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ABSTRACT

Inverse problems are typically ill-posed or ill-conditioned and require regulariza-

tion. Tikhonov regularization is a popular approach and it requires an additional pa-

rameter called the regularization parameter that has to be estimated. The χ2 method

introduced by Mead in [8] uses the χ2 distribution of the Tikhonov functional for linear

inverse problems to estimate the regularization parameter. However, for nonlinear in-

verse problems the distribution of the Tikhonov functional is not known. In this thesis,

we extend the χ2 method to nonlinear problems through the use of Gauss Newton

iterations and also with Levenberg Marquardt iterations. We derive approximate χ2

distributions for the quadratic functionals that arise in Gauss Newton and Levenberg

Marquardt iterations. The approach is illustrated on two ill-posed nonlinear inverse

problems: a nonlinear cross-well tomography problem and a subsurface electrical

conductivity estimation problem. We numerically test the validity of assumptions

in this approach by demonstrating that the theoretical χ2 distributions agree closely

with actual distributions. The nonlinear χ2 method is implemented in two algorithms,

based on Gauss Newton and the Levenberg Marquardt methods, that dynamically

estimate the regularization parameter using χ2 tests. We compare parameter esti-

mates from the nonlinear χ2 method with estimates found using Occams inversion

and the discrepancy principle on the cross-well tomography problem and on the

subsurface electrical conductivity estimation problem. The χ2 method is shown to

provide similar parameter estimates to estimates found using the discrepancy principle

and is computationally less expensive. In addition, the χ2 method provided much

better parameter estimates than Occams Inversion.
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CHAPTER 1

INTRODUCTION

1.1 Inverse Problems

If you have ever driven a car, watched the weather channel, had a CAT scan or

MRI then it is likely that your life has benefited in some way from the solution

of inverse problems. Solving an inverse problem is the process of recovering some

hidden information such as a set of parameters from indirect noisy measurements.

For example, geoscientists use inverse theory to determine some information about

the structure of the earth, such as possible oil deposits, from measurements taken at

the surface of the earth [1]. Inverse theory is widely used in many applied sciences

such as image processing, medical imaging, weather forecasting, climate modeling,

and astrophysics [1, 4, 6, 7], to name a few.

1.1.1 Formulation of the Problem

Most scientific study of a physical system can be represented with the following

components: a minimal set of parameters that completely describes the system,

a mathematical model, and some observations. Let F : Rm → Rn represent the

mathematical model that is referred to as the forward problem, x ∈ Rm represent the

parameters we are trying to estimate, and d ∈ Rn represent our data. Then we have

the following:
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d = F (x) + ε (1.1)

where ε represents noise in the data and is an unknown random variable. F can be

an analytical equation, an algorithm, or even a “black box” software with inputs and

outputs. Often the parameters we are trying to recover are actually a discretized

function and F is a discretization of some continuous operator. Determining the

model itself is also a type of inverse problem. However, in many practical cases the

mathematical model is known and the term “inverse problem” typically refers to the

process of determining a set of parameters from a set of data.

In an ideal universe, perhaps the universe of introductory algebra textbooks, the

model parameters could be found using:

x = F−1(d− ε). (1.2)

In practice the inverse of F is not known or it may not exist. Even if the inverse of

F is known, it is likely that it is very sensitive to noise in the data. This noise ε, or

‘error’ as it will be called from now on, generally comes from three main sources:

• Measurement error. No matter what the process or what is being measured,

there is going to be some error that is a result of the measurement.

• Modelling error. Tractable mathematical models almost always involve simplifi-

cation and idealized assumptions and thus do not completely model the physical

system.

• Computation error. Even if the model exactly describes the physical system,

the model is computed with finite precision.
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Due to the elusive nature of F−1 and the unavoidable error in the data, x is almost

always unknowable and we must be satisfied with an estimate x̂ of x. A common way

to estimate x is to use the following equation:

x̂ = arg min
x
‖d− F (x)‖22. (1.3)

Not surprisingly, this type of solution is called the least squares solution and is

discussed in more detail in Chapter 2. However, in many applications, finding the

estimate from (1.3) is an ill-posed problem and so the solution of (1.3) will not always

provide useful answers.

1.2 Ill-Posed Problems

An ill-posed problem is defined as a problem that is not well-posed. In general, there

are three criteria for classifying a math problem as well-posed. A problem is said to

be well-posed [12] if:

• the problem has a solution,

• the solution is unique,

• the solution depends continuously on the data.

While the first criterion is not usually an issue, the second and third criterion can

plague inverse problems. In addition, even if a problem is well-posed mathematically,

these criteria must also hold true with respect to the computational precision of a

computer. For example, even if there is a solution for the continuous version of (1.3),

there might be a range of equivalent solutions at finite precision. Similarly, even if
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(1.3) depends continuously on the data, in order to obtain a useful solution it must also

be computationally stable with respect to small perturbations of the data. A problem

that is not stable with respect to small perturbations is termed ill-conditioned [12]

and the degree of instability is quantified with a large condition number. Likewise,

a problem that is stable with respect to small perturbations has a small condition

number and is termed a well-conditioned problem. So being ill-conditioned is one

way an inverse problem can fail to be well-posed.

Figure 1.1 compares a well-posed linear least squares problem to an ill-posed

problem. The functional plotted on the left is from the well-posed problem and

has a nice well-defined minimum. The functional plotted on the right is from the

ill-posed problem and does not have such a well-defined minimum. In fact, there is

a entire range of values for which the functional is a minimum. Even if (1.3) is an

Figure 1.1: Contours of ‖d−F (x)‖22 for two linear inverse problems. Left: Well-posed
problem. Right: Ill-posed problem.

ill-posed problem, this does not necessarily mean that a good estimate of x is not

possible. In this case, to estimate x it is necessary to change the ill-posed problem

into a well-posed problem by adding some additional information. To obtain a useful
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estimate, it is desirable to change the problem just enough to make it well-posed.

However, determining how much the problem needs to be regularized is not trivial

and this is what this thesis will cover: a method for determining the amount of

regularization for nonlinear inverse problems.
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CHAPTER 2

LEAST SQUARES

Least squares is a straightforward, computationally inexpensive method that is widely

used to solve inverse problems [15]. Even though regularization is the focus of this

thesis, we begin with a discussion of unregularized least squares to establish the

framework and notation needed for later chapters. In addition, we will explain and

exploit some nice statistical properties of this method in this chapter.

The unregularized least squares estimate x̂ is given as:

J (x) = ‖d− F (x)‖22

x̂ = arg min
x
J (x).

(2.1)

In a purely mathematical sense, the arg min above should be arg inf . However, since

all real problems are solved in the computational realm and the numbers accessible

to the computer are a finite subset of R, it is valid to use min instead of inf . This

convention will be used throughout the rest of the paper.

2.1 Ordinary Least Squares (OLS)

If F is a linear function, then it can be represented as a matrix A ∈ Rn×m so (2.1)

becomes
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J (x) = ‖d− Ax‖22

x̂ = arg min
x
J (x).

(2.2)

This is a quadratic functional and the minimum can be found directly by setting:

∇J = −1

2
AT (d− Ax) = 0. (2.3)

Solving for x gives the ordinary least squares estimate:

x̂ = (ATA)−1ATd. (2.4)

If (ATA) is invertible and the problem is well-conditioned, then this is a straightfor-

ward way to estimate x. In addition, if we assume that the error ε in the problem

from (1.1) is a random variable with a mean of zero, then x̂ is an unbiased estimate

of x since the expected value of x̂ is equal to x, i.e.

E(x̂) = E((ATA)−1ATd)

= (ATA)−1ATE(d)

= (ATA)−1ATE(Ax+ ε)

= (ATA)−1ATAx

= x.

(2.5)

2.2 Nonlinear Least Squares

The least squares estimate is not as simple for nonlinear problems. The minimum

cannot be solved for analytically as in (2.4) so some type of iterative method must
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be used. Finding the solution to:

x̂ = arg min
x
J (x) (2.6)

falls under a whole field of mathematics called optimization. There are many different

methods that can be used to solve this nonlinear unconstrained optimization problem

including: genetic algorithms, stochastic algorithms, particle swarm optimization

algorithms, quantum optimization algorithms (need a quantum computer), pattern

search algorithms, direct search methods, steepest descent algorithms, and conjugate

gradient algorithm. However, if the function is well-behaved (i.e. continuous and

twice differential in the domain), then Newton’s method style algorithms are among

the fastest and most efficient, and can even offer quadratic convergence [2, 13].

If we are given a function f : Rn → Rn that is Fréchet differentiable and a starting

point that is sufficiently close to the root then Newton’s Method estimates the roots

of f(x) by iterating

xk+1 = xk + ∆xk

∆xk = −∇f−1(xk)f(xk)

(2.7)

until some criterion of convergence is reached, assuming that the Jacobian of f(x) is

invertible at each xk. Here ∇f−1(xk) represents the inverse of the Jacobian matrix.

Applying this to (2.6), if J (x) is locally convex, then a local minimum can be found

using Newton’s method to find:

∇J (x) = 0. (2.8)

In this case, the Newton iteration becomes:
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xk+1 = xk + ∆xk

∆xk = −∇2J −1(xk)∇J (xk)

(2.9)

where ∇2J (x) is the Hessian of J . However, this classical Newton algorithm is not

robust and it has been shown that it can even diverge in some cases [13]. Also,

it has several other problems in that the Hessian of J can be difficult to obtain

computationally and might not be positive definite at some points. To overcome

some of these limitations, there are many modifications of Newton’s method. For

example, in the modified Newton method, the step length is scaled at each iteration

with a positive scalar ρ. Then the step becomes: ∆x = −ρ∇2J −1∇J and a line

search is used at each iteration to find the best ρ [13]. Alternatively, Quasi-Newton

methods use an approximation for the Hessian, which is updated at each iteration in

a way that ensures that it is positive definite and invertible. Restricted-step methods

modify the Hessian by H = ∇2J + λ2I, where λ is chosen to ensure that the H is

invertible and to ensure the step ∆xk leads to a reduction in J (x) [13].

2.2.1 Gauss-Newton Method and Levenberg-Marquardt

The Gauss-Newton method is an adaptation of Newton’s method, which exploits the

structure of least squares problems. This method has the benefit that it doesn’t

require the calculation or storage of the Hessian, which can be computationally

expensive. The Gauss-Newton method is the basis for much of the theory developed

later in this thesis and so is considered here in more detail.
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The Gauss-Newton step is given as:

∆xk = −
(
JT
k Jk

)−1
JT
k (d− F (xk)) (2.10)

where Jk is the Jacobian of F at xk. This is derived from Newton’s method as follows:

The first and second Fréchet derivatives of J are given as:

∇J (x) = 2JT
k (d− F (x)) (2.11)

∇2J (x) = 2(JT
k Jk +Q(x)) (2.12)

where Q(x) =
m∑
i=1

∇2Fi(x)[d−F (x)]i and ∇2Fi(x) is the Hessian of the ith component

of F (x). Ignoring Q(x) from ∇2J in the Newton iteration gives (2.10). So the

Gauss-Newton method approximates ∇2J (x) with just the first-order part JT
k Jk. If

necessary, the Jacobian can be calculated with finite differences without affecting

the performance of the method [2]. The Gauss-Newton method, when it converges,

can be more efficient than the full Newton method. It also can ultimately achieve a

quadratic rate of convergence [2]. In addition, it usually converges faster and is more

efficient than the Quasi-Newton method [2],[13]. However, it is based on the fact

that ‖JT
k Jk‖ � ‖Q(x)‖, which is true for small residual problems and is not a good

approximation when the largest eigenvalue of JTJk is comparable to ||d − F (xk)||22

[2].

Levenberg-Marquardt

The Gauss-Newton step (2.10) can fail to reduce J (x) if JT
k Jk is close to singular

or if JT
k Jk is a poor approximation of the Hessian of J . The Levenberg-Marquardt
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(LM) algorithm [13] is a modification of the Gauss-Newton method that allows for

singular or ill-conditioned matrices JTJ and takes smaller, safer steps by introducing

a parameter λk and a diagonal matrix D with positive diagonal elements:

∆xk = −(JT
k Jk + λD)−1JT

k (d− F (xk)) (2.13)

where D is a diagonal matrix with positive diagonal elements. For simplicity, D = I is

often used and in this case ∆xk is an interpolation between the steepest descent step

and the Gauss-Newton step. Alternatively, a typical choice for D is a matrix with

diagonal elements equal to those of JTJ . Note that ∆x = −M−1∇J is guaranteed

to be a descent direction as long as M is positive definite [2].

The Levenberg-Marquardt parameter λk is chosen so that J (xk+1) < J (xk). If

λk is too small, then ∆xk might not lead to a reduction in the value of J . If λk

is too large, then the algorithm will take small steps and its progress will be slow.

A common way to determine λk is as follows: start with a small value for λ1, i.e.

λ1 = 0.1. If ∆xk leads to a reduction of J (x), then update λk+1 = λk/10. However,

if ∆xk doesn’t reduce J (x), then increase λk = 10λk and recompute ∆xk. Repeat

this until the choice of λk leads to a reduction in J (x), update xk+1 = xk + ∆xk [13].

More complex implementations use a trust-region methodology [13], which chooses

a λk such that ‖∆xk‖22 ≤ µ, where µ is the radius of the “trust region.” These

methods update this trust region at each iteration based on the success of the previous

iterations in reducing J [2]. In Chapter 3, we will implement the LM algorithm to

solve the regularized least squares problem. While the λk appears to be regularizing

the solution in a similar fashion to Tikhonov regularization, it only regularizes at each

iteration and so it doesn’t regularize the solution. There is general agreement that
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LM algorithm is in general a robust method and works well for many nonlinear least

squares problems [2].

2.3 Generalized Least Squares

If the data are of varying scales or if the measurements have different variances, or if

the errors in the data are correlated, then these factors can be taken into account in

the estimation of x. Generalized least squares does this by weighting the least squares

problem with the inverse of the covariance matrix of the error. The generalized least

squares estimate x̂GLS is:

JGLS(x) =‖ d− F (x) ‖2
C−1

ε

x̂GLS = arg min
x
JGLS(x)

(2.14)

where ‖ d − F (x) ‖2
C−1

ε
is the weighted 2-norm (d − F (x))TC−1ε (d − F (x)). This is

an intuitive addition to least squares, because if we have some measurements with a

large variance then it makes sense that these points should have less weight. Also, if

ε ∼ N(0, Cε), then x̂GLS from (2.14) is equivalent to the maximum likelihood estimate.

All the previous least squares results can be applied to the generalized least

square estimate by first converting the generalized least squares problem into an

OLS problem:

F̃ (x) = C−1/2ε F (x),

d̃ = C−1/2ε d.

(2.15)

Then x̂GLS becomes the OLS estimate of the new problem:
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x̂ = arg min
x
‖ d̃− F̃ (x) ‖22 . (2.16)

We now introduce a theorem describing an important statistical property of JGLS from

(2.14) at its minimum value. This theorem will provide much of the basis needed for

the theory developed later in this work.

Theorem 1. If F : Rm → Rn is a linear function, and ε ∼ N(0, Cε), then JGLS(x̂GLS) ∼

χ2
n−m.

Proof. Since F : Rm → Rn is a linear function we can write it as a matrix A with

dimension n×m. Also, x ∈ Rm, d ∈ Rn, and Cε has dimension n× n.

So we have:

d̃ = C−1/2ε Ax+ C−1/2ε ε

= Ãx+ ε̃.

(2.17)

Theorem 7 in Appendix A implies: ε̃ ∼ N(0, In). Now JGLS(x) = ‖d̃ − Ãx ‖22 and

x̂GLS = x̂ = (ÃT Ã)−1ÃT d̃, which gives:

‖d̃− Ãx̂ ‖22 = ‖d̃− Ã(ÃT Ã)−1ÃT d̃ ‖22

= ‖(In − Ã(ÃT Ã)−1ÃT )d̃‖22

= ‖(In − P )d̃‖22.

(2.18)

Then, P = Ã(ÃT Ã)−1ÃT is a projection matrix and it orthogonally projects d̃ onto

the range space of Ã [14]. It is easy to see that P is symmetric and idempotent and

that PÃ = Ã. This implies that
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(In − P )d̃ = (In − P )d̃− Ãx+ Ãx

= (In − P )d̃− Ãx+ PÃx

= (In − P )(d̃− Ãx)

= (In − P )ε̃.

(2.19)

Combining this result and the fact that (In−P ) is idempotent and symmetric implies:

‖d̃− Ã(x̂) ‖22= ε̃T (In − P )ε̃. (2.20)

Theorem 5 from Appendix A says that the rank of a matrix that is idempotent and

symmetric is equal to its trace. Using this result:

rank(In − P ) = trace(In − P )

= trace(In)− trace(P )

= n− trace(Ã(ÃT Ã)−1ÃT )

= n− trace((ÃT Ã)−1ÃT Ã)

= n−m

(2.21)

Finally, applying the Theorem 8 from Appendix A:

ε̃T (In − P )ε̃ ∼ χ2
n−m. (2.22)

The use of Theorem 1 to analyze the least squares solution is sometimes called the

χ2 test. If J (x̂) is much larger than the mean of χ2
n−m or is outside of some confidence

interval, for example say a 95 % confidence interval, then this would suggest that the
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errors in the data are larger than expected. This indicates that either the covariance

of the data errors is too small or the forward problem does not accurately model the

physical system. Therefore, Theorem 1 supplies some very useful information about

the solution to the inverse problem. This result only applies to linear problems,

however, it is shown in [13] that it approximately holds for nonlinear problems in a

region around x̂.
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CHAPTER 3

REGULARIZATION AND THE χ2 METHOD

As mentioned in previous chapters, inverse problems are often ill-posed in practice and

finding a solution requires some form of regularization. A common way to regularize

inverse problems is to add a second term to the functional being minimized in order to

stabilize and add uniqueness to the solution. This is known as Tikhonov regularization

and this modified functional is sometimes called the Tikhonov functional:

Jtkh(x) =‖ d− F (x) ‖2 +α2 ‖ Lx− z ‖2, (3.1)

where L is a linear operator L : Rm → Rq, z ∈ Rq, and α is a scalar.

The matrix L is commonly chosen to be the identity operator or an approximate

first or second derivative operator. If L is the identity, then z could be an initial

estimate of x. In this case, the regularization parameter α controls the compromise

between how far the solution deviates from the original estimate and how well the

solution fits the data. Alternatively, when x is the discretization of a continuous

function, then the expected structure of x can be exploited by choosing L to represent

a derivative operator. In this case, z represents the desired slope in the solution and is

often set to be 0 to obtain smooth solutions. In this case, α controls the compromise

between how smooth the solution is and how well the solution fits that data.

The value of the parameter α controls how much (3.1) changes the original inverse
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problem. It is desirable to choose α so that it changes the original problem just enough

that a good estimate for x can be obtained. Choosing the value of α that accomplishes

this, however, is not trivial.

3.1 Choice of Regularization Parameter

There is a voluminous amount of literature on how to determine the regularization

parameter for linear least squares problems. Common methods include L-Curve, Gen-

eralized Cross Validation, and the discrepancy principle. For a complete treatment of

these methods, the reader is referred to the literature, specifically [1, 4]. A relatively

new method, called the χ2 method, is proposed by Mead in [8] and developed further

in [10, 9]. The focus of this thesis is to extend this method for solving nonlinear

inverse problems.

3.1.1 Nonlinear Regularization

Regularization methods for linear problems do not straightforwardly extend to non-

linear least squares problems. Since the nonlinear problems are solved iteratively, the

methods for determining the regularization parameter generally breakdown into two

approaches.

In the first approach, α remains fixed throughout the nonlinear inversion process.

In these methods, the inversion is done multiple times for different values of α until

the solution meets some criterion. Some criteria used for evaluating the solution are

the discrepancy principle [1] and Generalized Cross Validation (GCV) [3].

In the second approach, α is estimated dynamically at each iteration. In this

approach, the nonlinear inverse problem is solved only once, but the optimization
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procedure has to be integrated with the method for estimating α. Some examples

of this type of method include Occam’s inversion and an implementation of GCV as

proposed in [3]. The nonlinear χ2 method which uses this second approach and is an

alternative to these methods and is developed in this thesis.

3.1.2 Statistical Framework

A popular data assimilation method in weather forecasting based on a Bayesian

framework is known as the three-dimensional variational method (3DVAR) [7]. It

starts with the following assumptions:

d = F (x) + ε,

x = xp + f,

(3.2)

where ε ∼ N(0, Cε) , f ∼ N(0, Cf ) and xp is an initial estimate of x. This differs from

traditional inverse problems in that we have both noisy data and a prior probability

distribution for the parameter set.

Since both ε, f are normal, it is straightforward to find the maximum a posteriori

(MAP) estimate for x for a given data set. The MAP estimate xM is:

xM = arg max
x

(P (x|d)) , (3.3)

where P (x|d) represents the conditional probability density function for x given

the data d. Using Baye’s theorem, it possible to write P (x|d) in terms of prior

distributions

P (x|d) =
P (d|x)P (x)

P (d)
, (3.4)
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where P (x) represents the prior distribution for x, P (d) represents the distribution

for d and P (d|x) represents the conditional probability density function for d, given

the data x.

So xM becomes:

xM = arg max
x

(
P (d|x)P (x)

P (d)

)
. (3.5)

Since ε is normally distributed, P (d|x) can be written as

P (d|x) =
1

2π
n
2 |Cε|

1
2

exp

(
−1

2
(d− F (x))TC−1ε (d− F (x))

)
.

In addition, since the prior distribution is a multivariate normal, that we can write:

P (x) =
1

2π
m
2 |Cf |

1
2

exp

(
−1

2
(x− xp)TC−1f (x− xp)

)
.

Using these distributions and the fact that P (d) does not depend on x, the MAP

estimate becomes:

xM = arg max
x

{
exp

(
−1

2
(d− F (x))TC−1ε (d− F (x))

)
exp

(
−1

2
(x− xp)TC−1f (x− xp)

)}
= arg min

x

{
(d− F (x))TC−1ε (d− F (x)) + (x− xp)TC−1f (x− xp)

}
.

(3.6)

The MAP estimate xM minimizes

JM(x) =||d− F (x)||2
C−1

ε
+ ||x− xp||2C−1

f
, (3.7)

which is very similar to the Tikhonov functional Jtkh from (3.1) when L is the identity

and z is the initial estimate. In (3.7), each term in the functional is weighted with its
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respective inverse covariance, whereas in (3.1) the second term is weighted with α2.

3.1.3 Linear χ2 Method

If ε ∼ N(0, σ2
εI) and f ∼ N(0, σ2

f I), then xM is identical to the estimate found by

minimizing the Tikhonov functional with L as the identity, z as the initial estimate,

and with α = σε/σf . Of course, many times in inverse problems, the prior covariance

for f is not available. However, all is not lost. Mead in [8] suggested capitalizing on

Theorem 2 to estimate α.

Theorem 2. If F : Rm → Rn is a linear function and the following holds:

d = F (x) + ε,

x = xp + f,

(3.8)

then JM(x) from (3.7) at its minimum value, i.e. JM(xM), follows a χ2 distribution

with n degrees of freedom.

Proof. Since F : Rm → Rn is a linear function, we can write it as a matrix A with

dimension n×m. Also, x ∈ Rm, d ∈ Rn, Cε has dimension n×n and Cf has dimension

m×m.

First, rewrite (3.7) as:

JM(x) =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
C
−1/2
ε (Ax− d)

C
−1/2
f (x− xp)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

xM = arg min
x
JM(x).

(3.9)

This can be written as an ordinary least squares problem:
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J (x) =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 C

−1/2
ε A

C
−1/2
f

x−
 C

−1/2
ε d

C
−1/2
f xp


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

. (3.10)

For the sake of simplicity, let

A∗ =

 C
−1/2
ε A

C
−1/2
f

 , d∗ =

 C
−1/2
ε d

C
−1/2
f xp

 , ε∗ =

 C
−1/2
ε ε

C
−1/2
f f

 . (3.11)

Then:

J (x) =‖d∗ − A∗x‖22

x̂ = arg min
x
J (x),

(3.12)

where A∗ has dimension (n + m) × m, d∗ has dimension (n + m) × 1, and ε∗ ∼

N(0, In+m). By Theorem 1, in the previous chapter, J (x̂) ∼ χ2
n.

The method proposed in [8] is called the χ2 method and it says choose α such

that the minimum of the functional (3.7) has a value that is consistent with its χ2

distribution. This is implemented in [8] as finding the α that makes the minimum

of the functional equal to the mean of the χ2 distribution. Also, Mead showed in

[8] that Theorem 2 holds asymptotically when ε and f are not normally distributed,

which allows this method to be applied in a more general sense.

3.2 χ2 Tests for Gauss-Newton Method

Theorem 2 has only been shown for linear problems. For nonlinear problems, the

distribution of JM(xM) is not usually known. However, if the nonlinear inverse problem
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is solved with a sequence of linearizations, then it is possible to find appropriate χ2

tests at each iteration.

The Gauss-Newton method to find xM = arg minx JM(x) from (3.7) is as follows.

First find the first and second Fréchet derivative of JM,

∇JM(x) = JTC−1ε (d− F (x))− C−1f (x− xp), (3.13)

where J is the Jacobian of F at x. Now

∇2JM(x) = JTC−1ε J +Q(x) + C−1f , (3.14)

where Q(xk) is the second-order information of JM. The Gauss-Newton method

ignores this Q, so we get the following iteration:

xk+1 =xk + ∆xk

∆xk =−
(
JT
k C

−1
ε Jk + C−1f

)−1 (
JT
k C

−1
ε (d− F (xk))− C−1f (xk − xp)

)
.

(3.15)

The Gauss-Newton method can be converted to a sequence of linear OLS problems

with the following manipulations:

xk+1 = xk +
(
JT
k C

−1
ε Jk + C−1f

)−1 (
JT
k C

−1
ε rk − C−1f (x− xp)

)
, (3.16)

where rk = d− F (xk). Now multiplying both sides with
(
JT
k C

−1
ε Jk + C−1f

)
gives:

(
JT
k C

−1
ε Jk + C−1f

)
xk+1 =

(
JT
k C

−1
ε Jk + C−1f

)
xk + (JT

k C
−1
ε rk −C−1f (xk − xp)). (3.17)

C−1f xk subtracts out and gives
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(
JT
k C

−1
ε Jk + C−1f

)
xk+1 = (JT

k C
−1
ε Jk)xk + (JT

k C
−1
ε rk + C−1f xp). (3.18)

Rewrite and factor out JT
k C

−1
ε on right-hand side

(
JT
k C

−1
ε Jk + C−1f

)
xk+1 = JT

k C
−1
ε ((Jkxk + rk) + C−1f xp). (3.19)

This can be factored again into the normal equations:

 C
−1/2
ε Jk

C
−1/2
f


T  C

−1/2
ε Jk

C
−1/2
f

xk+1 =

 C
−1/2
ε Jk

C
−1/2
f


T  C

−1/2
ε (d̃k)

C
−1/2
f xp

 , (3.20)

where d̃k = d − F (xk) + Jkxk. Finally, this can be written as the sequence of linear

OLS problems:

J̃k(x) = ‖d̃k − Jkx‖2C−1
ε

+ ‖x− xp‖2C−1
f

x̂k+1 = arg min
x
J̃k(x)

(3.21)

The sequence of OLS problems in (3.21) solves the following linear inverse problem

at each iteration.

d̃k = Jkxk+1 + εk,

xk+1 = xp + f

(3.22)

where εk = ε + νk with Cov(εk) = Cεk and νk represents error introduced by the

linearization, i.e. νk = F (x) − F (xk − Jk(x − xk)). The following theorem gives χ2

distribution for the Gauss-Newton functional Jk(x) under several assumptions.
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Theorem 3. If J̃k(x) = ‖d̃k − Jkx‖2C−1
ε

+ ‖x − xp‖2C−1
f

, x̂k+1 = arg minx J̃k(x), the

nonlinear error is zero, and the following are true:

dk = Jkxk+1 + εk εk ∼ N(0, Cεk)

xk+1 = xp + f f ∼ N(0, Cf )

(3.23)

then J̃k(x̂k+1) ∼ χ2
n.

Proof. This follows trivially from Theorem 2.

If the nonlinear error is zero, then the problem is likely linear. However, this

theorem can still be used to develop the χ2 test for nonlinear problems by making the

assumption that Cεk ≈ Cε. This approximation will get better as the iterations gets

closer to the solution and the nonlinear error is reduced. Under this assumption, the

χ2 method can be applied at each iterations to achieve increasingly better estimates

for C−1f . In the next chapter, we show that this assumption works well for two inverse

problems given in [1].

Now we consider a more general case where L is used as in (3.1). It is not difficult

to see that in a similar way we can minimize JM(x) =‖ d−F (x) ‖2
C−1

ε
+ ‖ Lx−z ‖2

C−1
f

with the sequence of linear OLS problems:

J̃k(x) = ‖d̃k − Jkx‖2C−1
ε

+ ‖Lx− z‖2
C−1

f
. (3.24)

Often when L is chosen to represent a derivative operator, it is not a square matrix.

In this case, the χ2 distribution of J̃k(x) has different degrees of freedom given in

Theorem 4.
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Theorem 4. If J̃k(x) = ‖d̃k−Jkx‖2C−1
ε

+‖Lx−z‖2
C−1

f

, where L : Rm → Rq is a linear

operator and x̂k+1 = arg minx J̃k(x), the invertibility condition holds:

N (Jk) ∩ N (L) = 0 where N (A) is the null space of A, the nonlinear error is zero,

and the following are true:

dk = Jkx+ εk, εk ∼ N(0, Cεk)

Lx = z + f f ∼ N(0, Cf )

(3.25)

Then,J̃k(x̂) ∼ χ2
n−m+q.

Proof. L : Rm → Rq is a linear operator and x ∈ Rm, z ∈ Rq d ∈ Rn, Cε has

dimension n× n, and Cf has dimension q × q.

Rewrite as an ordinary least squares problem:

J (x) =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 C

−1/2
ε Jk

C
−1/2
f L

x−
 C

−1/2
ε d̃k

C
−1/2
f z


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

. (3.26)

For sake of simplicity, let

A∗ =

 C
−1/2
ε Jk

C
−1/2
f L

 , d∗ =

 C
−1/2
ε d̃k

C
−1/2
f z

 , ε∗ =

 C
−1/2
ε ε

C
−1/2
f f

 . (3.27)

The least squares problem can be written as:

J̃k(x) =‖d∗ − A∗x‖22,

x̂ = arg min
x
J (x),

(3.28)

where A∗ has dimension (n+q)×m, d∗ has dimension (n+q)×1, and ε∗ ∼ N(0, In+q).

By Theorem 1 in Chapter 2, J̃k(x̂) ∼ χ2
n−m+q.
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3.2.1 χ2 Tests for Levenberg-Marquardt Method

Recall that the Levenberg-Marquardt method is a modification of the Gauss-Newton

method to help ensure the convergence of the algorithm. The LM step to find xM =

arg minx JM(x) from (3.7) is as follows:

xLMk+1 =xk + ∆xk,

∆xk =−
(
JT
k C

−1
ε Jk + C−1f + λ2D

)−1 (
JT
k C

−1
ε (d− F (xk))− C−1f (xk − xp)

)
.

(3.29)

It is possible to write the regularized LM method as a sequence of OLS problems in

a similar way as the Gauss-Newton method. These iterates become:

J̃ LM
k (x) = ‖d̃k − Jkx)‖2

C−1
ε

+ ‖x− xp‖2C−1
f

+ λ2‖D(x− xk)‖22,

xLMk+1 = arg min
x
J̃ LM

k (x).

(3.30)

The χ2 test is not clear for this more complicated functional because there is no

statistical information about the third term in the functional. However, it is possible

to derive an approximate χ2 test for the LM method. First, to simplify the following

manipulations, we convert JM(x) into a nonlinear OLS problem. Let:

F (x)∗ =

 C
−1/2
ε F (x)

C
−1/2
f Lx

 , d∗ =

 C
−1/2
ε d̃k

C
−1/2
f z

 , ε∗ =

 C
−1/2
ε ε

C
−1/2
f f

 . (3.31)

Then we have the following new problem:

d∗ = F ∗(x) + ε∗ where ε∗ ∼ N(0, In+q). (3.32)

In Chapter 2, we derived the Gauss-Newton method as a modification of Newton’s
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method, but it is helpful here to derive it in a slightly different way. Consider the

Taylor series expansion of F ∗ around a point xk:

F ∗(x) = F ∗(xk) + J∗k (x− xk) + higher order terms, (3.33)

where J∗k is the Jacobian of F ∗ at xk. Plugging this back into (3.32), we get:

d∗ = F ∗(xk) + J∗k (x− xk) + ε∗k, (3.34)

where ε∗k = ε∗+νk and νk represents the error introduced by ignoring the higher-order

terms. Rewriting:

r∗k = J∗k∆xk + ε∗k, (3.35)

where r∗k = d∗−F ∗(xk) and ∆xk = xk+1−xk. We see that the OLS estimate for ∆xk

is

∆̂xk = (J∗Tk J∗k )−1J∗Tk r∗k. (3.36)

As in the proof of Theorem 1,

‖r∗k − J∗k∆̂xk‖22 = ‖(I − P )rk‖22,

= ‖(I − P )ε∗k‖22,
(3.37)

where P = J∗k (J∗Tk J∗k )−1J∗Tk . Now replace ∆̂xk in (3.37) with the LM step ∆xk =

(J∗Tk J∗k + λ2kD
TD)−1J∗k (r∗k), so

‖r∗k − J∗k∆xk‖22 = ‖(r∗k − J∗k (J∗Tk J∗k + λ2kD
TD)−1J∗Tk r∗k‖22

= ‖(I − P̂ )r∗k‖22.
(3.38)
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where P̂ = J∗k (J∗Tk J∗k + λ2kD
TD)−1J∗Tk . P̂ is symmetric but it is not idempotent

and so is not an orthogonal projection. However, if ‖J∗Tk J∗k‖ >> ‖λ2kDTD‖, then

(J∗Tk J∗k )−1 ≈ (J∗Tk J∗k + λ2kD
TD)−1 and so P̂ is approximately equal to the projection

P from (3.37). Then,

‖r∗k − J∗k∆xk‖22 = ‖(I − P̂ )r∗k‖22

≈ ‖(I − P )r∗k‖22

= ‖(I − P )ε∗k‖22

∼ χ2
n (if ε∗k = ε∗).

(3.39)

Now, rewriting:

‖r∗k − J∗k∆xk‖22 = ‖d∗ − F ∗(xk)− J∗k (xLMk+1 − xk)‖22

= ‖(d∗ − F ∗(xk) + xk)− J∗kxLMk+1‖22

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 C

−1/2
ε Jk

C
−1/2
f

xLMk+1 −

 C
−1/2
ε d̃k

C
−1/2
f xp


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

= J̃k(xLMk+1).

(3.40)

So the Gauss-Newton functional J̃k at the LM estimate xLMk+1 approximately follows

a χ2
n distribution and will be a better approximation as the LM iterates progress

because λk will go to zero, as will the nonlinear error. We show experimentally in

Chapter 4 that J̃k(xLMk+1) closely follows a χ2
n distribution.
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3.3 Nonlinear χ2 Method

In Section 3.2 and Theorems 3 and 4, we derived approximate χ2 distributions for

the regularized Gauss-Newton functional Jk at x̂k+1, i.e. J̃k(x̂k+1). Also, in Section

3.2.1, we found an approximate χ2 distribution for J̃k(xLMk+1). In keeping with the

approach proposed by Mead in [8] for the linear χ2 method, we suggest using these

χ2 distributions to estimate the regularization parameter. However, when solving real

problems, only one sample of J̃k is available because there is only one realization of

the error ε in the data. Therefore, the best we can do is to use a single characteristic

of the distribution to find the regularization parameter.

In [10], they suggest using the mean of the χ2 distribution to estimate α. However,

for a χ2 distribution the median is approximately equal to the mean. This implies that

if a perfectly weighted J̃k(x̂k+1) is sampled multiple times, about half of these samples

will be greater than the mean. If we estimate the regularization parameter such that

J̃k(x̂k+1) is always equal to the mean, then about half of the time the regularization

parameter will have to be made smaller to compensate for the realization of data

error that makes a perfectly weighted J̃k(x̂k+1) larger than the mean. This means

that choosing α such that J̃k(x̂k+1) is equal to the mean will under regularize the

problems about half of the time. To avoid under-regularization, we suggest using the

upper bound of the desired confidence interval for the χ2 distribution. For example,

if the desired confidence level is 95%, then this upper bound is the number at which a

correctly weighted J̃k(x̂k+1) will be less than or equal to 95% of the time. We suggest

choosing the regularization parameter such that J̃k(x̂k+1) is equal to this number.

This approach is implemented in Algorithm 1, which uses the Gauss-Newton method

to solve the nonlinear inverse problem and dynamically estimates the regularization
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parameter at each Gauss-Newton iteration.

Algorithm 1 Nonlinear χ2 method with Gauss-Newton step

Input L, Cε, xp, tol

for k=1,2,3,... do

Calculate Jk and d̃k

Define:

J̃k(x, α) = ‖d̃k − Jkx‖2C−1
ε

+ α2‖L(x− xp)‖22

Choose αk such that:

J̃k(x, αk) ≈ Φ−1n−m+q(95%)

where Φ−1n−m+q is the inverse cumulative distribution function (CDF) of χ2
n−m+q.

x̂k+1 = arg min
x
J̃k(x, αk)

=
(
JT
k C

−1
ε Jk + α2

kL
TL
)−1

(JT
k C

−1
ε d̃k + α2

kL
TLxp)

if |JM(x̂k+1)−JM(xk)|
JM(xk)

< tol then

converged and xM = x̂k+1

return

end if

end for

When the Gauss-Newton method (3.15) fails to converge, the Levenberg-Marquardt

method can be used to solve the inverse problem. Algorithm 2 uses the regularized

Levenberg-Marquardt method from (3.29) and estimates the regularization parameter

using the approximate χ2 distribution derived in Section 3.2.1.
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Algorithm 2 Nonlinear χ2 method with LM step

Input L, Cε, xp, λ1, D

for k=1,2,3... do

Calculate Jk and d̃k

if k > 1 then

Define:

J̃ LM
k (x, λ) =‖d̃k − Jkx‖2C−1

ε
+ α2

k‖L(x− xp)‖22 + λ2‖D(x− xk)‖22

xLMk+1 = arg min
x
J̃ LM

k (x, λ)

=
(
JT
k C

−1
ε Jk + α2

kL
TL+ λ2kD

)−1
(JT

k C
−1
ε d̃k + α2

kL
TLxp + λ2kxk)

Update LM parameter by finding a small λk+1 that still ensures

JM(xLMk+1) < JM(xLMk )

end if

Define:

J̃ LM
k (x, α) = ‖d̃k − Jkx‖2C−1

ε
+ α2‖L(x− xp)‖22 + λ2k‖D(x− xk)‖22

J̃k(x, α) = ‖d̃k − Jkx‖2C−1
ε

+ α2‖L(x− xp)‖22

Choose αk+1 such that:

J̃k(xLMk+1, αk+1) ≈ Φ−1n−m+q(95%)

where Φ−1n−m+q() is the inverse CDF of χ2
n−m+q.

xLMk+1 = arg minx J̃ LM
k (x, αk+1):

if
|JM(xLMk+1)−JM(x

LM
k )|

JM(xLMk+1)
< tol then

converged and xM = xLMk+1

return

end if

end for
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Algorithm 2 has the additional complication of determining the LM parameter

λk. This can be found using the methods from the LM implementations discussed

in Chapter 2. This algorithm has more computational overhead than the previous

algorithm, but this is simply the price for a more robust method that is needed to

solve more difficult problems.

3.3.1 Numerical Implementation of Algorithms

In Algorithm 1 and 2, it is necessary to do some type of line search at each iteration

to find αk+1. To do this, any standard root finding algorithm can be used such as

the bisection method, inverse quadratic interpolation, secant method, or Newton’s

method. In [10], the authors introduce an exact Newton root-finding algorithm that

uses SVD of the linear inverse problem which would work for Algorithm 1.

In Algorithm 1 and 2, the Gauss-Newton method and the Levenberg-Marquardt

method are written as a sequence of OLS problems. Since the algorithms require that

these OLS problems to be solved multiple times at each iteration, it is important that

the OLS solution is computed in an efficient matter. We saw in Chapter 2 that the

OLS estimate is given as:

x̂ = arg min
x
‖d− Ax‖22,

x̂ = (ATA)−1ATd.

(3.41)

In practice, (ATA)−1 should never be computed as this can be computationally expen-

sive and is not stable with respect to round off errors because cond(ATA) ≈ cond(A)2.

There are a number of efficient methods for solving OLS problems. We use the

backslash operator (same function as mldivide) in MATLAB, which uses a robust
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implementation of QR factorization to solve overdetermined problems [11].

Also, in many of the previous equations the inverse of the square root of the

covariance matrix is taken in order to factor the steps into an OLS problem. When

the matrix is a diagonal matrix this operation is trivial. However, if the covariance

matrices have nonzero off-diagonal elements, taking the matrix square root can be

expensive and unstable. Instead of taking the matrix square root, we can split the

matrix with Cholesky factorization, which can be more accurate and computationally

cheaper. The following example shows why this is valid. If we have

d = Ax+ ε ε ∼ N(0, Cε) (3.42)

and if R represents the Cholesky decomposition of Cε, i.e. RRT = Cε, then we can

normalize the problem using R:

R−1d = R−1Ax+R−1ε. (3.43)

If we let Ã = R−1A, d̃ = R−1d, and ε̃ = R−1ε, then Theorem 7 in Appendix A

implies: ε̃ ∼ N(0, In) and (3.43) becomes the normalized OLS problem:

d̃ = Ãx+ ε̃ ε̃ ∼ N(0, In) (3.44)
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CHAPTER 4

APPLICATION, SOLUTIONS, AND NUMERICAL

EXPERIMENTS

In this chapter, we consider two ill-posed nonlinear inverse problems and use these

problems to test the theorems and algorithms developed in Chapter 3. These test

problems are from Chapter 10 of [1] where the authors both describe problems and

provide the corresponding solutions. Conveniently, the authors included Matlab codes

along with the text that set up the forward problem and solve the inverse problems

with existing methods. This allowed us to recreate their results and use them as a

basis for comparison.

These problems are a 2-D nonlinear cross-well tomography problem and a 1-D

electromagnetic sounding problem. The mathematical models for both of these

systems are quite involved and are not developed in this thesis. Instead, the forward

models from the codes provided by [1] are treated as the proverbial “black box”

functions and the Jacobians of the functions are calculated using finite differences.

Using these “functions,” we run some numerical experiments to see if Theorems 3

and 4 hold under the necessary assumptions. In addition, we compare the solutions

found using Algorithms 1 and 2 to solutions found by [1] using existing methods.
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4.1 Nonlinear Cross-Well Tomography

The first problem is an implementation of nonlinear cross-well tomography. The

forward model includes ray path refraction where the refracted rays tend to travel

through high-velocity regions and avoid low-velocity regions, which adds nonlinearity

to the problem. The problem is set up with two wells spaced 1600 m apart, and there

are pairs of sources and receivers at equally spaced depths down the wells. The travel

time between each pair of opposing sources and receivers is recorded, and the objective

is to recover the two-dimensional velocity structure between the two wells. The true

velocity structure has a background of 2.9 km/s with an embedded Gaussian shaped

region that is about 10% faster than the background and another Gaussian-shaped

region that is about 15% slower. The observations for this particular problem consist

Figure 4.1: The setup of the cross-well tomography problem. (Left) Shown here is the
true velocity model(m/s). (Right) The ray paths crossing through region of interest
(background is faded to make the ray paths more clear).

of 64 travel times between each pair of opposing sources and receivers. The true

velocity model along with the 64 ray paths are plotted in Figure 4.1. The faster

regions are represented by the lighter areas and the slower regions are darker. The

entire region between the two wells is discretized into 64 square blocks so there are
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64 model parameters (the slowness of each block) and 64 observations (the ray path

travel times).

4.1.1 Numerical Experiments

In Chapter 3, it was shown that the Gauss-Newton method can be written as the

sequence of linear inverse problems:

J̃k(x) = ‖d̃k − Jkx‖2C−1
ε

+ ‖x− xp‖2C−1
f

xk+1 = arg min
x
J̃k(x)

(4.1)

and the assertion was made that J̃k(xk+1) approximately follows a χ2
n distribution.

To test this assertion, we carried out the following numerical experiment. First, we

generated a set of synthetic data from an initial parameter set. Then we added

1000 different realizations of ε and f to the synthetic data and initial parame-

ters, respectively. The added noise ε was sampled from N(0, (.001)2I64) and f from

N(0, (.00001)2I64). For perspective, the values for d are O(.1) and the values for x are

O(.0001). This means the data had about 1% noise added and the initial parameter

estimate had 10% noise added. We then used the Gauss-Newton method to solve the

nonlinear inverse problem 1000 times, once for each realization of noise. Essentially,

this is equivalent to sampling J̃k(xk+1) 1000 times. Each of these converged in 6

iterations. A histogram of these samples of J̃k(xk+1) at each iteration is given below

in Figure 4.2. Since there are 64 observations and 64 model parameters, the theory

says that J̃k ∼ χ2
64 and so E(J̃k(xk+1)) = 64.

In [1] the authors use a discrete approximation of the Laplacian operator 4̃ to

regularize this problem. So if L = 4̃ and Lxp = 0, then the Gauss-Newton method
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becomes:

J̃k(x) = ‖d̃k − Jkx‖2C−1
ε

+ ‖Lx− 0‖2
C−1

f
,

xk+1 = arg min
x
J̃k(x).

(4.2)

Using this operator and the same assumptions as above, we found approximate

distributions of J̃k when L = 4̃. The approximate distributions found are shown

in Figure 4.2. In the top-left histogram in Figure 4.2 the sampled distribution of

J̃k(xk+1) for the first iteration is shifted slightly right of the theoretical χ2 distribution

predicted in Theorem 3. This is what would be expected if Cε underestimates Cεk .

However, by the second iteration, the two distributions are almost identical as the

nonlinear error is decreased. In fact, in each of the other histograms shown in Figure

4.2, the sampled distribution agrees very well with the theoretical distribution. This

indicates that the theoretical χ2 distributions established in Theorem 3 are a good

approximation to the actual distributions.
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Figure 4.2: Histograms of J̃k(xk+1). (Left): J̃k with L = I, (Right): J̃k with L = 4̃.

The mean of the sample is shown as the middle tick, and χ2
64 probability density

function is shown as the solid blue line.

4.1.2 Inversion Results

In [1] the authors solve the nonlinear tomography problem by minimizing

JM(x) =‖ d−F (x) ‖2
C−1

ε
+α2 ‖ Lx−0 ‖2, where L = 4̃ and the discrepancy principle

is used to estimate α. They implemented the discrepancy principle as finding α so

that Jdata(xM) =‖ d−F (xM) ‖2C−1
ε

= m. The data used in this inversion was created by

generating synthetic data from the “true” parameter set and adding a realization of

random noise ε to this synthetic data. We use this same approach and data to solve

the inverse problem by minimizing JM(x) =‖ d−F (x) ‖2
C−1

ε
+α2 ‖ L(x−xp) ‖2, where

L = I. We did this to create another case to which to compare the χ2 method. Using

the same data set, we found solutions using Algorithm 1 from Chapter 3 with both

L = 4̃ and for L = I. The solutions found with L = 4̃ and the discrepancy principle

are plotted in Figure 4.3 next to the solution found with L = 4̃ and Algorithm

1. The plot of the solution found with Algorithm 1 in Figure 4.3 is very similar to
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the solution found with the discrepancy principle. The solutions found with both

methods using L = I are plotted next to each other in Figure 4.4. These are also

very similar to each other. It is evident from these figures that solutions found with

L = 4̃ are smoother than the solutions found with L = I.
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Figure 4.3: Solutions found for the tomography problem with L = 4̃ (Left) Solution

found using the discrepancy principle. (Right) Solution found with Algorithm 1.
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Figure 4.4: Solutions found for the tomography problem when L = I. (Left) Solution

found using the discrepancy principle. (Right) Solution found with Algorithm 1.
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Figures 4.3 and 4.4 are the results from only one realization of ε. In order to

establish a good comparison, the above procedure for both the discrepancy principle

and for Algorithm 1 was repeated for 200 different realizations of ε. The mean and

standard deviation of ||xM − xtrue||/||xtrue|| for the 200 trials for each method are

given below in Table 4.1. Using this as the basis for comparison, χ2 method gave

better results on average when L = I. But the discrepancy principle did better

on average when the regularizing operator L = 4̃. While these differences are

only incremental, the χ2 method was faster computationally because it only solves

the inverse problem once and dynamically estimates αk. The discrepancy principle

requires the inverse problem to be solved multiple times, incurring computational

cost. In this test problem, we replaced the brute line search in the code for the

discrepancy principle with a secant iteration, which typically converged in 6 or 7

iterations. The inner iteration typically converged in same number of iterations as

Algorithm 1. So the discrepancy principle required 6 or 7 times more forward function

evaluations than Algorithm 1. However, Algorithm 1 does a search at each iteration

to estimate αk, which doesn’t require more forward function evaluations but does add

some computational cost. The net result was that Algorithm 1 was about three times

faster in terms of wall-clock time.

Table 4.1: Comparison of discrepancy principle to χ2 method on the cross-well tomog-
raphy problem,µ = mean(||xM− xtrue||/||xtrue||), σ = sqrt(var(||xM− xtrue||/||xtrue||))

Method L = I L = 4̃

χ2 Method
µ = 0.01628 µ = 0.0206
σ = 0.0006 σ = 0.00456

Discrepancy Principle
µ = 0.01672 µ = 0.018
σ = 0.00050 σ = 0.0021
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4.2 Subsurface Electrical Conductivity Estimation

The second problem considered is the estimation of soil electrical conductivity profile

from above-ground electromagnetic induction measurements. The forward problem

models a Geonics EM38 ground conductivity meter that has two coils on a 1 meter

long bar. Alternating current is sent in one of the coils which induces currents in soil

and both coils measure the magnetic field that is created by the subsurface currents.

For a complete treatment of the instrument and corresponding mathematical model

see [5]. Measurements are taken at 9 different heights above the soil and with

two different orientations of the instrument, resulting in a total of 18 observations.

The subsurface electrical conductivity of the ground is discretized into 10 layers, 20

cm thick, with a semi-infinite layer below 2m, resulting in 11 conductivities to be

estimated. An illustration of the setup of this problem is given in Figure 4.5.

Figure 4.5: A representation of the soil-conductivity estimation. The instrument

depicted in the top of image represents a ground conductivity meter creating a time-

varying electromagnetic field in the layered earth beneath.
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4.2.1 Numerical Experiments

We found in solving this inverse problem, the Gauss-Newton method does not always

converge. Therefore, finding the solution necessitated the use of the Levenberg-

Marquardt algorithm. This provided the opportunity to test the validity of the ap-

proximations discussed in Section 3.2.1. In that section, it was shown that J̃k(xLMk+1) =

‖d̃k − JkxLMk+1‖22 + ‖xLMk+1− xp‖22 approximately follows χ2
n distribution. Once again we

ran some numerical experiments to test this. In a similar way as before, we generated

a synthetic data set from a set of parameters and then added 1000 realizations of noise

to this data and parameters. This added noise ε was sampled from N(0, (1)2I18) and f

from N(0, (100)2I11). For perspective, the values for d are O(100) and the values for x

are O(100). This means the data had about 1% noise added and the initial parameter

estimate had 100% noise added. We then used the Levenberg-Mardquardt method

to solve the regularized nonlinear inverse problem 1000 times for each realization of

noise and recorded the samples of J̃k(xLMk+1). All of these LM iterations converged

within 6 iterations. Histograms of these 1000 samples of Jk(xLMk+1) are shown below

in Figure 4.6. There were 18 observations for this problem and 11 parameters so

E(J̃k(xLMk+1)) = 18.

In [1] the authors solve this inverse problem using an approximate 2nd order

differential operator L = D̃(2) to regularize the inversion. We carried out the same

experiment as above, except using this operator to regularize the problem. This

matrix L has dimension 9 × 11 so E(J̃k(xLMk+1)) = 16. Also, in this experiment,

f was sampled from N(0, (10)2I9) since the elements of Lx are O(10). These LM

iterations converged in 5 iterations. Histograms of these 1000 samples of Jk(xLMk+1)

are shown in Figure 4.6. The histograms of the samples of Jk(xk+1) in Figure 4.6
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Figure 4.6: Histograms of J̃k(xk+1). (Left) J̃k with L = I, (Right) J̃k with L = D̃(2).
The mean of the sample is shown as the middle tick, and the χ2

18, χ
2
16 density functions

are shown as the solid blue line.

coincided closely with the theoretical χ2 distributions also plotted. This suggests

that the approximations used in Section 3.2.1 are good approximations, at least for

this problem.

4.2.2 Inversion Results

In some ways, this inverse problem is more difficult than the cross-well tomography

problem. The Gauss-Newton step doesn’t always lead to a reduction in the non-

linear cost function and it is not always possible to find a regularizing parameter

for which the solution satisfies the discrepancy principle. In [1] the authors used an

implementation of the Levenberg-Marquardt algorithm to minimize the unregularized

least squares problem to demonstrate the ill-posedness of this problem. This solution,

plotted below in Figure 4.7, is wildly oscillating, has extreme values and is not even

close to being a physically possible solution. However, this isn’t evident from just

looking at the data misfit as this solution actually fits the data quite well.
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The inverse problem was also solved in [1] using Occam’s Inversion method.

Occam’s Inversion is given as the following algorithm.

Algorithm 3 Occam’s Inversion

Start with an initial estimate xp

for k=1,2,3,... do

Define xOCk+1 =
(
JT
k C

−1
ε Jk + α2

kL
TL
)−1

(JT
k C

−1
ε d̃k)

Choose largest value of αk such the ‖d− F (xOCk+1)‖C−1
ε
≤ m

If no such αk exists, then chose a αk that minimizes ‖d− F (xOCk+1)‖C−1
ε

Stop when ‖d− F (xOCk+1)‖C−1
ε

= m

end for

In this implementation of Occam’s Inversion, L was chosen to be D̃(2). As in the

previous problem, the data used in this inversion was created by generating synthetic

data from the “true” parameter set and adding a realization of random noise ε to

this synthetic data. The solution found using this algorithm and data set is plotted

in Figure 4.7. We implemented Occam’s inversion using L = I to solve this problem,

however, the algorithm diverged with this choice for L.

We used the same data set and Algorithm 2 to find the solution using both L = I

and L = D̃(2). These solutions are plotted below in Figure 4.8. Comparing the

solutions found using L = D̃(2) for the both the χ2 method and Occam’s inversion

in Figures 4.7 and 4.8, it is apparent that both estimate the true solution fairly well

for this realization of ε. While the χ2 method was still able to find a solution with

L = I, it can be seen in Figure 4.8 that it doesn’t estimate the true solution as well.
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Figure 4.7: (Left) The unregularized solution. (Right) The solution found with

Occam’s inversion.
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Figure 4.8: The parameters found using the χ2 method. (Left) L = D̃(2) (Right)

L = I.

Once again, in order to establish a good comparison, each of these methods were

run for 200 different realizations of ε. The mean and standard deviation of ||xM −

xtrue||/||xtrue|| for the 200 trials for each method are given below in Table 4.1. While
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Occam’s inversion was able to find good solutions for some realization of ε, such as

the solution plotted in Figure 4.7, the results in Table 4.1 indicate that sometimes it

found poor estimates. The mean of ||xM− xtrue||/||xtrue|| for the χ2 method is almost

an order or magnitude smaller than for Occam’s inversion for this problem. Even

the χ2 method with L = I found better solutions on average. Also, the relatively

small values for σ in Table 4.2 for the χ2 method suggest that the solutions found

were fairly consistent with each other. Conversely, the large value of σ in Table 4.1

for Occam’s inversion indicates that these solutions were not consistent with each

other. Since both methods estimate the regularization parameter dynamically, the

computational cost should be about the same and both methods took about the same

speed in terms of wall-clock time.

Table 4.2: Comparison of the χ2 method to Occam’s inversion for the estimation

of subsurface conductivities, µ = mean(||xM − xtrue||/||xtrue||), σ = sqrt(var(||xM −

xtrue||/||xtrue||))

Method L = I L = D̃(2)

χ2 Method
µ = 0.1827 µ = 0.0308

σ = 0.0295 σ = 0.0281

Occam’s Inversion
µ = 0.4376

Diverged σ = 0.6615
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

We presented a method regularizing nonlinear inverse problems that we call the

nonlinear χ2 method. This approach uses statistical information about the data to de-

termine the proper level of regularization and is an extension of the linear χ2 method

proposed by Mead in [8]. The χ2 tests used in the linear χ2 method were extended

to nonlinear problems in Section 3.2. The χ2 method was extended to nonlinear

problems using the Gauss-Newton method and the Levenberg-Marquardt method in

Algorithms 1 and 2, respectively. We gave numerical results in Sections 4.1.1 and 4.2.1

illustrating the statistical theory developed in Chapter 3 and demonstrated that it

was valid for two complex nonlinear problems

Two new algorithms were implemented on two nonlinear problems from [1] and

compared against several existing methods for nonlinear regularization. It was shown

that Algorithm 1 provided parameter estimates that were of similar accuracy as the

discrepancy principle in a nonlinear cross-well tomography problem from [1]. In a

subsurface electrical conductivity problem from [1], Algorithm 2 proved to be more

robust than Occam’s inversion, providing parameter estimates without the use of a

smoothing operator. Algorithm 2 also provided much better estimates than Occam’s

inversion on average when the smoothing operator was used.

The high computational cost of the first forward problems should be considered
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and this is where the χ2 method prevails. The discrepancy principle solves the

nonlinear inverse problem several times for different regularization parameters and

thus it requires more forward model evaluations, making it computationally expensive.

The nonlinear χ2 method is cheaper because it only solves the inverse problem once

and dynamically updates the regularization parameter.

We conclude that the nonlinear χ2 method is an attractive alternative to the

discrepancy principle and Occam’s inversion. However, it does share a disadvantage

with these methods in that they all require the covariance of the data to be known.

If an estimate of the data covariance is not known, then the nonlinear χ2 method will

not be appropriate for solving such a problem. Future work includes estimating more

complex covariance matrices for the parameter estimates. In [9], Mead shows that it

is possible to use multiple χ2 tests to estimate such a covariance and it seems likely

that this could also be extended to solving nonlinear problems.
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APPENDIX A

ADDITIONAL THEOREMS

For the convenience of the reader, we include some distribution theory and linear

algebra that was used in the proofs of the Theorems 1, 2, 3, and 4 in Chapters 2 and

3. Theorems 5, 6, and 7 are from [14]. The last theorem listed here, Theorem 8, is

an important theorem that gives χ2 distribution of a variable that arises in the proof

of Theorem 1 in Chapter 2. Since understanding Theorem 8 is helpful in establishing

an intuitive understanding of much of the χ2 theory presented in this thesis, its proof

is included here.

Theorem 5. If P is symmetric and idempotent matrix then rank(P ) = trace(P ).

(Theorem A.6.2 [14])

Theorem 6. Let A be a symmetric matrix. Then A has r eigenvalues equal to 1 and

the rest equal to zero iff A2 = A and rank A=r. (Theorem 2.7 [14])

Theorem 7. Let Y be normal random vector with dimension n× 1 with mean µ and

variance Σ, i.e. Y ∼ N(µ,Σ), and let C be an m× n matrix of rank m and d be an

m× 1 vector. Then (CY + d) ∼ N(Cµ+ d, CΣCT ). (Theorem 2.2 [14])
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Theorem 8. Let Y be normal random vector with dimension n× 1 with mean 0 and

variance In, i.e. Y ∼ N(0, In) and let A be a n×n symmetric idempotent matrix with

rank r, then Y TAY ∼ χ2
r.

Proof. Since A is symmetric, it can be written in terms of its spectral decomposition:

A = T TDT where is D is a diagonal matrix whose entries are the eigenvalues of A and

T is an orthogonal matrix. Then Y TAY = ZTDZ, where Z = T TY . By Theorem 7,

Z ∼ N(0, In). Since A is symmetric, idempotent, and with rank r, Theorem 6 implies

that A has r unit eigenvalues and the rest are zero. So Y TAY = ZTDZ =
r∑

i=1

T 2
i .

Thus Y TAY is equal to the sum of r squared standard normal random variables, so

Y TAY ∼ χ2
r




