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ABSTRACT

Wireless sensor networks (WSNs) are event-based systems that rely on the col-

lective effort of several sensor nodes. When all nodes in an area sense an event and

transmit that data, it causes sudden traffic bursts, which are spatially-correlated and

lead to network congestion. Congestion can cause an increase in the amount of data

loss, energy consumption, delay data transmission, and hinder network performance.

To improve performance of event-driven applications, there arises a need for protocols

that can reduce congestion and energy consumption. Existing protocols for sensing

multiple events either handle congestion control or spatially-correlated contention,

but not both, which can degrade network performance in terms of packet delivery

ratio, latency, and energy consumption. Motivated primarily by the challenge to

improve the performance of event-driven applications, we propose an energy efficient

protocol to mitigate congestion that improves data delivery and reduces latency. This

protocol mitigates congestion by dispersing network traffic using a forwarder selection

mechanism that forces event reports from different nodes to disperse along different

paths to the base station. Our protocol also reduces spatially-related contention by

partitioning the sensors into different groups. All the sensors in a particular group

cover the region of interest together, and these groups are scheduled in such that only

one group is active to transmit the data at any given time. We implemented our

protocol using the NS2 simulator for evaluating its performance. Results show that

our protocol has significant improvement in the packet-delivery ratio, latency, and

energy savings.
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CHAPTER 1

INTRODUCTION

Rapid development in technology in wireless communications has motivated the devel-

opment of wireless sensor networks (WSNs). A WSN consists of autonomous sensors

that are distributed spatially to monitor physical or environmental conditions, such as

temperature, sound, vibration, pressure, motion, or pollutants, and to cooperatively

pass their data through the network to a main location [25]. A large number of sensor

nodes are deployed in the field of interest to sense and report the event information

to one or more main locations called base stations, and each sensor node is connected

to one or more nodes.

Typically, a sensor node consists of a microcontroller, transceiver, external mem-

ory, power source, and one or more sensors [26]. The controller performs tasks, pro-

cesses data, and controls the functionality of the other components. The transceiver

transmits and receives the information. The memory used is the on-chip memory of a

microcontroller and flash memory. Batteries are the main power source of any sensor

node and they consume power for sensing, communicating, and data processing. The

sensors measure the physical data of the parameter to be monitored. There can

be many sensors attached to a single node to monitor different kinds of physical

conditions.

These sensor networks can be used in applications such as military surveillance,
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environmental monitoring, industrial process monitoring, health care, and traffic

control. The behavior of a WSN is characterized by the type of application which

can be broadly classified into two types: event-driven applications and continuous-

monitoring applications. Continuous-monitoring applications require periodic re-

freshed data at the base station. This requires the sensor nodes to continuously trans-

mit the data periodically to the base station. Applications that monitor temperature

and road traffic near a busy junction are some examples of continuous-monitoring

applications. In event-driven applications, the sensor nodes transmit the information

only when they sense the relevant data. Fire detection and military surveillance

are examples of event-driven applications. As the nodes generate and transmit data

only when an event of interest occurs, the traffic load is unpredictable, resulting in

arbitrary traffic patterns. Hence, designing and analyzing traffic patterns and quality

of service for event-driven models are more challenging.

There are many other challenges involved with WSNs because of their limited

range, limited battery power, limited memory, and cost. Energy is the scarcest

resource of the sensor nodes and these nodes determine the network lifetime. Because

of this reason, the algorithms and the protocol designs should address issues like

robustness, fault tolerance, low latency, and lifetime maximization. There are two

kinds of traffic patterns in wireless sensor networks: the downstream traffic from the

sink to the sensor nodes and the upstream traffic from sensor nodes to the sink. In the

upstream traffic, once an event occurs in the WSN, a sudden surge of data traffic will

be triggered by all sensor nodes in the event area, which can easily lead to network

congestion. Network congestion occurs when a link or node carries so much data that

its quality of service deteriorates [37].

Congestion usually exists inside WSNs due to some built-in characteristics inside
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WSNs. First, in a multi-hop WSN, resources are limited. When a single event

occurs, it could be detected by multiple nodes and several such events may occur

simultaneously in the network. When all these nodes send the event reports at the

same time to the base station, it leads to severe congestion, collisions, and spatially-

correlated contention because of the limited resources. Second, sensors that detect

an important event usually increase the data-generation rate to accurately report

to the sink in time. For example, sensors used for temperature monitoring in forests

generate a large number of alert packets in a short time to sinks when a fire is detected.

Third, applications such as patient-health monitoring and image sensing require high

throughput and low delay, which can further worsen the congestion inside WSNs.

Therefore, congestion control is necessary and inevitable in a WSN [27].

Congestion can degrade the network performance and hinder the application

objective. It can lead to packet losses, which means loss of information, increased

packet delay, and severe energy consumption.

Several techniques such as rate control, queue management at the node level,

and prioritization of the packets have been proposed to control the congestion in a

WSN. However, when multiple events happen simultaneously, these techniques either

control congestion or reduce spatially-correlated contention but not both. Motivated

primarily by the challenge of applications that require a high packet delivery ratio and

energy constraint characteristics of WSN, we propose a network design that extends

the concept of grouping, which is energy efficient, while improving the packet-delivery

ratio.

By adapting the Delaunay triangulation technique from [20], we divide the net-

work into k mutually exclusive groups and introduce scheduling. We designed a

forwarder-selection mechanism that forces the event reports from different nodes to
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disperse along different paths leading to the desired destination instead of a single

path. Traffic dispersion makes it possible to alleviate the effects of bursty traffic

and to balance the network traffic load. This combination of grouping, scheduling,

and forwarder-selection mechanism helps to reduce spatially-correlated contention

and mitigate congestion with a significant improvement in energy efficiency. The

Delaunay triangulation and forwarder-selection mechanism are explained in Chapter

3.

1.1 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 describes related work.

Chapter 3 details the motivation and objective of the thesis and explains our protocol

design. Chapter 4 analyzes the performance evaluation of our protocol design. Finally,

we conclude in Chapter 5.
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CHAPTER 2

RELATED WORK

Unlike the traditional networks, WSNs differ in several aspects. There are many

challenges involved with WSNs because of their limited range, limited battery power,

limited memory, and cost. Energy is the scarcest resource of the sensor nodes and

these nodes determine the network lifetime. In event-driven applications, congestion

control and energy efficiency play a very important role in WSNs research. Many

protocols have been proposed to provide energy efficiency and congestion control in

WSNs. These protocols are broadly classified as:

1. Protocols that provide congestion control.

2. Protocols that provide energy efficiency.

2.1 Congestion Control

A lot of research has been done to detect and control congestion. Most of the

prior works of congestion-control mechanisms in WSNs are mainly embedded in

the end-to-end controls, such as CODA [1], ESRT [2] and [33]. Though there are

several advantages in end-to-end controls schemes, the need to propagate the onset of

congestion between end-systems makes the approach slow. In general, a hop-by-hop

control scheme [3, 5, 9, 12] reacts to congestion more quickly.
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Congestion Detection and Avoidance in Sensor Networks (CODA) [1] uses both a

hop-by-hop and an end-to-end congestion control scheme to react to the congestion by

simply dropping packets at the node preceding the congestion area and employing an

additive increase and multiplicative decrease (AIMD) scheme to control the generation

rate of a source. Thus, CODA partially minimizes the effects of congestion, and as a

result retransmissions still occur. Similar to CODA, Fusion [9] uses a static threshold

value for detecting the onset of congestion even though it is normally difficult to

determine a suitable threshold value that works in dynamic channel environments.

Both CODA and Fusion detect congestion using the current buffer occupancy. Nodes

then use a broadcast message to inform their neighboring nodes about the onset of

congestion. A problem that both of these protocols face is that this broadcast message

is not guaranteed to reach the sources because of the congestion.

To achieve event-to-sink reliability, event-to-sink reliable transport in WSNs (ESRT) [2]

has been proposed. ESRT seeks to achieve reliable event detection with minimum

energy expenditure and congestion control. It has been tailored for use in sensor

networks with adaptability to dynamic topology, collective identification, energy

conservation, and biased implementation at the sink. Reliability is measured by the

number of data packets received at the sink. To measure reliability, the concept of

observed event-level reliability and desired event-level reliability have been introduced.

Observed event reliability (ri) is the number of packets received in a decision interval

i at the sink. Desired event reliability R is the number of data packets required for

reliable event detection. If the observed event reliability is greater than the desired

reliability, the event is deemed to be reliably detected. Otherwise, appropriate actions

have to be taken to achieve this reliability. The reporting period of a sensor node

is defined as the number of packets sent out per unit of time by that node. ESRT
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configures the reporting frequency f such that the desired event-detection accuracy is

achieved with minimum expenditure. Five different characteristic regions have been

identified based on reporting frequency f, r, and R. The five states are (No Congestion,

Low Reliability), (No Congestion, High Reliability), (Congestion, High Reliability),

(Congestion, Low Reliability), and (Optimal Operating Region). The goal of ESRT

is to maintain operation in the Optimal Operating Region. The network can reside

in any one of these states. Depending on the current state (Si) of the network, ESRT

finds the updated reporting frequency (Fi + 1) and broadcasts it to all the source

nodes. If the observed event reliability is less than the desired reliability, ESRT

increases the reporting frequency of the nodes, otherwise if the observed reliability is

more than the desired level, the reporting frequency is decreased to avoid congestion

and reduce energy consumption. To detect the current state of the network, the sink

must be able to detect congestion in the network. The sensor nodes detect congestion

using the buffer sizes and set the congestion notification bit. Once the sink receives

a packet with this bit set, it knows that congestion will take place and will update

the reporting frequency accordingly. ESRT does not support end-to-end reliable data

delivery and it is impractical to vary the transmission rates of the nodes depending

on the applications.

Chen et al. proposed a light-weight opportunistic forwarding scheme (LWOF) [42]

to provide reliable data delivery for wireless sensor networks with an asynchronous

duty cycle. To exploit the non-deterministic characteristic of opportunistic forward-

ing, an energy-efficient MAC protocol was also proposed. LWOF scheme uses the

preamble in Low Power Listening MAC to dynamically select the forwarder during

data transmission, thus reducing the overhead of maintaining historical network

information or contention process. A preamble that lasts at least as long as the
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sleep period of the receiver is transmitted by the sender. The receiver node when

awake detects the preamble and stays awake to receive the data. The sequential

detection of preamble and busy tone signals help in reliably forwarding the data to a

unique downstream node dynamically. LWOF scheme uses two channels with lower

and higher data rates for transmitting the busy tone and sensor data respectively.

Although the proposed protocol achieves a higher packet-delivery ratio in the networks

without congestion, performance of the protocol under congested network scenarios

were not explained.

Congestion can also be detected by exploiting packet inter-arrival time and packet

service time [5] [34], packet inter-arrival rate and packet service rate [33], channel

busy time (CBT) [8] and packet service ratio [23]. Unlike CODA and Fusion, nodes

in protocols [5], [7], [23], [33] and [34] use implicit congestion notification to avoid

transmission of additional control messages and therefore help improve energy effi-

ciency.

The interference-aware fair rate control (IFRC) protocol [4] uses static queue

thresholds to determine the congestion level, whereas CODA exercises congestion

control by adjusting the out-going rate on each link based on the AIMD scheme. Con-

sequently, IFRC reduces the number of dropped packets by reducing the throughput.

IFRC supports fair bandwidth allocation among the flows. However, IFRC requires

nodes to collect rate information from their neighboring nodes, thus increasing pro-

cessing overhead and energy consumption. Available protocols [1, 4, 6, 9] do not

consider congestion due to fading channels in dynamic environments.

Apart from rate control, WSN protocols such as [10], [22], [23], [24], [33] and [34]

try to alleviate congestion and reduce the spatially-correlated contention by exploit-

ing available network resources to transiently accommodate the traffic surge. CC-
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MAC [13] relieves contention and improves performance by reducing the redundant

nodes. ECR-MAC [22] relieves contention by dispersing the paths the senders will

take. They propose a dynamic forwarder selection mechanism that relieves contention

by allowing senders to deploy independent routes that detour the congested network

area, and hence improve the network throughput. CADA [24] avoids the hotspot

by detouring the traffic on a path located at least two hops away from the original

intersecting traffic. However, there are many control messages involved in establishing

this path. In [33], when a node experiences congestion, its immediate child node splits

the real-time traffic on its alternate parent (route) in proportion to its weight factor

wi. In [10], a “bias” is inserted in each packet, which determines the curvature of the

path followed by the packet towards the destination. The bias is a measure of how

far the trajectory will deviate from the greedy route and also indicates the side of the

deviation. PCCP [34] maintains the load-balancing for all paths by employing the

rate-adjustment algorithm independently to calculate the rate for each path.

2.2 Energy Efficiency

Energy is the scarcest resource of WSNs. Due to the energy constraints, it is im-

portant to dynamically configure WSNs by using sleep/wakeup scheduling, thus

extending the network lifetime. Ammari and Das proposed two k-coverage protocols

using different scheduling approaches, self-scheduling driven k-coverage and triggered-

scheduling driven k-coverage [30]. However the complexity of the protocols adds

to overhead and energy consumption. In [20], the group-based technique involves

separating all sensors into K -mutually exclusive groups. The connectivity-based

partition approach [35] is a distributed iterative process. It starts from the initial
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partition where each node forms a unique group. CPA continuously merges two groups

into a larger one until further merging will break the constraints of the problem.

But here, the head node in each group is expected to maintain some additional

information, which means additional overhead. In [36], sensor nodes are divided

into clusters with at least K sensor nodes in each cluster. Then, the M nodes are

divided into groups of K nodes each and turned ON in a queue-like manner using

the queue-scheduling scheme. Here also the cluster head needs to perform additional

tasks, which adds overhead. If only a few nodes are active in an event area, it can

help reduce the spatially-correlated contention as well.

Power-Efficient Gathering in Sensor Information Systems (PEGASIS) [38] is the

protocol where only one node is chosen as a head node that sends the fused data to

the base station per round. PEGASIS protocol requires the formation of a chain,

which is achieved in two steps. During the chain-construction phase, the farthest

node from the base station is considered first and a greedy approach is followed to

construct the chain. During the data-gathering phase, a leader of each round is

selected randomly. Randomly selecting the head node also provides a benefit as it is

more likely for nodes to die at random locations, thus providing a robust network.

When a node dies, the chain is reconstructed by bypassing the dead node. After the

leader is selected, it passes the token to initiate the data-gathering process. Passing

the token also requires energy consumption but the cost of passing the token is very

small because the token size is very small. In PEGASIS, the transmitting distance

reduces for the sensor nodes. Since each node gets selected once, energy dissipation

is also less compared to LEACH. Experimental results show that PEGASIS provides

improvement by a factor of two more than LEACH.

To reduce energy consumption without affecting the connectivity of the network,
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an energy-efficient coordination algorithm for topology maintenance in ad-hoc wireless

networks (SPAN) [39] has been proposed. SPAN is based on the observation that

a dense sensor network can work with only a part of its nodes being active. It

is possible to prolong the network lifetime while maintaining its functionality by

carefully choosing the active nodes. SPAN is a distributed, randomized algorithm

where nodes make local decisions on whether to sleep or to join a forwarding backbone

as a coordinator. SPAN elects coordinators from all nodes in the network. SPAN

coordinators stay awake continuously and perform multi-hop packet routing within

the network while other nodes remain active in power-saving mode and check if they

should wakeup and become a coordinator. SPAN ensures that sufficient numbers

of coordinators are chosen so that every node falls under the range of at least one

coordinator. The coordinators keep changing to ensure that all nodes share the

task of providing connectivity equally. It tries to minimize the number of nodes

acting as coordinators to reduce the latency and increase the network lifetime. Also

it elects coordinators using only local information in a decentralized manner. A

non-coordinator node becomes a coordinator if it discovers, using only information

gathered from local-broadcast messages, that two of its neighbors cannot reach each

other either directly or via one or two coordinators. The intent to become a coor-

dinator is announced with a HELLO message. Span resolves contention by delaying

a coordinator announcement with a randomized back-off delay. In order to ensure

fairness, after a node has been a coordinator for some time, it withdraws if every

pair of neighbor nodes can reach each other via their neighbors or other coordinators.

This gives a fair chance to all nodes that are eligible for being coordinators.

Geographical Adaptive Fidelity (GAF) [40] is introduced to reduce energy con-

sumption in ad-hoc wireless networks. GAF identifies equivalent nodes for routing
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based on location information and turns off unnecessary nodes. In wireless networks,

a lot of energy is spent in idle listening. Idle energy is almost equal to transmission

energy or reception energy. Powering off the radio conserves energy both in over

hearing due to data transfer and in idle state energy dissipation when no traffic exists.

Hence, nodes that power down their radios are explored. It is also observed that when

there is significant redundancy in an ad-hoc network, multiple paths exist between

nodes. Hence, a few nodes can be powered off while still maintaining connectivity.

Routing Fidelity is defined as uninterrupted connectivity between communicating

nodes. Routing Fidelity can be maintained as long as any intermediate node is awake.

Each GAF node uses location information to associate itself with a virtual grid, where

all nodes in a particular grid square are equivalent with respect to forwarding packets.

Nodes in the same grid will then coordinate who will sleep and how long. In GAF,

nodes are in one of these three states: sleeping, discovery, or active. Initially nodes

start out in state discovery. In this state, nodes turn their radio on and exchange

discovery messages to find other nodes in the same grid. When a node enters the

discovery state, it sets a timer, and when the time expires, it moves to the active

state. When a node enters the active state, it sets a timer and moves to the discovery

state when the timer expires. A node in the discovery or active state changes state

to sleeping when it determines that some other equivalent node can handle routing.

GAF employs a load balancing strategy so that all nodes remain up and running

together for as long as possible. This ensures that all nodes are given equal chance

and no one node is penalized more than the others. After a node remains in the active

state for some time, it changes its state to discovery to give a chance to other nodes

in the grid to become active. When the active node changes its state to discovery,

it is more likely that it has less remaining energy than its neighbor nodes. In the
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ideal scenario, there is one active node at any point of time in one grid. When the

nodes move, there is every chance that we might have a grid with no active nodes

at all. To avoid this problem, each node estimates the time it expects to leave the

grid and includes this information in the discovery message. When other nodes enter

the sleeping state, they decide how long to stay in the sleeping state based on this

information.

A Sparse Topology and Energy Management (STEM) was proposed in [41]. The

main objective of this scheme is to reduce energy consumption in a monitoring state

to minimum while ensuring satisfactory latency for transitioning to the transfer state.

The majority of time, the network is only sensing its environment. This is referred

to as the monitoring state. Once an event occurs, data has to be forwarded to

the sink and the network transitions to the transfer state. STEM reduces the energy

consumption of the nodes by putting them into a sleep state. In the monitoring state,

instead of full sleep, a node goes into low power listen mode. However, in return for

this energy reduction, a certain amount of latency is introduced to wake up the nodes.

Nodes in this design have three states: sleep, active, or listening. The node that wants

to communicate (initiator node) polls the node, which it has to wake up (target node)

continuously. As soon as the target node hears the poll, the link between the nodes is

activated. Once the link is activated, data transfer takes place using a MAC protocol.

To wake up a node, a wake up message is sent to the node in the form of a beacon

packet (STEM-B meaning beacon based) or a simple tone (STEM-T meaning tone

based) resulting in two variants of STEM. The topology management in STEM is

specifically geared toward those scenarios where the network spends most of its time

waiting for events to happen without forwarding traffic. Simulation results show

a considerable improvement over GAF in both scenarios. Though this scheme has
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many advantages, it suffers from the energy consumption due to continuous polling

and requires extra radio on the sensor nodes.

The latency minimized energy efficient MAC protocol (LEEM) [43] is a hop ahead

reservation scheme that minimizes latency and increases energy efficiency. It does

this by reserving the channel of the next hop in advance. It is useful in time-critical

applications where sensed events are to be reported immediately to the sink to take

remedial or defensive actions. LEEM assists in sending the packets with minimum

delay by using dual frequency radio set up. Since the channel of the next hop is

reserved in advance, the intermediate nodes in the data path forward the packet as

soon as it is received. In an event-driven sensor network, the nodes spend a lot of

time sensing the event. In order to reduce this energy, the control channel radios are

kept in a low power sleep mode. The control channel radio is made active periodically

to check for any data transmissions and activate the data channel. In LEEM, nodes

are resynchronized every hour. The synchronization helps in making reservations and

reduces the delay. In a synchronized network, since each node knows the time at which

its next hop node is active, it need not send continuous wake-up signals. This results

in lower energy consumption. The reservation scheme in LEEM helps in eliminating

the set-up latency at the intermediate nodes. When the control channel radio of a

sensor node is in sleep mode and an event occurs, the sensor node waits for the next

hop node to become active. It then requests the next hop node to activate its data

channel radio by sending a request packet. The receiver agrees by sending back an

ACK. This procedure continues throughout the data path until the packet reaches the

data sink. Whenever the data transfer takes place, the receiver of the packet reserves

the channel for K hops ahead. If the value of K is one, it is a 1-hop reservation

scheme, otherwise it is an N -hop reservation scheme. When the current transmission
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gets completed at the receiver, the next hop channel becomes ready. Hence, the delay

in setting up the next channel is avoided except at the first hop. Although LEEM

shows a significant improvement over other protocols like STEM and PTW in terms

of energy consumption and latency, it is not applicable for applications that have a

continuous occurrence of events.

To address spatially-correlated contention, Zhou and Medidi proposed a distributed

topology control [31] to schedule node wake-up slots and design a MAC protocol

to benefit from this topology control for improving energy efficiency and reducing

latency. Energy consumption in an idle listening state is as much as the transmission

and reception energy. One way to save energy is to employ duty cycles. By employing

duty cycles only, a subset of nodes remain active at any point of time. The remaining

nodes turn off their radios and keep checking their eligibility to remain active peri-

odically. However, a lower duty cycle can require each node to spend a longer set-up

latency to wake up its forwarder, which increases the end-to-end delay. In order to

have low delay while having low duty cycles and high-energy efficiency, the following

sleep-based topology control was designed. To address spatially-correlated contention,

the topology is controlled such that each node has multiple potential forwarders.

Allowing each node to have multiple forwarders along with staggered scheduling not

only reduces congestion but also achieves shorter delay since it significantly reduces

the first hop set-up latency and eliminates the latencies in further hops.
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CHAPTER 3

ENERGY EFFICIENT CONGESTION MITIGATION

PROTOCOL

3.1 Motivation and Design Requirements

Wireless sensor networks (WSNs) can be widely used in medical, industrial, and

military surveillance applications. A wireless sensor network consists of nodes, from

a few to several hundreds or even thousands, where each node is connected to one or

several sensors. These sensor nodes are typically energy constrained. In a WSN,

data flows from both sensor nodes to sink (upstream) and sink to sensor nodes

(downstream). The prominent traffic pattern is from sensor nodes to sink in which the

sensor nodes forward the sensed data to the sink. In event-driven applications, sensor

nodes transmit information only when they sense relevant data. Nodes generate a

lot of data when simultaneous events occur, resulting in extra traffic, and it becomes

unpredictable, resulting in arbitrary traffic patterns. This unpredictable data gen-

erated can bring the message rates beyond the expected capacity of the network,

leading to congestion. Additionally, multiple nodes may sense the same event, lead-

ing to spatially-correlated contention, further increasing congestion. This degrades

the network performance by increasing collisions, delay, and energy consumption.

Congestion in wireless sensor networks not only causes loss of event reports that are
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being delivered to the base station but also lead to excessive energy consumption.

So improving network performance by reducing congestion and extending network

lifetime is usually the primary design objective in wireless sensor network protocols.

Many protocols either try to reduce congestion or spatially-correlated contention

but not both. An energy-efficient collision-free MAC protocol (TRAMA) is presented

in [14], which is based on a time-slotted structure. Each node determines its own time

slot using a distributed election scheme based on traffic requirements of every two-hop

neighbor. Although the protocol achieves a high delivery ratio with tolerable delay,

the performance of the protocol depends on the two-hop neighborhood information

in each node. Since this information is collected through signaling, in the case of

high-density sensor networks, the signaling cost increases significantly, resulting in

either incomplete neighbor information due to collisions or high energy consumption

due to signaling costs. Vuran and Akyildiz proposed a spatial correlation-based

collaborative MAC (CC-MAC) that relieves contention and improves performance by

reducing the redundant node reports [13]. However, no congestion-control technique

is considered in this work. Moreover, CC-MAC achieves a lower packet-delivery

ratio since it filters the redundant data injected into the network. Although energy

efficiency improves due to suppressed correlation neighbors, there is a huge amount

of data loss, which is not desirable. The complicated nature of the Iterative Node

Selection (INS) algorithm, which generates a correlation radius, may also limit the

application of the protocol. As the number of sensing events increase, especially if

the sensing conditions change with time, the overhead associated with computing

the correlation radius and distributing throughout the network increases. For large

networks, this overhead may become significant. Along with improving event report-

ing, if the protocols designed were not energy efficient, the lifetime of the network
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degrades, thus affecting the performance. The existing congestion reduction protocols

for event-driven applications are not scalable and do not ensure energy efficiency.

To fulfill these requirements, there is a strong need for a protocol that is energy

efficient, scalable, and reduces congestion as well as spatially-correlated contention

while reducing the cost of overhead.

In this thesis, we propose a protocol that reduces congestion and spatially-correlated

contention and improves network lifetime. The proposed protocol reduces spatially-

correlated contention and energy consumption by inducing less traffic into the net-

work. This can be achieved through dividing the network into groups and incorpo-

rating scheduling among these groups in such a way that, at any given time, only

one group is active to transmit the data. Scheduling ensures that nodes close to each

other do not send or receive data at the same time, thus decreasing spatially-correlated

contention. Furthermore, choosing only a subset of nodes to be active at any time in

data forwarding reduces the energy consumption, thus improving network lifetime.

To reduce congestion, we propose a forwarder selection mechanism that forces

a parent node to act as a forwarder for at most two child nodes. As it limits the

number of child nodes that can send the event reports to the same parent node, it

helps in reducing the collisions and mitigates the congestion. Also choosing a data

forwarder with the minimum hop distance from the sink reduces latency. In WSNs,

packet losses are due to congestion, spatially-correlated contention, collisions, link

failures, node failures, and resource constraints. In the following sections, we identify

the design challenges and provide solutions to the challenges using our protocol.

• High Network Traffic:

Usually sensors are densely positioned at random to provide coverage for the

geographical region. With more traffic in the network, and due to the event-
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driven sensor networks, several sensors detect and transmit data at the same

time, thereby causing congestion, spatially-correlated contention, and higher

energy consumption in the network. There is a need for protocols that reduce

the network traffic by choosing a subset of nodes required for the region to be

entirely covered and also the connectivity between nodes to be maintained.

• Node Failures:

In sensor networks, nodes can fail for many different reasons, such as obstacles,

hardware defects in the node, and harsh environmental conditions in which the

node operates. Also, a drop in energy levels or any other unforeseen event

causes node failures. If a node fails while transmitting/receiving a packet, all

the packets that are sent from or intended for that node will be dropped. In

order to achieve successful event detection and reporting, the protocols should

be designed in such a way that events are detected and reported. This will help

in reducing packet drops and increasing the quality of service of the network.

• Link Failures:

Apart from node failures, link failures can also cause packet losses in wireless

networks. Due to errors such as signal attenuation and noise interference,

packets are not transmitted successfully over two nodes. Attenuation refers

to any reduction in the strength of a signal and is caused by signal transmission

over long distances. As a result, packets will be corrupted by the time they

reach the receiver. Data loss could also occur when two nodes try to transmit

data simultaneously. When two nodes try to send data at the same time, they

may collide and packets from either of the nodes might get dropped. In order

to improve event reporting, the designed protocols should have the ability to
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avoid collisions in case of link failures.

• Congestion:

In a WSN, when a single event occurs, it could be detected by multiple nodes

and several such events may occur simultaneously in the network. When all

these nodes send the event reports at the same time to the base station, it could

lead to severe congestion. The network will have more traffic and it becomes

unpredictable, resulting in arbitrary traffic patterns. This unpredictable data

generated can bring the message rates beyond the expected capacity of the

network, leading to congestion. Also, as the medium around the sensor nodes

is congested, more packet transmissions result in collisions thereby dropping

the packets. The protocol design should provide a mechanism to handle the

network in congested scenarios.

• Packet Loss Recovery:

Packets get dropped due to congestion in the network, link failures, node

failures, and etc. Mechanisms like TCP/IP in wired networks provide efficient

packet-loss recovery. However, these mechanisms cannot be applied to wireless

sensor networks as a lot of energy is consumed due to retransmissions. As most

of the transmissions in WSNs are hop-by-hop, packet losses need to be handled

at the link level. This requires protocols that ensure improved packet delivery

at the base station for better event reporting.

• Energy Efficiency:

As the sensor networks are energy constrained, in order to extend the network

lifetime, it is very important to reduce energy consumed by the nodes. Energy

consumed due to transmission and reception of messages is very high. Also,
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due to large deployments of nodes in the sensor network, energy consumption

increases with a larger number of sensors sensing and reporting the events to

the base station. Energy consumption also increases due to redundancies in the

deployment of the sensor network. In designing an energy-efficient protocol,

this energy waste must be considered and reduced.

• Scalability:

As sensor networks contain a very large number of sensor nodes, networks should

be scalable enough to provide a high packet-delivery ratio. Protocols need to

be distributed in nature in order to reduce the overhead caused in the case of

very large networks.

Considering the above challenges, we propose a congestion-mitigation protocol

that provides event reporting with improved energy efficiency. In order to measure

the performance of the protocol, we chose the following standard metrics:

• Packet-Delivery Ratio:

It is the ratio of the total number of packets successfully delivered to the base

station to the total number of packets generated. This packet delivery ratio

shows the performance of the protocol and illustrates the level of successfully

delivered data to the destination.

• Energy Efficiency:

To identify the energy efficiency of the proposed protocol, the total energy

consumed in the network is calculated. The lower the energy consumption

value, the better the energy efficiency of the protocol.
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• Delay:

Average delay is measured to identify the latency in forwarding the packets

to the base station. Depending on the nature of applications in the sensor

networks, a delay in the network plays a crucial role.

3.2 Assumptions

For simplifying the explanation, we make the following assumptions for the proposed

protocol:

• The network is densely populated to report any event to the base station.

• All the nodes know their one-hop neighborhood node’s information (ID, hop-

distance) by local broadcast mechanisms.

• The network deployment does not have any physical holes and the outer bound-

ary is identified.

3.3 Congestion Mitigation

Before sensor nodes send any event reports to the base station, all sensor nodes

should participate in an initial setup in order to make themselves available for data

transmission and reception. The initial setup process consists of the following steps:

• Dividing the network into mutually exclusive groups

• Employing scheduling among groups

• Choosing a forwarder through the forwarder selection mechanism

• Establishing data paths with the base station.
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3.3.1 Grouping

In a WSN, sensors are deployed randomly in harsh environments. Sensor nodes are

energy constrained, and utilizing all the sensor nodes for sensing and communication

would deplete the network resources as more energy is consumed. In a given region

with over-provisioned sensors, nodes sense the event occurring at a location in the

region and report to the sink. Multiple nodes may sense the same event, leading to

spatially-correlated contention and causing packet drops. With all the sensor nodes

utilized for sensing and communication operations, more transmission and reception

of messages take place between sensor nodes, thereby reducing the energy levels in

sensors. Messages transmitted by sensor nodes simultaneously increase congestion in

the network, and packets are dropped, which reduces the quality of service provided

by the sensors in the region. Dividing the network into groups and scheduling these

groups reduces congestion and contention in the network, and also reduces the energy

consumption of the nodes.

We adapt the Delaunay triangulation technique from [20] to divide the network

into k-mutually exclusive groups. The Delaunay triangulation-based coverage tech-

nique locally optimizes the sensing radii in order to achieve (1) good global optimality

in energy consumption and energy-balancing, and (2) complete coverage for reliable

surveillance. This technique emphasizes simplicity and scalability and hence it can

be adapted for large-scale deployments. It extends the lifetime of the network by

balancing the energy throughout the network. It can be used with scheduling schemes

to further reduce the redundant coverage within each mutually exclusive set of sensor

nodes and hence contribute in reducing spatially-correlated contention.

Computational geometry is frequently used in WSN coverage-optimization. The
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most commonly used computational geometry approach are the Voronoi diagram

and Delaunay triangulation. They have been very influential in solving the coverage

problems of wireless sensor networks. The Voronoi diagram is partition of sites in

such a way that points inside a polygon are closer to the site inside the polygon than

any other sites, thus one of the vertices of the polygon is the farthest point of the

polygon to the site inside it. One of the properties of Voronoi diagrams is that the

adjacent polygons in a Voronoi diagram are equidistant from the edge dividing two

neighboring sites in the construct. Figure 3.1(a) shows an example construct of a

Voronoi diagram. Detailed explanation about Voronoi diagrams can be found in [44]

and [45].

Figure 3.1: Voronoi diagram and Delaunay triangulation of a random topology

Delaunay triangulation is another construct in computational geometry, which is

a dual of Voronoi diagram. It can be generated by joining the vertices of neighboring

sites of Voronoi diagrams that share a common edge between them. Delaunay
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triangulation of a set of P points in a 2D plane maximizes the smallest angle in

the triangle and no point in set P is inside the circumcircle of any triangle in the

triangulation. Figure 3.1(b) illustrates an example of a Delaunay triangulation of

a set of P points in a 2D plane. Delaunay triangulation of a set of points can be

produced in different methods like incremental, divide and conquer, sweepline, and flip

algorithms. Delaunay triangulations have a major influence in WSNs as neighborhood

information can be easily extracted by considering the neighboring sites and the

shortest euclidean distance between two nodes of the triangulation. Since WSNs

are energy constrained, it is necessary for the network to use local information to

perform Delaunay triangulation. In this thesis, Delaunay triangulation is performed

over the network using the one-hop or local neighborhood information [20] of each

sensor node. Each node having the one-hop information incrementally adds every

node, performs triangulation, and checks for the validity of the Delaunay properties.

Edges of the triangles are flipped to maintain the validity if the properties are not

satisfied. Delaunay triangulation and its properties are presented in [45].

3.3.2 One-Hop Approximation of Delaunay Triangulation

One-hop approximation of Delaunay triangulation is explained in detail in [20]. De-

launay triangulation (DT), the dual of the Voronoi diagram, has the following char-

acteristics:

• Fat triangles, in the sense that the minimum angle of any Delaunay triangle is

as large as possible.

• The Empty Circle Property, defined as a circle that runs through the vertices

of any triangle with no other vertex inside the circle.
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This algorithm is based on the centralized edge-flipping algorithm. In this al-

gorithm, each node maintains a list of its one-hop neighbors NeighborList. After an

arbitrary triangulation is constructed (Figure 3.2a), each node independently tests its

adjacent triangles to determine whether they all satisfy the Empty Circle Property.

If an adjacent triangle cannot satisfy the Empty Circle Property, the corresponding

edge is flipped. For example, in Figure 3.2b, △ABH is, at first, a non-Delaunay

triangle because point G lies inside of △ABH ’s circumcircle. Then, AH is flipped

to BG, and point A is deleted from H ’s NeighborList. The result is the formation

of the Delaunay triangle △BGH as shown in Figure 3.2c. In Figure 3.2d, △DEH is

identified as a non-Delaunay triangle and, similarly, to make the conversion, EH is

flipped to DF and point E is eliminated from H’ s NeighborList. The final result is

the creation of △DFH, with no other points located inside its circumcircle as shown

in Figure 3.2e. The edge-flipping process continues until H’ s adjacent triangles can

all be classified as Delaunay triangles.

The one-hop approximation of DT can be implemented easily on sensors with low

communication and computation overhead; however, with only one-hop information,

the resulting triangulation may differ from the traditional DT. Local approximation of

DT is equivalent to the traditional DT, provided that: (1) the area can be completely

covered by the maximum sensing radius; and (2) the sensors satisfy 2Rs ≤ Rx , where

Rs and Rx represent the maximum sensing radius and the maximum transmission

radius, respectively. Condition (1) is a basic requirement for any reliable surveillance

and condition (2) holds for most hardware. For example, MICA sensors have a sensing

range of 2-6m and a transmission range of 30m. Furthermore, Rx ≥ 2Rs is commonly

assumed to obtain connectivity with full coverage.
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(a) Initial triangulation (b) △ABH is not a Delaunay triangle

(c) Flip AH to BG (d) △DEH is not a Delaunay triangle

(e) Flip EH to DF
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Once the network is deployed, each node retrieves its list of one-hop neighbors.

Using this local information, every node performs a Delaunay triangulation over the

one-hop neighbor nodes. Each node incrementally adds every node from its list of

one-hop neighbors, performs triangulation, and checks for the validity of the Delaunay

properties. As described in the above algorithm, edges of the triangles are flipped to

maintain the validity if the properties are not satisfied. The first set of nodes that

come as a result after implementing this algorithm are listed as group 1 nodes. These

nodes are turned off and the algorithm is implemented again on the rest of the nodes.

This process is repeated until we obtain three mutually exclusive sets of nodes and

these are listed as group 1, group 2, and group 3. Figure 3.3 shows an example of

dividing the network into groups.

(a) Without Groups (b) With Groups

Figure 3.3: Dividing network into groups

Topology-control techniques and scheduling mechanisms reduce the energy con-

sumed by the sensor network as well as spatially-correlated contention. In the pro-

posed protocol, dividing the network into groups and choosing only a group of nodes
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at a given time for data forwarding reduces the energy consumed by the network. It

also reduces spatially-correlated contention as close by nodes belonging to different

groups do not send data at the same time. However, if nodes belonging to same group

are close by, this contention still exists. In the below section, we discuss more about

our scheduling mechanism.

3.3.3 Scheduling

The main purpose in designing a scheduling mechanism is to allocate time slots

depending on the topology and the node packet-generation rates. A good schedule

not only avoids collisions by avoiding the interferers of every receiver node in each

time slot but also minimizes the number of time slots, hence the latency.

More than one node can transmit at the same time slot if their receivers are in

non-conflicting parts of the network. There are two types of conflicts, namely, primary

conflict and secondary conflict [21]. Primary conflict occurs when two nodes transmit

the data to a node at the same time. The forwarder selection mechanism (explained

in 3.3.4) and IEEE 802.11 RTS/CTS mechanism can handle this problem. Secondary

conflict occurs when a node, an intended receiver of a particular transmission, is also

within the transmission range of another transmission intended for other nodes. This

conflict is also implicitly taken care by the IEEE 802.11 RTS/CTS mechanism.

In scheduling, all the nodes that belong to the same group have the same time slot

for sending or receiving data. The scheduling consists of repeating fixed length slots of

time X in which nodes of the same group participate in data transmissions/receptions.

This group of nodes will be in sleep mode for time 2X as the other two groups of nodes

use these time slots for data forwarding. These consecutive time slots are referred as

Gi-slot (i=1,2,3 ), S1-slot, and S2-slot (where Gi, S1, and S2 denote group, sleep-1,
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and sleep-2, respectively). It is necessary for nodes of different groups to coordinate

their schedules so that a group time slot does not coincide with the other two group

time slots. The coordination is performed as follows:

Figure 3.4: Schedules of different groups in CoMiT

• Once the network is divided into groups, the base station broadcasts a Gi-slot

message.

• All the group 1 nodes that receive this message mark its time slot as a G1-slot

and further relay this message to nodes that are away from the base station.

• Group 2 and group 3 nodes that receive the Gi-slot message will mark their

time slot as S1-slot and further relay this message.

• In the next hop, group 1 nodes will make their slot as S1-slot, group 2 nodes as

G2-slot, and group 3 nodes as S2-slot.
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• Subsequently, each node in the network follows this Gi-S1-S2 schedule. Fig-

ure 3.4 demonstrates the coordinated schedule of three groups (group 1, group

2, and group 3).

(a) Group 1 in transmit/receive mode (b) Group 2 in transmit/receive mode

(c) Group 3 in transmit/receive mode

Figure 3.5: Different groups cover the network independently

Figure 3.4 shows that group 1, group 2, and group 3 nodes go to data transmis-

sion/reception mode sequentially. Figure 3.5 shows an example of how the network is

divided into different groups. Each group works independently and provides coverage.
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3.3.4 Forwarder-Selection Mechanism

Once scheduling is completed, the next step is to form a data path for all the nodes

within a group. As the network is divided into groups, each group will follow this

procedure independently. Each node has to select a forwarder for sending its data.

We try to reduce the number of nodes choosing a node as a forwarder based on Child

count and Hop count, which are discussed below. The following are the steps involved

for a node in choosing its forwarder.

Algorithm 1 Algorithm for Forwarder-Selection Mechanism: Functionality at each
node
1: Let ChildCount be the number of nodes for which a node is acting as a forwarder.
2: Let HopCount be the number of hops away from the base station.
3: while Node 6= LeafNode do

4: Broadcast FORWARDER-REQ-MESG to all one hop neighbors
5: end while

6: if SourceAddress = BaseStation then

7: Forwarder ← BaseStation

8: HopCount ← HopCount + 1
9: else

10: Check for total number of FORWARDER-REQ-MESGs received.
11: if total < 2 then

12: Forwarder ← N

13: Reply to node N with a FORWARDER-REPLY-MESG
14: For node N :
15: ChildCount ← ChildCount + 1
16: Broadcast the updated ChildCount to all its children.
17: end if

18: else

19: Sort the potential forwarders according to minimum HopCount

20: Select a node N with minimum ChildCount

21: Forwarder ← N

22: Reply to node N with a FORWARDER-REPLY-MESG
23: For node N :
24: ChildCount ← ChildCount + 1
25: Broadcast the updated ChildCount to all its children.
26: end if
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Each node maintains two variables: Child count - The number of nodes for which

it is acting as a forwarder and Hop count - The number of hops away from the base

station. A node receives FORWARDER-REQ-MESG from its one-hop neighbors and

stores this information. The forwarder selection mechanism is initiated by the base

station. The base station broadcasts a FORWARDER-REQ-MESG message. All the

child nodes that receive this message will set the base station as their forwarder and

will also set their Hop count as one. These child nodes will include their Hop count

and further relay this message to nodes that are away from the base station. This

continues until the message reaches the leaf nodes. If a node receives FORWARDER-

REQ-MESG from only one node n, it sets n as its forwarder. It replies to n with

a FORWARDER-REPLY-MESG saying that it has chosen n as its forwarder. Node

n increments its Child count to one and relays the updated Child count to all of its

children. If a node receives multiple FORWARDER-REQ-MESGs, first it will select

only those nodes with minimum hop distance. Then, among those nodes, it will select

a node n with minimum Child count. If two or more nodes have the same Child count,

it will choose a node among those nodes randomly as its forwarder and reply with a

FORWARDER-REPLY-MESG. This process is repeated until each node in the group

has at least one forwarder node.
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(a) Basestation initiates FORWARDER-REQ-

MESG

(b) D selects A as its forwarder

(c) E receives multiple FORWARDER-REQ-

MESG’s

(d) E chooses B as its forwarder

(e) F and G receive multiple FORWARDER-REQ-

MESG’s

(f) F chooses A, G chooses C as their forwarders
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(g) Final data paths

Figure 3.5: Forwarder-Selection Mechanism

To better illustrate the forwarder selection mechanism, consider the Figure 3.5.

We will explain the forwarder-selection mechanism using group 3 nodes from Fig-

ure 3.5(c) as an example. Node BS represents the base station. Nodes A, B, C, D, E,

F, G, H, I, and J form group 3 nodes. The two variables in a small rectangle above

each node represent Hop count and Child count, respectively.

To form the data path, the base station initiates and broadcasts a FORWARDER-

REQ-MESG. Nodes A, B, and C, which receive this message will store and relay this

message further away from the base station until it reaches the leaf nodes H, I, J.

Figure 3.5(a) shows FORWARDER-REQ-MESGs propagating until the leaf nodes,

where arrows indicate the direction messages, are sent. To prevent collisions amongst

these broadcasts, a node will randomly chose a time to broadcast the packet within

a reasonable time frame. In order to restrict the broadcast messages from going in a

loop, each node broadcasts these messages only three times. This is to make sure that

even if some of the broadcast packets are dropped as a result of collisions another

broadcast message would possibly make it to the receiving node. After a certain
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period of time, nodes start to configure their final forwarder nodes.

Nodes A, B, and C set BS as their forwarder and also update their Hop count

as one. As Node D received a FORWARDER-REQ-MESG from node A only, it

chooses A as its forwarder and it replies to A with a FORWARDER-REPLY-MESG

(Figure 3.5(b)). Node A updates its Child count to one and relays the message to all

of its one-hop neighbors.

As seen in Figure 3.5(c), Node E has received multiple FORWARDER-REQ-

MESGs from D, A, and B. It discards the request from D as D ’s Hop count is

greater than A and B, and chooses B as its forwarder as B has s lower Child count

than A (Figure 3.5(d)). Note that if A and B have the same Child count, a node will

be chosen randomly. For example, node F in Figure 3.5(f) chooses A as its forwarder.

Node E replies to B and the process is repeated until every node in the group has at

least one forwarder. The final data paths are shown in Figure 3.5(g).
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CHAPTER 4

PERFORMANCE EVALUATION

To evaluate the performance, the proposed protocol (CoMiT) is implemented in

the NS2 simulator [28]. Extensive experiments were conducted in order to test the

performance of the grouping-based approach. We compared the performance of our

protocol with existing protocols such as CC-MAC [13] and TRAMA [14] because

they handle spatially-correlated contention. First, we provide a comparison of our

approach with the previous approaches in [13] and [14] in terms of packet delivery

ratio, average latency, and energy consumption. Second, we compare our approach

to the one without the support of grouping and the forwarder-selection mechanism

in terms of standard metrics, such as packet-delivery ratio, average latency and

energy consumption. Additionally, we tried to observe the overall performance under

different network densities. These evaluations prove that CoMiT is scalable and works

in a realistic environment.

4.1 Simulation Setup

The simulations were run with the simulation parameters mentioned in Table 4.1.

For data packets, Constant Bit Rate CBR traffic is generated. To evaluate the

performance and scalability under a congested scenario, network density is varied

from 100 to 300 nodes with 15 source nodes for a varied packet interval rate from
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5KB/s to 0.5KB/s with a packet size of 512 bytes to load the network with heavy

traffic. In all the experiments, each data point taken is an average of 20 independent

runs.

Table 4.1: Simulation parameters for protocol evaluation

Parameters Value
Area 1000m x 1000m

Total number of nodes 100 to 300
Sources 15

Transmission range 250m
Data packet size 512 bytes

Packet interval rate 0.1(5KB/s) to 1(0.5KB/s)
Transmit power 0.01488W
Receive power 0.01250W

Idle power 0.01236W
Sleep power 0.000016W

4.2 Comparison with CC-MAC and TRAMA

Table 4.2: Simulation parameters for protocol comparison

Parameters Value
Area 500m x 500m

Total number of nodes 50
Sources 16

Transmission range 100m
Data packet size 128 bytes

Packet interval rate 0.5 (0.0625KB/s)
Transmit power 24.75mW
Receive power 13.5mW

Idle power 13.5mW
Sleep power 15µW

The simulations were run with the simulation parameters of CC-MAC [13] and

TRAMA [14] and are mentioned in Table 4.2. All the nodes are randomly deployed
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in an area of a 500m x 500m sensor field. Each packet has a fixed size of 128 bytes.

We assume that one of the nodes is a sink and we select 16 source nodes randomly.

Each source node reports its event information to the sink. CC-MAC investigates

the effect of the traffic load by varying the reporting period of the sensor nodes.

The reporting period determines the period each node creates packets about the

event information. We also vary the reporting period of the sensor nodes in order

to compare our protocol with CC-MAC and TRAMA. For all the experiments, data

are collected from an average of 20 independent runs, keeping the base station in the

center.
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Figure 4.1: Packet-Delivery Ratio v/s Reporting Period

Figure 4.1 shows the performance comparison of our protocol in terms of packet-

delivery ratio. CC-MAC has a packet-delivery ratio of 70%, while TRAMA achieves

a packet-delivery ratio between 40% and 80%. CoMiT outperforms CC-MAC and

TRAMA for high traffic load. Note that the packet-delivery ratio is insensitive to

reporting time in the case of CoMiT and CC-MAC. It depends on the number of
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Figure 4.2: Average Delay v/s Reporting Period

nodes trying to access the medium. As CoMiT prevents spatially-correlated con-

tention through grouping and scheduling, and disperses traffic through the forwarder

selection mechanism, the packet-delivery ratio is significantly higher. CC-MAC has

a high packet drop rate because all the nodes with event information contend for

the medium for the first time in First Contention Phase to become a representative

node for that region. If there are many nodes with event information, this leads to a

greater potential for packets to be dropped. TRAMA has a varying packet-delivery

ratio according to the traffic load. The scheduling approach of the protocol reduces

collisions but as the load increases, the packet-delivery ratio decreases since the

packets cannot be accommodated in the transmission slots.

Figure 4.2 shows the average delay achieved by each protocol. Delay performance

of the three protocols is relatively constant with variable reporting time. CoMiT

achieves the lowest delay of 10ms because the traffic is dispersed through the nodes

that have minimal hop distances. CC-MAC has a delay of 50ms because of the initial
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Figure 4.3: Energy Consumption v/s Reporting Period

delay that occurs in the First Contention Phase. TRAMA has a delay of 10s, which

is due to the complex schedule-based medium accessed scheme.

CoMiT provides significant energy savings without compromising latency when

compared to CC-MAC and TRAMA. Figure 4.3 shows the comparison of the three

protocols in terms of energy consumption. With the help of grouping and scheduling,

spatially-correlated contention is decreased, and as a result CoMiT achieves 84% less

energy consumption compared to CC-MAC and 95% compared to TRAMA. CC-MAC

has more energy consumption because it has to select representative nodes more

frequently and as a result there is an increase in the number of collisions.

In our protocol, grouping the nodes helped in reducing spatially-correlated con-

tention. Our protocol is consistent in providing a high packet-delivery ratio irre-

spective of the variable reporting time. By having a forwarder-selection mechanism

that reduces packet drops, our protocol design makes it tolerant to highly congested

network scenarios, thereby increasing the packet-delivery ratio.
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4.3 CoMiT Protocol Evaluation

To evaluate the performance of our protocol with grouping, for base-line comparison,

we compare our protocol in the case of not having grouping. We assess our protocol

for packet-delivery ratio, average delay, and energy consumption, and also evaluate

scalability in terms of traffic load.

Partitioning the network into many groups may be energy efficient but then

delay can be a trade off due to the scheduling of all the nodes. In the same way,

partitioning a network into less groups may give less delay, but the packet-delivery

ratio might decrease. After thorough experimentation, we decided that partitioning

the network into three groups may improve overall protocol performance in terms of

packet-delivery ratio, energy efficiency, and delay.

4.3.1 Comparison without Grouping
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Figure 4.4 shows that during high traffic load our protocol with grouping outper-

forms our protocol without grouping. This is because of the reduction in collisions due

to the scheduling of groups. Our forwarder-selection mechanism assists in reducing

congestion by dispersing traffic through alternate paths, hence improving packet

delivery. Note that even with the increase in network density, there is not much

change in the packet-delivery ratio when we employ grouping. However, without

grouping, the network becomes highly unstable and the packet-delivery ratio falls

during high traffic loads. This shows that our protocol is scalable in terms of network

density and provides a high packet-delivery ratio.
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In Figure 4.5, the average delay of our protocol with grouping is lower than

the delay incurred by our protocol without grouping. As our forwarder-selection

mechanism assists in forwarding the packets through the shortest path based on hop

count, the delay is lowered. However, we observe that with an increase in network
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density as the number of hops increase, there is a slight increase in delay. This delay

is significantly less when compared to our protocol without grouping.

Figure 4.6 shows that our protocol with grouping has more energy savings when

compared to our protocol without grouping. With an increase in the network density,

the energy consumption slightly increases as the number of nodes that act as for-

warders increase. Our protocol with 300 nodes achieves 67% less energy consumption

when compared to our protocol without grouping. These graphs show that the

grouping-based approach with scheduling is energy efficient because of the decrease

in spatially-correlated contention and collisions.
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CHAPTER 5

CONCLUSION

Wireless sensor networks are used for monitoring purposes in various fields. As many

sensors detect the same event, or when multiple events happen at the same time,

sensor nodes forward the data to other nodes, which causes high traffic load and

degrades the network performance by increasing collisions, congestion, delay, and en-

ergy consumption. Several techniques such as data aggregation, queue management,

prioritizing packets, and etc. are used in some applications to reduce the congestion

in the network. However, these techniques fail to address the problems caused due to

spatially-correlated contention, such as loss of event reports that are being delivered

to the base station and also excessive energy consumption. Hence, there arises a

need for a protocol that mitigates congestion and also handles spatially-correlated

contention. Also, as sensor nodes are energy constrained, energy efficiency is one of

the primary concerns in designing protocols for these networks.

To reduce the collisions caused due to spatially-correlated contention, we de-

veloped a protocol in which we divide network into groups and employ scheduling

among these groups. Each group works independently and each node in the group

chooses its forwarder through a forwarder selection mechanism technique, thereby

reducing collisions. For upstream traffic, several protocols have been proposed to

alleviate the problem of spatially-correlated contention; [13] and [14] are some of
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the protocols that address this problem. However, in these protocols, scalability in

terms of network density and traffic load was not addressed due to the complexity of

their protocols. Unlike the proposed protocols, by adapting the grouping mechanism

and a forwarder-selection mechanism that restricts the number of nodes acting as a

forwarder to at most two, our protocol mitigates the congestion with improved packet

delivery while maintaining energy efficiency and scalability.

Our simulation results show that this technique has a very good improvement in

energy efficiency and an excellent packet-delivery ratio with very little delay even

in congested scenarios. However, our scheduling structure requires tight synchro-

nization among different groups. In general, tight synchronization would affect the

performance of the network.

In the future, we would like to extend the grouping-based mechanism and imple-

ment internal scheduling to reduce spatially-correlated contention within the same

group. This way network performance will be improved in terms of data delivery and

energy efficiency.
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