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Abstract 

Methylation at the 5-carbon position of the cytosine nucleotide base in DNA has been shown to 

be a precursor to carcinogenesis. Early detection of methylation and intervention could 

drastically increase the effectiveness of therapy and reduce the cancer mortality rate. Current 

methods for detecting methylation involve bisulfite genomic sequencing, which are cumbersome 

and demand a large sample size of bodily fluid to yield accurate results. Hence, more efficient 

and cost effective methods are desired. Building off our previous work, we present a novel 

nanopore-based assay using a nanopore in a MoS2 membrane, and the methyl-binding protein 

(MBP), MBD1x, to detect methylation on dsDNA. We show that the dsDNA translocation was 

effectively slowed down using an asymmetric concentration of buffer and explore the possibility 

of profiling the position of methylcytosines on the DNA strands as they translocate through the 

2D membrane. Our findings advance us one step closer towards the possible use of nanopore 

sensing technology in medical applications such as cancer detection. 

 

Keywords: nanopore, molybdenum disulfide, methylated DNA, cancer detection, methyl-binding protein, 

hypermethylation, hypomethylation 
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Cancer research is often centered around early detection and finding tumors before they metastasize. DNA 

methylation, defined as the addition or removal of a methyl group at the 5-position of the cytosine nucleotide, has 

been established as an early event in carcinogenesis 1-3 with many promoter genes affected by aberrant methylation 

being linked to tumor formation. 4-6 In addition, high-throughput methylation analysis has unveiled that aberrant DNA 

methylation is correlated to both premalignant and malignant neoplasia. 7-10 Consequently, methylation pattern 

analysis in DNA can play a very critical role in the diagnosis of precancerous and early-stage cancer. However, current 

methods of analyzing genome-wide methylation rely heavily on bisulfite genomic sequencing. 11 This method requires 

a large sample volume due to DNA degradation during the bisulfite conversion and exhibits low PCR efficiency. 5, 12-

13 Previous studies have reported the feasibility of detecting cancer by methylation pattern analysis from genomic 

extracts of human bodily fluids such as plasma, serum, urine, and stool. 5, 14-15 However, only a minuscule amount of 

methylated DNA can be obtained from body fluids. 13 As a result, most conventional methylation assays are not 

suitable for detecting the extremely low level of methylated DNA in bodily fluids. This presents a need for a less labor 

intensive and direct method to characterize methylation. Our previous work has successfully investigated the 

possibility of nanopore-based devices for detection of hypermethylation, coarse quantification of methylation sites, 

and coarse profiling of single dyad methylation pattern. Thus, we believe that the nanopore technology holds 

significant promise for detection of methylation for precancerous and early-stage cancer detection. 16-17 

 

Nanopore technology is a cost-effective, high-throughput platform that could assist in various medical applications 

such as immunoisolation bio capsules, drug delivery devices, and targeted biorecognition platforms. 18 Solid-state 

nanopores are favorable because they can operate in various liquid media and pH conditions as well as their production 

being scalable and compatible with other detection techniques 19-21 and other nanofabrication techniques. 22-23 

However, certain obstacles, such as controlling translocation time and discriminating between bases and proteins, 

introduce complications that limit commercial use of the solid-state nanopore. In particular, they tend to exhibit 

relatively lower single molecule detection sensitivity due to the thickness of conventional membranes and inconsistent 

surface charge distribution.22, 24-25 Although solid state nanopores yield low ionic current signal-to-noise ratios, 

graphene nanopores, in theory, can exhibit favorable detection sensitivity when compared to other solid-state nanopore 

such as SiNx. 26 In this paper, we explore translocation of naked double-stranded DNA (dsDNA) and methylated 

dsDNA-MBP complex through nanopores drilled in a two-dimensional molybdenum disulfide (MoS2) membrane. In 

addition, to attest to its viability as an alternative to graphene nanopores, we also present experiments with a buffer of 

asymmetric molarity to slow down translocation of biomolecules through the pore. 

 

Results and Discussion 

 

Fabrication and Current-Voltage Signature of the Nanopores in MoS2 

 

Solid-state nanopores can be used as inexpensive and high-performance biosensors that are capable of the single 

molecule detection of a wide variety of analytes of medical interest, ranging from small molecules to post-

translationally modified proteins. 27 Specifically, the nanopore biosensing platform has become especially attractive 

in the realm of DNA sequencing. 22, 28 Nanopores use the principle of ionic current spectroscopy to electrically 

distinguish the unique current blockage signatures of each nucleotide base. 16, 29 Theoretically, the graphene nanogap 

of 1.6 nm would read the transverse conductance of the translocating DNA and could lead to an error-free read-out. 30 

Atomically small graphene nanopores, closely resembling the diameter of dsDNA, have a high sensitivity to 

infinitesimal changes in the outer diameter of the translocating DNA. 31 These nanopores can resolve nanoscale-spaced 

molecular structures with a resolution of less than 0.6 nm along the length of the molecule. However, the unique 

density of the states of graphene and the absorption of water molecules are factors that could increase error in graphene 

nanopore readings. 30 more importantly, graphene nanopores have a strong hydrophobic interaction with ssDNA, 

which causes the DNA to attach to the graphene membrane and impedes translocation. 32 To overcome this, the surface 

of the graphene membrane often must be treated with agents such as 16-mercaptohexadecanoic acid in 8:2 

toluene/ethanol to demote DNA adhesion and promote translocation. 24, 33-34 

 

Alternative materials have been explored to eliminate the need for additional surface treatment protocols. 22 

Molybdenum disulfide is a novel atomically thin material that has been recognized as a possible alternative to 

graphene. As shown in Gaur et. al., MoS2 membranes grown below 900 °C exhibit high surface energy and semi-

crystalline structure that is associated with a decreased hydrophobicity and increased wetting. 35 The less hydrophobic 

surface nature of the MoS2 grown under optimal conditions allows for successful threading of dsDNA of different 
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lengths and conformations, displaying superior yield. 24 MoS2 nanopores also exhibit a lower failure rate at high ionic 

strength solutions,24 and show four distinct ionic current signals for four homo-nucleobases.22 Unlike graphene, the 

semiconducting bandgap of MoS2 is independent of the width of the nano-ribbon and can allow for detection of 

changes in potential induced in the liquid environment due to the translocation of the DNA. 

 

Figure 1a illustrates the layout of the MoS2 nanopore structure that we have fabricated. The free standing MoS2 

monolayer was situated on a 12mm x 12mm substrate structure consisting of 300 nm thick SiNx and 20 nm thick Al2O3 

that were deposited using PECVD (plasma enhanced chemical vapor deposition) and ALD (atomic layer deposition). 

An 80-micron hole was opened on the backside of the silicon substrate using DRIE (deep reactive ion etching), and a 

concentric ~500 nm hole was subsequently opened through the Al2O3 using a FIB (focused ion beam) (See the 

Supporting Information for the detailed process). The MoS2 membrane was grown using CVD (chemical vapor 

deposition) and transferred to the device, as described in Supporting Information, and the MoS2 nanopore was 

subsequently drilled using TEM (transmission electron microscopy) as described in Methods Section. Figure 1b shows 

TEM image of a typical ~ 6 nm MoS2 nanopore. Nanopores for this experiment were created between 4 nm and 6.5 

nm in diameter, and the current-voltage characteristic of the MoS2 nanopores were measured in both 1 M KCl and 0.6 

M KCl as shown in figure 1c. Figure 1d shows a TEM image of free standing MoS2 membrane over the FIB hole that 

confirms no defects were present on the membrane before drilling of the nanopore on the MoS2 membrane. Also, 

high-resolution transmission electron microscopy (HRTEM) showed a honeycomb-like image that is unique to MoS2, 

thus confirming that the MoS2 membrane was properly grown by the CVD method, as shown in figure 1e. Additional 

characterizations were performed to analyze the quality of MoS2 membrane using Raman Spectroscopy, as described 

in Supporting Information. The thickness of the MoS2 membrane was examined by atomic force microscopy (AFM) 

as shown in Supporting Information. The height profile indicates that the thickness of the CVD grown MoS2 

membrane corresponds to the thickness of a single MoS2 layer. 

 

Detection of 10 kb Double-Stranded DNA 

 

To examine the feasibility of translocating dsDNA through a MoS2 nanopore, random sequences of 10 kbps dsDNA 

were introduced in a 6.5 nm MoS2 nanopore. The dsDNA sequences were transported through the MoS2 nanopore at 

various voltages in the buffer solution of 0.6M KCl at pH of 7.4 containing 10 mM Tris and 1 mM EDTA. 

Representative data traces of 10 kbps dsDNA transports at 500 mV, 700 mV, and 1000 mV are shown in figure 2a, 

2b, and 2c. Distinct downward current blockages were observed in each of the data traces, undeniably confirming that 

the dsDNA transported through the MoS2 nanopore. Figure 2d shows a scatter plot of all 10 kbps transports events at 

the displayed voltages. The data trace of 700 mV displayed higher dsDNA transport occurrence than that of the data 

trace of 500 mV, and the 1000 mV data trace showed more than that of the 700 mV data trace as expected. The higher 

occurrence of the dsDNA transport with increasing voltage is in agreeance with previous observations of dsDNA 

transports in SiNx.16 To further investigate the dsDNA transport through the MoS2 nanopore, the current blockages 

and the translocation duration were analyzed. To obtain current blockage values of dsDNA transports, a histogram 

built with blocked current data produced by dsDNA transports was fitted with a Gaussian function as shown in figure 

2e. The current blockages of 10 kb dsDNA through a 6.5 nm MoS2 nanopore were 1.27 ± 0.24 nA at 500 mV, 1.7 ± 

0.41 nA at 700 mV, and 2.35 ± 0.43 nA at 1000 mV. The amplitudes of current blockages were increased at higher 

biased voltages as shown in figure 2g, in agreement with the trends of dsDNA transport observed in other nanopores. 
36-37 Figure 2f shows the transport duration values of the dsDNA which were obtained by fitting an exponential decay 

function to the dsDNA transport dwell time histograms. As expected, accelerated transport velocity was observed at 

higher biased voltages. The transport durations were 188 ± 17 µs at 500 mV, 118 ± 8 µs at 700 mV, and 83 ± 6 µs at 

1000 mV as shown in figure 2h. As observed in dsDNA transport in other material nanopores, 16, 36-37 higher voltage 

generally yielded a stronger blockage current, but shorter transport duration times. Findings with 10 kbps dsDNA 

transports through the 6.5 nm MoS2 nanopore were in concordance with observations in previous studies. Molecular 

dynamic (MD) simulations also demonstrated larger current blockages and reduced transport duration by transporting 

dsDNA through a MoS2 nanopore at the higher voltages as shown in Supporting Information, thus validating our 

experimental findings. Previous studies have indicated the challenges of dsDNA transport through graphene nanopores 

due to the affinity of graphene surface to the DNA causing the DNA strand to adhere to the surface of the nanopore 

membrane. 36 Such difficulty was not observed on dsDNA transports through the MoS2 nanopore in our studies as it 

was much less difficult to wet the nanopore membrane. However, a higher biased voltage, greater than 800 mV, can 

enlarge the open pore in the MoS2 nanopore38 as was evident in a previous study after recording DNA transports at 

1000 mV. Also, the enlarging of the MoS2 nanopore can be seen in figure 2b and 2c, where occasional upward spikes  
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and increased noise level at 700 mV and 1000 mV were demonstrated. We have tested the current-voltage 

characteristic before and after applying 1000 mV, and the result indicate that the MoS2 nanopore can be enlarged 

through electrochemical reaction (supporting information). 

 

Detection of Naked and Methylated dsDNA Fragments 

 

DNA methylation patterns are often correlated to tumor formation and cancer progression. Especially, previous studies 

reported that hypermethylation is associated with many types of cancer and potentially correlated with metastasis in 

many other tumor types. 5-6, 39-41 Previous studies have also demonstrated that nanopore sensors cannot discriminate 

between methylated DNA and unmethylated DNA without labeling of some sorts. 16 One method to utilize nanopore 

technology to detect methylation is to attach methyl binding proteins (MBPs) to the methylated DNA. MBPs 

selectively bind to the methylcytosine bases on methylated DNA, thereby confirming its presence in the sequence. 16-

17 Our previous studies have presented the selective labeling of methylated sites on dsDNA using MBPs. Herein, we 

used the same strategy and DNA with the same methylated pattern to show the ability of the MoS2 nanopore to 

discriminate naked DNA from hypermethylated DNA (hyMethDNA). Target DNA were 90 bp sequences with 30 

CpG sites. No methylation was added to the naked DNA and 10 methylcytosine domains were added on 

hypermethylated DNA to have uniformly distributed methylation sites. For our experiment, a nanopore with a 7.2 nm 

diameter was used for detection of the 90bp dsDNA fragments in our nanopore experimental setup of 1M KCl at pH 

7.2 containing 10 mM Tris and 1 mM EDTA. We first examined the detection of 90bp naked dsDNA through a MoS2 

nanopore at 200mV to prevent the MoS2 nanopore from damage resulting from the enlargement of the nanopore at 

the high biased voltage. However, translocation events under these conditions were unnoticeable. Interestingly, upon 

lowering the applied voltage to 100 mV, transport events for the 90bp dsDNA were observed. It was surprising to see 

the transport of dsDNA through MoS2 at these low biased voltages as other membranes typically require higher 

voltages to reveal translocation events. Representative transport sample events of 90bp dsDNA fragments through a 

MoS2 nanopore are displayed in figure 3a, 3b, and 3c for applied voltages of 50mV, 80mV, and 100mV, respectively. 

To date, SiNx and graphene nanopore experiments have not reported dsDNA transport below 200mV. Possible 

explanations for the lack of transportation data with these commonly used membranes could be the negative surface 

charge of the SiNx membrane and the hydrophobic surface affinity to graphene causing DNA to adhere. This is 

especially relevant for the nanopores in SiNx membranes ranging from 10~30 nm in thickness, where a smaller pore 

diameter than membrane thickness results in a pore that behaves like a nanochannel, increasing the entropic barrier 

that the DNA molecule needs to overcome to result in translocation. Since the isoelectric point of SiNx is ~4 and 

negatively charged in experimental solution at pH 7.2, 42 the dsDNA would possibly be repelled at bias voltages under 

200mV. In comparison, a pore in a thin MoS2 2D membrane does not repel dsDNA. The values of transport current 

blockage and transport duration were obtained by fitting a Gaussian function, and an exponential decay function to 

the blocked current histogram and transport dwell time histogram respectively as demonstrated in figure 3d and 3e. 

The MoS2 nanopore of 7.2 nm in diameter could detect 90bp dsDNA, with blocked current of 282 ± 22 pA at 50 mV, 

312 ± 13 pA at 80 mV, and 376 ± 16 pA at 100 mV as shown in figure 3f and as well as dwell time of 53 ± 3 µs at 

50mV, 36 ± 4 µs at 80 mV, and 32 ± 2 µs at 100mV as shown in figure 3g. The increase in the bias voltage to the 

original 200 mV did not result in noticeable transport events as demonstrated in figure 3h. However, the addition of 

hyMethDNA bound with MBD1x produced detectible events as shown in figure 3i. Representative sample events of 

hyMethDNA/MBD1x complex through the MoS2 nanopore are presented in figure 3j. To form the complex of 

hyMethDNA and MBD1x, the two molecules were mixed and incubated at room temperature for 15 minutes before 

experiments. While recording when naked DNA was in the solution and no translocations were observed, 

hyMethDNA fully bound with MBD1x were introduced to the chamber. Surprisingly, the hyMethDNA with MBPs 

displayed a signature current blockage as shown in figure 3j and were selectively detected at 200mV. It can be inferred 

that the complex translocated through the pore slower than naked DNA due to the altered larger physical dimension 

brought on by annexing 10 MBD1x on the dsDNA fragment, in addition to the positive net charge of the MBD1x on 

the DNA reducing the overall charge on the complex. The isoelectric point of MBD1x is known to be 8.85, 43 thus it 

would be positively charged in the solution with pH 7.2. Not only does this serve as a confirmation of the presence of 

a methylcytosine base on the DNA sequence and the affinity of the MBP to the methyl group, but it also alludes to the 

ability of MoS2 nanopores in detecting methylated DNA. The structure of the complex is presented in figure 3h to 

illustrate methylation and the presence of MBD1x in the DNA. The unmeasurable naked dsDNA transport events at 

200mV (figure 3i) can be explained by translocation that was too rapid. The DNA translocation duration time was 

demonstrated to decrease at higher voltages in a voltage-dependent manner. Fitting with an exponential decay function 

(Supporting Information) shows the expected value of translocation of 90 bp dsDNA transport at 200 mV to be ~10 

µs, which is close to the data acquisition time interval of 10 µs of the experimental setup (see methods section), and 
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hence was likely out of the measurement range. Figure 3l shows obtained current blockage and transport durations of 

naked DNA and hyMethDNA/MBD1x complex along with the expected current blockage and duration of 90bp 

dsDNA fragments transport at 200 mV, which is unnoticeable under our experimental recording condition. 

 

Slowing Down dsDNA Transport and Detection of a Single CpG Site in dsDNA Fragment 

 

Hypomethylation, the loss of methylation in DNA when compared to normal levels, is another major epigenetic 

modification in cancer cells. The pattern of DNA epigenetic alterations in cancer varies from the individual CpG dyad 

at the local level, to methylation in 1 million base pairs, to DNA demethylation during carcinogenesis. This results in 

loss of methylation on both strands via possible intermediates of hemimethylated dyads. 44 

 

However, conventional methylation assays such as methylation-specific PCR is technically limited and challenging 

for the diagnosis of DNA hypomethylation. 45 Although our previous study demonstrated discrimination between 

hypomethylated DNA and individual CpG dyad at the center of sequences by labeling with MBP, profiling of the 

methylation pattern using thick SiNx membrane was not possible.17 In that study, the single MBP was in the middle 

of the molecule and the electrical peak indicating the methylation location was broad. Herein, we report the 

methylation profile of dsDNA through a MoS2 nanopore with a slow translocation velocity due to an asymmetric salt 

gradient.46 Longer translocations can allow for high-resolution measurements to distinguish individual nucleotide 

bases.47 Various strategies, from applying gel media on the cis or trans side of the membrane, to varying voltage or 

buffer solution concentration gradient, have been implemented to slow translocation and suspend DNA strands in the 

pore. 47-48 For our experiment, we used an asymmetric buffer solution of 0.6M KCl on the cis side of the membrane 

and 3M KCl on the trans side. Our MoS2 nanopore-based methylation assay demonstrates detection of a single 

methylation CpG dyad site at the end of 90bp dsDNA. We utilized the MBD1x and chose a single methylation CpG 

dyad to check the viability of MoS2 nanopore on detection of hypomethylated DNA. The target DNA fragments were 

designed to have a single CpG dyad methylated site near to the end of the strand, 84th to 87th bases in 90 bps dsDNA 

(endMethDNA). Both naked DNA and the endMethDNA bound with a single MBD1x were used for translocation 

experiments in a 9 nm MoS2 nanopore and both displayed measurable current blockade signatures as shown in Figure 

4a. Samples of 90bp naked DNA (Figure 4a top) and MBD1x bound endMethDNA (Figure 4a bottom) are shown in 

Figure 4a and the corresponding scatter plot is shown in Figure 4b. The transport current blockage values of both 

naked DNA, -277 ± 20 pA, and complex, -600 ± 66 pA, were obtained using a Gaussian function as shown in Figure 

4c. The translocation times of naked DNA and the endMethDNA/MBD1x were also obtained by fitting a Gaussian 

function to transport dwell time histogram as shown in Figure 4d. In comparison to dsDNA transport in symmetric 

1M KCl shown in Figure 3, using asymmetric salt gradient significantly slowed down the transport duration of 90bp 

naked DNA. Although direct comparison is not appropriate due to the large diameter of the nanopore used for this 

experiment, naked DNA was successfully detected with a duration of 1.23 ± 0.21 ms at 200 mV. In comparison with 

the expected transport in Figure 3l, the transport was slowed down ~100-fold. The endMethDNA bound with a single 

MBD1x translocated through the MoS2 nanopore at 1.39 ± 0.23 ms, which was a ~160 µs slower translocation than 

the naked DNA. While we had previously found ~20-fold difference between naked DNA and locally methylated 

DNA through SiNx nanopores, the similar range of translocation duration between naked DNA and endMethDNA was 

unexpected. However, the similar range of transport duration between naked DNA and endMethDNA/MBD1x can be 

explained. The negatively charged inner wall of a 10-nm thick SiNx nanopore is likely to interact with the positively 

charged methyl-binding protein during transporting, whereas 2-D material MoS2 nanopore is unlikely to interact 

during transporting. In addition, compared to hyMethDNA fully bound with MBD1x, endMethDNA possesses only 

one MBD1x. Thus the overall charge on the molecule is not perturbed. Consequently, the 90bp naked DNA and 

endMethDNA would not be significantly different in transport duration in the 2D MoS2 membranes. The main factor 

impeding the complex transport through a MoS2 nanopore is biased positive voltage. A demonstration of atomic-scale 

translocation dynamics of the complex through a MoS2 nanopore is shown in Supporting Information. To further 

analyze the whole data set for the current blockade and transport duration, a box-and-whisker plot was adopted. Figure 

4e shows that most current blockages of naked DNA fall in -276 ± 20 pA, and endMethDNA/MBD1x showed two 

distinct current blockage levels; shallow at -251 ± 39 pA and deeper at -600 ± 66 pA. The shallow current blockage 

is at similar levels of transport current blockage to that of naked DNA, thus corresponding to transport of DNA region 

on the complex. The deeper current blockages are associated with transport of MBD1x on the DNA through the 

nanopore. The ~3-fold increased current blockage by the MBP region is on the same order of magnitude as the current 

blockage found in previous studies as well.16 The transport duration of naked DNA and endMethDNA bound with 

MBD1x is shown in Figure 4f. The transport of the MBP region on the DNA took 0.138 ± 0.11 ms. This translates to  
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10% of the entire complex translocation over a 139 ms period. Comprehensively, the MoS2 nanopore can detect the 

methylation site more precisely than SiNx membrane. The schematic in figure 4g illustrates dsDNA and endMethDNA 

bound with MBD1x. Slowed translocation times were observed by varying the buffer concentration. 

 

Methylation site profiling shown in Figure 4h revealed that translocation events with the methylated DNA/MBD1x 

complex ended with the terminal protein instead of leading with it. It can be inferred from this finding that the 

positively charged MBD1x near the nanopore is always repelled by the positively applied bias voltage and will spin 

to the origin while the DNA region of the complex is being pulled into the nanopore. Consequently, all the 

endMethDNA/MBD1x transport into the pore occurred in a fixed orientation which included the DNA entering first 

and the protein complex lagging behind. From this, it can be assumed that the negatively charged DNA that was used 

for the study was attracted by the applied positive charge and pushed towards the nanopore ahead of the region where 

MBD1x was attached. This was confirmed through profiling of methylation location using the MoS2 nanopore. The 

occurrence of deeper current blockage was mainly observed at the end of the whole complex transport, as shown in 

figure 4h. The abscissa represents the length of the entire complex translocation, normalized and recalculated as 100%. 

The peak occurrence of deeper current blockage was obtained by fitting a Gaussian function to the occurrence 

histogram. The fitting value was 90.5 ± 3% which indicates the deeper current blockages mainly occur at the end of 

entire complex translocation. This result suggests that the position of methylation on dsDNA can be more precisely 

detected using nanopores in thin membranes. 

 

Conclusions 

 

We investigate the use of the MoS2 nanopore for dsDNA translocation and methylation detection experiments. 

Detection of methylcytosine bases has been reported previously with SiNx and graphene nanopore sensors, but MoS2 

presents several favorable and specific characteristics that could make it a more viable and robust option than the more 

commonly used membranes. These characteristics include the ability to produce a small nanopore on a thin membrane 

while retaining good signal-to-noise ratios and no need for surface treatment to reduce hydrophobic surface 

interactions as is necessary for graphene membranes. After determining that dsDNA translocation was possible 

through MoS2, we also showed that dsDNA translocation could be slowed by using asymmetric concentration of buffer 

solutions to provide higher spatial resolution. We demonstrated detection of single MBD1x proteins in a site-specific 

manner which could be used to distinguish the location of the methyl cytosine nucleotide base on the DNA sequence. 

We also hypothesized that the charge of the DNA strand coupled with the applied voltage allows one to control the 

orientation of the translocating DNA strand. 

 

Being able to detect aberrant methylation in a routine lab screening could help identify cancer signatures at various 

stages or progression. This could prove crucial regarding early intervention and therapy and ultimately lead to an 

increase in the rate of survival. Work remains to be accomplished in the control of translocation speeds, resolution of 

signature current blockades, and in profiling the location of attached MBPs. We hope that this work serves as a 

springboard for future MoS2 nanopore studies. 

 

Materials and Methods 

 

Supporting Substrate Fabrication 

 

Substrates consisting of stacked layers of Al2O3 and SiNx are fabricated on 300 ± 2 μm thick double-side polished 

<100> silicon wafers purchased from Silicon Quest International. Wafers are piranha cleaned (2:1 H2SO4/H2O2) for 

20 min before deposition SiNx. 300 nm of low-stress SiNx is deposited (STS Mesc PECVD system) using a mixed-

frequency recipe (high frequency, 6 s at 13.56 MHz, platen power of 20 W; low frequency, 2s at 380 kHz, platen 

power of 60 W) with precursors SiH4 and NH3 at flow rates of 40 and 55 sccm, respectively, at a platen temperature 

of 300 °C. Subsequently, 20 nm of Al2O3 was deposited via ALD (Cambridge Nanotech) at a platen temperature of 

250 °C using tetramethyl-aluminum (TMA) and water vapor precursor. Optical lithography is used to define square 

windows of 80 µm on the back side of the wafer with the aid of plasma resistant Megaposit SPR-220 photoresist and 

an ABM Flood Exposure (model 60) tool. Then the wafer is placed inside an STS Pegasus ICP (inductively coupled 

plasma) DRIE and 80 µm square membranes are suspended using a Bosch etching process; 500 to 600 nm holes are 

then drilled in these membranes using a focused ion beam (FIB) (FEI DB235) operated at a beam current of 30 pA. 
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Chemical Vapor Deposition of Molybdenum Disulfide 

 

The detailed process of growing and characterizing of the MoS2 film using Chemical Vapor Deposition on SiO2 and 

Sapphire substrates are described in previous studies. 49-50  

 

Nanopore Fabrication, Chemicals, and Materials. 

 

Single nanopores of various diameters were drilled in the free standing MoS2 membrane on the supporting substrate 

with condensed electron beam using a JEOL 2010F field-emission gun TEM operated at 200kV in CBD mode with 

focused electron probe of diameter at 1.6 nm. All custom DNA fragments were synthesized, purified and purchased 

form Integrated DNA Technologies (Coralville, IA). The electrical nanopore measurements were performed in 0.6 M, 

1 M, and 0.6 M / 3 M KCl at pH 7.2 containing 10 mM Tris and 1 mM ethylenediaminetetraacetic acid (EDTA) for 

naked DNA fragments and DNA fragments bound with MBD1x. The methylated DNA/MBD1x complexes were 

prepared and incubated for 15 min at room temperature (25 ± 2°C) immediately before the nanopore experiments. 

 

MBD1x Protein Purification 

 

MBD1x purification was described in a previous report. 16 

 

Nanopore Electrical Measurements 

 

The nanopore chip was assembled in a custom-built chamber. Ethanol was then filled in reservoirs of both chambers 

initially to clean the device and promote wetting. Subsequently, the ethanol was flushed out with deionized water and 

the reservoirs are filled with desired experimental salt solutions. Ag/AgCl electrodes are immersed in reservoirs for 

ionic current measurements. All nanopore experiments are performed with Axopatch 200B and Digidata 1440A at 

room temperature (25 ± 2°C). Axopatch 200B was used for applying biased voltages and measuring currents through 

a nanopore, and data were recorded using a Digidata 1440A acquisition system. Data were low-pass filtered at 10 kHz 

using the built in 8-pole Bessel filter, and recorded at 100 kHz sampling rates. Clampex 10.2 was used for instrumental 

control, and Clampfit 10.2 was used for data analysis. All nanopore experiments are performed on an antivibration 

table in a dark double Faraday cage. 

 

MD Simulations 

 

The dsDNA was created by the X3DNA program 51. The atomic structure of the terminal-methylated DNA 

molecule/MBD1 complex was constructed by linking dsDNA fragments to the ends of DNA molecule in the reported 

crystal structure of the mDNA-MBD1 complex (pdb code:1IG4) 52 

 

All molecular dynamics simulations were carried out using NAMD 53, with protein and DNA described by the 

CHARMM22 force field with CMAP corrections and the CHMARMM27 force field, respectively 54. Water was 

modeled with the TIP3P water model 55. An integration time step of 2 s was adopted. Long-range Coulomb interactions 

were computed using the particle-mesh Ewald (PME) method 56. The system was energy minimized for 5000 steps, 

then heated to 300 K. A 2 ns equilibration under NPT ensemble conditions was performed to equilibrate the system 

to a desired pressure of 1 atm, during which the temperature was maintained by applying Langevin dynamics and the 

pressure was maintained by a Nose-Hoover Langevin piston method 57. This equilibration step was followed by a 4 

ns equilibration under NVT ensemble condition. After the equilibration, an external electric field was applied along 

the z direction to drive the transport of biomolecules through MoS2 nanopores. 
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Figure 1 
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Figure 2. 
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Figure 3. 

 
 

  

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 

Nanoscale, published by Royal Society of Chemistry. Copyright restrictions may apply. doi: 10.1039/C7NR03092D 



14 

Figure 4. 

 
 

 

  

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 

Nanoscale, published by Royal Society of Chemistry. Copyright restrictions may apply. doi: 10.1039/C7NR03092D 



15 

Figure Captions 

 

Figure 1. a. Schematic illustrates the MoS2 nanopore structure. b. TEM image of typical 6 nm MoS2 nanopore. c. IV 

characteristic of MoS2 nanopores in KCl solution at pH 7.2 containing 10 mM Tris and 1 mM EDTA. d. TEM image 

shows that MoS2 layer covers entire FIB pore of 600nm diameter. e. HRTEM shows honeycomb-like MoS2 

membrane structure. (inlet shows zoomed-in image of yellow square). 

 

Figure 2. a. Data trace of 10 kbps dsDNA transport at 500 mV. b. Data trace of 10 kbps dsDNA transport at 700 mV. 

c. Data trace of 10 kbps dsDNA transport at 1000 mV. d. Scatter plotting of 10 kbps dsDNA transports in 6.5 nm 

MoS2 nanopore at 600mM KCl solution at pH 7.4 containing 10 mM Tris and 1 mM EDTA. e. Current blockade 

histogram. f. Transport duration histogram. g. Current blockades of DNA transports h. Transport durations of DNA 

transports. 

 

Figure 3. a. Sample events of 90 bps dsDNA transports at 50 mV biased voltage in 9 nm MoS2 nanopore. b. Sample 

events of 90 bps dsDNA transports at 80 mV biased voltage in 9 nm MoS2 nanopore. c. Sample events of 90bps 

dsDNA transports at 100 mV biased voltage in 9 nm MoS2 nanopore. d. Current blockage histogram in the function 

of biased voltages. e. Blocked current duration histogram in the function of biased voltages. f. Current blockade of 

transports. The values are obtained by fitting Gaussian function to the current blokdade histogram. g. Blocked current 

duration of transports. The values are obtained by fitting the exponential decay function to the blocked current duration 

histogram. h. Current trace of 90 bp dsDNA transport at 200 mV biased voltage in 9 nm MoS2 nanopore. Momentary 

transport duration of short DNA is beyond of detection limit of measurement device, consequently transports of 90 bp 

dsDNA were undetectible. i. Current trace of 90 bp methylated dsDNA-MBP transports at 200 mV biased voltage in 

9 nm MoS2 nanopore. j. Sample events of 90 bp methylated dsDNA-MBP transports at 200 mV in 9 nm MoS2 

nanopore. k. Still image of molecular dynamic simulation showing methylated dsDNA-MBP complex transport 

through MoS2 nanopore. l. Transports data comparison between dsDNA and methylated DNA-MBP. 

 

Figure 4. a. Sample transport events of naked DNA (top) and terminal-methDNA/MBD1x (bottom) in asymmetric 

solution. b. scatter plotting of transport events. Blue dots represent naked DNA transport and red dots represent the 

complex. c. Current blockade histogram of naked DNA (blue) and complex (red) transport. d. Transport duration 

histogram of naked DNA (blue) and complex (red) events. e. Box chart of current blockades. Current blockade of 

naked DNA is shown in block, DNA region of complex (shallow) is in blue, and DNA/ protein region (deeper) in 

green. f. Box chart of transport durations. Transport duration of naked DNA is shown in black, DNA region of complex 

(shallow) in blue, DNA/protein region (deeper) in red, and entire complex in green. g. Schematic shows scaled dsDNA 

and methDNA/MBD1x complex. h. Methylation site profiling shows that most complex transports end with terminal-

protein. It is hypothesized that negatively charged DNA enters the nanopore by applied positive voltage and transport 

ends with protein. 
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Supporting Information 

 

Supplementary Information Figure S1 

 

 
 

Figure S1. Detailed process of fabricating free-standing MoS2 membrane nanopore on the supporting substrate. a. 

Membranes consisting of stacked layers of SiNx and Al2O3 are fabricated on 300 ± 2 µm thick double-side polished 

<100> silicon wafers purchased from Silicon Quest international. Before deposition of stacked layers, wafers are 

piranha cleaned (2:1 H2SO4/H2O2) for 20 min on a 120 °C hotplate. 300 nm of low-stress SiNx is deposited using 

STS Mesc PECVD system on the silicon substrate at a mixed-frequency recipe (high frequency, 6 s at 13.56 Mhz, 

platen power of 20 W; and low frequency, 2 s at 380 kHz, platen power of 60W) with precursors SiH4 and NH3 at 

flow rates of 40 and 55 sccm, respectively, at a platen temperature of 300 °C. Subsequently 20 nm-thick Al2O3 was 

deposited at a paten temperature of 250 °C via ALD (Cambridge Nanotech) using tetramethyl-aluminum (TMA) and 

water vapor precursors. b. Optical lithography is used to define 80 µm square windows on the back side of the wafer 

with the aid of plasma resistant megaposit SPR-220 photoresist and an ABM Flood Exposure (Model 60) tool. The 

wafer is then placed inside an STS Pegasus ICP DRIC and 80 µm square membranes are suspended using a Bosch 

etching process. c. 500 to 600 nm holes are sculpted in these membranes using a focused ion beam (FIB, FEI DB235) 

operated at a beam current of 30 pA. a’. For MoS2 growth, the substrate is placed face-down over a crucible containing 
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~1 mg of MoO3 powder, and solid sulfur pieces are placed ~26 cm upstream. After evacuating the tube to <1 Torr, the 

tube is filled to 760 Torr with Ar. The Ar flow is then reduced to 30 sccm for the growth. Synthesis on SiO2 is done 

as in Ref. S1, whereas synthesis on sapphire was done in a similar manner as Ref. S2. b’. The MoS2 film is then 

removed from the furnace. c’. PMMA (A4 950K) is coated on the MoS2 film by using spin coater at 3000 rpm followed 

by baking at 200 °C for 10 min. After 15 min cooling down, second PMMA layer was coated using the same 

parameters. d’. PMMA coated MoS2 film on SiO2 or Sapphire substrate was then floated on the 1M KOH at 80 °C for 

1 hour till MoS2/PMMA stack delaminates. e’ PMMA coated MoS2 film is detached from the substrate. d. The 

detached PMMA/ MoS2 layers are transferred to supporting substrate after rinsing with DIH2O, and dried at room 

temperature for 2 hours. Subsequently, the substrate is placed on a hot plate at room temperature and ramp to 150 °C 

for 20 min. e. The PMMA layer was dissolved in acetone for 30 min, rinsed with IPA, washed with DIH2O. Then, the 

samples are heated in Ar/H2 atmosphere for 1.5 hours at 400 °C. f. A nanopore was drilled on the MoS2 membrane as 

described in Methods. 
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Supplementary Information Figure S2 

 
 

Figure S2. (a) and (b): AFM image and height profile of a subcontinuous MoS2 growth on sapphire showing the 

monolayer height of ~6 Å. (c) and (d): AFM image and height profile of a continuous growth on sapphire, showing 

small overgrowth regions with a 1L-2L height of ~6.5 Å. Also note the ridges in Fig. S2c, which are the terraces of 

the reconstructed sapphire surface, as in Ref. S2. 

  

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at 

Nanoscale, published by Royal Society of Chemistry. Copyright restrictions may apply. doi: 10.1039/C7NR03092D 



19 

Supplementary Information Figure S3 

 
 

Figure S3. Raman (left) and photoluminescence (right) data for as-grown 1L MoS2 on sapphire. In the Raman 

spectrum, the E’ and A1’ vibrational modes are near 381 and 401 cm-1, respectively. The PL spectrum has a peak near 

1.87 eV and FWHM of 53 meV. 

 

 

Supplementary Information Figure S4 

 
 

Figure S4. (a) and (b): AFM image and height profile of a continuous growth on SiO2. The measured step height here 

is ~20 Å due to the bare surface being made by scratching the MoS2 away with tweezers. 
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Supplementary Information Figure S5 

 
 

Figure S5. Raman (left) and photoluminescence (right) data for continuous MoS2 grown on SiO2. In the Raman 

spectrum, the E’ and A1’ vibrational modes are near 383.5 and 404.5 cm-1, respectively. The PL spectrum has a peak 

near 1.86 eV and FWHM of 66 meV. 

 

 

Supplementary Information Figure S6 
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Figure S6. Molecular dynamics simulation of dsDNA translocation through a 2.4 nm diameter MoS2 nanopore under 

different voltage biases. (a) Simulation system consisting of a monolayer MoS2 and a 30 bp long dsDNA strand 

embedded in a 1 M NaCl solution. (b-c) Recorded ionic current (red) and the center of mass positions of the DNA 

molecule (green circles) in the direction perpendicular to the MoS2 membrane when an transmembane voltage 500 

(b), 700 (c), 1000 (d) mV was applied to drive the dsDNA translocation through the pore.  

 

To explore the atomic-scale translocation dynamics of a dsDNA through MoS2 nanopore, we performed three 

independent molecular dynamics simulations on the system shown in Figure S6a under voltage biases of 500, 700, 

1000 mV, respectively. It is found that the recorded ionic current when the pore is occupied by DNA is evidently 

lower than the open pore current in all the simulations, showing successful detection of DNA translocation (Figure 

S6c-d), in agreement with our experimental observation.  

 

 

Supplementary Information Figure S7 

 
 

Figure S7. Molecular dynamics simulation of a DNA-MBD1 complex translocation through a 6 nm diameter MoS2 

nanopore under a 500 mV voltage bias. (a) Recorded ionic current (red) and the center of mass position of the MBD1 

protein (green triangles) during the translocation of the complex. (b) Snapshots of the MD trajectory at different time 

instants 
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We also performed molecular dynamics simulations to study on the atomic-scale the translocation process of a 

terminal-methDNA/MBD1 complex through a MoS2 nanopore, as shown in Figure S7. The recoded ionic current 

exhibits clearly three subsequent levels, ~16.7, ~15 and ~17 nA, induced by the occupation of the pore by DNA only, 

DNA plus MBD1 protein and nothing (i.e., open pore), respectively. This finding suggests detection of the MBD1 

protein and the associated methylation sites. 

 

 

Supplementary Information Figure S8 

 
 

Figure S8. Expected blocked current level and current blockage duration for translocation of 90 bp double-stranded 

DNA through 7.2 nm MoS2 nanopore at 200 mV. a. Blocked current at 200 mV was obtained by fitting first-order 

Polynomial to blocked current values at 50 mV, 80 mV, and 100 mV, and extended the fitting trend to 200 mV. b. 

Transport duration of 90 bp dsDNA at 200 mV was obtained by fitting Exponential decay function to transport duratin 

value at 50 mV, 80 mV, and 100 mV, and extended the fitting trend to 200 mV. 
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Supplementary Information Figure S9 

 
 

Figure S9. Enlargement of a MoS2 nanopore. The top figure shows the initial IV curve characteristic of a MoS2 

nanopore before appying 1000 mV. The middle figure shows the IV curve characteristic of the MoS2 nanopore after 

exposed at 1000 mV for multiple times. The bottom figure shows the difference of IV characteristic between before 

and after applying the biased voltage of 1000 mV. 
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