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ABSTRACT

The use of rotation numbers in the classification of regular closed curves in

the plane up to regular homotopy sparked the investigation of winding numbers

to classify regular closed curves on other surfaces. Chillingworth [1] defined

winding numbers for regular closed curves on particular surfaces and used them

to classify orientation preserving regular closed curves that are based at a fixed

point and direction. We define geometrically a group structure of the set of

equivalence classes of regular closed curves based at a fixed point and direction.

We prove this group structure coincides with the one introduced by Smale [9]

via a weak homotopy equivalence. The set of equivalence classes of orientation

preserving regular closed curves is a subgroup. This thesis investigates the

relationship between this subgroup and the winding number of each element.

Specifically, it is proven that this subgroup is isomorphic to the direct product

of the integers with the group of orientation preserving closed curves up to

homotopy where the isomorphism sends an equivalence class to its winding

number and corresponding homotopy class. Using this result, we describe the

subgroup for several surfaces by depicting representatives of generators.
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4.4 [g1]R and [g2]R generate ⇡or

R

(B, v
x0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 A continuous, nonzero vector field on the torus. . . . . . . . . . . . . . . . . . . . 60

4.6 [g1]R, [g2]R, and [g3]R generate ⇡
R

(T, v
x0). . . . . . . . . . . . . . . . . . . . . . . . 60

vii



4.7 A continuous, nonzero vector field on the Klein bottle. . . . . . . . . . . . . . 61

4.8 [g1]R, [g2]R, and [g3]R generate ⇡or

R

(K, v
x0). . . . . . . . . . . . . . . . . . . . . . . . 62

viii



1

CHAPTER 1

INTRODUCTION

Whitney [11] launched the investigation of rotation numbers of regular closed

curves in the plane. Geometrically, the rotation number is the net angle the

tangent vector rotates through as the curve is traversed. He used rotation

numbers to classify regular closed curves in the plane up to regular homotopy

and gave a simple method of calculating the rotation number of a given regular

closed curve in the plane. These results allow us to easily find representatives

of each regular homotopy class.

It later became the goal of Reinhart [8] and Chillingworth [1] to extend these

results by defining a winding number for regular closed curves on other surfaces.

Using his definition of winding number, Chillingworth classified orientation

preserving regular closed curves on a surface with a continuous, nonzero vector

field up to regular homotopy.

In this thesis, we describe the geometric group structure of the set of regular

homotopy classes of regular closed curves on surfaces. Using the definition of

winding number given by Chillingworth, we focus our attention on surfaces with

continuous, nonzero vector fields. For these surfaces, we prove the function that

maps the set of regular homotopy classes of orientation preserving regular closed

curves into the integers by the winding number is a homomorphism. Using this
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homomorphism, we provide a di↵erent proof of Chillingworth’s classification

theorem. Lastly, we prove that the set of regular homotopy classes of orientation

preserving regular closed curves is isomorphic to the direct product of the

homotopy classes of orientation preserving closed curves with the integers. With

this result, we are able to describe the generators of the group of regular

homotopy classes of orientation preserving regular closed curves on several

surfaces.
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CHAPTER 2

GROUP STRUCTURE OF ⇡
R

(M, v
x0)

2.1 Definitions

We begin with definitions of the main structures used throughout this thesis.

The first two definitions are those given by Guillemin and Pollack [3, p. 1–11].

Definition 2.1.1. (Local Di↵eomorphism of x 2 M ⇢ Rm). A local di↵eo-

morphism of x is a smooth bijection ⇠ : V ! U where V is an open subset

of the half-space Hk, U ⇢ M is open where M is given the subspace topology,

x 2 U , and ⇠�1 is smooth. If for each x 2 M there exists a local di↵eomorphism

⇠
x

: V
x

! U
x

where V
x

⇢ Hk, then we say M is locally di↵eomorphic to Hk.

Definition 2.1.2. (Tangent Space at x 2 M ⇢ Rm). Let ⇠ : V ! U be a local

di↵eomorphism of x where ⇠(v) = x . Then, the tangent space at x 2 M , or the

fiber over x, is d⇠
v

(Rk) where d⇠
v

: Rk ! Rm is the usual derivative mapping

defined by

d⇠
v

(y) = lim
h!0

⇠(v + yh)� ⇠(v)

h

for each y 2 Rk. We label this TM
x

.

Definition 2.1.3. (Riemannian Manifold). M ⇢ Rm is a k-dimensional Rie-

mannian manifold if it is locally di↵eomorphic to Hk and each tangent space is
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assigned an inner product that varies smoothly over M . Here, we assign the

inner products by restricting the dot product on Rm to each tangent space.

Although some structures defined in this thesis use the inner products, the

results presented are independent of the choice of inner products.

Equivalently, we could have defined a Riemannian manifold to be a second

countable, Hausdor↵ topological space that is locally homeomorphic to Hk and

is equipped with a smooth atlas and a smoothly varying choice of inner products

on the tangent bundle. Then, by the Nash embedding theorems, we can choose

an embedding of the topological space into some Rm that preserves the inner

product on each tangent space. As a result of the Whitney embedding theorem,

any two embeddings are isotopic if we choose m � 2k + 1.

Definition 2.1.4. (Surface). A surface is a connected 2-dimensional Rieman-

nian manifold.

Compact surfaces are classified using three criteria: orientability, the number

of boundary components, and the Euler characteristic. So two compact surfaces

are di↵eomorphic if and only if they are both orientable or both non-orientable,

they have the same number of boundary components, and the same Euler

characteristic (Hirsch [6, p. 207]).

Definition 2.1.5. (Derivate Mapping of a Function Between Manifolds). Let

f : N ! M where N ⇢ Rn and M ⇢ Rm are l-dimensional and k-dimensional

Riemannian manifolds respectively. For x 2 N , there exists a local di↵eomor-

phism ⇠ : V ! U where ⇠(0) = x. Similarly, for f(x) 2 M , there exists a local

di↵eomorphism ⇣ : V 0 ! U 0 where ⇣(0) = f(x). For V small enough, we have

that
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N M

V V 0

⇠

f

j = ⇣�1 � f � ⇠

⇣

is a commutative diagram. Then, df
x

: TN
x

! TM
f(x) is a linear transformation

of tangent spaces defined by df
x

= d⇣0 � dj0 � d⇠�1
0 .

Theorem 2.1.6. (Guillemin and Pollack [3, p. 11]). Let N,M,L be Riemannian

manifolds and f : N ! M , g : M ! L. For each x 2 N ,

d(g � f)
x

= dg
f(x) � dfx.

Definition 2.1.7. (Tangent Bundle of M). The tangent bundle of M , denoted

TM , is

{v
x

= (x, bv
x

) 2 M ⇥ Rm : bv
x

2 TM
x

}.

As a subset of Rm⇥Rm, the tangent bundle ofM is given the subspace topology.

Definition 2.1.8. (Projection of TM onto M). The projection of the tangent

bundle onto M is a function P : TM ! M where for each v
x

2 TM , P (v
x

) = x.

Note P�1({x}) = TM
x

where we identify {x}⇥ TM
x

⇢ TM with TM
x

.

Definition 2.1.9. (Spherical Tangent Bundle of M). We denote the spherical

tangent bundle of M as STM . It is

{v
x

= (x, bv
x

) 2 TM : || bv
x

||
x

= 1}
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where || ||
x

: TM
x

! R is the norm determined by the inner product assigned

to TM
x

. As a subset of Rm ⇥ Rm, the spherical tangent bundle of M is given

the subspace topology.

Throughout the thesis, v
x0 is a fixed point of STM .

Definition 2.1.10. (Projection of STM onto M). The projection of the

spherical tangent bundle of M onto M is p : STM ! M where p = P
�

�

STM

.

Definition 2.1.11. (Fiber over x in STM). The fiber over x in STM is

STM
x

= {v
x

2 TM : || bv
x

||
x

= 1}.

Equivalently, STM
x

= p�1({x}).

The spherical tangent bundle of M is clearly dependent upon the choice of

inner products on the tangent spaces. Suppose the tangent spaces of M are

assigned di↵erent inner products that vary smoothly over M . We denote the

spherical tangent bundle of M taken with respect to these inner products as

STM 0. STM 0 is bundle isomorphic to STM . That is, there exists a continuous

function  : STM 0 ! STM such that


�

�

STM

0
x

: STM 0
x

! STM
x

is an isomorphism for each x 2 M . This function is defined by

(x, bv
x

) 7!
✓

x,
bv
x

|| bv
x

||
x

◆

.
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It is this bundle isomorphism that allows our results to be independent of the

choice of inner products.

Definition 2.1.12. (Closed Curve). A closed curve is a continuous function

f : S1 ! M . S1 is thought of as the unit circle in R2 oriented counterclockwise.

Definition 2.1.13. (Closed Curve Based at x0 or v
x0). A closed curve f is

based at x0 2 M if f
�

(1, 0)
�

= x0. f is based at v
x0 if f

�

(1, 0)
�

= x0 and

df(1,0)
�

(0, 1)
�

= cv
x0 . We use ⌦

x0 to represent the set of closed curves on M

based at x0.

Definition 2.1.14. (Regular Closed Curve). A closed curve f is regular if

f 0 : S1 !
[

t2S1

TM
f(t) defined by f 0(t) = df

t

�

(0, 1)
�

is continuous and f 0(t) 6= 0

for each t 2 S1. The topology of
[

t2S1

TM
f(t) ⇢ Rm is the subspace topology.

Equivalently, f is a closed curve with continuously varying, nonzero tangent at

each point t 2 S1. We let �
v

x0
be the set of all regular closed curves based at

v
x0 .

Definition 2.1.15. (Homotopy). Consider continuous functions f, g : W ! Z

whereW,Z are topological spaces. A homotopy between f and g is a continuous

function H : W ⇥ I ! Z such that H(�, 0) = f and H(�, 1) = g. When

convenient, we also notate homotopies as the family of maps h
s

: W ! Z where

h
s

= H(�, s) for each s 2 I. A homotopy is based at z0 2 Z if for some fixed

w0 2 W , h
s

(w0) = z0 for each s 2 I. Let ' rel {z0} denote a homotopy between

two functions where the homotopy is based at z0.

Definition 2.1.16. (Regular Homotopy Between Regular Closed Curves f and

g). A regular homotopy between f and g is a homotopy H : S1 ⇥ I ! M
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between f and g such that h
s

: S1 ! M is a regular closed curve for each s 2 I.

A regular homotopy is based at v
x0 if h

s

�

(1, 0)
�

= x0 and h0
s

�

(1, 0)
�

= cv
x0 for

each s 2 I. Let '
R

rel {v
x0} denote a regular homotopy between two regular

closed curves where the homotopy is based at v
x0 .

If any part of the image of a regular closed curve is contained within the

boundary of M , we can apply a regular homotopy to the function to obtain

a regularly homotopic function that is contained in the interior of M . Thus, we

assume the image of a regular closed curve is contained within the interior of

M as this will simplify later arguments.

In order to define the composition of closed curves based at x0, we use an

alternate definition of a closed curve based at x0 that is defined on I. Let

⌦̇
x0 = {f : I ! M

�

�f is continuous and f(0) = f(1) = x0}

and q : I ! S1 where q(t) =
�

cos(⌧(t)), sin(⌧(t))
�

where ⌧ : [0, 1] ! [0, 2⇡] is a

bijection defined by

⌧(t) = (�4⇡ + 2)t3 + (6⇡ � 3)t2 + t.

⌧ is defined such that (f � q)0 is continuous, nonzero, and

(f � q)0(0) = (f � q)0(1) = cv
x0

where f is a regular closed curve based at v
x0 . This behavior is needed to make

precise an alternate definition of a regular closed curve based at v
x0 .
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Since q is continuous and q(0) = q(1) = (1, 0), f � q 2 ⌦̇
x0 for each f 2 ⌦

x0 .

Hence, we define Q⌦ : ⌦
x0 ! ⌦̇

x0 by Q⌦(f) = f � q. We claim Q⌦ defines a

one-to-one correspondence between ⌦
x0 and ⌦̇

x0 . First, it is clear that for each

f, g 2 ⌦
x0 , f � q = g � q implies f = g. So Q⌦ is one-to-one. To show that

Q⌦ is onto, choose h 2 ⌦̇
x0 . Then, h � q̇ 2 ⌦

x0 where q̇ : S1 ! I is defined by

q̇ =
�

q
�

�

[0,1)

��1
. Therefore, when convenient, we use elements in ⌦̇

x0 as closed

curves based at x0.

Similarly, we have a one-to-one correspondence between �
v

x0
and �̇

v

x0
where

�̇
v

x0
is the set of functions f : I ! M such that f 2 ⌦̇

x0 , f
0 : I !

[

t2I

TM
f(t)

defined by f 0(t) = df
t

(1) is continuous and nonzero, and f 0(0) = f 0(1) = cv
x0 .

Here, the one-to-one correspondence is given by Q� : �
v

x0
! �̇

v

x0
defined by

Q�(f) = f �q. Thus, we also use elements of �̇
v

x0
as regular closed curves based

at v
x0 .

Definition 2.1.17. (Composition of Closed Curves Defined on I). Consider

closed curves f, g : I ! M based at x0 2 M . That is, f(0) = f(1) = x0 and

g(0) = g(1) = x0. The composition of f and g is f · g : I ! M where

(f · g)(t) =

8

>

<

>

:

f(2t) if 0  t  1
2

g(2t� 1) if 1
2  t  1

for each t 2 I. Since f and g are based at x0, f · g is well-defined at t = 1
2 and

based at x0.

Definition 2.1.18. (Reverse of a Closed Curve Defined on I). We define the

reverse of a closed curve f : I ! M to be f : I ! M such that for each t 2 I,
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f(t) = f(1� t).

For closed curves f, g : I ! M based at x0, we let [f ], [g] represent the based

homotopy classes of each function respectively. Then, [f ], [g] 2 ⇡1(M,x0) and

we define [f ] · [g] = [f · g]. ⇡1(M,x0) is a group under the operation · where

the homotopy class of the function c
x0 : I ! M defined by c

x0(t) = x0 is the

identity of the group and [f ]�1 = [f ].

Definition 2.1.19. (⇡
R

(M, v
x0)). We define ⇡

R

(M, v
x0) as the set of equiva-

lence classes of �
v

x0
under regular homotopy based at v

x0 . For each f 2 �
v

x0
,

we use [f ]
R

to represent the based regular homotopy class of f .

⇡
R

(M, v
x0) is equivalent to ⇡0(�v

x0
), the set of path components of �

v

x0
when

�
v

x0
is assigned the following topology. Consider any metric d : TM⇥TM ! R+

on TM where R+ is the set of non-negative real numbers. For f, g 2 �
v

x0
, define

d(f, g) = max
n

d
⇣

�

f(t), f 0(t)
�

,
�

g(t), g0(t)
�

⌘

: t 2 S1
o

.

Then, d is a metric and �
v

x0
is given the topology induced by d (Smale [9]).

For M of dimension 1, 2, or 3, ⇡
R

(M, v
x0) does not depend on the smooth

structure of M . This is because, in these dimensions, two manifolds that are

homeomorphic are also di↵eomorphic. Clearly the equivalence classes that con-

stitute ⇡
R

(M, v
x0) are preserved under a di↵eomorphism ofM . Thus, ⇡

R

(M, v
x0)

only depends on the topology of M .



11

2.2 An Alternate View of ⇡
R

(M, v
x0)

Smale [9] defined a specific weak homotopy equivalence to prove ⇡
R

(M, v
x0)

is in one-to-one correspondence with ⇡1(STM, v
x0). To define a weak homotopy

equivalence, we need to define the higher homotopy groups of a topological space

Z with respect to a basepoint z0. For each non-negative integer n, ⇡
n

(Z, z0) is a

partition of the set of continuous functions from Sn into Z that are based at z0.

The set is partitioned using the equivalence relation of based homotopy. That

is, f, g : Sn ! Z are equivalent if and only if there exists a homotopy between

f and g that is based at z0. We use [f ] to represent the based homotopy class

of f .

For n 6= 0, ⇡
n

(Z, z0) is the nth homotopy group and for n > 1, ⇡
n

(Z, z0) is

abelian. Hatcher [4, p. 340] describes the group structure of these homotopy

groups. ⇡0(Z, z0) is not necessarily a group but is the set of path components

of Z.

Definition 2.2.1. (Weak Homotopy Equivalence). For topological spaces W

and Z, a weak homotopy equivalence is a continuous function � : Z ! W

that induces isomorphisms of all homotopy groups. That is, �⇤ : ⇡
n

(Z, z0) !

⇡
n

(W,�(z0)) defined by �⇤([f ]) = [� � f ] for each [f ] 2 ⇡
n

(Z, z0) is a bijection

for each n and an isomorphism for n 6= 0.

With Smale’s weak homotopy equivalence, some aspects of the study of reg-

ular closed curves on M classified up to regular homotopy were simplified to the

study of closed curves on STM classified up to homotopy. Since ⇡1(STM, v
x0) is

group, a group structure can be induced on ⇡
R

(M, v
x0) using the weak homotopy
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equivalence. We give a geometric description of this induced group structure in

the next section.

To define the function Smale proved to be a weak homotopy equivalence, let

⌦
v

x0
be the set of closed curves on STM based at v

x0 . ⌦v

x0
is given the compact

open topology (Hu [7, p. 73]). Let � : �
v

x0
! ⌦

v

x0
be defined as follows. For

each f 2 �
v

x0
, let �(f) : S1 ! STM be defined by

�(f)(t) =

✓

f(t),
f 0(t)

||f 0(t)||
f(t)

◆

.

Theorem 2.2.2. (Smale [9]). � is a weak homotopy equivalence between �
v

x0

and ⌦
v

x0
.

In particular, taking n = 0, the induced function �⇤ : ⇡0(�v

x0
) ! ⇡0(⌦v

x0
) de-

fined by �⇤([f ]) = [�(f)] for each [f ] 2 ⇡0(�v

x0
) is a bijection. Since ⇡0(�v

x0
) =

⇡
R

(M, v
x0) and ⇡0(⌦v

x0
) = ⇡1(STM, v

x0), Theorem 2.2.3 follows from Theorem

2.2.2.

Theorem 2.2.3. (Smale [9]). �⇤ : ⇡
R

(M, v
x0) ! ⇡1(STM, v

x0) defined by

�⇤([f ]R) = [�(f)] is a bijection.

Accordingly, regular closed curves f and g are regularly homotopic based at v
x0

if and only if �(f) and �(g) are homotopic based at v
x0 .

For the remainder of the thesis, we use M to denote a surface. f and g will

be used to denote regular closed curves on M based at v
x0 = (x0, cvx0) 2 STM

unless otherwise stated.
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2.3 Group Structure of ⇡
R

(M, v
x0)

We would like to use the function defined by ([f ]
R

, [g]
R

) 7! [f · g]
R

as the

group operation on ⇡
R

(M, v
x0). However, f · g : I ! M is not based at v

x0 but

at (x0, 2cvx0). Thus, we define an orientation-preserving reparameterization, r,

of I such that r0(0) = r0(1) = 1
2 . We prove both f �r and g �r are regular closed

curves based at (x0,
1
2 cvx0) and their composition (f � r) · (g � r) is based at v

x0 .

Let r : I ! I be defined by r(t) = �t3+ 3
2t

2+ 1
2t. Since r

0(t) = �3t2+3t+ 1
2 ,

we use the quadratic formula to check that r0(t) 6= 0 for each t 2 I. Since

r(0) = 0, r(1) = 1, and r0(t) 6= 0 for each t 2 I, r is an increasing bijection.

Therefore, r is a reparameterization of the unit interval. Lastly, we check that

r0(0) = 1
2 and r0(1) = 1

2 .

Lemma 2.3.1. f � r is a regular closed curve based at
�

x0,
1
2 cvx0

�

2 TM .

Proof. First, we show f � r is a closed curve. From the definition of r,

(f � r)(0) = f(0) = x0 = f(1) = (f � r)(1).

Since both f and r are continuous, f � r is also continuous. Thus, f � r is a

closed curve.

We next prove (f � r)0 is continuous and nonzero. From the chain rule in

Theorem 2.1.6, (f �r)0(t) =
�

r0(t)
��

f 0�r
�

(t). Then, (f �r)0 is continuous because

r, r0, and f 0 are continuous. Since f is regular, f 0 � r is nonzero on I and we

have already seen r0 is nonzero on I. Consequently, (f � r)0 is never zero so f � r

is a regular closed curve.
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We have shown (f � r)(0) = (f � r)(1) = x0. Then, because

(f � r)0(0) = r0(0)f 0�r(0)
�

=
1

2
f 0(0) =

1

2
cv
x0

and

(f � r)0(1) = r0(1)f 0�r(1)
�

=
1

2
f 0(1) =

1

2
cv
x0 ,

f � r is based at (x0,
1
2 cvx0).

Lemma 2.3.2. (f � r) · (g � r) is a regular closed curve based at v
x0.

Proof. Because f �r and g�r are closed curves such that (f �r)(0) = (f �r)(1) =

x0 and (g � r)(0) = (g � r)(1) = x0, (f � r) · (g � r) is a closed curve such that
�

(f � r) · (g � r)
�

(0) =
�

(f � r) · (g � r)
�

(1) = x0. From the chain rule,

�

(f � r) · (g � r)
�0
(t) =

8

>

<

>

:

2r0(2t)f 0�r(2t)
�

if 0  t  1
2

2r0(2t� 1)g0
�

r(2t� 1)
�

if 1
2  t  1

.

It is clear from the previous lemma that the derivative is everywhere nonzero.

Since (f�r)0 and (g�r)0 are continuous, we now only need to check
�

(f�r)·(g�r)
�0

is well-defined at t = 1
2 and

�

(f � r) · (g � r)
�0
(0) =

�

(f � r) · (g � r)
�0
(1) to prove

(f�r)·(g�r) is a regular closed curve. Taking t = 1
2 , 2r

0�2
�

1
2

��

f 0
⇣

r
�

2
�

1
2

��

⌘

= cv
x0

and 2r0
�

2
�

1
2

�

� 1
�

g0
⇣

r
�

2
�

1
2

�

� 1
�

⌘

= cv
x0 . Similarly,

2r0
�

2(0)
�

f 0
⇣

r
�

2(0)
�

⌘

= cv
x0 = 2r0

�

2(1)� 1
�

g0
⇣

r
�

2(1)� 1
�

⌘

.

Thus, (f � r) · (g � r) is a regular closed curve. Since
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�

(f � r) · (g � r)
�

(0) =
�

(f � r) · (g � r)
�

(1) = x0

and
�

(f � r) · (g � r)
�0
(0) = cv

x0 =
�

(f � r) · (g � r)
�0
(1),

(f � r) · (g � r) is based at v
x0 .

Now consider the operation on ⇡
R

(M, v
x0) defined by

[f ]
R

· [g]
R

= [(f � r) · (g � r)]
R

.

This will be used as the group operation on ⇡
R

(M, v
x0). To check this is a

well-defined function from ⇡
R

(M, v
x0) ⇥ ⇡

R

(M, v
x0) to ⇡

R

(M, v
x0), let f '

R

bf rel {v
x0} and h

f

s

: I ! M be a regular homotopy between f and bf based at

v
x0 . Similarly, let g '

R

bg rel {v
x0} and h

g

s

: I ! M be a regular homotopy

between g and bg based at v
x0 . Obviously, (h

f

s

� r) · (h
g

s

� r) is a homotopy. It

follows from Lemma 2.3.2 that this is a regular homotopy based at v
x0 . Thus,

[(f � r) · (g � r)]
R

=
⇥

( bf � r) · (bg � r)
⇤

R

.

Theorem 2.3.3. ⇡
R

(M, v
x0) is a group under the operation defined by

[f ]
R

· [g]
R

= [(f � r) · (g � r)]
R

.

Proof. We begin by showing that the operation is associative. For regular closed

curves f, g, j based at v
x0 , we compare

�

[f ]
R

· [g]
R

�

· [j]
R

=
h⇣

�

(f � r) · (g � r)
�

� r
⌘

· (j � r)
i

R
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and

[f ]
R

·
�

[g]
R

· [j]
R

�

=
h

(f � r) ·
⇣

�

(g � r) · (j � r)
�

� r
⌘i

R

.

By definition,

✓

⇣

�

(f � r) · (g � r)
�

� r
⌘

· (j � r)
◆

(t) =

8

>

>

>

>

<

>

>

>

>

:

(f � r)
�

2r(2t)
�

if 0  t  1
4

(g � r)
�

2r(2t)� 1
�

if 1
4  t  1

2

(j � r)
�

2t� 1
�

if 1
2  t  1

and

✓

(f �r) ·
⇣

�

(g�r) ·(j �r)
�

�r
⌘

◆

(t) =

8

>

>

>

>

<

>

>

>

>

:

(f � r)
�

2t
�

if 0  t  1
2

(g � r)
�

2r(2t� 1)
�

if 1
2  t  3

4

(j � r)
�

2r(2t� 1)� 1
�

if 3
4  t  1

.

Let ' : I ! I such that

'(t) =

8

>

>

>

>

<

>

>

>

>

:

1
2r

�1(t) if 0  t  1
2

1
2r

�1
�

r(2t� 1) + 1
2

�

if 1
2  t  3

4

r(2t� 1) if 3
4  t  1

where r�1 : I ! I is the inverse function of r. We claim

h
s

(t) =

✓

⇣

�

(f � r) · (g � r)
�

� r
⌘

· (j � r)
◆

�

(1� s)'(t) + st
�

is a regular homotopy from (f�r)·
⇣

�

(g�r)·(j�r)
�

�r
⌘

to
⇣

�

(f�r)·(g�r)
�

�r
⌘

·(j�r)

based at v
x0 .

First, ' is a bijection that maps
⇥

0, 12
⇤

to
⇥

0, 14
⇤

,
⇥

1
2 ,

3
4

⇤

to
⇥

1
4 ,

1
2

⇤

, and
⇥

3
4 , 1

⇤
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to
⇥

1
2 , 1

⇤

. It follows that

h0 =

✓

⇣

�

(f � r) · (g � r)
�

� r
⌘

· (j � r)
◆

�

'
�

= (f � r) ·
⇣

�

(g � r) · (j � r)
�

� r
⌘

and h1 =
⇣

�

(f �r) ·(g�r)
�

�r
⌘

·(j �r). It is clear that h
s

is a homotopy between

the two functions based at x0.

To check that h
s

is a regular homotopy, we first show '0 is continuous and

nonzero. From the inverse function theorem, (r�1)0(t) =
1

r0(t)
. Using this, we

check '0(t) is well-defined at t = 1
2 ,

3
4 and '0(0) = '0(1). In fact, '0�1

2

�

= 2
5 ,

'0�3
4

�

= 5
2 , and '0(0) = '0(1) = 1. Now it is clear that '0 is continuous. Since

r0 is nonzero, it follows that (r�1)0 and in turn '0 are nonzero.

As a result of Theorem 2.1.6,

h0
s

(t) =
�

(1� s)'(t) + st
�0
✓

⇣

�

(f � r) · (g � r)
�

� r
⌘

· (j � r)
◆0
�

(1� s)'(t) + st
�

.

It is clear that h0
s

is continuous and

✓

⇣

�

(f � r) · (g � r)
�

� r
⌘

· (j � r)
◆0
�

(1� s)'(t) + st
�

is nonzero. Thus, h0
s

(t) = 0 only if
�

(1�s)'(t)+st
�0
= 0. However, this implies

(1 � s)'0(t) + s = 0 so '0(t) =
�s

1� s
. But '0(t) is always positive. Therefore,

h0
s

(t) 6= 0 for each t 2 I and h
s

is regular for each s 2 I. Since '0(0) = '0(1) = 1,

it follows that h0
s

(0) = h0
s

(1) = cv
x0 and the regular homotopy is based at v

x0 .

Thus, we have proven the operation is associative.

We next prove there exists an identity element in ⇡
R

(M, v
x0). In a neighbor-
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hood of x0 that is di↵eomorphic to a disk, we place the regular closed curve e

that is based at v
x0 and pictured in Figure 2.1. To show [e]

R

is the identity,

Figure 2.1: The regular closed curve e representing the identity of
⇡
R

(M, v
x0).

choose any [f ]
R

2 ⇡
R

(M, v
x0). We can apply a regular homotopy to f to ensure

f does not intersect itself in a small neighborhood around x0. Thus, we assume

Figure 2.2: f is assumed to not intersect itself in a neighborhood of x0 as
depicted.

f has the behavior depicted in Figure 2.2. This is done to simplify later figures.

In Figure 2.3, [e]
R

· [f ]
R

is represented by the first curve and shown to be

equal to [f ]
R

. Similarly, [f ]
R

· [e]
R

is represented by the first curve and shown

to be equal to [f ]
R

in Figure 2.4. Hence, [e]
R

is the identity of ⇡
R

(M, v
x0).

To prove each element has an inverse, we will use the closed curves � and �

defined in a neighborhood of x0. See Figure 2.5. These are not regular closed

curves since �0(0) = cv
x0 and �0(0) = �cv

x0 but �0(1) = �cv
x0 and �0(1) = cv

x0 .
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'
R

rel {v
x0}

'
R

rel {v
x0}

'
R

rel {v
x0}

Figure 2.3: Regular homotopy based at v
x0 between (e � r) · (f � r) and f .

'
R

rel {v
x0}

'
R

rel {v
x0}

'
R

rel {v
x0}

Figure 2.4: Regular homotopy based at v
x0 between (f � r) · (e � r) and f .
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Figure 2.5: Closed curves � and �. We let �v
x0 = (x0,�cv

x0).

Using arguments similar to ones used in previous lemmas, it can be shown that
h

(� � r) ·
⇣

�

(f � r) · (� � r)
�

� r
⌘i

R

is well-defined. We prove this is the inverse

of [f ]
R

. Since f
0
(0) = �cv

x0 , we can apply a regular homotopy to f and assume

f has the behavior of Figure 2.6.

Figure 2.6: f is assumed to not intersect itself in a neighborhood of x0 as
depicted.

(� � r) ·
⇣

�

(f � r) · (� � r)
�

� r
⌘

is the first regular closed curve in Figure 2.7.

Consequently, Figure 2.8 shows
h

(� � r) ·
⇣

�

(f � r) · (� � r)
�

� r
⌘i

R

· [f ]
R

= [e]
R

.



21

'
R

rel {v
x0}

'
R

rel {v
x0}

Figure 2.7: A regular homotopy of (� � r) ·
⇣

�

(f � r) · (� � r)
�

� r
⌘

.

'
R

rel {v
x0}

'
R

rel {v
x0}

'
R

rel {v
x0}

'
R

rel {v
x0}

Figure 2.8: Regular homotopy showing
h

(� � r) ·
⇣

�

(f � r) · (� � r)
�

� r
⌘i

R

·
[f ]

R

= [e]
R

.
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The following homotopy from the series of homotopies in Figure 2.8 requires

explanation:

'
R

rel {v
x0}

Figure 2.9: Regular homotopy from Figure 2.8.

Here, the first regular closed curve is f · f except at the ends of f and f there

are loops used to connect the ends and preserve regularity. Obviously, this

is homotopic to a constant map so the regular closed curve is in a neighbor-

hood that is di↵eomorphic to a disk. When the line connecting the two loops

is contracted, the orientation of both loops is preserved because the disk is

orientable. Therefore, the regular homotopy of Figure 2.9 holds. Similarly,

[f ]
R

·
h

(� � r) ·
⇣

�

(f � r) · (� � r)
�

� r
⌘i

R

= [e]
R

. This is shown in Figure 2.10.

Therefore, ⇡
R

(M, v
x0) is a group.
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'
R

rel {v
x0}

'
R

rel {v
x0}

'
R

rel {v
x0}

'
R

rel {v
x0}

'
R

rel {v
x0}

Figure 2.10: Regular homotopy showing [f ]
R

·
h

(� � r) ·
⇣

�

(f � r) · (� � r)
�

�

r
⌘i

R

= [e]
R

.
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Corollary 2.3.4. Smale’s bijection �⇤ : ⇡R

(M, v
x0) ! ⇡1(STM, v

x0) is a group

isomorphism.

Proof. First note that �⇤
�

[f ]
R

· [g]
R

�

= [�
�

(f � r) · (g � r)
�

]. Since

�
�

(f�r)·(g�r)
�

(t) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

✓

(f � r)(2t),
f 0�r(2t)

�

||f 0
�

r(2t)
�

||(f�r)(2t)

◆

if 0  t  1
2

✓

(g � r)(2t� 1),
g0
�

r(2t� 1)
�

||g0
�

r(2t� 1)
�

||(g�r)(2t�1)

◆

if 1
2  t  1

and

�

�(f) · �(g)
�

(t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

✓

f(2t),
f 0(2t)

||f 0(2t)||
f(2t)

◆

if 0  t  1
2

✓

g(2t� 1),
g0(2t� 1)

||g0(2t� 1)||
g(2t�1)

◆

if 1
2  t  1

,

�
�

(f�r)·(g�r)
�

is just a reparameterization of �(f)·�(g). So
⇥

�
�

(f�r)·(g�r)
�⇤

=
⇥

�(f) · �(g)
⇤

. Consequently,

�⇤
�

[f ]
R

· [g]
R

�

=
⇥

�
�

(f � r) · (g � r)
�⇤

=
⇥

�
�

f
�

· �
�

g
�⇤

=
⇥

�
�

f
�⇤

·
⇥

�
�

g
�⇤

= �⇤
�

[f ]
R

�

· �⇤
�

[g]
R

�

so �⇤ is a homomorphism. Since �⇤ is also a bijection, the result follows.



25

2.4 Regular Homotopy Classes within a Homotopy Class

Regular homotopy refines homotopy. In this section, it is proven that within

each homotopy class there are infinitely many regular homotopy classes for all

surfaces other than S2 and RP2. We begin by proving a few results for exact

sequences.

Definition 2.4.1. (Section of a Surjective Map). For sets B,C and surjection

v : B ! C, a section of v is a function s : C ! B such that v � s is the identity

function on C.

Note that for any surjection there exists a section. This is because for each

c 2 C, we can choose some b 2 B such that v(b) = c. Then, s can be defined

such that s(c) = b so v(s(c)) = v(b) = c.

Lemma 2.4.2. Consider groups A,B,C with the exact sequence

1 A B C 1.
k v

Then, for each section s of v, es : A⇥ C ! B defined by es(a, c) = k(a)s(c) is a

bijection.

Proof. We first show es is one-to-one. Suppose there exists (a, c), (a0, c0) 2 A⇥C

such that es(a, c) = es(a0, c0). Consequently,

k(a)s(c) = k(a0)s(c0)

k(a0)�1k(a) = s(c0)s(c)�1

k
�

(a0)�1a
�

= s(c0)s(c)�1.



26

Applying v to both sides of the equation, v
⇣

k
�

(a0)�1a
�

⌘

= v
⇣

s(c0)s(c)�1
⌘

. As

a result of exactness, im k = ker v so v
⇣

k
�

(a0)�1a
�

⌘

= 1. Then,

1 = v
⇣

s(c0)s(c)�1
⌘

= v
�

s(c0)
�

v
�

s(c)
��1

= c0c�1

so c = c0. Then, because k(a)s(c) = k(a0)s(c0),

k(a)s(c) = k(a0)s(c)

k(a) = k(a0)

a = a0,

where the last equality holds because k is injective. Hence, (a, c) = (a0, c0) and

es is injective.

Next, we prove es is surjective. Consider b 2 B. Since v(b) 2 C, we let

c = v(b). So s(c)�1 2 B and the product bs(c)�1 2 B. Then,

v
�

bs(c)�1
�

= v(b)v
�

s(c)�1
�

= v(b)
⇣

v
�

s(c)
�

⌘�1
= v(b)(c)�1 = v(b)

�

v(b)
��1

= 1.

Hence, bs(c)�1 2 ker v. Again since im k = ker v, there exists a 2 A such that

k(a) = bs(c)�1. Therefore,

es(a, c) = k(a)s(c) = bs(c)�1s(c) = b
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and es is surjective.

The next theorem holds for any surface M other than S2 and RP2 because

⇡2(M,x0) ⇠= 1 for M 6= S2,RP2. To see this, we first assume that the surface

has no boundary since omitting any boundary circles results in a surface of the

same homotopy type and without boundary. If we let ⇡ : M ! M be the

universal cover of M , then ⇡2(M,x0) ⇠= ⇡2(M,x0) where ⇡(x0) = x0 (Hatcher

[4, p. 342]). Thus, we focus our attention on calculating ⇡2(M,x0).

IfM is not compact, then the second homology group ofM is trivial (Vick [10,

p. 152]). By the Hurewicz theorem, the second homology group of M is isomor-

phic to ⇡2(M,x0). Thus, in the case where M is not compact, ⇡2(M,x0) ⇠= 1.

If M is compact, then M = S2 and ⇡2(M,x0) ⇠= Z. However, if M is compact,

then M is compact and M is either S2 or RP2 since they are the only compact

surfaces without boundary that have S2 as a universal cover. Therefore, if

M 6= S2,RP2, then ⇡2(M,x0) ⇠= 1.

Theorem 2.4.3. For any surface M other than S2 and RP2, there exists a

one-to-one correspondence between ⇡1(M,x0)⇥ Z and ⇡
R

(M, v
x0).

Proof. By Theorem 2.2.3, it su�ces to show there exists a bijection between

⇡1(M,x0)⇥Z and ⇡1(STM, v
x0). From the homotopy sequence of the fibration

p : STM ! M based at v
x0 , the sequence

⇡2(M,x0) ⇡1(STMx0 , vx0) ⇡1(STM, v
x0) ⇡1(M,x0) ⇡0(STMx0 , vx0)

i⇤ p⇤
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is exact where i : STM
x0 ! STM is the inclusion of the fiber and i⇤, p⇤ are the

induced homotopies of i, p respectively (Hu [7, p. 152]). Since M 6= S2,RP2,

⇡2(M,x0) ⇠= 1. Because STM
x0 is isomorphic to S1, ⇡1(STMx0 , vx0) ⇠= Z and

⇡0(STMx0 , vx0) ⇠= 1. Then, it follows from the previous lemma that there is a

bijection between ⇡1(M,x0)⇥ Z and ⇡1(STM, v
x0).

Consider [f ]
R

2 ⇡
R

(M, v
x0). For a section s of p⇤, Theorem 2.4.3 implies

there exists n 2 ⇡1(STMx0 , vx0) and ↵ 2 ⇡1(M,x0) such that es(n,↵) = [�(f)].

Moreover,

[f ] = p⇤
�

[�(f)]
�

= p⇤
�

es(n,↵)
�

= p⇤
�

i⇤(n)·s(↵)
�

= p⇤
�

i⇤(n)
�

·p⇤
�

s(↵)
�

= [c
x0 ]·↵ = ↵.

Therefore, the bijection maps (↵, n) 2 ⇡1(M,x0)⇥Z to a regular homotopy class

with homotopy class ↵. Since this is true for each n 2 ⇡1(STMx0 , vx0) ⇠= Z,

within each homotopy class there are infinitely many regular homotopy classes.
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CHAPTER 3

WINDING NUMBERS

3.1 Orientations

In order to define the winding number and prove results related to it, the

concept of orientation is needed for vector spaces, linear transformations, closed

curves, and fibers of the spherical tangent bundle. In this section, we define

these orientations.

Definition 3.1.1. (Orientation of a Real, 2-Dimensional Vector Space). We

first define an equivalence relation s on the set of ordered bases of a real,

2-dimensional vector space V . Let (a1, a2) s (b1, b2) if and only if detA > 0

where A is the change of basis matrix. Then, there are two equivalence classes

in the set of ordered bases. Assigning one equivalence class + and the other �

is an orientation of V .

We will refer to the standard orientation on R2. This is the orientation where

the equivalence class of the standard basis (e1, e2) =
�

(1, 0), (0, 1)
�

is assigned

+.

Definition 3.1.2. (Orientation Preserving and Reversing Linear Transforma-

tions). For oriented real, 2-dimensional vector spaces V ,W and a linear function

T : V ! W , T is orientation preserving if the basis (T (v1), T (v2)) is in the +
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equivalence class of ordered bases on W where (v1, v2) is an ordered basis of V

that is in the + equivalence class. T is orientation reversing if (T (v1), T (v2)) is

in the � equivalence class of ordered bases on W .

The last two definitions are well-defined (Guillemin and Pollack [3, p. 95]).

Definition 3.1.3. (Orientation Double Covering). The orientation double

covering of M is the covering space ⇡ : fM ! M where

fM = {(x, ⇤) : x 2 M and ⇤ is an orientation of TM
x

}

and ⇡ is defined by ⇡(x, ⇤) = x. To describe the topology of fM , we describe

an element of the basis of the topology. For B ⇢ fM to be a basis element,

it has to meet the following requirements. First, the restriction ⇡|
B

must be

injective and ⇡(B) ⇢ M must be open. Suppose for each x 2 ⇡(B) the vector

space TM
x

is given the orientation ⇤ where (x, ⇤) 2 B. Then, there must

exist a local di↵eomorphism ⇠ : V ! U of each x such that U ⇢ ⇡(B) and

d⇠
v

: R2 ! TM
⇠(v) is orientation preserving for each v 2 V where R2 is given

the standard orientation.

To define orientation preserving and orientation reversing closed curves, we

again view closed curves as functions defined on I. Then, for each closed curve

f : I ! M , there exists a lift ef of f (Hatcher [4, p. 61]). That is a continuous

function ef : I ! fM such that ⇡ � ef = f .

Let o and �o be the two possible orientations of a real, 2-dimensional vector

space. Since the image of 0 2 I under any lift of a closed curve based at x0 is

only one of two possibilities, (x0, o) or (x0,�o), it follows from the unique lifting
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property that there are only two possible lifts of any closed curve (Hatcher [4,

p. 62]). Again as a result of the unique lifting property, if for some lift ef of

f , ef(0) = ef(1), then, without loss of generality, ef(0) = ef(1) = (x0, o) and

ef⇤(0) = ef⇤(1) = (x0,�o) where ef⇤ is the second lift of f . Similarly, if for some

lift ef(0) 6= ef(1), then, without loss of generality, ef(0) = (x0, o), ef(1) = (x0,�o)

and ef⇤(0) = (x0,�o), ef⇤(1) = (x0, o).

Definition 3.1.4. (Orientation Preserving Closed Curve). A closed curve f :

I ! M is orientation preserving if ef(0) = ef(1) where ef is a lift of f .

Definition 3.1.5. (Orientation Reversing Closed Curve). A closed curve is

orientation reversing if ef(0) 6= ef(1) where ef is a lift of f . In view of the

last paragraph, this can be equivalently stated as a closed curve is orientation

reversing if and only if it is not orientation preserving.

Let h
s

: I ! M be a homotopy where h0 = f and h
s

(0) = h
s

(1) = x0

so that each stage of the homotopy is a closed curve based at x0. Let ef be

a lift of f . By the homotopy lifting property, there exists a unique homotopy

eh
s

: I ! fM that is a lift of h
s

where eh0 = ef . This lifted homotopy fixes

the end points so eh
s

(0) = ef(0) and eh
s

(1) = ef(1) (Hatcher [4, p. 61]). Since

being an orientation preserving or orientation reversing closed curves is only

dependent on the end points of a lift of the closed curve, any homotopy of an

orientation preserving closed curve is orientation preserving and any homotopy

of an orientation reversing closed curve is orientation reversing. Therefore, we

can define ⇡or

1 (M,x0) to be the set of homotopy classes that contain orientation

preserving closed curves and ⇡rev

1 (M,x0) to be the set of homotopy classes that

contain orientation reversing closed curves.
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Recall the isomorphism �⇤ : ⇡R

(M, v
x0) ! ⇡1(STM, v

x0) and the homomor-

phism p⇤ : ⇡1(STM, v
x0) ! ⇡1(M,x0) induced by the projection p : STM ! M .

Consider the homomorphism p⇤ � �⇤ : ⇡
R

(M, v
x0) ! ⇡1(M,x0). For each

[f ]
R

2 ⇡
R

(M, v
x0),

�

p⇤ � �⇤
�

([f ]
R

) = [f ]. We define ⇡or

R

(M, v
x0) =

�

p⇤ �

�⇤
��1�

⇡or

1 (M,x0)
�

and ⇡rev

R

(M, v
x0) =

�

p⇤ � �⇤
��1�

⇡rev

1 (M,x0)
�

.

Lemma 3.1.6. ⇡or

1 (M,x0) is a subgroup of ⇡1(M,x0) and ⇡or

R

(M, v
x0) is a

subgroup of ⇡
R

(M, v
x0).

Proof. Let ⇢ : ⇡1(M,x0) ! Z2 be defined by [f ] 7! 0 for [f ] 2 ⇡or

1 (M,x0) and

[f ] 7! 1 for [f ] 2 ⇡rev

1 (M,x0). It will first be shown that ⇢ is a homomorphism.

For [f ], [g] 2 ⇡or

1 (M,x0), we claim [f ] · [g] 2 ⇡or

1 (M,x0). There exists a lift ef

of f such that ef(0) = ef(1) = (x0, o). Similarly, there exists a lift eg of g such

that eg(0) = eg(1) = (x0, o). Then, ef ·eg is a lift of f ·g and
�

ef ·eg
�

(0) =
�

ef ·eg
�

(1) =

(x0, o). Therefore, f · g is orientation preserving and [f ] · [g] 2 ⇡or

1 (M,x0). So

⇢([f ] · [g]) = 0 = ⇢([f ]) + ⇢([g]).

Using a similar method, it is easy to show for [f ] 2 ⇡or

1 (M,x0) and [g] 2

⇡rev

1 (M,x0), [f ] · [g] 2 ⇡rev

1 (M,x0) and [g] · [f ] 2 ⇡rev

1 (M,x0). So ⇢([f ] · [g]) =

1 = ⇢([f ])+⇢([g]) and ⇢([g] · [f ]) = 1 = ⇢([g])+⇢([f ]). For [f ], [g] 2 ⇡rev

1 (M,x0),

the same method can again be used to show [f ] · [g] 2 ⇡or

1 (M,x0) so ⇢([f ] · [g]) =

0 = ⇢([f ]) + ⇢([g]). Thus, ⇢ is a homomorphism and ker ⇢ = ⇡or

1 (M,x0) is a

subgroup of ⇡1(M,x0). ⇢ � p⇤ � �⇤ : ⇡R

(M, v
x0) ! Z2 is a homomorphism with

kernel ⇡or

R

(M, v
x0). Thus, ⇡

or

R

(M, v
x0) is a subgroup of ⇡

R

(M, v
x0).

Lastly, we define the orientation of STM
x

. This will be needed to define the

winding number.
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Definition 3.1.7. (Orientation of STM
x

). Since STM
x

⇠= S1, we can orient

S1 counterclockwise and use the isomorphism to transport the orientation to

STM
x

. That is, as S1 is traversed in the counterclockwise direction, the

direction in which the image moves is the assigned orientation of STM
x

. Note,

this is dependent upon the choice of isomorphism.

3.2 Definition of Winding Number

Now, let f : S1 ! M be a closed curve based at v
x0 . For simplicity, we

identify (1, 0) 2 S1 as 1. There exists the pullback bundle

f ⇤(STM) = {(t, v) 2 S1 ⇥ STM : f(t) = p(v)}.

Then, the diagram

f ⇤(STM) STM

S1 M

pf

µ
f

f

p

commutes where pf : f ⇤(STM) ! S1 is defined by (t, v) 7! t and µ
f

:

f ⇤(STM) ! STM is the isomorphism on each fiber defined by (t, v) ! v.

Let

f ⇤(STM)
t

= {(t, v) 2 {t}⇥ STM : f(t) = p(v)}.

Then, since µ
f

is an isomorphism on each fiber, f ⇤(STM)
t

⇠= STM
f(t).
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f ⇤(STM) is either bundle isomorphic to the torus T or the Klein bottle

K depending on whether f is orientation preserving or orientation reversing.

That is, when the torus is viewed as a bundle over the base space S1 and f is

orientation preserving, we claim there exists a homeomorphism ' : f ⇤(STM) !

T such that '
�

�

f

⇤(STM)
t

is an isomorphism for each t 2 S1 and pf = p
T

�' where

p
T

is the projection of the torus onto its base space S1. Similarly, when the

Klein bottle is viewed as a bundle over the base space S1 and f is orientation

reversing, we claim there exists a homeomorphism { : f ⇤(STM) ! K such

that {
�

�

f

⇤(STM)
t

is an isomorphism for each t 2 S1 and pf = p
K

�{ where p
K

is

the projection of the Klein bottle onto its base space S1.

Lemma 3.2.1. If f is orientation preserving, f ⇤(STM) is bundle isomorphic

to the torus. If f is orientation reversing, f ⇤(STM) is bundle isomorphic to

the Klein bottle.

Proof. Let the pullback of the tangent bundle by f be

f ⇤(TM) = {(t, v) 2 S1 ⇥ TM : f(t) = p(v)}.

The set of pullbacks of the tangent bundle by closed curves up to bundle

isomorphism is classified by ⇡0(GL2(R)) ⇠= Z2. The set consists of the trivial

bundle S1 ⇥ R2 and a nontrivial bundle (Hatcher [5, p. 25]).

If f ⇤(TM) corresponds to the trivial element of Z2, then f ⇤(TM) is ori-

entable and f ⇤(STM) ⇢ f ⇤(TM) is bundle isomorphic to the torus. Otherwise,

f ⇤(TM) corresponds to the nontrivial element of Z2, is non-orientable, and

f ⇤(STM) ⇢ f ⇤(TM) is bundle isomorphic to the Klein bottle. This classifi-
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cation of f ⇤(STM) follows immediately from the description of the torus and

Klein bottle as quotients of the cylinder.

f is orientation preserving if and only if ef(0) = ef(1) where ef is a lift of f .

That is, the orientation of TM
x0 at the beginning and end of the lift of f to the

orientation covering is the same. Hence, the orientation of TM
x0 is extended

along the curve. So the lift to the orientation covering precisely places an

orientation on each fiber of f ⇤(TM) and thus defines an orientation of f ⇤(TM).

Then, f ⇤(STM) is bundle isomorphic to the torus. Therefore, if f is orientation

preserving, f ⇤(STM) is bundle isomorphic to the torus.

f is orientation reversing if and only if ef(0) 6= ef(1) where ef is a lift of f .

That is, the orientation of TM
x0 at the beginning and end of the lift of f to the

orientation covering is not the same. Hence, the orientation of TM
x0 cannot be

extended along the curve. Consequently, an orientation of f ⇤(TM) cannot be

defined. So f ⇤(TM) is non-orientable. Thus, f ⇤(STM) is bundle isomorphic to

the Klein bottle when f is orientation reversing.

We will define a relative winding number between two vector fields along a

closed curve.

Definition 3.2.2. (Vector Field along a Closed Curve). A vector field along

a closed curve f is a map Y : S1 ! STM such that p(Y (t)) = f(t) for each

t 2 S1.

We will assume all vector fields Y along a closed curve f are continuous and

based at v
x0 meaning Y (1) = v

x0 where we are identifying (1, 0) 2 S1 as 1.
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For vector fields Y1, Y2 along f , we know Y1(t), Y2(t) 2 STM
f(t) for each

t 2 S1. Thus, we can define sections Y ⇤
1 , Y

⇤
2 of f ⇤(STM). For i = 1, 2, Y ⇤

i

:

S1 ! f ⇤(STM) is defined by Y ⇤
i

(t) = µ�1
f

(Y
i

(t)). Since Y1, Y2 are based at v
x0 ,

Y ⇤
1 (1) = Y ⇤

2 (1). Let e0 = Y ⇤
1 (1) = Y ⇤

2 (1). Then, [Y
⇤
1 ], [Y

⇤
2 ] 2 ⇡1(f ⇤(STM), e0).

Consider the homomorphism pf⇤ : ⇡1(f ⇤(STM), e0) ! ⇡1(S1, 1) induced by

pf . Since Y ⇤
1 and Y ⇤

2 are sections of f ⇤(STM), [Y ⇤
2 ] · [Y ⇤

1 ]
�1 2 ker pf⇤ . From the

homotopy sequence of the fibration pf : f ⇤(STM) ! S1 based at e0, there is

the exact sequence

⇡2(S1, 1) ⇡1(f ⇤(STM)1, e0) ⇡1(f ⇤(STM), e0) ⇡1(S1, 1)
if⇤ pf⇤

where if : f ⇤(STM)1 ! f ⇤(STM) is the inclusion map (Hu [7, p. 152]). As

a consequence of exactness and ⇡2(S1, 1) ⇠= 1, there exists a unique element

n 2 ⇡1(f ⇤(STM)1, e0) such that if⇤(n) = [Y ⇤
2 ] · [Y ⇤

1 ]
�1.

Fixing an orientation of STM
x0 , we orient f ⇤(STM)1 by transporting the

orientation of STM
x0 under the isomorphism (µ

f

)�1
�

�

STM

x0
. Since f ⇤(STM)1 is

isomorphic to S1, ⇡1(f ⇤(STM)1, e0) ⇠= Z. Consider the homotopy class of the

function from S1 to f ⇤(STM)1 where as S1 is traversed in the counterclockwise

direction, the image traverses f ⇤(STM)1 once in the direction in which it is

oriented. Let the isomorphism from ⇡1(f ⇤(STM)1, e0) to Z be the one that

maps this homotopy class to 1 2 Z. So n can be thought of as an integer. The

winding number of f relative to Y1 and Y2 is defined to be n. We denote this

w(f ;Y1, Y2) = n.

Lemma 3.2.3. For a closed curve f based at v
x0 with vector fields Y1, Y2, bY1, bY2

where Y1 ' bY1 rel {v
x0} and Y2 ' bY2 rel {v

x0}, w(f ;Y1, Y2) = w(f ; bY1, bY2).
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Proof. Since Y
i

' bY
i

rel {v
x0} for i = 1, 2, [Y

i

] =
⇥

bY
i

⇤

. Consequently, [Y ⇤
i

] =
⇥

bY
i

⇤⇤
and [Y ⇤

2 ] · [Y ⇤
1 ]

�1 =
⇥

bY2
⇤⇤

·
⇥

bY1
⇤⇤�1

. Thus, w(f ;Y1, Y2) = w(f ; bY1, bY2).

Now, we assume f is an orientation preserving closed curve on M based at

v
x0 . In this case, we have a second way of calculating the winding number of f

relative to the vector fields Y1, Y2 along f . This will allow us to prove some of

the main results of the next section. Before beginning this alternate definition,

we need a few results about H-spaces.

Definition 3.2.4. (H-space). Suppose Z is a topological space and � : Z⇥Z !

Z is a continuous function. Z has a homotopy unit a 2 Z if �(a, a) = a, the

function that maps each z 2 Z to �(a, z) is homotopic to the identity on Z

relative to the basepoint a, and the function that maps each z 2 Z to �(z, a) is

homotopic to the identity on Z relative to the basepoint a. A topological space

with a continuous function � and homotopy unit a is an H-space.

Theorem 3.2.5. (Hu [7, p. 81]). For an H-space Z with continuous function

� and homotopy unit a, ⇡1(Z, a) is abelian.

For [g], [h] 2 ⇡1(Z, a), define [g] ⇥ [h] = [g ⇥ h] where g ⇥ h : S1 ! Z is

defined by

(g ⇥ h)(t) = �(g(t), h(t)).

From the continuity of � and the fact that �(a, a) = a, [g⇥h] 2 ⇡1(Z, a) so the

mapping
�

[g], [h]
�

7! [g ⇥ h] is well-defined.

Theorem 3.2.6. (Hu [7, p. 82]). For an H-space Z with continuous function

� and homotopy unit a, [g] · [h] = [g]⇥ [h] for each [g], [h] 2 ⇡1(Z, a).
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Any topological group under its group operation is an H-space with its

identity taken as the homotopy unit (Hu [7, p. 81]). When viewed as a subset

of the complex plane, S1 is a topological group under the usual multiplica-

tion of complex numbers and with identity 1. Thus, S1 is an H-space under

multiplication with homotopy unit 1.

Corollary 3.2.7. For [h] 2 ⇡1(S1, 1), [h]�1 =
⇥

1
h

⇤

where 1
h

: S1 ! S1 is defined

by
�

1
h

�

(t) = 1
h(t) .

Proof. As a result of Theorem 3.2.6 and the fact that h⇥ 1
h

= c1,

[h] ·


1

h

�

= [h]⇥


1

h

�

=



h⇥ 1

h

�

= [c1] = [h] · [h]�1.

Consequently, [h]�1 =
⇥

1
h

⇤

.

We return to proving there is an alternate way to find the winding number of

an orientation preserving curve. Since f is orientation preserving, f ⇤(STM) is

bundle isomorphic to S1⇥S1 by Lemma 3.2.1. Recall, ' : f ⇤(STM) ! S1⇥S1

is a bundle isomorphism. So '
�

�

f

⇤(STM)
t

is an isomorphism between fibers and

' induces the identity map of the base space S1. That is, pf = ep � ' where ep :

S1⇥S1 ! S1 is defined by (t, s) 7! t. We can choose ' such that '(e0) = (1, 1).

The orientation of {1} ⇥ S1 = '(f ⇤(STM)1) is chosen to be that induced by

the orientation of f ⇤(STM)1 under '. That is, we orient {1} ⇥ S1 such that

as f ⇤(STM)1 is traversed in the direction in which it is oriented, the direction

in which the corresponding image under ' moves is the assigned orientation of

{1}⇥ S1.
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Since Y ⇤
1 is a section of f ⇤(STM), it is of the form t 7! (t,↵(t)) where ↵(t) 2

f ⇤(STM)
t

. Similarly, Y ⇤
2 is of the form t 7! (t, �(t)) where �(t) 2 f ⇤(STM)

t

.

Define fY ⇤
i

= ' � Y ⇤
i

for i = 1, 2. Since ' induces the identity map on the base

space, fY ⇤
1 is defined by t 7! (t, e↵(t)) and fY ⇤

2 is defined by t 7! (t, e�(t)).

Since Y ⇤
1 (1) = Y ⇤

2 (1) = e0, (1,↵(1)) = (1, �(1)) = e0. Because '(e0) = (1, 1),

(1, e↵(1)) = (1, e�(1)) = (1, 1). Thus, e↵(1) = e�(1) = 1 and e↵, e� : S1 ! S1 have

basepoint 1. Define h : S1 ! {1}⇥ S1 such that

h(t) =

✓

1,
�

e� · e↵
�

(t)

◆

and let j : S1 ! {1}⇥ S1 be defined by

j(t) =

✓

1,

✓

e� ⇥ 1

e↵

◆

(t)

◆

.

Consider the homotopy class represented by the function from S1 to {1} ⇥ S1

where as S1 is traversed in the counterclockwise direction, the image traverses

{1}⇥S1 once in the direction in which it is oriented. Let the isomorphism from

⇡1({1} ⇥ S1, (1, 1)) to Z be the one that maps this homotopy class to 1 2 Z.

Then, let n be the integer associated to [j] 2 ⇡1({1}⇥ S1, (1, 1)) ⇠= Z.

Theorem 3.2.8. w(f ;Y1, Y2) = n where n is the integer associated to [j].

Proof. Consider the function fY ⇤
2 · fY ⇤

1 : S1 ! S1 ⇥ S1. The first component of

fY ⇤
2 ·fY ⇤

1 wraps around S1 once in the counterclockwise direction and then once in

the clockwise direction. The second component of fY ⇤
2 ·fY ⇤

1 is e� ·e↵. Consequently,

fY ⇤
2 · fY ⇤

1 ' eif � h rel {(1, 1)} where eif : {1}⇥S1 ! S1 ⇥S1 is the inclusion map.
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From Corollary 3.2.7 and Theorem 3.2.6, e� · e↵ ' e� ⇥ 1

e↵
rel {1} in S1 and

it follows that h ' j rel {(1, 1)} in {1} ⇥ S1. So eif � j ' eif � h rel {(1, 1)}

in S1 ⇥ S1 and by transitivity, fY ⇤
2 · fY ⇤

1 ' eif � j rel {(1, 1)} in S1 ⇥ S1. Then,

eif ⇤([j]) =
⇥

fY ⇤
2

⇤

·
⇥

fY ⇤
1

⇤�1
. Since the diagram

⇡1({1}⇥ S1, (1, 1)) ⇡1(S1 ⇥ S1, (1, 1))

⇡2(S2) ⇡1(f ⇤(STM)1, e0) ⇡1(f ⇤(STM), e0) ⇡1(S1, 1)

'⇤

eif ⇤

pf⇤if⇤

ep⇤�

'
�

�

f

⇤(STM)1

�

⇤

is commutative and
�

'
�

�

f

⇤(STM)1

�

⇤ is an isomorphism, it follows that

�

'⇤ � if⇤ �
�

'
�

�

f

⇤(STM)1

��1

⇤

�

([j]) =
⇥

fY ⇤
2

⇤

·
⇥

fY ⇤
1

⇤�1
.

Because '⇤ is an isomorphism,
�

if⇤ �
�

'
�

�

f

⇤(STM)1

��1

⇤

�

([j]) = [Y ⇤
2 ] · [Y ⇤

1 ]
�1 and by

definition, w(f ;Y1, Y2) is the integer associated to
�

'
�

�

f

⇤(STM)1

��1

⇤ ([j]). Since the

orientation of {1}⇥ S1 was chosen to be the orientation induced by f ⇤(STM)1

under ', the integer associated to
�

'
�

�

f

⇤(STM)1

��1

⇤ ([j]) is that associated to [j].

Therefore, w(f ;Y1, Y2) = n where n is the integer associated to [j].

3.3 Winding Numbers on a Surface with a Vector Field

In this section, it is again assumed that f is a regular closed curve based

at v
x0 unless otherwise stated. We will also assume M is a surface with a

continuous, nonzero vector field X.
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Definition 3.3.1. (Vector Field). A vector field is a function X : M ! TM

such that P (X(x)) = x for each x 2 M .

The torus, the Klein bottle, non-compact surfaces, and surfaces with boundary

all have a continuous, nonzero vector field. We will assume X(x0) = v
x0 .

Clearly, given a continuous, nonzero vector field, a homotopy can be used to

ensure it demonstrates this behavior at x0.

Chillingworth [1] defined the winding number of f relative to a continuous,

nonzero vector field. This is just a special case of the definition given in the

previous section. Recall, for each x 2 M , X(x) 2 TM ⇢ M ⇥ Rm and

P (X(x)) = x so X(x) = (x, [X(x)). Then, since X is continuous and nowhere

zero, X induces a vector field Y
X

f

along f where Y
X

f

: S1 ! STM is defined

by

Y
X

f

(t) =

✓

f(t),
\X(f(t))

|| \X(f(t))||
f(t)

◆

.

A second vector field along f is defined from the tangent vector at each point

on the curve. Let Y
f

0 : S1 ! STM where

Y
f

0(t) =

✓

f(t),
f 0(t)

||f 0(t)||
f(t)

◆

.

Taking Y1 = Y
X

f

and Y2 = Y
f

0 , we have Chillingworth’s definition of the winding

number for f . Since Y
X

f

and Y
f

0 only depend on f or X, the winding number

of f is relative to X only and we notate it w(f ;X).

Since both S2 and RP2 do not have continuous, nonzero vector fields, ⇡2(M,x0)

is trivial for all M with a continuous, nonzero vector field. Then, from the exact

sequence
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⇡2(M,x0) ⇡1(STMx0 , vx0) ⇡1(STM, v
x0) ⇡1(M,x0) ⇡0(STMx0 , vx0)

i⇤ p⇤

it follows that i⇤ is injective. Obviously, p⇤([Yf

0 ] · [Y
X

f

]�1) = [f ] · [f ]�1 =

[c
x0 ]. Consequently, there exists a unique element n 2 ⇡1(STMx0 , vx0) such that

i⇤(n) = [Y
f

0 ] · [Y
X

f

]�1. Since STM
x0

⇠= S1, ⇡1(STMx0 , vx0) ⇠= Z so we can think

of n as an integer. Consider the homotopy class represented by the function

from S1 to STM
x0 where as S1 is traversed in the counterclockwise direction,

the image traverses STM
x0 once in the direction in which it is oriented. The

isomorphism from ⇡1(STMx0 , vx0) to Z is chosen to be the isomorphism that

takes this homotopy class and maps it to 1 2 Z.

Theorem 3.3.2. w(f ;X) = n where n is the unique element in ⇡1(STMx0 , vx0)

such that i⇤(n) = [Y
f

0 ] · [Y
X

f

]�1.

Proof. Let w(f ;X) = n. So (µ
f ⇤ � if⇤)(n) = µ

f ⇤
�

[Y ⇤
f

0 ] · [Y ⇤
X

f

]�1
�

= [Y
f

0 ] · [Y
X

f

]�1.

From the commutativity of the diagram

⇡2(S1, 1) ⇡1(f ⇤(STM)1, e0) ⇡1(f ⇤(STM), e0) ⇡1(S1, 1)

⇡2(M,x0) ⇡1(STMx0 , vx0) ⇡1(STM, v
x0) ⇡1(M,x0)

�

µ
f

�

�

f

⇤(STM)1

�

⇤
µ
f ⇤

if⇤ pf⇤

i⇤ p⇤

it follows that
⇣

i⇤ �
�

µ
f

�

�

f

⇤(STM)1

�

⇤

⌘

(n) = [Y
f

0 ] · [Y
X

f

]�1. Because µ
f

�

�

f

⇤(STM)1
:

f ⇤(STM)1 ! STM
x0 is an isomorphism and the orientation of f ⇤(STM)1 was

chosen from the fixed orientation of STM
x0 ,

�

µ
f

�

�

f

⇤(STM)1

�

⇤(n) = n. Therefore,

i⇤(n) = [Y
f

0 ] · [Y
X

f

]�1.
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Definition 3.3.3. (Vector Field Homotopy). For two continuous, nonzero

vector fields X and X̌, a vector field homotopy is a homotopy h
s

: M ! TM

between X and X̌ such that h
s

is a continuous, nonzero vector field for each

s 2 I. We denote this X '
V F

X̌. If the homotopy is based at v
x0 , that is

h
s

(x0) = v
x0 for each s 2 I, we say X '

V F

X̌ rel {v
x0}.

Lemma 3.3.4. For continuous, nonzero vector fields X, X̌ on M where X '
V F

X̌ rel {v
x0}, w(f ;X) = w(f ; X̌).

Proof. Letting h
s

: M ! TM denote a vector field homotopy between X and

X̌ based at v
x0 , we define ḣ

s

: S1 ! STM by

ḣ
s

(t) =

✓

f(t),
\h
s

(f(t))

|| \h
s

(f(t))||
f(t)

◆

.

This is a homotopy between Y
X

f

and Y
X̌

f

based at v
x0 . By Lemma 3.2.3,

w(f ;X) = w(f ; X̌).

Lemma 3.3.5. For regular closed curves f, g where f '
R

g rel {v
x0}, w(f ;X) =

w(g;X).

Proof. Let h
s

: S1 ! M denote a regular homotopy between f and g based at

v
x0 . Then, ḣs

: S1 ! STM defined by

ḣ
s

(t) =

✓

h
s

(t),
[h0
s

(t)

||[h0
s

(t)||
h

s

(t)

◆

is a homotopy between Y
f

0 and Y
g

0 . By Lemma 3.2.3, w(f ;X) = w(g;X).

Let w : ⇡or

R

(M, v
x0) ! Z such that [f ]

R

7! w(f ;X) for each [f ]
R

2

⇡or

R

(M, v
x0). By Lemma 3.3.5, this is a well-defined function.
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Theorem 3.3.6. w : ⇡or

R

(M, v
x0) ! Z is a homomorphism.

Proof. Let [f ]
R

, [g]
R

2 ⇡or

R

(M, v
x0). Here, f and g will be viewed as reg-

ular closed curves defined on I instead of S1. However, we still want the

pullback bundles to be subsets of S1 ⇥ STM . So q : I ! S1 defined by

q(t) =
�

cos(⌧(t)), sin(⌧(t))
�

where ⌧ : [0, 1] ! [0, 2⇡] is the bijection defined by

⌧(t) = (�4⇡ + 2)t3 + (6⇡ � 3)t2 + t

and q̇ : S1 ! I defined by q̇ =
�

q
�

�

[0,1)

��1
are used to identify S1 and I. Then,

f ⇤(STM) = {(t, v) 2 S1 ⇥ STM : f(q̇(t)) = p(v)}

and

g⇤(STM) = {(t, v) 2 S1 ⇥ STM : g(q̇(t)) = p(v)}.

Because f and g are based at v
x0 , f

⇤(STM)1 = g⇤(STM)1. We only consider

regular closed curves based at v
x0 , so we will denote the fiber over {1} in the

pullback bundles as E0. Since f, g are orientation preserving, f ⇤(STM) and

g⇤(STM) are bundle isomorphic to S1 ⇥S1. Let '
f

: f ⇤(STM) ! S1 ⇥S1 and

'
g

: g⇤(STM) ! S1 ⇥ S1 be the respective bundle isomorphisms chosen such

that '
f

�

�

E0
= '

g

�

�

E0
and '

f

(e0) = '
g

(e0) = (1, 1). Then, the diagrams

{1}⇥ S1 S1 ⇥ S1

E0 f ⇤(STM) STM

'
f

�

�

E0

eif

if µ
f

'
f
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{1}⇥ S1 S1 ⇥ S1

E0 g⇤(STM) STM

'
g

�

�

E0

eig

ig µ
g

'
g

are commutative.

Since [f ]
R

· [g]
R

= [(f � r) · (g � r)]
R

, a similar diagram is constructed for

(f � r) · (g � r). For simplicity, f � r and g � r are denoted f̈ and g̈ respectively.

Again, it is worth noting that f̈ · g̈ is defined on I rather than S1 so

(f̈ · g̈)⇤(STM) = {(t, v) 2 S1 ⇥ STM : (f̈ · g̈)(q̇(t)) = p(v)}.

We will define a bundle isomorphism '
f̈ ·g̈ : (f̈ · g̈)⇤(STM) ! S1⇥S1 using both

'
f

and '
g

. In order to do this, we relate the fibers of (f̈ · g̈)⇤(STM) with the

fibers of f ⇤(STM) and g⇤(STM). We identify how '
f

and '
g

are defined on

the fibers of f ⇤(STM) and g⇤(STM) and use this to define '
f̈ ·g̈.

For t 2 S1 where 0  q̇(t)  1
2 ,

(f̈ · g̈)⇤(STM)
t

= {(t, v) 2 {t}⇥ STM : f
�

r(2q̇(t))
�

= p(v)}

so

µ
f̈ ·g̈

�

(f̈ · g̈)⇤(STM)
t

�

= STM
f(r(2q̇(t))) = µ

f

�

f ⇤(STM)
q(r(2q̇(t)))

�

.

Similarly, for t 2 S1 such that 1
2  q̇(t) < 1,

(f̈ · g̈)⇤(STM)
t

= {(t, v) 2 {t}⇥ STM : g
�

r(2q̇(t)� 1)
�

= p(v)}
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so

µ
f̈ ·g̈

�

(f̈ · g̈)⇤(STM)
t

�

= STM
g(r(2q̇(t)�1)) = µ

g

�

g⇤(STM)
q(r(2q̇(t)�1))

�

.

Recall pf = ep�'
f

and pg = ep�'
g

where ep : S1⇥S1 ! S1 is defined by (t, s) 7! t.

Thus, there exists ⌘
f,t

: STM
f(q̇(t)) ! S1 and ⌘

g,t

: STM
g(q̇(t)) ! S1 such that

'
f

(t, v) = (t, ⌘
f,t

(v)) and '
g

(t, v) = (t, ⌘
g,t

(v)). So ⌘
f,q(r(2q̇(t))) : STMf(r(2q̇(t))) !

S1 and ⌘
g,q(r(2q̇(t)�1)) : STMg(r(2q̇(t)�1)) ! S1. Let '

f̈ ·g̈ : (f̈ ·g̈)⇤(STM) ! S1⇥S1

be defined by

'
f̈ ·g̈(t, v) =

8

>

<

>

:

�

t, ⌘
f,q(r(2q̇(t)))(v)

�

if 0  q̇(t)  1
2

�

t, ⌘
g,q(r(2q̇(t)�1))(v)

�

if 1
2  q̇(t) < 1

.

Then, '
f̈ ·g̈ is a bundle isomorphism and the diagram

{1}⇥ S1 S1 ⇥ S1

E0 (f̈ · g̈)⇤(STM) STM

�

'
f̈ ·g̈

�

�

�

E0

fif̈ ·g̈

if̈ ·g̈
µ
f̈ ·g̈

'
f̈ ·g̈

commutes.

Recall, µ�1
f

�Y
X

f

= Y ⇤
X

f

, µ�1
f

�Y
f

0 = Y ⇤
f

0 are sections of f ⇤(STM) of the form

t 7! (t,↵
f

(t)) and t 7! (t, �
f

(t)) respectively. So '
f

� Y ⇤
X

f

= gY ⇤
X

f

,'
f

� Y ⇤
f

0 = fY ⇤
f

0

are of the form t 7! (t,f↵
f

(t)) and t 7! (t,f�
f

(t)). Similarly, µ�1
g

� Y
X

g

=

Y ⇤
X

g

, µ�1
g

� Y
g

0 = Y ⇤
g

0 are defined by t 7! (t,↵
g

(t)), t 7! (t, �
g

(t)) and '
g

� Y ⇤
X

g

=

gY ⇤
X

g

,'
g

� Y ⇤
g

0 = fY ⇤
g

0 are of the form t 7! (t,f↵
g

(t)) and t 7! (t, e�
g

(t)). Note,
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f↵
f

(t) = ⌘
f,t

⇣

Y ⇤
X

f

�

q̇(t)
�

⌘

, f↵
g

(t) = ⌘
g,t

⇣

Y ⇤
X

g

�

q̇(t)
�

⌘

, f�
f

(t) = ⌘
f,t

⇣

Y ⇤
f

0

�

q̇(t)
�

⌘

,

e�
g

(t) = ⌘
g,t

⇣

Y ⇤
g

0

�

q̇(t)
�

⌘

where q̇ is again used because f and g are defined on I.

It is easy to check that Y
X

f̈ ·g̈
= Y

X

f̈

· Y
X

g̈

, Y(f̈ ·g̈)0 = Y
f̈

0 · Y
g̈

0 , (Y
X

f̈

· Y
X

g̈

)⇤ =

Y ⇤
X

f̈

·Y ⇤
X

g̈

, and (Y
f̈

0 ·Y
g̈

0)⇤ = Y ⇤
f̈

0 ·Y ⇤
g̈

0 . Then, it follows from the definition of '
f̈ ·g̈,

⇣

'
f̈ ·g̈�

�

Y ⇤
X

f̈

·Y ⇤
X

g̈

�

⌘

(t) =

8

>

>

<

>

>

:

✓

t,
⇣

⌘
f,q(r(2q̇(t))) � Y ⇤

X

f̈

⌘

�

2q̇(t)
�

◆

if 0  q̇(t)  1
2

✓

t,
⇣

⌘
g,q(r(2q̇(t)�1)) � Y ⇤

X

g̈

⌘

�

2q̇(t)� 1
�

◆

if 1
2  q̇(t) < 1

=

8

>

>

<

>

>

:

✓

t,
⇣

⌘
f,q(r(2q̇(t))) � Y ⇤

X

f

⌘

�

r
�

2q̇(t)
��

◆

if 0  q̇(t)  1
2

✓

t,
⇣

⌘
g,q(r(2q̇(t)�1)) � Y ⇤

X

g

⌘

�

r
�

2q̇(t)� 1
��

◆

if 1
2  q̇(t) < 1

=

8

>

<

>

:

⇣

t,f↵
f

�

q
�

r(2q̇(t))
��

⌘

if 0  q̇(t)  1
2

⇣

t,f↵
g

�

q
�

r(2q̇(t)� 1)
��

⌘

if 1
2  q̇(t) < 1

.

Therefore, '
f̈ ·g̈ �

�

Y ⇤
X

f̈

· Y ⇤
X

g̈

�

= ^�

Y ⇤
X

f̈

· Y ⇤
X

g̈

�

is a reparameterization of the

function where t 7!
�

t, (f↵
f

· f↵
g

)(t)
�

. Similarly, '
f̈ ·g̈ �

�

Y ⇤
f̈

0 · Y ⇤
g̈

0

�

= ^(Y ⇤
f̈

0 · Y ⇤
g̈

0)

is reparameterization the function where t 7!
�

t, (f�
f

· e�
g

)(t)
�

. Then, it follows

from Theorem 3.2.8, w(f̈ · g̈;X) = n where n is the integer representing the

homotopy class of

j(t) =

✓

1,

✓

�

f�
f

· e�
g

�

⇥
✓

1

f↵
f

·f↵
g

◆◆

(t)

◆

=

✓

1,

✓✓

f�
f

⇥ 1

f↵
f

◆

·
✓

e�
g

⇥ 1

f↵
g

◆◆

(t)

◆

in ⇡1({1}⇥ S1, (1, 1)).

Since the first component of
�

fY ⇤
f

0 ·gY ⇤
X

f

�

·
�

fY ⇤
g

0 ·gY ⇤
X

g

�

: S1 ! S1⇥S1 is homotopic
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to c1 : S1 ! S1 and the second component is homotopic to

✓

f�
f

⇥ 1

f↵
f

◆

·
✓

e�
g

⇥ 1

f↵
g

◆

,

⇥

j
⇤

=
⇣

⇥

fY ⇤
f

0

⇤

·
⇥

gY ⇤
X

f

⇤�1
⌘

·
⇣

⇥

fY ⇤
g

0

⇤

·
⇥

gY ⇤
X

g

⇤�1
⌘

.

Because ⇡1({1}⇥S1, (1, 1)) is being identified with Z under an isomorphism, the

integer associated to [j] is the sum of the integers associated to
⇥

fY ⇤
f

0

⇤

·
⇥

gY ⇤
X

f

⇤�1

and
⇥

fY ⇤
g

0

⇤

·
⇥

gY ⇤
X

g

⇤�1
. Therefore, w(f̈ · g̈;X) = w(f ;X) + w(g;X). Equivalently,

w([f ]
R

· [g]
R

) = w([f ]
R

) + w([g]
R

) so w is a homomorphism.

We finish this chapter with two more main results. With the following lemma,

we prove for [f ]
R

, [g]
R

2 ⇡or

R

(M, v
x0), [f ]R = [g]

R

if and only if [f ] = [g] and

w(f ;X) = w(g;X). This result is then used along with a few lemmas to prove

⇡or

R

(M, v
x0) is isomorphic to ⇡or

1 (M,x0)⇥ Z.

Lemma 3.3.7. For closed curves f and g based at v
x0 such that f ' g rel {x0},

Y
X

f

' Y
X

g

rel {v
x0}.

Proof. Let h
s

: S1 ! M be a homotopy between f and g based at x0. Define

ḣ
s

: S1 ! STM by

ḣ
s

(t) =

✓

h
s

(t),
\X(h

s

(t))

|| \X(h
s

(t))||
h

s

(t)

◆

.

ḣ
s

is a homotopy between Y
X

f

and Y
X

g

based at v
x0 . Thus, [YX

f

] = [Y
X

g

].

Theorem 3.3.8. For orientation preserving, regular closed curves f and g,

f '
R

g rel {v
x0} if and only if f ' g rel {x0} and w(f ;X) = w(g;X).
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Proof. Using Lemma 3.3.5, su�ciency is clear. To prove necessity, we begin

by assuming f ' g rel {x0} and w(f ;X) = w(g;X). For simplicity, we abuse

notation letting g be a regular closed curve based at v
x0 such that g 2 [g]�1

R

.

Recall, the homotopy sequence of the fibration pf̈ ·g̈ : (f̈ · g̈)⇤(STM) ! S1 based

at e0 is the exact sequence

⇡2(S1, 1) ⇡1

�

(f̈ · g̈)⇤(STM)1, e0
�

⇡1

�

(f̈ · g̈)⇤(STM), e0
�

⇡1(S1, 1)
if̈ ·g̈⇤ pf̈ ·g̈⇤

where if̈ ·g̈ : (f̈ · g̈)⇤(STM)1 ! (f̈ · g̈)⇤(STM) is the inclusion map. Because

w : ⇡or

R

(M, v
x0) ! Z is a homomorphism, w([f ]

R

· [g]�1
R

) = w([f ]
R

)� w([g]
R

) =

w(f ;X)� w(g;X) = 0. So if̈ ·g̈⇤ (0) =
⇥

Y ⇤
(f̈ ·g̈)0

⇤

·
⇥

Y ⇤
X

f̈ ·g̈

⇤�1
and

⇥

Y ⇤
(f̈ ·g̈)0

⇤

·
⇥

Y ⇤
X

f̈ ·g̈

⇤�1

is the identity of ⇡1

�

(f̈ · g̈)⇤(STM), e0
�

.

The continuous function µ
f̈ ·g̈ : (f̈ · g̈)⇤(STM) ! STM induces the homo-

morphism µ
f̈ ·g̈⇤ : ⇡1

�

(f̈ · g̈)⇤(STM), e0
�

! ⇡1(STM, v
x0). Then, µ

f̈ ·g̈⇤

⇣

⇥

Y ⇤
(f̈ ·g̈)0

⇤

·
⇥

Y ⇤
X

f̈ ·g̈

⇤�1
⌘

=
⇥

Y(f̈ ·g̈)0
⇤

·
⇥

Y
X

f̈ ·g̈

⇤�1
is the identity of ⇡1(STM, v

x0). Since Y(f̈ ·g̈)0 =

Y
f̈

0 · Y
g̈

0 and Y
X

f̈ ·g̈
= Y

X

f̈

· Y
X

g̈

,

⇥

Y(f̈ ·g̈)0
⇤

·
⇥

Y
X

f̈ ·g̈

⇤�1
=

⇣

⇥

Y
f̈

0

⇤

·
⇥

Y
g̈

0
⇤

⌘

·
⇣

⇥

Y
X

f̈

⇤

·
⇥

Y
X

g̈

⇤

⌘�1
.

From Lemma 3.3.7, Y
X

g·g̈
' Y

X

c

x0
rel {v

x0} where c
x0 : S

1 ! M is the constant

map at x0. By definition, Y
X

c

x0
= c

v

x0
where c

v

x0
: S1 ! STM is the constant

map at v
x0 . Then, because Y

X

g·g̈
= Y

X

g

· Y
X

g̈

it follows that [Y
X

g̈

] = [Y
X

g

]�1.

Hence,

⇥

Y(f̈ ·g̈)0
⇤

·
⇥

Y
X

f̈ ·g̈

⇤�1
=

⇣

⇥

Y
f̈

0

⇤

·
⇥

Y
g̈

0
⇤

⌘

·
⇣

⇥

Y
X

f̈

⇤

·
⇥

Y
X

g

⇤�1
⌘�1

.
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Since f̈ ' f rel {x0} and f ' g rel {x0}, Lemma 3.3.7 implies
⇥

Y
X

f̈

⇤

·
⇥

Y
X

g

⇤�1
=

⇥

c
v

x0

⇤

. Since f̈ is a reparameterization of f , Y
f̈

0 is a reparameterization of Y
f

0

so
⇥

Y
f̈

0

⇤

=
⇥

Y
f

0
⇤

. Similarly,
⇥

Y
g̈

0
⇤

=
⇥

Y
g

0
⇤

. So

⇥

Y(f̈ ·g̈)0
⇤

·
⇥

Y
X

f̈ ·g̈

⇤�1
=

⇥

Y
f

0
⇤

·
⇥

Y
g

0
⇤

and
⇥

Y
f

0
⇤

·
⇥

Y
g

0
⇤

is the identity of ⇡1(STM, v
x0).

Recall �⇤ : ⇡R

(M, v
x0) ! ⇡1(STM, v

x0) is the isomorphism defined by [f ]
R

7!

[�(f)] where

�(f)(t) =

✓

f(t),
f 0(t)

||f 0(t)||
f(t)

◆

.

�⇤([f ]R) =
⇥

Y
f

0
⇤

and �⇤([g]
�1
R

) = �⇤([g]R) =
⇥

Y
g

0
⇤

so �⇤([f ]R·[g]�1
R

) =
⇥

Y
f

0
⇤

·
⇥

Y
g

0
⇤

.

Consequently, [f ]
R

· [g]�1
R

is the identity of ⇡
R

(M, v
x0) and [f ]

R

= [g]
R

.

Lemma 3.3.9. Let D ⇢ R2 be an open disk and let X̌ be any nonzero, con-

tinuous vector field on D. For each n 2 Z, there exists a regular closed curve

a
n

: S1 ! D based at v
x⇤ 2 STD such that w(a

n

; X̌) = n.

Proof. On the disk, all nonzero, continuous vector fields are vector field homo-

topic to each other. Consequently, Lemma 3.3.4 implies we can specify X̌. Since

TD
x

= R2 for each x 2 D, STD
x

= {x} ⇥ S1. So v
x⇤ = (x⇤, cvx⇤) 2 {x⇤} ⇥ S1

and we can define X̌ : D ! TD such that X̌(x) = (x, cv
x⇤) for each x 2 D.

We next orient STD
x⇤ = {x⇤} ⇥ S1. Consider the isomorphism from S1 to

STD
x⇤ defined by t 7! (x⇤, t). Orienting S1 in the counterclockwise direction,

we orient STD
x⇤ by transporting the orientation of S1 to STD

x⇤ .

Let a1 : S1 ! D be the regular closed curve based at v
x⇤ that is depicted in

Figure 3.1.
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Figure 3.1: The regular closed curve a1 based at v
x⇤ on D.

Y
a

0
1
: S1 ! STD is the vector field along a1 where

t 7!
✓

a1(t),
a01(t)

||a01(t)||a1(t)

◆

.

In Figure 3.2, Y
a

0
1
(t) is pictured as blue vectors for four di↵erent values of t.

Y
X̌

a1
: S1 ! STD is the vector field along a1 such that t 7!

�

a1(t), cvx⇤

�

. Three

of these vectors are pictured in Figure 3.2 in red. Since Y
a

0
1
(1) = Y

X̌

a1
(1) = v

x⇤ ,

we do not have a fourth red vector drawn at a1(1) = x⇤.

Figure 3.2: a1 pictured with vectors Y
a

0
1
(t) and Y

X̌

a1
(t) for four values of

t.
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Figure 3.3: Modified version of a⇤1(STD).

Since

a⇤1(STD) = {(t, v) 2 S1 ⇥ STD : a1(t) = p(v)},

a⇤1(STD)
t

⇠= S1 for each t 2 S1. A modified version of a⇤1(STD) is depicted in

Figure 3.3. Here, S1 is the large green circle and a⇤1(STD)
t

is drawn in black

for four values of t. Within each a⇤1(STD)
t

, Y ⇤
a

0
1
(t) and Y ⇤

X̌

a1
(t) are pictured.

Clearly, we can choose ' : a⇤1(STD) ! S1⇥S1 such that gY ⇤
X̌

a1
: S1 ! S1⇥S1

is defined by t 7! (t, e↵(t)) = (t, 1) and fY ⇤
a

0
1
: S1 ! S1⇥S1 defined by t 7! (t, e�(t))

is homotopic to the function defined by t 7! (t, t). So the integer associated to

the homotopy class of the function

j(t) =

✓

1,

✓

e� ⇥ 1

e↵

◆

(t)

◆

is 1. Therefore, w(a1; X̌) = 1.

For each integer n > 1, let a
n

: S1 ! D be a regular closed curve in the

regular homotopy class given by taking [a1]R under the group operation with
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itself n times. That is, [a1]R · · · [a1]R n times. w(a
n

; X̌) = w(a1; X̌) + ... +

w(a1; X̌) = n by Theorem 3.3.6. For n  �1, let a
n

: S1 ! D be a regular closed

curve in the regular homotopy class [a�n

]�1
R

. Then, w(a
n

; X̌) = �w(a�n

; X̌) =

n. Lastly, for n = 0, let a0 = e. Since [e]
R

is the identity of ⇡
R

(D, v
x⇤) and

w : ⇡
R

(D, v
x⇤) ! Z is a homomorphism, w(a0; X̌) = w(e; X̌) = 0. Thus,

for each n 2 Z, there exists a regular closed curve a
n

: S1 ! D such that

w(a
n

; X̌) = n.

Lemma 3.3.10. For each n 2 Z, there exists a regular closed curve b
n

on M

based at v
x0 such that b

n

is null-homotopic and w(b
n

;X) = n.

Proof. Let " : D ! M be a local di↵eomorphism of x0 2 M such that "(x⇤) = x0

and d"
x⇤(cvx⇤) = cv

x0 . Defining "́ : STD ! STM by

v
x

= (x, bv
x

) 7!
✓

"(x),
d"

x

( bv
x

)

||d"
x

( bv
x

)||
"(x)

◆

,

"́ is a bundle isomorphism. To define winding numbers, an orientation of STM
x0

must be fixed. We orient STM
x0 by transporting the orientation of STD

x⇤ that

was described in the previous lemma under the isomorphism "́
�

�

STD

x⇤
: STD

x⇤ !

STM
x0 .

Let X̌ : D ! TD be the continuous, nonzero vector field of D defined by

X̌(x) = "́�1

✓

X
�

"(x)
�

||X
�

"(x)
�

||
"(x)

◆

.

From Lemma 3.3.9, w(a
n

; X̌) = n. Let b
n

= " � a
n

. Then,

�

"́ � Y
X̌

a

n

�

(t) =
�

"́ � X̌ � a
n

�

(t) = Y
X

b

n

(t)
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so "́ � Y
X̌

a

n

= Y
X

b

n

. By Theorem 2.1.6,

�

"́ � Y
a

0
n

�

(t) =

✓

"
�

a
n

(t)
�

,
d"

a

n

(t)

�

a0
n

(t)
�

||d"
a

n

(t)

�

a0
n

(t)
�

||
"(a

n

(t))

◆

= Y
b

0
n

(t).

From Theorem 3.3.2, n is the unique element in ⇡1(STDx⇤ , vx⇤) such that

i
D⇤(n) = [Y

a

0
n

] · [Y
X̌

a

n

]�1 where i
D

: STD
x⇤ ! STD is the inclusion map. Let

p
D

: STD ! D be the projection of STD onto D. Because the diagram

⇡2(D, x0) ⇡1(STDx⇤ , vx⇤) ⇡1(STD, v
x⇤) ⇡1(D, x⇤)

⇡2(M,x0) ⇡1(STMx0 , vx0) ⇡1(STM, v
x0) ⇡1(M,x0)

"́⇤
�

"́
�

�

STD

x⇤

�

⇤

i
D⇤ p

D⇤

i⇤ p⇤

is commutative and
�

"́⇤ � i
D⇤

�

(n) = [Y
b

0
n

] · [Y
X

b

n

]�1,
⇣

i⇤ �
�

"́
�

�

STD

x⇤

�

⇤

⌘

(n) =

[Y
b

0
n

] · [Y
X

b

n

]�1. Since STM
x0 was oriented by transporting the orientation of

STD
x⇤ under the isomorphism "́

�

�

STD

x⇤
,
�

"́
�

�

STD

x⇤

�

⇤(n) = n. So i⇤(n) = [Y
b

0
n

] ·

[Y
X

b

n

]�1 and w(b
n

;X) = n by Theorem 3.3.2. Since b
n

(S1) ⇢ "(D) and "(D) is

di↵eomorphic to D, b
n

is null-homotopic.

Lemma 3.3.11. For each homotopy class ↵ 2 ⇡or

1 (M,x0), there exists a unique

[f ]
R

2 ⇡or

R

(M, v
x0) such that [f ] = ↵ and w([f ]

R

) = 0.

Proof. From the exact sequence given in the proof of Theorem 2.4.3, we know

p⇤ : ⇡1(STM, v
x0) ! ⇡1(M,x0) is surjective. Since ⇡

R

(M, v
x0) ⇠= ⇡1(STM, v

x0)

by Corollary 2.3.4, it follows that there exists a regular closed curve g 2 ↵ that

is based at v
x0 for each ↵ 2 ⇡or

1 (M,x0).

Let n = w([g]
R

) and let b�n

be the null-homotopic, regular closed curve

described in Lemma 3.3.10. Since b�n

is null-homotopic, it is orientation pre-
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serving so Theorem 3.3.6 implies w([g]
R

· [b�n

]
R

) = 0. Because [g]
R

· [b�n

]
R

=

[(g � r) · (b�n

� r)]
R

and r is just a reparameterization of I, [(g � r) · (b�n

� r)] =

[g · b�n

] = [g] = ↵. Therefore, taking f = (g � r) · (b�n

� r), [f ]
R

2 ⇡or

R

(M, v
x0),

[f ] = ↵, and w([f ]
R

) = 0. Uniqueness follows from Theorem 3.3.8.

To prove the last main result, we utilize the following result of short exact

sequences.

Theorem 3.3.12. (Conrad [2]). Consider groups A,B,C with the short exact

sequence

1 A B C 1.
k v

Let s : B ! A be a homomorphism such that s � k is the identity function on

A. Then, � : B ! A⇥ C defined by �(b) =
�

s(b), v(b)
�

is an isomorphism.

Theorem 3.3.13. ⇡or

R

(M, v
x0) is isomorphic to ⇡or

1 (M,x0)⇥Z where the group

structure of ⇡or

R

(M, v
x0) is the one described in Section 2.3.

Proof. Define k : ⇡or

1 (M,x0) ! ⇡or

R

(M, v
x0) such that for each ↵ 2 ⇡or

1 (M,x0),

↵ 7! [f ]
R

where [f ] = ↵ and w([f ]
R

) = 0. Then, k is injective and, as a result

of Theorem 3.3.8, k is a homomorphism. From Lemma 3.3.10 and Theorem

3.3.6, w : ⇡or

R

(M, v
x0) ! Z is a surjective homomorphism. As a consequence of

the uniqueness in Lemma 3.3.11, im k = kerw. Thus, we have the short exact

sequence:

1 ⇡or

1 (M,x0) ⇡or

R

(M, v
x0) Z 1

k w
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Next, we define a homomorphism s : ⇡or

R

(M, v
x0) ! ⇡or

1 (M,x0). For each

[f ]
R

2 ⇡or

R

(M, v
x0), let s([f ]R) = [f ]. For [f ]

R

, [g]
R

2 ⇡or

R

(M, v
x0), s([f ]R ·[g]R) =

s([(f�r)·(g�r)]
R

) = [(f�r)·(g�r)] = [f ·g] = [f ]·[g]. Thus, s is a homomorphism.

Next, we verify that s � k is the identity on ⇡or

1 (M,x0). Let ↵ 2 ⇡or

1 (M,x0).

k(↵) = [f ]
R

where [f ] = ↵ and w([f ]
R

) = 0. Then, s(k(↵)) = s([f ]
R

) = [f ] = ↵.

Let � : ⇡or

R

(M, v
x0) ! ⇡1(M,x0)⇥ Z be defined by

�([f ]
R

) =
�

s([f ]
R

), w([f ]
R

)
�

=
�

[f ], w([f ]
R

)
�

.

From Theorem 3.3.12, � is an isomorphism.
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CHAPTER 4

EXAMPLES

In this chapter, we look at several surfaces with specified continuous, nonzero

vector fields. We can describe ⇡or

R

(M, v
x0) for each surface by listing the gener-

ators of the group as a result of ⇡or

R

(M, v
x0) being isomorphic to ⇡or

1 (M,x0)⇥Z.

4.1 Annulus

We examine the annulus A with respect to the continuous, nonzero vector

field of Figure 4.1.

Figure 4.1: A continuous, nonzero vector field on the annulus.

Since the annulus is an orientable surface, ⇡or

1 (A, x0) = ⇡1(A, x0) and ⇡or

R

(A, v
x0) =

⇡
R

(A, v
x0). ⇡1(A, x0) ⇠= Z so ⇡

R

(A, v
x0) ⇠= Z ⇥ Z. The regular homotopy
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classes of the regular closed curves g1 and g2 of Figure 4.2 are the generators

of ⇡
R

(A, v
x0). This is because g1 is null-homotopic and has winding number 1

while the homotopy class of g2 generates ⇡1(A, x0) and g2 has winding number 0.

Thus, [g1]R 7! (0, 1) 2 Z⇥Z and [g2]R 7! (1, 0) 2 Z⇥Z under the isomorphism

described in Theorem 3.3.13.

Figure 4.2: [g1]R and [g2]R generate ⇡
R

(A, v
x0).

4.2 Möbius Band

Consider the Möbius band B with the continuous, nonzero vector field of Fig-

ure 4.3. ⇡1(B, x0) ⇠= Z and is generated by an orientation reversing closed curve.

Since the composition of two orientation reversing closed curves is orientation

preserving (Lemma 3.1.6), it follows that the isomorphism from ⇡1(B, x0) to Z

induces an isomorphism from ⇡or

1 (B, x0) to 2Z when it is restricted to ⇡or

1 (B, x0).

So ⇡or

1 (B, x0) ⇠= Z and ⇡or

R

(B, v
x0) ⇠= Z ⇥ Z. The generators of ⇡or

R

(B, v
x0) are

the regular homotopy classes of the regular closed curves pictured in Figure 4.4.

[g1]R 7! (0, 1) 2 Z⇥ Z and [g2]R 7! (1, 0) 2 Z⇥ Z.
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Figure 4.3: A continuous, nonzero vector field on the Möbius band.

Figure 4.4: [g1]R and [g2]R generate ⇡or

R

(B, v
x0).

4.3 Torus

The torus T is viewed with respect to the continuous, nonzero vector field

of Figure 4.5. ⇡1(T, x0) ⇠= Z ⇥ Z so ⇡
R

(T, v
x0) ⇠= Z ⇥ Z ⇥ Z. ⇡

R

(T, v
x0) is

generated by the regular homotopy classes of g1, g2, and g3 pictured in Figure

4.6. [g1]R 7! (0, 0, 1) while [g2]R 7! (1, 0, 0) and [g3]R 7! (0, 1, 0) or vice versa

depending on the isomorphism from ⇡1(T, x0) to Z⇥ Z chosen.
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Figure 4.5: A continuous, nonzero vector field on the torus.

Figure 4.6: [g1]R, [g2]R, and [g3]R generate ⇡
R

(T, v
x0).
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Figure 4.7: A continuous, nonzero vector field on the Klein bottle.

4.4 Klein Bottle

We view the Klein bottle K with respect to the vector field of Figure 4.7.

⇡1(K, x0) ⇠= ha, b|aba�1bi where a is identified with an orientation preserving

closed curve while b is identified with an orientation reversing closed curve under

the isomorphism. The relation aba�1b = 1 can be used to uniquely write any

word in this group in the form ambn. Then, as a result of Lemma 3.1.6, any word

with n odd is orientation reversing. Consequently, ⇡or

1 (K, x0) ⇠= ha, b2|aba�1bi.
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Figure 4.8: [g1]R, [g2]R, and [g3]R generate ⇡or

R

(K, v
x0).

[g1]R, [g2]R, and [g3]R generate ⇡or

R

(K, v
x0). g1 is null-homotopic and has wind-

ing number 1. g2 and g3 have winding number 0 while [g2] 7! b2 2 ha, b2|aba�1bi

and [g3] 7! a 2 ha, b2|aba�1bi under the isomorphism from ⇡or

1 (K, x0) to ha, b2|aba�1bi.
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