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Abstract

When interacting with robots in a situated
spoken dialogue setting, human dialogue
partners tend to assign anthropomorphic
and social characteristics to those robots.
In this paper, we explore the age and ed-
ucational level that human dialogue part-
ners assign to three different robotic sys-
tems, including an un-embodied spoken
dialogue system. We found that how a
robot speaks is as important to human per-
ceptions as the way the robot looks. Us-
ing the data from our experiment, we de-
rived prosodic, emotional, and linguistic
features from the participants to train and
evaluate a classifier that predicts perceived
intelligence, age, and education level.

1 Introduction

Co-located, face-to-face spoken dialogue is the
primary and basic setting where humans learn
their first language (Fillmore, 1981) partly because
dialogue participants (i.e., caregiver and child) can
denote objects in their shared environment which
is an important developmental step in child lan-
guage acquisition (McCune, 2008). This setting
motivates human-robot interaction tasks where
robots acquire semantic meanings of words, and
where part of the semantic representation of those
words is grounded (Harnad, 1990) somehow in the
physical world (e.g., the semantics of the word red
is grounded in perception of color vision). Lan-
guage grounding for robots has received increased
attention (Bansal et al., 2017) and language learn-
ing is an essential aspect to robots that learn about
their environment and how to interact naturally
with humans.

However, humans who interact with robots
often assign anthropomorphic characteristics to

robots depending on how they perceive those
robots; for example stereotypical gender (Eyssel
and Hegel, 2012), social categorizations (Eyssel
and Kuchenbrandt, 2012) stereotypical roles (Tay
et al., 2014), as well as intelligence, interpretabil-
ity, and sympathy (Novikova et al., 2017). This
has implications for the kinds of tasks that we ask
our robots to do and the settings in which robots
perform those tasks, including tasks where lan-
guage grounding and acquisition is either a di-
rect or indirect goal. It is important not to as-
sume that humans will perceive the robot in the
“correct” way; rather, the age and academic level
appropriateness needs to be monitored, particu-
larly in a grounding and first-language acquisition
task. The obvious follow-up question here is: Do
robots need to acquire language as human chil-
dren do? Certainly, enough functional systems
exist that show how language can be acquired in
many ways. The motivation here, however, is that
those systems could be missing something in the
language acquisition process that children receive
because of the way they are perceived by human
dialogue partners. We cannot tell until we have a
robot that is shown as being perceived as a child
(current work) and use that robot for language
learning tasks (future work).

We hypothesize in this paper that how a robot
looks and acts will not only affect how humans
perceive that robot’s intelligence, but it will also
affect how humans perceive that robot’s age and
academic level. In particular, we explore how hu-
mans perceive three different systems: two em-
bodied robots, and one a spoken dialogue system
(explained in Section 3). We show through an ex-
periment that human perception of robots, particu-
larly in how they perceive the robots’ intelligence,
age, and academic level, is due to how the robot
appears, but also due to how the robot uses speech
to interact.
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2 Related Work

Several areas of research play into this work in-
cluding seminal (Roy and Reiter, 2005) and re-
cent work in grounded semantic learning in var-
ious tasks and settings, notably learning descrip-
tions of the immediate environment (Walter et al.,
2014); navigation (Kollar et al., 2010); nouns, ad-
jectives, and relational spatial descriptions (Ken-
nington and Schlangen, 2015); spatial operations
(Bisk et al., 2018), and verbs (She and Chai,
2016). Previous work has also focused on multi-
modal aspects of human-robot interaction, includ-
ing grounded semantics (Thomason et al., 2016),
engagement (Bohus and Horvitz, 2009), and es-
tablishing common ground (Chai et al., 2014).
Others have explored how robots are perceived
differently by different human age groups such as
the elderly (Kiela et al., 2015), whereas we are fo-
cused on the perceived age of the robot by human
dialogue partners. Moreover, though we do not de-
sign our robots for deliberate affective grounding
(i.e., the coordination effect of building common
understanding of what behaviors can be exhibited,
and how beahvior is interpreted emotionally) as in
Jung (2017), we hypothesize that how our robots
behave effects how they are perceived.

Kiela et al. (2015) compared tutoring sequences
in parent-child and human-robot interactions with
varying verbal and demonstrative behaviors, and
Lyon et al. (2016) brought together several ar-
eas of research relating to language acquisition
in robotics. We differ from this previous work
in that we do not explcitely tell our participants
to interact with the robots as they would a child,
effectively removing the assumption that partici-
pants will treat robots in an age-appropriate way.
Another important difference to their work is that
we opted not to use an anthropomorphically real-
istic child robot because such robots often make
people feel uncomfortable (Eberle, 2009). Our
work is similar in some ways to, but different
from work in paralinguistics where recognition of
age given linguistic features is a common task
(Schuller et al., 2013) in that we are make use of
exra-linguistic features. Our work primarily builds
off of Novikova et al. (2017) who used multimodal
features derived from the human participants to
predict perceived likability and intelligence of a
robot. We use similar multimodal features to pre-
dict the perceived age and academic level. An im-
portant difference to their work is that we designed

Figure 1: The two physical robots in our study:
KOBUKI with a mounted MS Kinect and COZMO.

the experiment with three robots to vary the ap-
pearance and two language settings to vary the be-
havior and linguistic factors of the robots.

3 Experiment
The primary goal of our experiment is to deter-
mine what factors play into how humans perceive
a robot’s age and academic level. We used the
three following robotic systems in our experiment:

• Kobuki Base Robot with a Microsoft Kinect on top (de-
noted as KOBUKI)

• Anki Cozmo robot (denoted as COZMO)

• Non-physical “robot” (i.e., a non-embodied spoken di-
alogue system) which was just a camera and speaker
(denoted as SDS)

Robot Appearance The COZMO has a head and
animated eyes and is noticeably smaller than the
KOBUKI. The robots did not move during the
experiments, though they were clearly activated
(e.g., the KOBUKI had a small light and COZMO’s
eyes were visible and moved at random intervals,
which is the default setting). Figure 1 shows the
KOBUKI and COZMO robots as seen by the partici-
pants. We chose these three robots because they
were available to us and we assume that, based
solely on appearance, participants would perceive
the robots differently. We chose a spoken dialogue
system (SDS) as one of the “robots” because we
wanted to explore how participants perceive a sys-
tem that is unembodied in direct comparison to
embodied systems.

Robot Behavior The COZMO robot has a built-
in speaker with a young-sounding synthetic voice.
We used two adult voices for the KOBUKI and SDS

robots from the Amazon Polly system (the Joey
and Joanna voices) which we played on a small
speaker.1 We vary the language setting of the
robots by assigning each robot one of two pos-
sible settings: high and low. In the high setting,

1https://aws.amazon.com/polly/
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Figure 2: Example puzzle made up of three col-
ored pentomino tiles with a specified name.

the following responses were possible: sure; okay;
yeah; oh; I see; uh huh; (where the robot re-
peats a word spoken by the participant) and any
combination of those responses in a single uttered
response; and for the low setting, the following re-
sponses were possible: yes; okay; uh; (where
the robot repeats a word spoken by the partici-
pant). In the high setting, the robot would pro-
duce responses more often than in the low setting.
These responses are characteristic of different lev-
els of feedback; the high setting contains feed-
back strategies that signaled understanding to the
participant, whereas the low setting only signaled
phonetic receipt. This corresponds to previous
work (Stubbe, 1998) which investigated various
feedback strategies employed in human-human di-
alogue termed neutral minimal responses (corre-
sponding to our low setting) and supportive mini-
mal responses (corresponding to our high setting).

With this setup, there are 6 possible settings:
high and low for each of the three robots. Our hy-
pothesis is that participants will perceive KOBUKI

as older and more intelligent than COZMO overall
(in both high and low settings) despite being less
anthropomorphic, perceive COZMO as very young
in the low setting, and that SDS will be perceived
as older than COZMO in the high setting, but simi-
lar to COZMO in the low setting.

3.1 Task and Participants

The experimenter gave each participant consent
and instruction forms to complete before the ex-
periment. The participant was then given three
colored pentomino puzzle tiles and a sheet of pa-
per with three goal shapes (example in Figure 2),
each composed from the corresponding tiles. The
experimenter instructed the participant to sit at a
table where they would see a robot. Their task
was to explain to the robot how to use the tiles to
construct the three goal shapes and tell the robot
the name of each shape. The experimenter did

Figure 3: Example setting using the KOBUKI

robot. The participants were to show the robot
how to construct the three goal objects on the pa-
per using the corresponding physical tiles. The
additional cameras were used to record audio and
video of the participant.

not specify how to accomplish this task or give ex-
amples of the kinds of things that the robot might
understand. The experimenter then left the room,
leaving the participant with the robot to complete
the task. The robots only responded verbally in the
low/high setting as explained above and their re-
sponses were controlled by the experimenter (i.e.,
in a Wizard-of-Oz paradigm). The robots pro-
duced no physical movement. When the partici-
pant completed each task, they uttered a keyword
(i.e., done), then the experimenter returned and ad-
ministered a questionnaire. This process was fol-
lowed for each of the three robots.

The following aspects of the experiment were
randomly assigned to each participant: the order
of robot presentation, the puzzle tiles and corre-
sponding goal shapes for each robot, the language
setting (i.e., high or low) which remained the same
for all three robot interactions for each partici-
pant, and for KOBUKI and SDS the adult voice
(either Joey or Joanna). We recruited 21 English-
speaking participants (10 Female, 11 Male), most
of whom were students of Boise State University.
The interaction generally took about 30 minutes;
participants received $5 for their participation.

3.2 Data Collection

We recorded the interactions with a camera that
captured the face and a microphone that captured
the speech of each participant. We automatically
transcribed the speech using the Google Speech
API (we manually checked an accented female
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anger 0.02
contempt 0.009
disgust 0.009
fear 0.002
happiness 0.005
neutral 0.909
sadness 0.03
surprise 0.011

anger 0.036
contempt 0.019
disgust 0.018
fear 0.005
happiness 0.831
neutral 0.006
sadness 0.093
surprise 0.006

anger 0.031
contempt 0.182
disgust 0.04
fear 0.000
happiness 0.066
neutral 0.649
sadness 0.027
surprise 0.002

Figure 4: Examples of results as processed by the
MS Emotions API.

voice which achieved an estimated WER of 30.0)
and segmented transcriptions into sentences after
1 second of detected silence, which is a longer
pause duration than the average pause duration
for adult-adult conversation (though adults tend to
take longer pauses when interacting with children
(DePaulo and Coleman, 1986)). This resulted in
video, audio, and transcriptions for each partici-
pant, for each robot interaction. We also collected
58 questionnaires (we had to remove several be-
cause they were missing data; i.e., some partic-
ipants did not answer some of the questionnaire
questions), one for each robot interaction, from
each participant.

4 Data Analysis

Using the data collected from the experiment, we
derived subjective measures from the question-
naires and we derived a number of objective mea-
sures from the video, audio, and transcriptions. In
this section, we explain what methods we used to
derive and analyze those measures.

Emotion Features Using the video feed of the
participants, we extracted an image of the partic-
ipants’ faces every 5 seconds. We used the Mi-
crosoft Emotion API for processing these images
to calculate an average distribution over 8 possi-
ble emotion categories for each image: happiness,
sadness, surprise, anger, fear, contempt, disgust,
and neutral. Figure 4 shows an example of face
snapshots taken from the video in the task setting
and the corresponding distributions over the emo-
tions as produced by the API.

Prosodic Features From the audio, we calcu-
lated the average fundamental frequency of speech
(F0) of the participant over the entire interaction

between the participant and the robot for each
robot setting.

Linguistic Features Using the automatically
transcribed text, we follow directly from Novikova
et al. (2017) to derive several linguistic measures,
with the exception that we did not derive dialogue-
related features because, though our robots were
engaging in a kind of dialogue with the partici-
pants, they weren’t taking the floor in a dialogue
turn; i.e., our robots were only providing feed-
back to signal either phonetic receipt or seman-
tic understanding (low and high settings, respec-
tively). We used the Lexical Complexity Analyser
(Lu, 2009, 2012), which yields several measures,
two of which we leverage here: lexical diversity
(LD) and the mean segmented type-token ratio
(MSTTR), both of which measure diversity of to-
kens; the latter averaging the diversity over seg-
ments of a given length (for all measures, higher
values denote more respective diversity and so-
phistication in the measured text). The Complex-
ity Analyser also produces a lexical sophistica-
tion (LS) measure, also known as lexical rareness
which is the proportion of lexical word types that
are not common (i.e., not the 2,000 most frequent
words in the British National Corpus).

For syntactic variation, we applied the D-Level
Analyser (Lu, 2009) using the D-Level scale (Lu,
2014). This tool builds off of the Stanford Part-
of-Speech Tagger (Toutanova and Manning, 2000)
and the Collins Parser (Collins, 2003) and pro-
duces a scaled analysis. The D-Level scale counts
utterances belonging to one of 8 levels (Levels 0-
7), where lower levels such as 0-1 include simple
or incomplete sentences; the higher the level, the
more complex the syntactic structure. We report
each of these levels along with a mean level.

Godspeed Questionnaire We used the God-
speed Questionnaire (Bartneck et al., 2009) which
consists of 21 pairs of contrasting characteristics
in areas of anthropomorphism (e.g., artificial vs.
lifelike), likability (e.g., unfriendly vs. friendly),
intelligence (e.g., incompetent vs. competent), and
interpretabilitiy (e.g., confusing vs. clear) each
with a 5-point scaling between them. In addition
to those questions, we included the following:

• Have you ever interacted with a robot before
participating in this study?

• If you could give the robot you interacted
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with a human age, how old would you say
it was?

• What level of education would be appropriate
for the robot you interacted with?

For the question asking about human age, an-
swers could be selected from a set of binned
ranges (under 2 years, 2-5, 6-12, 13-17, 18-24, 25-
34, 35 and older), and for the education question,
answers could be selected from preschool, kinder-
garten, 1-12 (each grade could be selected), under-
graduate, graduate, post-graduate.

4.1 Analysis

In this section, we analyze the results of the data
for the emotional, prosodic, and linguistic mea-
sures. We also provide correlations between those
measures and the Godspeed Questionnaire. At the
end of this section, we provide a discussion of the
overall analysis.

Emotion Analysis The most common emo-
tional response as produced by the MS Emotions
API was neutral for all settings, ranging from 73-
87% (avg 81%). The next most common emotions
were happiness (avg 11.1%), sadness (avg 3.7%),
surprise (2%), and contempt (avg 1%). We show
in Figure 5 the average distribution over those four
emotions for all of our settings. All other emotions
were negligible.

Prosodic Analysis Table 1 shows the the aver-
age F0 scores for each setting. In general, in
the low linguistic setting participants averaged a
higher F0 across all robots. This was the case also
for individual robots. By a wide margin, COZMO

Figure 5: Average emotion (happiness, sadness,
surprise, contempt) values for all settings.

cozmo kobuki noRob all
low 173.39 164.32 158.49 164.32
high 166.86 153.18 153.15 157.73
both 170.28 157.32 155

Table 1: Prosodic analysis: average F0 values for
each setting.

setting LD LS MSTTR
low 0.45 0.32 0.62

high 0.48 0.34 0.64
cozmo 0.46 0.29 0.62
noRob 0.45 0.3 0.63
kobuki 0.46 0.28 0.63

cozmo low 0.46 0.23 0.61
noRob low 0.45 0.26 0.62
kobuki low 0.45 0.26 0.63
cozmo high 0.47 0.27 0.66
noRob high 0.47 0.27 0.63
kobuki high 0.49 0.23 0.64

Table 2: Linguistic analysis: LD, LS, and MSTTR
values for all settings.

averaged a higher F0 than the other two robots un-
der both low and high settings.

Linguistic Analysis Table 2 shows the results of
the linguistic analysis. The LD (lexical diversity)
scores show that, on average, participants used
more LD in the high settings. Figure 6 shows
the results of the D-Level analysis. Level0 (i.e.,
short utterances) was by far the most common
level which accounted for 66% of all utterances
for all participants. The second most common was
Level7, the level representing the most complex
types of utterances. This is no surprise, as Level7
accounts for longer utterances above some thresh-
old; i.e., all utterances of a certain length and com-
plexity or higher fit under Level7. The low set-
ting had a Level7 value of 17%, and the high set-
ting had a Level7 value of 11%. This may seem
surprising, but it follows previous research which
has shown that, when a speaker receives fewer re-
sponses, they draw out their turns, which result
longer utterances (Stubbe, 1998).

Questionnaire Analysis We calculated (Spear-
man) correlations between the prosodic, emo-
tional, and linguistic features, and the question-
naire responses with the low/high settings and the
robot settings. Table 3 shows the results where the
correlation had a strength of 0.5 or higher. Fig-
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Figure 6: Percentage results for
Level0-Level7 for all settings.

Figure 7: Questionnaire re-
sponses (raw scores) for ages.

Figure 8: Questionnaire re-
sponses for academic grades.

ures 7 and 8 respectively show the age groups and
academic years that the participants perceived for
each robot in each setting. Overall, participants
assigned low age and academic level to all robots
when they produced feedback that did not sig-
nal semantic understanding (i.e., the low setting).
They also assigned a lower age and academic level
to COZMO for all settings (with the exception of
one 10th grade assignment).

Our results confirm the Novikova et al. (2017)
result which showed a strong correlation between
F0 and knowledgeable. Interestingly, F0 only cor-
related knowledge with the physical robots and the
SDS robot in the low setting. There is more to the
F0 correlations: F0 in the low setting correlates
with conscious, in the high setting correlates with
natural and human-like, and in the COZMO robot
setting with lifelike. There were some correlations
with age and academic level: LS in the high setting
correlated with the robot being perceived as age
18-24 and when interacting with COZMO, a higher
F0 correlated with a perception of COZMO being
6-12 years old and in the 4th grade. Lexical diver-
sity correlates with sadness and contempt, which
indicates that participants use more diverse lan-
guage (i.e., they continue speaking) when they are
frustrated with the interaction (Stubbe, 1998); par-
ticularly in the high setting when they expect more
from the robots. However, they increase their LS
also in the high setting because they perceive the
robot as more intelligent.

Discussion Taken together, the emotional,
prosodic, and linguistic analyses show that par-
ticipants treated the low setting with a higher
average F0, less linguistic complexity, and a
greater display of happiness in their facial emo-
tions. This is useful knowledge: the way a robot

speaks has an impact on the perception of that
robot by the human users, regardless of whether
or not that robot is embodied. Moreover, despite
the fact that the robots only produced feedback as
the only system behavior, the participants tended
to assign a younger age and academic level to
the COZMO robot. There were subtle differences
in how the participants perceived the KOBUKI

and SDS robots. In general, the participants
seemed to perceive the SDS as being older and as
having a higher academic level in the emotion,
prosodic, and linguistic modalities, though those
differences were small. This leads us to postulate
that anthropomorphic physical features do not
automatically denote intelligence in the same
way as perceived ability to comprehend language.
In general, participants assigned younger ages
and lower academic levels for the low setting,
and higher ones for the high setting. Moreover,
participants generally assigned COZMO lower
ages, including the most for Under 2 years. Of
note is that no participant assigned COZMO an
age of above 6-12 years for either of the low/high
settings. The highest assigned academic level was
undergrad, which was never assigned to COZMO.
The KOBUKI and SDS robots were both variously
assigned comparable older ages and average
academic levels under all settings.

5 Prediction Tasks

Using the measures we derived from the collected
data, we attempted to determine if we could pre-
dict the perceived age and academic level of the
robots. We used the emotional features (happi-
ness, sadness, surprise, anger, fear, contempt, dis-
gust, and neutral), the prosody (F0 average), and
the linguistic features (LS, LD, MSTTR) to predict
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low/high feature correlated feature corr
low (P) F0 avg (Q) knowledgeable 0.65

(Q) conscious 0.53
(Q) friendly 0.55
(Q) intelligent 0.57
(Q) kind 0.55

(L) LS (Q) friendly 0.51
high (P) F0 avg (Q) natural 0.53

(Q) human-like 0.5
(Q) enjoyable 0.51
(Q) nice 0.57
(Q) sensible 0.66

(L) LD (E) sadness 0.68
(E) contempt 0.53

(L) LS (Q) age 18-24 0.56
(Q) meets expect. 0.63
(Q) sensible 0.62
(Q) knowledgeable 0.63
(Q) responsive 0.64

robot feature correlated feature corr
COZMO (P) F0 avg (Q) age 6-12 0.51

(Q) 4th grade 0.53
(Q) lifelike 0.62
(Q) knowledgeable 0.81
(Q) competent 0.64
(Q) intelligent 0.68

(L) MSTTR (E) sadness -0.55
KOBUKI (P) F0 avg (Q) knowledgeable 0.52

(L) MSTTR (Q) age 2-5 -0.53
SDS (P) F0 avg (Q) liked 0.51

Table 3: Spearman correlations between linguistic
(L), prosodic (P), emotional (E), and questionnaire
(Q) measures.

both the age and the academic level as separate
classification tasks. We also predict intelligence,
likability, and interpretability in order to compare
to previous work.

5.1 Predicting the Perceived Age &
Academic Level of Robots

Data & Task For predicting both age and aca-
demic level, we used the 58 data points from the
participants for each interaction with each robot
and applied those points to a 5-fold cross valida-
tion. We used a logistic regression classifier to per-
form the classification using the Python scikitlearn
library. We report accuracy for our metric.

Age We ran the cross validation for two differ-
ent settings when predicting age. In particular, we
varied the labels that could be classified. We con-
ducted a first task which treated all of the 7 pos-
sible outcomes for age as individual labels (i.e.,
under 2 years, 2-5, 6-12, 13-17, 18-24, 25-34, 35
and older) and a second task splitting at age 18
(i.e., younger than 18 is one label; 18 & older is
the other label). The respective random baselines
are 14% and 50%.

age acc
7 labels 22%
2 labels (<, >=18) 87%
academic level acc
14 labels 27%
2 labels (<, >= preschool) 78%

Table 4: Accuracies for predicting age and aca-
demic level.

Academic Levels Similar to age, we ran the
cross validation for two different settings when
predicting for perceived academic level. The first
task treated all of the 14 possible outcomes for
academic level as individual labels (preschool,
kindergarten, 1-11, undergraduate; we leave out
graduate and post-graduate because they were
never selected in the questionnaires, nor was 12th
grade), the second task treated treated preschool
and beyond preschool as a binary classification
task. The respective random baselines are 7% and
50%.

Results The results of this prediction task are in
Table 4. As might be expected, when attempting
to predict using many labels, the classification task
is challenging with so little data. However, the
classifiers beat their respective random baselines.
When classifying for age, the best performing task
was a binary task splitting on 18 years at 87%, ef-
fectively making it a classifier that can determine
if a human user perceives the robot as an adult or
as a minor. The best performing task for the aca-
demic level classification was treating preschool
and above preschool as a binary classifier. Though
the data is sparse, these classifiers give us useful
information: a robot can use these classifiers to de-
termine if they are perceived as an adult by human
dialogue partners, and, more importantly for our
purposes, as a preschool aged child, which is the
age range in which we are interested for language
acquisition tasks.

5.2 Predicting Intelligence, Likability, and
Interpretability

Data & Task To directly compare with
Novikova et al. (2017), we also predicted per-
ceived intelligence, likability, and interpretability
using a ridge regression classifier (which is
optimized to reduced standard error) while con-
sidering only certain subsets of out our feature
set. We evaluated when only considering emo-
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group emot. pros. non-ling. ling. all
like 1.08 0.94 0.94 1.02 0.94
intel 1.95 1.44 1.44 0.84 1.44
interp 0.67 0.7 0.7 0.61 0.7

Table 5: Performance of prediction calculated
with RMSE for likability, intelligence, and inter-
pretability. Bold denotes the smallest RMSE for
a particular feature subset (emotion, prosody, non-
linguistic, linguistic, and all).

tional features, prosody, non-linguistic (in our
case, emotions and prosody), linguistic, and all
combined features. Our metric was root mean
square error (RMSE). We average the RMSE over
a 5-fold cross-validation.

Results Table 5 shows the results of this pre-
diction task. We found that likability is pre-
dicted best by prosody, perceived intelligence is
predicted best by linguistic features, and inter-
pretability is predicted best by also using linguis-
tic features. One big difference between our ex-
periment data and that of previous work is that we
did not consider dialogue features (e.g., number of
turns, speech duration, number of self-repetitions,
etc.), which they termed as non-linguistic fea-
tures. Those features were important in predict-
ing perceived intelligence and interpretability in
their work; here, linguistic and prosodic features
were the most effective in predicting all three hu-
man perceptions of the robots. This confirms the
work of Novikova et al. (2017) that linguistic fea-
tures are a good predictor of interpretability.

6 Discussion & Conclusion

In this paper, we have investigated how human
dialogue partners perceive the age and academic
level of three robotic systems, two of which were
embodied (albeit not particularly anthropomorphi-
cally), and one unembodied spoken dialogue sys-
tem. We collected data from participants as they
interacted with the three robotic systems then de-
rived prosodic, emotional, and linguistic features
from that participant data, and found that those
features correlate with certain age and academic
perceptions of those robots, as well as a num-
ber of other subjective measures from the God-
speed Questionnaire. This work confirms what
previous work has shown: that humans tend to
perceive robots differently depending on different
factors; in our case, varying the look and spo-

ken reposes determined how the human partici-
pants perceived the age and academic levels, as
well as intelligence, likability, and interpretabil-
ity of those robots. We were then able to use
these features to automatically predict perceived
age (i.e., adult or minor), perceived academic level
(i.e., preschool or above) and perceived intelli-
gence, likability, and interpretabilitiy. One im-
portant result of our experiment was that human
dialogue partners perceive the unembodied robot
(i.e., SDS) in similar ways to embodied robots; that
is, the way a robot or system speaks (i.e., in our
case, produces feedback by signaling either pho-
netic receipt or semantic understanding) is as im-
portant to human perceptions of intelligence and
likability as visual characteristics.

We cannot not simply assume that human dia-
logue partners would treat a robot as they would a
child, which is an important aspect of tasks with
realistic first-language acquisition settings. The
work presented here shows that those interacting
with a robot like COZMO will more likely treat
COZMO as a learning child instead of as an adult.
This is an important result because for future work
we plan on using the COZMO robot as a platform
for first language acquisition research, where the
setting will be more similar to first language acqui-
sition in humans than common language ground-
ing tasks. The COZMO robot is an afforable way
for reseachers to couple spoken dialogue systems
with a robotic system; it has a Python SDK which
allows researchers to access its sensors (includ-
ing a color camera) and control its wheel and arm
movements, as well as its speech and animated
face. Our results show that human users generally
like COZMO, find COZMO lifelike, competent, and
intelligent; i.e., COZMO may be treated as a child,
but it has potential to learn.

In future work, we will apply a model of
grounded semantics in a co-located dialogue set-
ting where COZMO can learn the semantics of
words as it interacts with human dialogue partners.
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