([f]r) + w([g]r) so w is a homomorphism. O

We finish this chapter with two more main results. With the following lemma,
we prove for [flg, [9]r € 7% (M, vs,), [flr = [9]r if and only if [f] = [¢] and
w(f; X) = w(g; X). This result is then used along with a few lemmas to prove

7% (M, v,,) is isomorphic to 7" (M, zg) X Z.

Lemma 3.3.7. For closed curves f and g based at vy, such that f ~ g rel {x},
Yx, ~ Yx, el {vg,}.

Proof. Let hy : St — M be a homotopy between f and g based at z,. Define
hs: SY — STM by

| X (1))
hs(t) — hs<t)7 — ’
( \|X(hs(t))\|hs<t>)

h, is a homotopy between Yy, and Yx, based at v,,. Thus, [Yy,| = [Vx,]. O

Theorem 3.3.8. For orientation preserving, reqular closed curves f and g,

[ ~r grel {vy,} if and only if f ~ g rel {zo} and w(f; X) = w(g; X).
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Proof. Using Lemma 3.3.5, sufficiency is clear. To prove necessity, we begin
by assuming f ~ g rel {zo} and w(f; X) = w(g; X). For simplicity, we abuse
notation letting g be a regular closed curve based at v,, such that g € [g]}}l

Recall, the homotopy sequence of the fibration p/¥ : (f-§)*(STM) — S based

at eg is the exact sequence

ng N f'é
ma(S1,1) — m ((F - §) (STM )1, e0) —— m((F - §)" (STM), e0) = mi(S7, 1)

where i/ : (f - §)*(STM); — (f - §)*(STM) is the inclusion map. Because
w: 7% (M, v,,) — Z is a homomorphism, w([f]r - [9]5") = w([f]r) — w([g]r) =

w(f; X) —w(g; X) =0. Soil9(0) = Vo] - Va1 ! and Vel - [V,

is the identity of Wl((f - 9)*(STM), e).
The continuous function pj : ( f-9)*(STM) — STM induces the homo-

(fg
[Y)?f.;]_l) - [Y(f@)'] : [YXﬁ]_l is the identity of m1 (ST'M, vy,). Since Yz, =

morphism pj. Wl((f-ﬁ)*(STM), eo) = m(STM,v,,). Then, oy ([Y* -.),} .

Yf.’ . }%-/ and YVXf..'5 = YXf- ’ YX;?

Vil - ) = (5] 150) - (] )

From Lemma 3.3.7, Yy . ~Yx, rel {vg, } where ¢, : S' — M is the constant

map at xy. By definition, YX%O = ¢, Where Cuyy St — STM is the constant

0o

map at v,,. Then, because YX@ = Yy, -YXﬁ it follows that [YXE] = [YXg]_l

Hence,
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Since f ~ f rel {xo} and f ~ g rel {zo}, Lemma 3.3.7 implies [YXf.] : [YXQ}_I =

[cvzo]. Since f is a reparameterization of f, Y} is a reparameterization of Y

so [Yj] = [Yp]. Similarly, [Yar] = [Yz]. So

[Y(f'i)’] ) [YXf'.g}_l = [Yf’] ’ [Yﬁ/]

and [Yy/] - [Yy] is the identity of 7 (STM, vy,).

Recall ¢, : mp(M, vy,) — w1 (ST M, v,,) is the isomorphism defined by [f]g +—

[6(f)] where
_ f't)
w00 = (10 1731, )
¢«([f]r) = Y] and ¢.([g]z") = ¢:([glr) = [Yg] so ou([flr-l9]r") = [Yr] [Yy].
Consequently, [f]z - [g]5" is the identity of 7r(M,v,,) and [f]r = [g]r. O

Lemma 3.3.9. Let D C R? be an open disk and let X be any nonzero, con-
tinuous vector field on D. For each n € Z, there exists a regular closed curve

a, : St — D based at v,, € STD such that w(an;X) = n.

Proof. On the disk, all nonzero, continuous vector fields are vector field homo-
topic to each other. Consequently, Lemma 3.3.4 implies we can specify X . Since
TD, = R? for each x € D, STD, = {x} x S*. So v,, = (24, 0s,) € {z.} x S*
and we can define X : D — T'D such that X (z) = (z,%,,) for each = € D.

We next orient STD,, = {z,} x S'. Consider the isomorphism from S' to

STD,, defined by t — (z,,t). Orienting S* in the counterclockwise direction,

we orient ST D, by transporting the orientation of S* to STD,, .

Let a; : S — D be the regular closed curve based at v,, that is depicted in

Figure 3.1.



o1

U.’L"*'

Figure 3.1: The regular closed curve a; based at v,, on D.

Yy : S — STD is the vector field along a; where

s (an(n), —aD .
i)

ARG

In Figure 3.2, Yy () is pictured as blue vectors for four different values of .
Yy, St — STD is the vector field along a; such that ¢ — (ay(t), 7. ). Three
of these vectors are pictured in Figure 3.2 in red. Since Yy (1) = Yy, (1) = v,

we do not have a fourth red vector drawn at a;(1) = x,.

Figure 3.2: a; pictured with vectors Yy (t) and Y (t) for four values of
t.
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Figure 3.3: Modified version of aj(STD).

Since

a;(STD) = {(t,v) € S* x STD : a\(t) = p(v)},

a;(STD); = S for each t € S*. A modified version of a}(STD) is depicted in
Figure 3.3. Here, S' is the large green circle and af(STD); is drawn in black

for four values of t. Within each a}(STD);, Yo (t) and Y (t) are pictured.
ay

Clearly, we can choose ¢ : aj(STD) — S' x S' such that 375; St — Stx St

is defined by £ — (,a(t)) = (£, 1) and Y, : S — §'x§" defined by ¢ — (¢, 5(t))
is homotopic to the function defined by ¢ +— (¢,t). So the integer associated to

the homotopy class of the function

i0=(1.(3x3)o)

is 1. Therefore, w(a;; X) = 1.

For each integer n > 1, let a, : S' — D be a regular closed curve in the

regular homotopy class given by taking [a;]g under the group operation with
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itself n times. That is, [ay]g - - - [a1]g 7 times. w(an; X) = w(ay; X) + ... +
w(ay; X) = n by Theorem 3.3.6. Forn < —1, let a, : S* — D be a regular closed
curve in the regular homotopy class [a_,|5'. Then, w(a,; X) = —w(a_,; X) =
n. Lastly, for n = 0, let ag = e. Since [e]g is the identity of mg(D,v,,) and
w : (D, v,,) — Z is a homomorphism, w(ag; X) = w(e; X) = 0. Thus,
for each n € 7Z, there exists a regular closed curve a, : S' — D such that

w(an; X) =n. O

Lemma 3.3.10. For each n € Z, there exists a reqular closed curve b, on M

based at vy, such that b, is null-homotopic and w(b,; X) = n.

Proof. Let e : D — M be alocal diffeomorphism of zy € M such that e(x,) = xg

and de,, (0, ) = Ugy. Defining € : STD — STM by

v = (o) v (el )

||d5z(@)||8(9&)

¢ is a bundle isomorphism. To define winding numbers, an orientation of ST M.,
must be fixed. We orient ST M, by transporting the orientation of STD,,, that
was described in the previous lemma under the isomorphism 5" srp. 9T Dy, —

STM,,.

Let X : D — TD be the continuous, nonzero vector field of D defined by

¢y — 1 X(&t(a:))
X() <\|X(€(w))\\s<z)>'

From Lemma 3.3.9, w(a,; X) = n. Let b, = £ o a,. Then,

(€Y, ) (1) = (0 X 0 an)(t) = Yx,, (1)
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so oYy =Yy, . By Theorem 2.1.6,

dza, 1) (al(t))
oYy )(t) = <s an(t)), NI =Yy (t).
( ) ( ) ||d€a'n(t)( <t>)H an
From Theorem 3.3.2, n is the unique element in 71 (STD,,,v,,) such that
ip.(n) = [Yay] - [Yx, |7 where ip : STD,, — STD is the inclusion map. Let

p : STD — D be the projection of ST'D onto D. Because the diagram

wo(Dot0) —— (ST D, 0, )~ 1y (STD. ) 225 (D, )
(é‘STDZJ*k Ex
| )

1o(M, 20) —— (ST My, 0n) —s 11(STM, v2,) ——s 701 (M, 0)

is commutative and (¢, o ip.)(n) = [Vy] - [Yx, |7, <z* o (5’|STDZ*)*>(7’L) =
Yy, ] [Yx,, 7' Since STM,, was oriented by transporting the orientation of
STD,, under the isomorphism é‘STDz*, (é|STDI*)*(n) =n. Soi.(n) = [V |-
[Yx, ]~ and w(b,; X) = n by Theorem 3.3.2. Since b,(S") C (D) and £(D) is

diffeomorphic to D, b,, is null-homotopic. n

Lemma 3.3.11. For each homotopy class o € " (M, xy), there exists a unique

(g € 7% (M, v,,) such that [f] = a and w([f]r) = 0.

Proof. From the exact sequence given in the proof of Theorem 2.4.3, we know
Dy M (STM,v,,) — (M, x0) is surjective. Since mr(M,vy,) = m (ST M, vy,)
by Corollary 2.3.4, it follows that there exists a regular closed curve g € a that

is based at v,, for each a € w{" (M, xp).

Let n = w([g]g) and let b_,, be the null-homotopic, regular closed curve

described in Lemma 3.3.10. Since b_,, is null-homotopic, it is orientation pre-
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serving so Theorem 3.3.6 implies w([g]r - [b-n]r) = 0. Because [g|g - [b_n|r =
[((gor)-(b_yor)|r and r is just a reparameterization of I, [(gor) - (b_,or)] =
g b-n] = [9] = . Therefore, taking f = (gor)- (b-nor), [flr € 75 (M, vs,),

[f] = «, and w([f]r) = 0. Uniqueness follows from Theorem 3.3.8. O

To prove the last main result, we utilize the following result of short exact

sequences.

Theorem 3.3.12. (Conrad [2]). Consider groups A, B,C with the short exact

sequence

Let s : B — A be a homomorphism such that s o k is the identity function on

A. Then, X : B— A x C defined by A(b) = (s(b),v(b)) is an isomorphism.

Theorem 3.3.13. 7% (M, v,,) is isomorphic to w" (M, xo) X Z where the group

structure of m% (M, vy,) is the one described in Section 2.3.

Proof. Define k : n{" (M, x¢) — 7% (M, vy,) such that for each a € 7{" (M, z),
a = [f]r where [f] = @ and w([f]g) = 0. Then, k is injective and, as a result
of Theorem 3.3.8, k is a homomorphism. From Lemma 3.3.10 and Theorem
3.3.6, w: % (M, v,,) — Z is a surjective homomorphism. As a consequence of
the uniqueness in Lemma 3.3.11, im k = kerw. Thus, we have the short exact

sequence:

1 —»w{”(M,xo)—k»wj’{(M,vzo) Y.z 1



26

Next, we define a homomorphism s : 7% (M, v,,) — 7w (M, x). For each
[fIr € 75 (M, va,), let s([f]r) = [f]. For [f]r. [g]r € 7 (M, vz,), s([f]r-[9]r) =

s([(for)-(gor)|r) = [(for)-(gor)] = [f-g] = [f]-[g]- Thus, sis a homomorphism.
Next, we verify that s o k is the identity on 7w (M,zg). Let a € 7w (M, zy).

k() = [f]r where [f] = a and w([f]r) = 0. Then, s(k(a)) = s([f]r) = [f] = a.

Let X : % (M, vy,) — m (M, x9) X Z be defined by

From Theorem 3.3.12, X is an isomorphism. O
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CHAPTER 4

EXAMPLES

In this chapter, we look at several surfaces with specified continuous, nonzero
vector fields. We can describe 7% (M, v,,) for each surface by listing the gener-

ators of the group as a result of 7% (M, v,,) being isomorphic to 7" (M, zo) X Z.

4.1 Annulus

We examine the annulus A with respect to the continuous, nonzero vector

field of Figure 4.1.

Figure 4.1: A continuous, nonzero vector field on the annulus.

Since the annulus is an orientable surface, 79" (A, z) = m1 (A, o) and 7% (A, vy, ) =

Tr(A, vg). m(A x9) = Z so mr(A,vy,) = Z x Z. The regular homotopy
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classes of the regular closed curves g; and g, of Figure 4.2 are the generators
of mr(A,v,,). This is because g; is null-homotopic and has winding number 1
while the homotopy class of g, generates m; (A, zg) and g, has winding number 0.
Thus, [g1]r = (0,1) € Z x Z and [g2]g — (1,0) € Z X Z under the isomorphism
described in Theorem 3.3.13.

() |
,U:L‘[] UIL‘(_)

Figure 4.2: [g1]r and [g2| g generate mr(A, vy, ).

4.2 Mobius Band

Consider the Mobius band B with the continuous, nonzero vector field of Fig-
ure 4.3. m1(B, xy) = Z and is generated by an orientation reversing closed curve.
Since the composition of two orientation reversing closed curves is orientation
preserving (Lemma 3.1.6), it follows that the isomorphism from m (B, x¢) to Z
induces an isomorphism from 7{" (B, x) to 2Z when it is restricted to 7" (B, zy).
So " (B, x¢) = Z and 7% (B, v,,) = Z x Z. The generators of 7% (B, v,,) are
the regular homotopy classes of the regular closed curves pictured in Figure 4.4.

([g1]r — (0,1) € Z X Z and [go]r — (1,0) € Z X Z.



Figure 4.3: A continuous, nonzero vector field on the Mobius band.

v

4

v

v

N—> —>

v

v

v

v

Uz

g2

/

Vg

Figure 4.4: [g1]r and [¢g2] g generate 7% (B, vy,).

4.3 Torus

29

The torus T is viewed with respect to the continuous, nonzero vector field

of Figure 4.5. m(T,x0) = Z X Z s0 wr(T,vy) = Z X L X L. wg(T,vy,) is

generated by the regular homotopy classes of ¢;, g2, and g3 pictured in Figure

4.6. [g1]r — (0,0,1) while [go]r — (1,0,0) and [g3]r — (0,1,0) or vice versa

depending on the isomorphism from (T, zo) to Z x Z chosen.
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Figure 4.5: A continuous, nonzero vector field on the torus.
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Figure 4.6: [g1]r, [g2]r, and [g3]r generate mr(T, vy,).
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Figure 4.7: A continuous, nonzero vector field on the Klein bottle.

4.4 Klein Bottle

We view the Klein bottle K with respect to the vector field of Figure 4.7.
m (K, x9) = (a,blaba'b) where a is identified with an orientation preserving
closed curve while b is identified with an orientation reversing closed curve under
the isomorphism. The relation aba='b = 1 can be used to uniquely write any
word in this group in the form a™b". Then, as a result of Lemma 3.1.6, any word

with n odd is orientation reversing. Consequently, 7¢" (K, xq) = (a, b?|aba™'b).
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Figure 4.8: [g1]r, [g2]r, and [g3]r generate 7% (K, vy,).

[91] R, [92] R, and [gs]r generate 7% (K, vy, ). ¢1 is null-homotopic and has wind-
ing number 1. g, and g3 have winding number 0 while [gs] — b* € (a, b*|aba='b)

and [g3] — a € {(a, b*|aba'b) under the isomorphism from 7¢" (K, x¢) to (a, b*|aba~1b).
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