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Abstract. Determining which microstates generated by a thermodynamic simulation are
representative of the ensemble for which sampling is desired is a ubiquitous, underspecified
problem. Artificial neural networks are one type of machine learning algorithm that can provide
a reproducible way to apply pattern recognition heuristics to underspecified problems. Here
we use the open-source TensorFlow machine learning library and apply it to the problem
of identifying which hypothetical observation sequences from a computer simulation are
“equilibrated” and which are not. We generate training populations and test populations of
observation sequences with embedded linear and exponential correlations. We train a two-
neuron artificial network to distinguish the correlated and uncorrelated sequences. We find that
this simple network is good enough for > 98% accuracy in identifying exponentially-decaying
energy trajectories from molecular simulations.

1. Introduction
Computer simulations that model physical systems in equilibrium are tools that have been
essential to understanding an enormous variety of phenomena ranging from liquid argon[1], the
self-assembly of colloids[2], criticality in spin glasses[3, 4], lipid self-assembly[5], DNA-origami[6],
protein folding[7, 8], and the segregation of neighborhoods[9]. For the modeling of material
systems, Metropolis Monte Carlo (MC)[10] and molecular dynamics (MD)[11] are the two most
popular tools for sampling equilibrium ensembles of microstates. Both techniques generate
sequences of microstates and the main cost of performing an MD or MC simulation is waiting
for this sequence to converge to one that is representative of the thermodynamic ensemble at
equilibrium, and then sampling enough microstates to perform ensemble averages with high
precision. Sampling the equilibrium distribution of microstates at a particular thermodynamic
state point is challenging because both MD and MC techniques are inefficient at overcoming free
energy barriers that separate local minima in the multidimensional configurational landscape[12].
Consequently, the observables for a simulation (e.g. potential energy, order parameters) may
appear to converge about a stable average for “long” times before relaxing to another stable
average associated with lower free energy (Fig. 1). Every researcher performing MD or MC
simulations has encountered this equilibration problem when asking themselves “Have I run my
simulation for long enough?”

There are two correct answers to this question that are both unsatisfying. The first answer is
“No.” It is unsatisfying to know that the only way to be sure that the sampled microstates are
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Figure 1. An exponential decay to a stable average is a frequently observed trend in
thermodynamic simulations. It is difficult to decide where the exponential decay ends, and
where the “equilibrated” region begins. Different heuristics could justify equilibrium sampling
beginning anywhere in the shaded grey region.

representative of the free energy minimum is to perform a longer simulation that does not relax
to a more stable distribution. That is, only in the limit of an infinitely long simulation can one
really be sure that is has been run for long enough. The second answer is “Yes, when there are
enough measurements to give a sufficiently precise answer.” This answer is unsatisfying because
it raises a new question “How shall I quantify when there are enough measurements?” and
because it ignores the problem of whether the global free energy minimum has been sampled.

Recent advances in sampling schemes and computational hardware help to ameliorate, but
not solve, the problem of generating infinitely many microstates. For MD simulations, the
application of transition state theory[13] and histogram reweighting[14] has informed acceleration
schemes that better sample rough energy landscapes. In MC simulations, enhanced sampling
with Wang-Landau algorithms[3], cluster moves[15], and population annealing[16] are among the
techniques used to extract more information per microstate. For both MD and MC simulations,
accelerated sampling has been enabled with graphics processing units (GPUs) that facilitate
single instruction-multiple data (SIMD) parallelization[17, 18].

Here we work towards addressing the second question “How shall I quantify when there are
enough measurements.” In principle, answering this question can be addressed by performing
autocorrelation analysis on the system observables. In practice, measuring the autocorrelation
time of system observables relies upon heuristics for what data to ignore or include. Even when
the global free energy minimum is achieved after beginning with an initial random guess, which
is a best-case scenario, the observed system energy decays exponentially from the initial guess to
the correct average. In this case the problem becomes identifying the first microstate u∗ at time
step t∗ after which the sequence of microstates ut>t∗ represents the equilibrium distribution,
using the distribution of observables such as system energy Ut as a proxy for the distribution
of microstates. In order to be reproducible, the process of identifying u∗ should be well-defined
so that the same identification algorithm can be applied to all of the simulation trajectories
generated for a scientific study, and to compare trajectories between studies. The strategy we
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use here to construct a well-defined heuristic for identifying u∗ is to train an artificial neural
network for automating the decision of whether a sequence of observables is representative of an
equilibrium distribution or not.

2. Methods
2.1. Measuring equilibration
The N microstates sampled during MC and MD simulations represent observations of the
underlying, unknown equilibrium distribution. Averages computed from these independent
observations should converge to a normal distribution, according to the central limit theorem.
Therefore the three key metrics used to determine equilibration are the average 〈U〉 = 1

N

∑N
i=1 Ui,

standard deviation σU =
√

1
N

∑N
i=1(Ui − 〈U〉)2, and decorrelation time δt0 of a sequence of

measurements. The autocorrelation function aU (δt) describes how correlated a sequence of
measurements is with itself over a measurement lag δt (steps in the case of MC, time in the
case of MD), and the decorrelation time δt0 where aU (δt0) = 0 describes how long one must
wait, on average, for two measurements from the sequence Ut to be decorrelated (independent)
of each other. The ubiquity of fast numerical libraries for most programming languages
makes computational implementations of the autocorrelation function relatively straightforward
through the use of fast Fourier transforms:

aU (δt) =
IFT[FT[Ut − 〈U〉]FT[Ut − 〈U〉]∗]

Nσ2
U

(1)

where FT[A] is the discrete Fourier transform of arbitrary sequence A, IFT[A] is the
corresponding inverse Fourier transform, and FT[A]∗ is the complex conjugate of the Fourier
transform of A. In python, this can be accomplished in a few lines of code:

import numpy

FT = numpy.fft.rfft #discrete Fourier transform on real input

IFT = numpy.fft.irfft #inverse discrete Fourier transform on real input

def autocorr1D(array):

ft = FT(array-numpy.average(array))

acorr = IFT(ft*numpy.conjugate(ft))/(len(array)*numpy.var(array))

return acorr[0:len(acorr)//2]

where only the first half of the autocorrelation array is returned because of its symmetry
with the second half. The above normalization by the variance σ2

U and sample size N sets
aU (0) = 1, which indicates the fact that every measurement is perfectly correlated with itself
(lag δt = 0). Common heuristics for determining δt0 from aU (δt) include finding the smallest δt
where aU (δt) < 0 (this avoids having to interpolate between values of aU (δt) to find the precise
zero), or finding the fist δt within some tolerance of 0.

Using 〈U〉, σ2
U , and δt0, the process of measuring equilibration can be thought of as finding the

largest subset of the sequence Ut that will give “enough” independent samples N/δt0, specified
by the researcher. Herein lies the challenge of specifying a well-defined heuristic, because it can
depend on what one considers to be “enough”, the frequency with which Ut is written out by
a simulation engine, and the relaxation kinetics for the system being studied, and the details
of the scheme used to advance from Ui to Ui+1. An example of one heuristic is to split Ut

into subsets of size n, measuring 〈U〉, σ2
U , and δt0 for each subset to determine if they are

significantly different (e.g. with the student’s t-test). The final equilibrated ensemble in this
case is determined by concatenating the subsets moving backwards in time until one is found to
be significantly different.
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2.2. Machine Learning
Another way to think about the problem of measuring equilibrium is to frame it as a pattern
recognition problem, for which machine learning algorithms are well-suited[19]. A recent
application of deep neural networks to pattern recognition in the board game go represents
a breakthrough in computational go strategy[20]. Neural networks trained to recognize “good”
moves were used to simplify the search space of Monte Carlo tree estimates of move quality[21] to
beat over fifty professional go players in 2016 and early 2017. In the field of molecular simulation,
machine learning techniques have been applied to identify assembly pathways in colloidal
systems[2, 22], optimizing coarse-graining strategies[23], structural analysis[24], and design
rules for organic photovoltaic ingredients[25]. Here we investigate the automated evaluation
of equilibrated simulation trajectories using a single artificial neural network.

An artificial neural network is described by a set of “neurons” ni and “connections” ci,j
between them. Each neuron “fires”, generating an output signal that depends on the sum of its
input connections, and the output signals can be used as input to more neurons or interpreted
as decisions for pattern recognition problems. Artificial neural networks can be “trained” by
determining the connection weights that minimize the error for a pattern recognition problem.

Here we specify a single “layer” of a neural network with two neurons. The first neuron is the
“equilibrated” neuron and should fire when its input connections correspond to signal from an
equilibrated sequence of observations. The second neuron is the “not equilibrated” neuron and
should fire when its input connections correspond to signal from a non-equilibrated sequence of
observations. Each neuron has one input connection for each observation and only one output
connection. We can therefore specify this neural network as a matrix multiplication problem:

[
w1,1 w1,2 · · · w1,N

w2,1 w2,2 · · · w2,N

]
·

⎡
⎢⎢⎢⎣

U1

U2
...

UN

⎤
⎥⎥⎥⎦ +

[
b1
b2

]
=

[
n1

n2

]
(2)

where the weights wi,j and biases bi,j are scalars that will be determined through a training
process. The weights w1,1···N correspond to the connection weights into the first neuron and
w2,1···N for the second neuron. After being trained, the artificial neural net defined by wi,j and
bi can be used to determine if a sequence of N observations is equilibrated by using U1···N as
input to Eqn. 2, resulting elements of a decision vector n1 and n2. During training we impose
constraints to ensure n1 + n2 = 1, so the values returned by the artificial neural net can be
interpreted as the certainty with which it thinks a data set is equilibrated or not.

2.3. Training the Neural Net
To determine the wi,j and bi that most accurately distinguish equilibrated from non-equilibrated
observation sequences we generate a set of Nt training sequences with equal numbers of
equilibrated and non-equilibrated samples. The equilibrated samples are generated using the
Mersenne Twister to produce pseudorandom numbers normally distributed about 0. Two types
of non-equilibrated samples are generated; linear and exponentials. The linear non-equilibrated
samples are generated with slopes varying from -0.1 to -1.1 and with the same type of normally
distributed noise about the net slope. The exponential non-equilibrated samples add exp(−τx)
to the equilibrated case, for 1.5 ≤ τ ≤ 3. Sample python code for generating these populations
in included below:

import numpy as np

def eq(n=512):

return np.random.randn(n)
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def neq_linear(n=512,min_slope=0.1):

slope = -(np.random.rand()+min_slope)

return np.arange(n)*slope/n+np.random.randn(n)

def neq_exp(n=512):

e = np.exp(-3*(np.random.rand()+1.)*np.arange(n)/2./n)

return e+np.random.randn(n)

%Generate training data with both types of non-equilibrium functions

def training_data(n_samples=2000,size=512):

plots = eq(size)

labels = np.array([1.0,0.0])

for i in range(n_samples//2-1):

plots = np.vstack((plots,eq(size)))

labels = np.vstack((labels,np.array([1.0,0.0])))

for i in range(n_samples//2):

func = neq_linear

if i%2==0:

func = neq_exp

plots = np.vstack((plots,func(size)))

labels = np.vstack((labels,np.array([0.0,1.0])))

return plots, labels

Before training the neural net on these sample observable sequences, we normalize them
by subtracting out the sequence’s average and dividing by its standard deviation. This
normalization helps to ensure the neural net is trained to recognize relative changes in sequence
for sequences of arbitrary magnitude. Each data set is produced with 64, 128, 256, or 512 x-values
on the interval [0, 1). The exponential decay constants and linear slopes used here are justified
by being representative of simulation data and impossible for the authors to distinguish by eye
(Fig. 2). Autocorrelation analysis of the equilibrated data sets gives δt0 = 1 (neighboring samples
are perfectly decorrelated, as expected), while the linear (slope m = −0.1) and exponential
(decay time τ = 3) nonequilibrated samples have δt0 = 3 ± 1. Here we train the neural
net and charachterize the degree to which an it can distinguish the differences between these
representative sequences.

We perform experiments with training populations of Nt ∈ {1600, 3200, 8000}, and generate
independent test populations that are 1

4 the size of the training population. We employ
the TensorFlow python package for machine learning to facilitate training and testing[26].
TensorFlow can also take advantage of installed GPUs to accelerate its internal routines.
Explaining the framework and syntactical details of TensorFlow is beyond the scope of this
work, and can be found in online tutorials, including www.tensorflow.org. The following 18
lines of python use TensorFlow to define the network inputs and outputs as in Eqn. 2, the
objective function that is minimized during training, perform the training, perform testing, and
then returns the degree of accuracy ([0, 1]) with which the trained network correctly predicted
the test data:

import tensorflow as tf

def single(train_plots, train_labels,test_plots,test_labelsn=512,rounds=2000):

x = tf.placeholder(tf.float32,[None,n])

W = tf.Variable(tf.zeros([n,2]))

b = tf.Variable(tf.zeros([2]))

y = tf.matmul(x,W)+b #Eqn. 2

y_ = tf.placeholder(tf.float32,[None,2])
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Figure 2. Normally-distributed observations (black) and normally-distributed observations
with exp(−3x/512) added (red). The artificial neural network tested here can distinguish these
data sets over 96% of the time.

obj = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)

cross_entropy = tf.reduce_mean(err)

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

sess = tf.Session()

init = tf.global_variables_initializer()

sess.run(init)

for _ in range(rounds): #do the training

sess.run(train_step, feed_dict={x:train_plots,y_:train_labels})

correct = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct,tf.float32))

return sess.run(accuracy,feed_dict={x:test_plots,y_:test_labels})

Here we investigate how information quality in the form of sample size N , number of training
samples Nt, number of training rounds r for a single layer artificial neural net influences is
predictive accuracy A for sample equilibrated and non-equilibrated observation sequences.

3. Results
Table 1 summarizes the predictive accuracy of the neural network as a function of information
quality, for the training case where linear and exponential non-equilibrated data sets are
included in equal parts, and where the non-equilibrated data has randomly generated slopes
and decay rates, respectively. As is expected, predictive accuracy increases with the size of
the input sequence N and the number of training samples Nt. The number of training rounds
(1000,2000,4000) is found to weakly influence accuracy. To better understand which observation
sequences this neural net is best suited to distinguish, we restrict the types of non-equilibrium
sequences are included in the training and testing sets and perform additional experiments. In
small experiments we use N = 256, Nt = 1600, r = 1000, and for large experiments we use
N = 512, Nt = 8000, r = 2000. The small experiments take less than thirty seconds on an
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Table 1. Prediction accuracy when randomly sloped linear and randomly decaying exponential
plots are included in the training and test population samples.

N Nt r A

64 1600 2000 .79
128 1600 2000 .82
256 1600 2000 .84
512 3200 4000 .86
512 3200 1000 .88
512 1600 2000 .89
512 3200 2000 .90
512 8000 1000 .91

NVIDIA GeForce GT 750M GPU, while the large experiments take up to three minutes. We
distinguish the accuracies that correspond to these tests with As and Al respectively.

In the case of only linear sequences with constant slope m = −0.1, we find the network is
unable to reliably distinguish these from equilibrated data (As = .566 and Al = .599). If the
slope of the linear sequences is increased to m = −.2 we find the network does relatively better
(As = .664 and Al = .716), suggesting that the network can detect steeper slopes more easily.
When the slope of the linear sequences is uniformly chosen on [0.2, 2.2) we find the network does
even better (As = .862 and Al = .912).

We find the network is more effective at distinguishing randomized exponentially decaying
observations than equilibrium observations, with As = .968 and Al = .996 for exp(−τx) and
τ = −3. When τ is uniformly chosen on [1.5, 3), we find the network is approximately as
predictive as in the constant τ case, with As = .968 and Al = .990.

4. Conclusions
Artificial neural networks are a promising advance for automating the identification of
“equilibrated” measurements from thermodynamic simulations. A few minutes of training
time on a laptop GPU is sufficient to train a two-neuron artificial network for identifying
an exponential decay hidden in normally-distributed data more than 96% of the time. As
this is the simplest possible artificial neural net that can be applied to the equilibrium-or-
not decision problem, this suggest that neural networks with multiple layers of neurons can
be applied to this problem with greater efficacy. The high accuracy of identifying random
sequences with exponential decay is encouraging, because these sequences are characteristic
of relaxations to equilibrium in thermodynamic simulations. However, our artificial neural
network was not able to reliably distinguish random sequences with a small, constant slope
embedded within them. Improvements to the two-neuron network studied here are needed for
more robust pattern recognition. Future work applying multilayered artificial neural networks
to automatically identify the subset of observations from a sequence that best represent
equilibration are warranted, and seem accessible given the successes of deep (thousands of
layers) networks in more computationally demanding pattern recognition problems. Open source
machine learning libraries including TensorFlow provide a way to apply pattern recognition to
problems in computer simulation, making these future studies more accessible, or even routine.
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