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a b s t r a c t

Quiz question annotation aims to assign the most relevant knowledge point to a question, which is a key
technology to support intelligent education applications. However, the existing methods only extract the
explicit semantic information that reveals the literal meaning of a question, and ignore the implicit
knowledge information that highlights the knowledge intention. To this end, an innovative dual-
channel model, the Semantic-Knowledge Mapping Network (S-KMN) is proposed to enrich the question
representation from two perspectives, semantic and knowledge, simultaneously. It integrates semantic
features learning and knowledge mapping network (KMN) to extract explicit semantic features and
implicit knowledge features of questions,respectively. Designing KMN to extract implicit knowledge fea-
tures is the focus of this study. First, the context-aware and sequence information of knowledge attribute
words in the question text is integrated into the knowledge attribute graph to form the knowledge rep-
resentation of each question. Second, learning a projection matrix, which maps the knowledge represen-
tation to the latent knowledge space based on the scene base vectors, and the weighted summations of
these base vectors serve as knowledge features. To enrich the question representation, an attention
mechanism is introduced to fuse explicit semantic features and implicit knowledge features, which real-
izes further cognitive processing on the basis of understanding semantics. The experimental results on
19,410 real-world physics quiz questions in 30 knowledge points demonstrate that the S-KMN outper-
forms the state-of-the-art text classification-based question annotation method. Comprehensive analysis
and ablation studies validate the superiority of our model in selecting knowledge-specific features.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Quiz questions, as the most typical learning resources for
assessing students’ mastery of knowledge and diagnosing students’
learning blind spots (Ahmed et al., 2022; Wu et al., 2020b), are
widely applied in all levels of educational scenarios to achieve per-
sonalized learning (Zhou et al., 2018; Abdous et al., 2012). The real-
ization of some intelligent education applications benefits from

question sets labeled with knowledge points, such as knowledge
tracing (Liu et al., 2022), educational resource recommendation
(Wang et al., 2022) and knowledge diagnosis (Zhang et al.,
2020a). These question sets with knowledge labels are formed by
assigning appropriate knowledge points to the questions. This pro-
cess is called the question annotation task (Sun et al., 2018). Tradi-
tionally, question annotation is usually completed manually by
experienced teachers or domain experts (Wu et al., 2020b; Silva
et al., 2018), this process is time-consuming and expensive. With
the rapid development of deep learning approaches, most
researchers have designed novel automatic question annotation
models to improve annotation efficiency and accuracy (Almuzaini
and Azmi, 2022; Kurdi et al., 2020).

Automatic question annotation is usually regarded as a specific
task of text classification, and knowledge points, as knowledge
labels, are automatically assigned to questions (Yilmaz et al.,
2019). Hence, natural language processing (NLP) algorithms and
deep learning (DL) techniques are widely used in this task, mainly
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focusing on two aspects: 1) The first is to learn more powerful
semantic representations of questions through neural language
models, such as Word2Vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014), ELMo (Jia et al., 2019), BERT (Devlin
et al., 2019), and XLNet (Zhang et al., 2020c). These methods were
commonly adopted to extract explicit semantic representations of
quiz questions. In addition, some researchers incorporate domain
information or introduce external knowledge bases to extract addi-
tional features (Paramasivam and Nirmala, 2022), such as syntax
features (Wang et al., 2017), lexical features (Liu et al., 2018),
and keyword-relevant features (Sun et al., 2018). 2) The second
is to design effective annotation algorithms based on neural net-
work models such as CNNs (Liao et al., 2017; Wang et al., 2017),
RNNs (Kadhim, 2019; Qin et al., 2020; Jang et al., 2020), GNNs
(Wu et al., 2020c; Li et al., 2020c), and ensemble models (Ahmad
et al., 2022; Li et al., 2020a). CNNs can learn local features from
temporal or spatial data, RNNs can learn sequential correlations,
the attention mechanism can highlight important information in
multi-dimensional feature representations by setting adaptive
weights, and GNNs can model the correlation between words
and questions. A combination of multiple neural networks can take
full advantage of their respective advantages to improve the accu-
racy of question annotation.

Although the existing research has achieved encouraging anno-
tation results by extracting explicit semantic information of the
question text, it is difficult to annotate accurate knowledge points
for some questions with similar semantics but different knowledge
intention. As shown in Fig. 1, the surface semantics of q1 and q2 are
‘‘the objects move in a straight line at a constant speed”, but one
question is concerned with the speed of the object, so the question
is labeled as ‘‘Speed”. Another question is to examine the force act-
ing on the object, so the question belongs to the ‘‘Force”. It can be
concluded that the explicit semantic features of the question text
cannot fully characterize the question, which may lead to misjudg-
ment of knowledge points. Hence, in addition to considering the
semantic information, further identifying the knowledge intention
of the question is the key to improving the accuracy of question
annotation; this is also not considered in the existing research.

To grasp the knowledge intention of quiz questions, we simu-
late the process of an annotator thinking about a question, as
shown in Fig. 1. First, after reading through the entire question
text, the annotator focuses on some key terms in the question
(Hassani et al., 2022), such as ‘‘speed”, ‘‘constant speed” and ‘‘m/
s” in q1 and q2. Compared with other terms, these keywords pro-
vide more useful information and are widely applied in multiple

knowledge scenarios; these keywords are referred to as ‘‘knowl-
edge attribute words” in this work. However, words contain lim-
ited information, the annotator may continue to analyze the
contextual information of these knowledge attribute words to clar-
ify their knowledge scenarios. For instance, the context of ‘‘con-
stant speed” in q2 is a ‘‘smooth horizontal surface”, which is
different from ‘‘in a straight line” in q1. Different contextual infor-
mation endows ‘‘constant speed” with different knowledge mean-
ings, which is helpful for analyzing the knowledge intention of
questions. The annotator understands the knowledge information
expressed by the question by relying on the rich contextual infor-
mation of knowledge attribute words. Then, given the known
knowledge representation and the existing knowledge structure,
the annotator selects the most appropriate knowledge point for a
question after knowledge information processing. Therefore, the
knowledge connotation in the question is different from the expli-
cit semantic information. It is acquired through certain cognitive
processing on the basis of understanding the basic semantics.

Inspired by the thought process of an annotator labeling ques-
tions, this paper aims to design a novel model to understand the
knowledge intention of questions to enrich the question represen-
tation from two dimensions of knowledge and semantics. This
paper is divided into the following three main research objectives:
(1) The first is to design a knowledge representation method sim-
ilar to the question understanding of the annotator. The knowledge
attribute words and contextual information in the question are
combined to interpret the knowledge connotation of questions.
(2) The second objective is to construct a deep learning-based
model that extracts knowledge features of questions according to
the subject knowledge space; that is similar to the annotator cog-
nitive processing. (3) The third objective is to develop a feature
fusion method that comprehensively considers explicit semantic
information and implicit knowledge information to achieve more
accurate question annotation.

To achieve the above purposes, we propose a new dual-channel
network framework, the Semantic-Knowledge Mapping Network
(S-KMN), which integrates semantic features learning and knowl-
edge mapping network (KMN) to extract semantic features and
knowledge features in the question text. The overall framework
of the KMN for extracting knowledge features is shown in Fig. 2,
which simulates the thought process of an annotator labeling a
question. First, a knowledge attribute vocabulary is constructed
to select words with knowledge connotations from a large number
of learning resources. On this basis, each question is represented as
a heterogeneous knowledge attribute graph to visualize knowledge

Fig. 1. The thought process of an annotator assigning the knowledge point to a question.
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information (Zeng et al., 2021). The graph makes full use of the
context and sequence information of knowledge attribute words
to generate the knowledge representation of questions. Then, a
latent knowledge space is constructed based on the scene associa-
tion matrix to analyze the application scenarios of knowledge
points. The knowledge representation of each question is mapped
to the latent knowledge space through a learnable projection
matrix to extract knowledge features. To integrate semantic fea-
tures and knowledge features, an attention mechanism is utilized
to assign the adaptive learning weight for each dimensional fea-
ture, thus forming the comprehensive question representation.
Extensive experiments show that the S-KMN models outperform
the state-of-the-art text classification-based question annotation
method on real-world physics quiz questions.

The main contributions of this paper can be summarized as
follows:

� Semantic-Knowledge Mapping Network, which simulates the
thought process of an annotator labeling a question, is proposed
to integrate the semantic and knowledge features in questions.
This framework enriches the feature representation of ques-
tions from both semantic and knowledge perspectives and
improves the annotation performance.

� A knowledge mapping network is designed to extract implicit
knowledge features and understand the knowledge intention
of questions, similar to the cognitive processing of the annota-
tors. This network realizes the extraction of knowledge-
specific features.

� A latent knowledge space is constructed with the scene associ-
ation matrix as a base to represent the connotation of subject
knowledge. The closer the knowledge features is in the latent
knowledge space, the more similar the knowledge connotation
of questions.

� Comparative experiments on real-world physics questions are
conducted. Compared to the state-of-the-art text
classification-based question annotation method, our model
achieves significant improvements for quiz question annotation
tasks by incorporating implicit knowledge features.

The remainder of this paper is organized as follows. Section 2
discusses the related work regarding semantic feature representa-
tion and question annotation. Section 3 defines the related
concepts proposed in this paper. The overall framework of the
S-KMN is described in Section 4, which includes descriptions of
the context-aware knowledge representation, knowledge features
extraction and semantic-knowledge features fusion. To verify the
effectiveness of S-KMN in extracting implicit knowledge features,

extensive experiments are performed in Section 5. Conclusions
and suggestions for future work are discussed in Section 6.

2. Related work

Automatic question annotation is the task of mapping questions
to a label system and effectively associates pre-determined knowl-
edge points to questions, following a certain criterion. Since quiz
questions are in the form of text, traditional text classification
methods are applied to automatic question annotation tasks. The
feature representation of question text is enriched by integrating
domain information. Among them, an efficient feature representa-
tion and a annotation algorithm are key steps to achieve domain
adaption (Liu and Guo, 2019; Paramasivam and Nirmala, 2022).
Hence, the related work discussed in this section mainly focus on
the following two main subsections.

2.1. Feature representation of question text

General text feature engineering starts from the Bag of words
(BOW), which emphasizes the frequency information of terms
(Wang and Manning, 2012). N-grams is a promotion of BOW (1-
gram). Although the co-occurrence frequency of words is taken
into consideration, it disregards the contextual information
between words and yields to high sparsity. To address these chal-
lenges, the distributed representations are proposed to map each
word or phrase to a latent semantic space. Each word in the vocab-
ulary is represented by a V-dimension vector, which can capture
richer semantic from context and facilitate text understanding.
The mainstream methods includes Word2Vec (Mikolov et al.,
2013), Glove (Pennington et al., 2014), and FastText (Joulin et al.,
2017). With the effectiveness of the pre-trained language model,
the context-dependent representation models such as ELMo
(Ethayarajh, 2019), GPT (Naseem et al., 2021), BERT (Devlin et al.,
2019) and XLNet (Yang et al., 2019) are proposed to learn text rep-
resentations. In addition to considering implicit text representa-
tion, most of the existing work combines both explicit and
implicit representations to obtain rich textual features, using
part-of-speech (POS) tagging and syntactic roles annotation to
extract lexical or syntactical features. For instance, Wang et al.
(2017) combined explicit and implicit representations of short text
through convolutional neural networks. Zhang et al. (2020c) pro-
posed semantics-aware BERT, which incorporates the pre-trained
semantic role annotation over a BERT backbone.

Considering the unique characteristics of specific domains,
scholars have proposed customized approaches to enrich feature
representations by adding extra features (Khot et al., 2020; Xu

Fig. 2. An illustrative architecture of the KMN that simulates the thought process of an annotator annotating a quiz question.
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et al., 2019). This method is usually applied by adding domain
information or utilizing an external knowledge base. For instance,
Wang et al. (2017) introduced an existing knowledge base to cap-
ture more semantic and syntax information. Liu et al. (2018)
applied the semantic similarity between words to extract semantic
features, and used sequential pattern-mining algorithm to obtain
lexical features for English question classification. Sun et al.
(2018) proposed a position-based attention model and keywords-
based model to consider the integration of the query, option, and
answer for the representation of multiple-choice questions. Qiao
and Hu (2019) applied a comprehensive set of features including
lexical, syntactic and semantic features in the cognitive domains.
Yang et al. (2018) proposed a feature-enhanced attention network
to leverage the unigram features, the part of speech features, and
the word position features in sentiment classification. Mohasseb
et al. (2018) exploited the question structure to present a
grammar-based approach for questions categorization. Therefore,
the latest research which incorporates the unique information of
the respective domains into textual feature representation, is ver-
ified to improve the classification accuracy, such as clinical text
classification relying on biomedical knowledge sources (Yao
et al., 2019a), sentiment analysis focusing on opinion word and
specific aspect expression (Zhao et al., 2021; Yang et al., 2014),
legal text classification using domain concepts (Chen et al.,
2022), and question classification highlighting the importance of
the answer to the question (Sun et al., 2018).

Inspired by the integration of domain information, this work
aims to enrich the feature representation of questions by extract-
ing domain-specific features related to knowledge points.
Although some studies have similar practices, they need to con-
sider information outside the question, such as answers and ques-
tion types (Sun et al., 2018), and ignore the knowledge information
of the question itself. To extract the knowledge-specific features,
we pay attention to the question itself, and comprehensively con-
sider the knowledge attribute words and their contextual informa-
tion in the question.

2.2. Automatic question annotation

Automatic Question annotation is considered as a specific task
in text classification (Lv et al., 2020). Traditional machine learning
methods have been utilized to design different forms of classifiers
to improve the accuracy of question annotation. With the substan-
tial success of deep learning algorithms, some deep learning mod-
els are applied to generate effective classifiers, such as sequence
representation models (Liao et al., 2017; Liu and Guo, 2019; Wu
et al., 2020a), structural representation models (Ye et al., 2017;
Huang et al., 2021), and attention-based models (Yang et al.,
2016; Meškelė and Frasincar, 2020). They have been applied in
question annotation tasks and achieved the state-of-the-art perfor-
mance. Convolutional neural networks (CNNs) have been shown to
achieve impressive results in the field of natural language process-
ing. Kalchbrenner et al. (2014) proposed the Dynamic Convolu-
tional Neural Network (DCNN) for question classification and
sentiment prediction. Guo et al. (2019) made a simple modification
for a simple CNN with the little tuning of the hyperparameters for
various classification tasks (TextCNN). Although CNNs show good
performance in the question annotation task, the sequential corre-
lations and the position information of the words in a question
may be ignored. Due to the ability to process sequences of arbitrary
length, Recurrent neural networks (RNNs) are used more fre-
quently in question annotation. For instance, Wang and Nyberg
(2015) used a stacked Bidirectional Long-Short Term Memory
(BiLSTM) network to calculate the relevance scores between the
words from question and answer sentences. Yin et al. (2016) pre-
sented an attention-based convolutional neural network for sen-

tence pair modeling tasks (ABCNN). Li et al. (2020a)
implemented an architecture similar to ABCNN to represent the
question text. Qin et al. (2020) considered the influence of neigh-
borhood characteristics on text tagging, and combined BiGRU
and self-attention mechanism to aggregate k-nearest-neighbor
documents into feature vectors for text tagging. Zeng et al.
(2021) utilized a bi-directional GRU (BiGRU) to encode the para-
graph representation and the answer respectively. To highlight
the important information in textual features, the attention mech-
anism is applied to assign important weights to keywords in
questions.

Because different neural network models have their own advan-
tages and disadvantages, some researchers have tried to combine
the CNNs, RNNs and attention mechanism, which make full use
of their respective advantages to achieve better performance in
the question tagging task. Liu et al. (2019) combined a convolu-
tional neural network, attention mechanism, and recurrent neural
network to propose a novel deep neural network model named
Attention-Based BiGRU-CNN network (ABBC) for Chinese question
classification. Liu and Guo (2019) proposed a novel architecture
that combines BiLSTM, the attention mechanism and the convolu-
tional layer (AC-BiLSTM) for question classification. Compared
with the single structural models, the combination of multiple
models or mechanisms can make full use of the advantages of their
respective models to achieve better performance in the question
annotation task.

Graph neural networks (GNNs) (Wu et al., 2020c; Zhou et al.,
2020) as powerful tools are applied to learn text embedding
through aggregating neighborhood features in a graph structure
and they have shown state-of-the-art performance compared with
many popular neural network models (Bastings et al., 2017). Many
variants of GCNs and GNNs have been proposed and explored on a
variety of tasks, such as graph classification (Lee et al., 2019; Ying
et al., 2018), link prediction (Kipf and Welling, 2017; Zhang and
Chen, 2018) and node classification (Li et al., 2020c). For instance,
Zhang et al. (2018) proposed a novel end-to-end learning frame-
work over the knowledge graphs to exploit the structure informa-
tion realizing logic reasoning. To model knowledge evolution of
students in interactive online question pools, Li et al. (2020b) pre-
sented a new convolutional GNN model to achieve better student
performance prediction by constructing the student-interaction-
question network.

Although many deep learning models have been well studied in
the question annotation task, the knowledge point is only used as a
classification category, ignoring its knowledge characteristics.
Therefore, we present a novel network structure to learn the
knowledge information hidden in the question by focusing on
the words with knowledge characteristics and the application con-
text in the question. Distinguished from previous work, which
induces an external knowledge base or additional text information,
we project the knowledge representation of questions to the latent
knowledge space to extract knowledge-relevant features, which
only depend on the question text itself.

3. Preliminaries

One of the main contributions is to define the related concepts
for question annotation task in this work. These concepts include
knowledge attribute vocabulary, knowledge attribute graph, scene
association matrix, latent knowledge space, and knowledge fea-
tures. In this section, we define these concepts in detail, and rele-
vant notations are listed in Table 1.

Definition 1. Knowledge Attribute Vocabulary. Some words
with clearer knowledge characteristics, such as ‘‘Speed”, ‘‘Constant
Speed” and ‘‘m/s”, are often applied in knowledge scenarios to
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explain knowledge points. These words are called knowledge attri-
bute words in this paper, and they are denoted as
Ka ¼ a1; a2; � � � ; amf g, where m denotes the number of words in
the knowledge attribute vocabulary; these words are selected from
many learning resources, including textbooks, supplementary
books, and quiz questions, etc.

Definition 2. Knowledge Attribute Graph. A heterogeneous
knowledge attribute graph for each question is constructed,
denoted as G ¼ V;E;Oð Þ. It captures the relationship among a
question, knowledge attribute words, and their neighbor words
to highlight the knowledge information. As presented in Fig. 2, a
question is the center of the graph, the knowledge attribute words
of questions are directly connected nodes, and the neighborhood
words are connected with the corresponding knowledge attribute
words. O, which denotes the order relationship of these words in
a question, is incorporated to form the context-aware knowledge
representation.

Definition 3. Scene Association Matrix. Some knowledge attri-
bute words are applied in multiple knowledge scenarios, and the
importance of these words may vary across different knowledge
scenarios. Denoted as wij, the association weight is calculated to
represent the interrelation of words ai and knowledge scenarios
sj. The scene association matrix is composed of the association
weights between all knowledge attribute words and knowledge
scenarios; this matrix is expressed as
A ¼ w11;w12; � � � ;w1k½ �; � � � ; wm1;wm2; � � � ;wmk½ �f g. k denotes the
number of knowledge scenarios, and this number equals the num-
ber of knowledge points.

Definition 4. Latent Knowledge Space. The latent knowledge
space S using the scene association matrix as a base is constructed
to enrich the connotation and extension of knowledge points; this
space is expressed as S ¼ s1; s2; � � � ; skf g; si is the i-th scene base. In
this space, knowledge characteristics between knowledge vectors
with closer distances are more similar.

Definition 5. Knowledge Features. Knowledge features, as a
new dimension feature different from semantic features, are pro-
posed to measure the knowledge characteristics of questions. The
high-dimensional feature vector is obtained by mapping the
knowledge representation in questions to the latent knowledge
space.

4. The S-KMN model

In this paper, we propose a Semantic-Knowledge Mapping Net-
work (S-KMN) that incorporates semantic features learning and
knowledge mapping network for quiz question annotation, as

shown in Fig. 3. The S-KMN can be summed up as three main pro-
cesses: context-aware knowledge representation, knowledge fea-
ture extraction based on latent knowledge space, and question
annotation with semantic-knowledge features. Designing KMN
(Knowledge Mapping Network) to extract implicit knowledge fea-
tures is the focus of this study. First, knowledge attribute vocabu-
lary is selected from a large number of learning resources from
both formal knowledge and practical knowledge. On this basis,
the knowledge attribute graph is constructed for each question,
which is centered on a question, and the knowledge attribute
words and neighbor words are connected to the question. Based
on the graph structure, the contextual information of knowledge
attribute words is aggregated through ‘‘Pyramid Aggregation” to
form the knowledge representation of questions. Then, the knowl-
edge representation is projected to latent knowledge space
through the learnable projection matrix. Finally, weighted summa-
tion is performed on different scene bases in the latent knowledge
space to form the knowledge features. To further enrich the feature
representation of questions, the vector knowledge attention mech-
anism is applied to automatically assign adaptive weights to fuse
semantic and knowledge features.

4.1. Context-aware knowledge representation

Some words play an important role in conveying knowledge
information in question texts. To effectively select these knowl-
edge attribute words, a knowledge attribute vocabulary is estab-
lished based on a large number of learning resources from both
formal knowledge and practical knowledge. This vocabulary
includes professional nouns in disciplines such as words, phrases,
and symbols. Since the word-level information is limited, the con-
text and sequence information of knowledge attribute words in the
question text are also considered in this paper. Hence, each ques-
tion is represented as a knowledge attribute graph by considering
its knowledge attribute words, neighbor words and sequence
information. Then, pyramid aggregation as a novel aggregation
operation is presented to aggregate the contextual information of
knowledge attribute words. Finally, these enhanced knowledge
attribute words are arranged in the original order to form the
knowledge representation in questions. The whole process is
shown in Fig. 4.

4.1.1. Knowledge attribute vocabulary selection
From the two perspectives of formal knowledge and practical

knowledge, we extract appropriate knowledge attribute words
from a large number of learning resources, including textbooks,
supplementary books, after-school homewok, and quiz questions.
These two types of knowledge summarize the application scenar-
ios of knowledge points from different dimensions. According to
their respective characteristics, TF-IDF and TextRank are applied
to extract knowledge attribute words, including a set of words,
phrases, and symbols. The specific manifestations are shown in
Table 2.

4.1.1.1. The knowledge attribute words of formal knowledge. Text-
books or supplementary books offer the most intuitive explanation
of the application scenarios of knowledge points. They are also the
standard form of storing, organizing, and expressing domain
knowledge. They play an important role in the learning process
and belong to formal knowledge (Larkin, 1981). Since they are
mainly intuitive explanations of knowledge concepts, words with
knowledge characteristics appear more frequently. Therefore, we
divide teaching materials and supplementary books into different
documents according to application scenarios of knowledge points
and use TF-IDF (term frequency-inverse document frequency) to

Table 1
Notations and explanations.

Notations Explanations

Q Questions
G Knowledge attribute graph of each question
ki The i-th knowledge point
V Nodes
si The i-th knowledge scenario

rsjai The delay factor

ti The i-th word
E Edges
ai The i-th knowledge attribute word
O Order information of knowledge attribute words
wij Association weight
Cwin The sliding window
A Scene association matrix
Q �

k Knowledge features
S Latent knowledge space
Q �

s Semantic features
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Fig. 3. The overall framework of the proposed S-KMN model. ai denotes the i-th knowledge attribute word in a question q. The arrows in the knowledge attribute graph
represent the sequence information of these words in the question. The different color squares in the ‘‘Pyramid Aggregation” represent different receptive fields considered
when the knowledge attribute word aggregates neighborhood information. The different colors in the ‘‘latent knowledge space” denotes different scene base vectors. ai

represents the weight of the si scene base.

Fig. 4. The process of representing the implicit knowledge information in the question text is mainly divided into the following stages: knowledge attribute vocabulary
selection, knowledge attribute graph construction, pyramid aggregation, and the ordering.
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calculate the TF-IDF factor for each word wf , thereby selecting the
specific words, units, and symbols of knowledge concepts (Tang
et al., 2020).

4.1.1.2. The knowledge attribute words of practical knowledge. After-
school homework and quiz questions are important tools for stu-
dents’ knowledge diagnosis, and they are flexible applications of
professional knowledge in specific scenarios that belong to practi-
cal knowledge (Engstrom, 2009). Hence, the high-frequency words
in a question are not the most important, while the common words
in the application scenarios of knowledge concepts are more
meaningful, such as ‘‘rainbow” in the ‘‘dispersion of light” scenario,
and ‘‘glasses” and ‘‘microscope” in the ‘‘lens” scenario. Therefore,
TextRank is applied to calculate a weighted score wt for each word
based on a large number of quiz questions and exercises; TextRank
is a graph-based ranking algorithm that considers global informa-
tion rather than rely only on local vertex-specific information
(Mihalcea and Tarau, 2004).

4.1.1.3. The combination of knowledge attribute words. To determine
the final knowledge attribute vocabulary, the normalization oper-
ation is applied to standardize the TF-IDF factor and the TextRank
score, and their values are mapped to a certain numerical interval
through function transformation. The formula is shown in (1)-(3),
where wf refers to the TF-IDF factor, wt denotes the TextRank
score, and the weight of each word or symbol is mapped to 0;1ð Þ
based on the maximum and minimum values. Then, the normal-
ized weight of each word is added to get the importance score w.

fwf ¼ wf �wf
min

wf
max �wf

min

ð1Þ

fwt ¼ wt �wt
min

wt
max �wt

min

ð2Þ

w ¼ fwf þ fwt ð3Þ
The above normalization operation is aimed at the keyword shared
by formal knowledge and practical knowledge. For their respective
keywords, the corresponding weights continue to maintain their
initial values. Finally, the words with higher weights are selected
as knowledge attribute words, denoted as Ka ¼ a1; a2; � � � ; amf g,
which can best reflect the knowledge information.

4.1.2. Knowledge attribute graph construction
Each question is represented as a graph-like structure (Shin

et al., 2019), denoted as G ¼ V;E;Oð Þ, where V denotes the node
set that contains three types of nodes: question, knowledge attri-
bute words appearing in the question and their neighbor words;
E denotes edge set that refer to the relationship between different
types of nodes, and O denotes the order information of knowledge
attribute words in the question text. The construction of the
knowledge attribute graph is divided into three main stages, as
shown in Fig. 4: 1) In the first stage, the position of knowledge
attribute words in questions is determined. In the above knowl-

edge attribute vocabulary Ka, we calculate the intersection of
the question text Q and knowledge attribute vocabulary Ka,
obtaining word sequence Qa ¼ ta1; t

a
2; � � � ; tan

� �
and corresponding

index sequence Ia
q ¼ ia1; i

a
2; � � � ; ian

� �
. 2) In this stage, based on the

index Ia
q, the neighbor words of each knowledge attribute word

are included in the knowledge attribute graph. 3) Finally, the
sequence information of different knowledge attribute words is
determined based on their original positional relationship. In this
way, the knowledge attribute graph of each question conveys the
knowledge information involved in the question text.

4.1.3. Pyramid aggregation
To incorporate the local contextual information of knowledge

attribute words, a convolution-like operation acts on the knowl-
edge attribute graph to aggregate the rich neighborhood informa-
tion of knowledge attribute words (Wang et al., 2016). In this
paper, we propose a novel knowledge aggregation operation, called
‘‘Pyramid Aggregation”, which implements two stacked aggrega-
tion operations, as shown in Fig. 4. The purpose of the first aggre-
gation is to expand the receptive field of knowledge attribute
words. We take the knowledge attribute words as the center and
set up a window matrix to move forward and backward to obtain
the neighbor words. The sliding window, which is denoted as
Cwin 2 Rp with all weights equal to one, is used to capture a
sequence of words surrounding knowledge attribute words, and
p denotes the length of the sliding window. The length of the slid-
ing window determines the range of contextual information. The
second aggregation directly acts on the feature information after
the first aggregation. It enriches the knowledge attribute word vec-
tor by enhancing their own characteristics and fusing neighbor-
hood information in the receptive field. The realization of these
two aggregation operations is similar to (Lin et al., 2020), agg incor-
porates the contextual information into a single vector to enrich
the information of knowledge attribute words. The specific formula
is defined as follows:

Q � Cwin ¼ va
11
; � � �va

1p

h i
; � � � ; va

n1
; � � �va

np

h in o
ð4Þ

va
i ¼ agg va

i1
;va

i2
; � � �va

ip

� �
ð5Þ

Q k ¼ va
1;v

a
2; � � � ;va

n

� � ð6Þ
� refers to a window of length p; this sliding window acts in the
context of the i-th knowledge attribute word to produce

va
i1
;va

i2
; � � �va

ip

h i
with the p-th times sliding. va

ip
denotes the embed-

ding vector of a word. The number of knowledge attribute words in
the question determines the number of sliding windows, and the
length of the sliding window directly affects the output of the first
aggregation. Aggregation operations include the following three
main types (Lin et al., 2020). We will evaluate these aggregations
in the experimental section.

aggs ¼ r H
X
j2 1;p½ �

va
ij
þ b

 !

aggm ¼ r H
X
j2 1;p½ �

va
ij
=pþ b

 !
aggc ¼ r H va

i1
kva

i2
k � � �va

ip

� �
þ b

� �

8>>>>>>>>><>>>>>>>>>:
ð7Þ

where —— denotes the concatenation operation, aggs nonlinearly
transforms the summation of representation vectors, aggm is to cal-
culate the mean of each dimension in the representation vector and
then performs a nonlinear transformation on the resulting vector,
and aggc concatenates the representation vectors before performing

Table 2
The main types of knowledge attribute words.

Learning resources Types of knowledge attribute words

Textbooks or supplementary
books (Formal Knowledge)

High-frequency words
Unit
Symbol

After-school homework or quiz
questions (Practical
Knowledge)

Co-occurrence words
Application scenario words
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the nonlinear transformation. The knowledge attribute word vec-
tors after the aggregation function are arranged in the original order
of the question text, and finally, a joint representation Q k is gener-
ated as the knowledge representation. Since each question contains
a different number of knowledge attribute words, we also utilize a
zero-padding operation to add each question to the fixed-length
input.

4.2. Knowledge feature extraction based on latent knowledge space

Knowledge attribute words have different knowledge under-
standing in different application scenarios. For example, ‘‘speed”
can describe not only the motion scene of an object but also the
speed of an object under force. The former focuses on the speed
of the object, while the latter focuses on the force of an object.
To analyze the knowledge expression of knowledge attribute
words across multiple scenarios, we create a latent knowledge
space with a scene association matrix as the base vector, where
the knowledge connotation is more similar between feature vec-
tors with closer distances. Then, a learnable projection matrix
maps the knowledge representation in the question text to the
latent knowledge space to obtain the vector representation on dif-
ferent scene bases. Finally, the weighted combination of these
scene base vectors is the knowledge features of questions. The
whole process is shown in Fig. 5.

4.2.1. Latent knowledge space construction
A latent knowledge space with a scene association matrix as a

base is constructed to extend the connotation and extension of
knowledge points. In this space, the scene association matrix con-
sists of the base vectors of multiple scenarios; this refers to the rel-
ative weights of knowledge attribute words in each knowledge
scenario. The scene association matrix is the core element of the
latent knowledge space and contains rich knowledge connotations.
As shown in Fig. 6, each row is a knowledge attribute word, each
column represents a type of knowledge scenario, and the intersec-
tion refers to the importance of the current word in the application
scenario. Relying on the scene association matrix, it can be
observed that there are two types of knowledge attribute words.
The one type comprises with higher weights but widely applied
in multiple knowledge scenarios, such as the word ‘‘speed” and
‘‘constant speed”, which have higher weights in ‘‘Speed” and ‘‘For-
ce” scenarios. Since these words frequently appear in multiple
knowledge scenarios, their weights should be relatively reduced.
The other type of knowledge attribute words has lower weights
but is relatively independent of the knowledge scenario. For exam-
ple, the word ‘‘Celsius” appears relatively less frequently in the
‘‘Temperature” scene. However, the uniqueness of ‘‘Celsius” can
increase its associated weight with the ‘‘Temperature” scene.

Hence, in addition to considering the weight of knowledge attri-
bute words ewsj

ai in the current knowledge scenario, it is also neces-
sary to consider the frequency of the word in other knowledge
scenarios, to further update the scene association matrix.

Inspired by the relative frequency model (Li et al., 2021), we
propose the weight calculation model of knowledge attribute
words in different knowledge scenarios. It considers not only the
importance of knowledge attribute words in a single knowledge
scenario but also the mutual influence between different knowl-
edge scenarios. In the above process of selecting knowledge attri-
bute words, the weight of each knowledge attribute word ewsj

ai is
used as the initial value of the scene association matrix.

For the knowledge attribute words that appear repeatedly in
multiple knowledge scenarios, we first sum up their weights in dif-
ferent knowledge scenarios to obtain a sumai and then calculate the
weight ratio of the knowledge attribute word ai in the current
knowledge scenario sj as the decay factor r

sj
ai . Based on the initial

weight w and decay factor r
sj
ai , the updated scene association

weight can be obtained after multiplication. In contrast, if a knowl-
edge attribute word appears in only one knowledge scenario, then
the word is unique to that knowledge scenario, and the word’s
associated weight will increase accordingly. The calculation of
scene association weight is defined as:

sumai ¼
X
sj2k

wai
sj

ð8Þ

r
kj
ai ¼ wai

sj
=sumai ð9Þ

Fig. 5. The process of extracting the implicit knowledge features. It is mainly divided into the following stages: the construction of latent knowledge space with a scene
association matrix as the base vector, knowledge mapping, and the weighted combination of scene base vectors.

Fig. 6. The scene association matrix. The darker the color of the square is, the more
widely the word is used in the corresponding knowledge scenario.
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ewsj
ai ¼

w
sj
ai � r

sj
ai num ai 2 sj

� �
> 1

1�w
sj
ai num ai 2 sj

� � ¼ 1 and w
sj
ai <¼ 0:5

w
sj
ai num ai 2 sj

� � ¼ 1 and w
sj
ai > 0:5

8>><>>: ð10Þ

where sumai denotes the sum of the weights of knowledge attribute

words ai appearing in different knowledge scenarios, rsjai denotes the
weight decay factor of the knowledge attribute word ai in the
knowledge scenario sj, and ewsj

ai denotes the final updated weight
between each knowledge attribute word and different knowledge
scenarios. If num ai 2 sj

� � ¼ 1, then ai exists only in knowledge sce-
nario sj and the associated weight of ai should be increased, so we

take the larger value between w
sj
ai and 1�w

sj
ai . All words are stacked

to perform a scene association matrix A 2 0;1ð Þm�k, which is an
asymmetric matrix.

4.2.2. Knowledge mapping
The knowledge representation of questions Q k is mapped into

the d-dimensional latent knowledge space to extract high-level
knowledge features. Since the scene base vector is the basic com-
ponent of the latent knowledge space, the knowledge representa-
tion is projected on each scene base through the learnable
projection matrix to obtain the corresponding feature representa-
tion. Scene base vectors are adaptive for each question in the latent
knowledge space, as shown in Fig. 5. According to the knowledge
attribute words in the question, a subset of the scene association
matrix Aq 2 A is selected as the base vector. For instance, there
are n knowledge attribute words in a question, and the scene base
vector corresponding to the question is Aq 2 Rn�k. To obtain the
mapping vector in each knowledge scene, a projection matrix H
is learned to project the knowledge representation Q k to the scene
base Aq in the latent knowledge space. The specific mapping net-
work is defined as follows:

Q 0
k ¼ u AT

qQ kHþ b
� �

ð11Þ

where H 2 Rv�d denotes a trainable projection matrix; v denotes the
dimension of the word vector; AT

q denotes the transpose
of Aq;u denotes an activation function, e.g, ReLUu xð Þ ¼
max 0; xð Þ;Q 0

k 2 Rk�d is the knowledge representation of each
question; and d is the dimension of knowledge features.

4.2.3. Knowledge features extraction
The feature representation of each question in the latent knowl-

edge space consists of mapping vectors on all scene bases, but each
scene base plays a different role in the knowledge representation
of questions. To highlight scene information related to the knowl-
edge connotation of questions, we apply an attention mechanism
similar to (Zhou et al., 2016), which automatically assigns the
attention score to k scene base vectors of the latent knowledge
space. Hence, the final knowledge feature Q �

k is formed by a
weighted sum of all scene base vectors.

Y ¼ tanh Q 0
k

� � ð12Þ

a ¼ softmax HTY
� �

ð13Þ

c ¼ Q 0
ka

T ð14Þ

Q �
k ¼ tanh cð Þ ð15Þ

where Q 0
k denotes the output vector of knowledge mapping layer,H

is a trained parameter matrix, HT is a transpose, and a denotes the

weighted value that corresponds to the output vectors. Q �
k 2 Rd is

the final knowledge features of questions.

4.3. Question annotation with semantic-knowledge features

To further enrich the feature representation of questions, the
integration module fuses the semantic features on the basis of
extracted knowledge features. Semantic-knowledge features simu-
late the thought process of an annotator labeling a quiz question,
that is, to analyze the knowledge intention of questions while
understanding the text semantics of questions.

4.3.1. Semantic features representation
To capture high-level semantic representations of the question

text, each word ti is embedded into a v-dimensional word vector
space to get vi. The word vectors are learned by Word2Vec based
on their local co-occurrences. Wikipedia and educational resources
constitute the learning corpus, which considers both the general
semantics of the question text as well as its specific semantics in
the educational field.

vi ¼ Eti ð16Þ

Q s ¼ v1;v2; � � � ;vnf g ð17Þ
where ti denotes the i-th word of the question text. ti is represented
by a one-hot vector and is then replaced by a vector in the word
vector space. E 2 Rf�v denotes the pre-trained embedding matrix,
f denotes the size of the vocabulary, and v is the dimension of the
word vector. Hence, a question Q can be transformed into an
embedding matrix Q s 2 Rn�v as the semantic feature representa-
tion, where n denotes the maximum number of words.

Given an embedding matrix V ¼ v1;v2; � � � ;vnf g, text classifica-
tion models are always used to extract general semantic features
Q �

s . At present, the dominant semantic feature extraction models
mainly include CNNs, RNNs, GNNs, ensemble models and pre-
trained language models. Among these models, CNNs, RNNs, GNNs
and attention mechanisms have been the most widely used. On
this basis, some researchers have presented a reasonable combina-
tion of CNNs and RNNs to achieve better results. With the success
of pre-trained language models, recent studies have applied them
(such as ELMo, GPT, Bert and XLNet) to a variety of downstream
tasks in a light fine-tuning way. These methods are described in
detail in the related work. To verify the transferability and wide
applicability of the KMN proposed in this paper, we conduct a vari-
ety of text classification methods, including CNNs, RNNs, GNNs and
Bert, to learn semantic features of questions.

4.3.2. Semantic-knowledge features fusion
Inspired by recent advances in vector knowledge attention

(Zhan et al., 2020), it has proven to maintain richer information
and stronger representation ability than scalar knowledge atten-
tion. We apply vector knowledge attention to assign the adaptive
learning weight vector to the combination of semantic features
and knowledge features automatically, thereby obtaining a com-
prehensive feature representation (Vaswani et al., 2017; Zahedi
et al., 2020). Since the attention score is calculated in the manner
of vector, the final question representation learns rich information
from the semantic level and the knowledge level by assigning
weight to each dimension feature.

The attention calculation procedure can be summarized as fol-
lows: First, the semantic feature vector Q �

s and the knowledge fea-
ture vector Q �

k are transformed into Vs and Vk through the
projection matricesHs;Hk respectively, and then they are concate-
nated into one vector Vf . Next, the nonlinear transformation layers
are utilized to calculate the attention weights of semantic features
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and knowledge features, denoted as attscore. Finally, we apply
element-wise multiplication to calculate the product of attention
vector and the question feature vector, and obtain a rich feature
representation that fuses semantic information and knowledge
information. The specific formula is as follows:

Vs ¼ HsQ
�
s þ bs ð18Þ

Vk ¼ HkQ
�
k þ bk ð19Þ

Vf ¼ VsjjVk ð20Þ

attscore ¼ u HattVf þ batt
� � ð21Þ

Q sk ¼ attscore 	 Q �
s jjQ �

k

� 	 ð22Þ
where Hs and Hk are the transformation weight matrices, and bs

and bk denote the corresponding bias vectors. —— represents
multi-feature concatenation. u denotes the sigmoid activation
function that gives a probabilistically interpretable prediction. 	
denotes the element-wise multiplication of the two matrices.

4.3.3. Question annotation
With the semantic-knowledge features fusion module, Q sk as

the final question representation is used to assign a correct knowl-
edge point y to the input question by a softmax layer. The softmax
function normalizes the prediction probability to produce a k-
dimensional real number vector, where each element in the vector
has a value between 0;1ð Þ. Then, the knowledge point with the
highest probability is chosen as the predicted label for the input
quiz question. The function is formulated as:

y ¼ softmax HQ sk þ bð Þ ð23Þ
For the multi-class classification task, the cross-entropy loss func-
tion is adapted to train our model, thus minimizing the following
loss (Tao et al., 2019).

Loss ¼ �
X
q2P

Xk
i¼1

yi log ŷið Þ ð24Þ

where P denotes the training question dataset, ŷi denotes the pre-
diction probability distribution for the question q; yi denotes the
one-hot represented ground truth of question q, and k denotes the
number of knowledge points. The goal of training is to minimize
the cross-entropy error between ŷi and the ground truth yi for all
training data. During training, Adam acts as an optimizer to mini-
mize the loss function (Kingma and Ba, 2015), which is a fast and
computationally efficient tool for gradient-based optimization.

5. Experiment

In this section, we conduct comprehensive experiments to eval-
uate the performance of the Semantic-Knowledge Mapping Net-
work (S-KMN) on question annotation tasks in physics. In what
follows, we offer a detailed description of the experimental data-
sets, baseline methods, and experimental settings, and a specific
analysis of the experimental results.

5.1. Physics quiz questions dataset

The data used in this study are a real-world dataset of junior
high school physics quiz questions with a total of 19,410 questions
covering 30 knowledge points from grades 7 and 8. These knowl-
edge points include temperature, density, mass, measurement,
buoyancy, pressure, force, velocity, etc. The dataset is provided
by our collaborator, an educational technology company. Each

question consists of the question text and the option, along with
the corresponding knowledge point. These questions are manually
labeled by a team of professional teachers in our partner company.
To ensure annotation quality and consistency, three annotators
with specialized knowledge of the physical disciplines, partici-
pated in the annotation task. The entire annotation proceeds in a
two-stage process, where the annotators independently label the
entire dataset of 19,410 questions in Stage 1. Each of the questions
where the annotators do not have complete agreement is negoti-
ated by all annotators to determine the final knowledge point in
Stage 2. This process produces high-quality knowledge points for
the physics quiz question dataset.

Some examples from the dataset are shown in Table 3. The
dataset contains a variety of question types, such as multiple-
choice questions, calculation questions, fill-in-the-blank questions,
and experimental questions. The question types and the corre-
sponding quantity distribution are shown in Fig. 7, among which
multiple choice questions and fill-in-the-blank questions account
for a large proportion. The original questions in our experiment
is from physical discipline and is in Chinese, we translate they into
English for a better explanation, but our method has no restrictions
on the language and discipline.

5.1.1. Dataset statistics
For the dataset, we randomly select 80% as the training set,

with the remaining 20% as the test set, and balance the question
distribution in different knowledge points. The summary statistics
of the training set and the test set are shown in Table 4. A large dif-
ference can be seen in terms of the question length and the number
of knowledge attribute words due to the datasets containing mul-
tiple types of questions. After preprocessing operations, such as
word segmentation and removal of stop words, the length of the
question is 0;150ð �, and the number of knowledge attribute words
is 0;25ð �, which accounts for 96%. Therefore, the fixed length of
each question is set to 150, and the fixed number of knowledge
attribute words is 25. Table 4 also shows that the number of ques-
tions without knowledge attribute words in the statistical training
set and test set are 247 and 60, respectively, which account for a
small proportion. The analysis result can also certify that the
selected knowledge attribute words are universal and suitable for
most questions. Regardless of the question type, knowledge attri-
bute words reflect their common knowledge information.

5.1.2. Knowledge attribute wordcloud
A total of 435 knowledge attribute words are selected from

numerous physics educational resources. The wordcloud of these
knowledge attribute words is shown in Fig. 7. The size of a word
in the wordcloud is proportional to its importance in the latent
knowledge space, and different colors make it visually appealing
and readable. Fig. 7 clearly shows that some knowledge attribute
words, such as ‘‘temperature”, ‘‘force”, and ‘‘m/s”, belong to the

Table 3
Examples of quiz questions labeled with knowledge points in the experimental data.

Question Knowledge point

According to the reflected ray ob in the figure, draw the
incident ray ao.

reflection of light

What two forces act on a blackboard eraser resting on a
horizontal table?

force

Please use physics knowledge to explain why a pressure
cooker cooks rice quickly.

pressure

The various colors displayed on the TV screen consist of
three colors of light, which are ___.

dispersion of light

For the state change associated with the process of
‘‘dropping water into ice” is ___.

change of state
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special terms of physics and play an important role in revealing the
connotation and extension of knowledge points. This finding fur-
ther shows that the knowledge attribute words extracted in this
paper have high quality, which is helpful to understand the knowl-
edge information of physical disciplines.

5.2. Experimental settings

5.2.1. Implementation details
During the pre-processing step, a physical dictionary-based Chi-

nese word segmentation tool PkuSeg is applied to the question
text. PkuSeg can achieve field-based word segmentation, for exam-
ple, ‘‘States of change” as a whole word instead of being split into
multiple words. Based on word segmentation, useless information
(such as stop words, punctuation, and number) are removed from
the tokenized sequence data. Then, we pre-train the Word2Vec
(Mikolov et al., 2013) over the collection of Wikipedia and large-
scale education resources to learn the 400-dimensional word
embedding, which gives the words in the question both general
semantic information and domain information. The words not
appearing in the pre-trained vocabulary are randomly initialized
with uniformly distributed values between �0. 25 and 0.25.

For the hyper-parameters setting in our model, KMN with hid-
den layer dimensions of 256 applies Rectified Linear Units (RELU)
as the activation function with a drop rate of 0.3. As an aggregation
function, aggrem is used to enrich the contextual information of
knowledge attribute words. To avoid over-fitting, dropout at a rate
of 0.5 is applied after the fully connected layer. In the training pro-
cedure, the gradient-based Adam optimizer (Kingma and Ba, 2015)
has an initial learning rate of 5�3. Our method is trained at a batch
size of 32 and stops training when the accuracy on the validation
set does not increase for 20 consecutive epochs. For all baselines,

we use default parameter settings as in their original papers or
implementations.

5.2.2. Evaluation metrics
Concerning the evaluation methods, precision, recall, and the

F1-score have frequently been used as evaluation metrics in binary
classification tasks. Accuracy is a relatively simple evaluation
method that refers to the ratio of the number of correctly classified
questions to the total number of questions. To further analyze the
distribution of predicted labels and real labels in different cate-
gories, precision and recall are proposed. Precision is defined as
the ratio of true positive (TP) samples in the all-positive predicted
samples. Recall is defined as the ratio of true positive samples to all
samples with correct predictions. Since precision and recall are a
pair of contradictory measures, F1 is induced to the symmetrical
average of two evaluation metrics. The calculation formulas of
these three evaluation metrics are as follows:

Precision ¼ TP
TP þ FP

ð25Þ

Recall ¼ TP
TP þ FN

ð26Þ

F1 ¼ 2� Precision� Recall
Precisionþ Recallð Þ ð27Þ

In a multi-class scenario, macro-averaging is used to summarize
the results of precision, recall and F1 computed for all knowledge
points. The macro-averaging strategy performs an average over
the evaluation measure considering all classes and is not affected
by data imbalance. Therefore, the formulas for precision, recall
and F1 by using the macro-averaging strategy are as follows.

Fig. 7. Left: The statistic of physics question dataset. Right: Wordcloud for the knowledge attribute vocabulary.

Table 4
The summary statistics of the training set and test set.

Data types Number of questions Number of words Number of knowledge attribute words

0 < l 6 10 10 < l 6 50 50 < l 6 150 0 0 < c 6 10 10 < c 6 25 > 25

training data 15527 2747 11543 1237 247 11022 3681 577
Test data 3883 663 2899 321 60 2773 887 163
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Macro� Precision ¼ 1
k

Xk
i¼1

Precisioni ð28Þ

Macro� Recall ¼ 1
k

Xk
i¼1

Recalli ð29Þ

Macro� F1 ¼ 1
k

Xk
i¼1

F1i ð30Þ

5.2.3. Baseline models
Since question annotation belongs to a special text classification

task, some state-of-the-art text classification models for extracting
semantic features are selected as baseline models. All models are
fine-tuned on the physical quiz question set to demonstrate the
effectiveness of the S-KMN. The relevant introduction and hyper-
parameters of these models are as follows:

� TextCNN: It is proposed by Kim (Kim, 2014), which is a variant
of CNN superior in understanding semantics. The innovation of
the model is that the convolution layer has three different ker-
nels. The filter windows of 3, 4, 5 with 100 feature maps each
are applied in this paper.

� Att-BLSTM (Zhou et al., 2016): This is a classifier with a BLSTM
network and a neural attention mechanism that can capture the
most important semantic information in the text. The architec-
ture comprises five components, namely, the input layer,
embedding layer, LSTM layer, attention layer, and output layer.
The single LSTM block uses 256 dimensional hidden and cell
states.

� AC-BiLSTM (Liu and Guo, 2019): This is a hybrid model archi-
tecture that contains a BiLSTM block, an attention mechanism
and a convolutional layer. It captures both the local features
of phrases and the global semantics of sentences. The number
of neurons in a single LSTM is set to 256, the filter size in the
convolutional layer is 3, and the number is set to 100.

� Attention-based BiGRU-CNN (ABBC) (Liu et al., 2019): This
neural network integrates the advantages of Text-CNN, Bi-
GRU and an attention mechanism for Chinese question classifi-
cation. The model extracts the key features while extracting the
contextual information of the words in each question. The
height of the convolution kernel is 2, 3, and 4; and hidden layer
dimension is 256.

� TextGCN (Yao et al., 2019b): In this paper, graph convolutional
networks are used to construct a text graph based on question
datasets, which capture word co-occurrence and question word
relations. This is the first study to jointly learn word and docu-
ment embeddings through the construction of heterogeneous
graphs. The embedding size of the first graph convolution layer
is 200 and the window size is set to 10 due to the shorter ques-
tion text.

� BERT (Devlin et al., 2019): BERT, as a language representation
model, is designed to learn text representations by using
masked language models and a ‘‘next sentence prediction” task.
BertBase with 12 transformer layers, 768 hidden units, and 12
multi-attention heads is pretrained on Chinese Wikipedia data.
We fine-tuned the final classification layer on our quiz question
annotation task.

� TextING (Zhang et al., 2020b): This model builds individual
graphs for each sample to depict detailed word-word relations,
which learns the word embedding via Gated Graph Neural Net-
works (Li et al., 2019), and finally aggregates multiple words
into the document embedding.

� ChineseBERT (Sun et al., 2021): To consider the uniqueness of
the Chinese language, ChineseBERT incorporates the glyph and
pinyin information of Chinese characters into the pre-trained

Bert model. It takes full advantage of the semantics behind
the glyphs and addresses the challenge of heteronym.

� S-KMN (Att-BLSTM): This is a specific implementation of the
proposed S-KMN framework, Att-BLSTM, as a semantic feature
extraction network, fused with KMN for quiz question annota-
tion tasks.

� S-KMN (AC-BiLSTM): AC-BiLSTM, as a hybrid model integrating
the advantages of multiple networks, is chosen as a semantic
feature extraction module of S-KMN.

� S-KMN (Bert): Bert, as a pre-trained language representation
model integrating the context-sensitive features, is chosen as
a semantic feature extraction module of the S-KMN.

5.3. Results

5.3.1. Overall comparison
In this subsection, we compare the proposed three S-KMNmod-

els with the eight deep learning models in terms of macro-
precision, macro-recall and the macro-F1 on real-world physics
quiz question sets. The experimental results are summarized in
Table 5. The best value is in bold, and the second-best value is
underlined. The table shows that the S-KMN incorporating knowl-
edge features outperforms the state-of-the-art text classification-
based question annotation method. Table 5 provides the following
observations:

� Among all baseline models, ChineseBERT achieves the best
results, Bert, AC-BiLSTM and ABBC outperform the single net-
work models TextCNN and Att-BLSTM. This is because Chi-
neseBert considers the glyph and pinyin information of
Chinese characters and is thus more suitable for the Chinese
question dataset used in this paper. Table 5 also shows that
TextING and TextGCN achieve satisfactory results on document
classification tasks, but the constructed text graph is not suit-
able for modeling the relationship between word nodes and
question nodes due to the short question text and sparse
semantics, thus resulting in poor performance on question
annotation tasks.

� The macro-F1 of S-KMN (Att-BLSTM), S-KMN (AC-BiLSTM) and
S-KMN (BERT) after knowledge features enhancement improve
by 1:21%;1:18%;1:13%, respectively. Since the semantic fea-
ture extraction module is the backbone with the same evalua-
tion procedure, the gain is entirely due to the newly
introduced knowledge features. The major reason is that the
extracted knowledge features capture the implicit knowledge
information of questions from a novel feature dimension, which
is not considered in these comparison methods.

� The results obtained by the proposed three S-KMN models,
shows that the KMN, as a knowledge feature extraction method,
can be superimposed on any network that extracts semantic
features to form the S-KMN. Therefore, the S-KMN has great
compatibility and strong transferability.

Table 5
Performance of the S-KMN against all baseline models.

Methods Macro-P Macro-R Macro-F1

TextCNN 0.8236 0.8201 0.8196
Att-BLSTM 0.8362 0.8329 0.8322

ABBC 0.8401 0.8374 0.8369
AC-BiLSTM 0.8426 0.8397 0.8392
TextGCN 0.8222 0.8212 0.8217
BERT 0.8463 0.8431 0.8426

TextING 0.8367 0.8354 0.8351
ChineseBERT 0.8507 0.8479 0.8482

S-KMN(Att-BLSTM) 0.8471 0.8439 0.8443
S-KMN(AC-BiLSTM) 0.8528 0.8506 0.8510

S-KMN(BERT) 0.8569 0.8533 0.8539
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5.3.2. Ablation study on the S-KMN
To clarify the effectiveness of several key factors in the S-KMN, a

series of ablation studies are conducted on the physics question
dataset. Mainly focus on the following three core components of
the S-KMN: knowledge representation module, knowledge map-
ping module, and semantic-knowledge features fusion module.
As shown in Fig. 8, ‘‘ALL” denotes the entire S-KMN with all com-
ponents, including semantic features extraction (S), knowledge
representation (VH), knowledge mapping (KM), and vector knowl-
edge attention mechanism (VA).

5.3.2.1. Effects of the knowledge representation. The knowledge rep-
resentation of each question is obtained by enhanced knowledge
attribute words and their contextual information based on the cor-
responding knowledge attribute graph. To verify the effectiveness
of the knowledge representation, we compare the performance
changes before and after fusing the knowledge representation
based on the extracted semantic features. From Fig. 8, we can
observe that fusing the knowledge representation slightly
increased by 0.38%, 0.29% and 0.36% in macro-F1 compared with
the semantic features extracted by Att-BLSTM, AC-BiLSTM and
Bert. The possible reason for the performance improvement is that
the knowledge representation aggregates knowledge attribute
words and their contextual information, and contains rich knowl-
edge information.

5.3.2.2. Effects of the knowledge mapping. The scene association
matrix, as the base vector of the latent knowledge space, plays
an important role in the knowledge mapping layer. Hence, we
investigate the effect of different weights of scene association
matrix on model performance. The results are shown in Fig. 8.
The baseline is to assign the same weight to all of the knowledge
attribute words belonging to each knowledge scenario. In the

matrix, if the word appears in a knowledge scene, the value is set
to 1, otherwise, the value is 0. This constant-valued scene associa-
tion matrix can be denoted by KM. Correspondingly, our proposed
scene association matrix considers that the same knowledge attri-
bute word has different association weights for different knowl-
edge scenarios (KMW). The experimental results show that
compared with the fixed weight, the weighted value achieves
stable performance across these three S-KMN variants. The reason
could be that the weighted scene association matrix considers the
importance of knowledge attribute words in different knowledge
scenarios, thereby adding more meaningful knowledge
information.

5.3.2.3. Effects of the vector knowledge attention mechanism. The
vector knowledge attention mechanism is applied to obtain a
weighted sum representation of semantic features and knowledge
features instead of direct concatenation. Fig. 8 shows that com-
pared with the concatenation operation, adding a vector knowl-
edge attention layer achieves superior performance across all the
baseline models, regardless of the weighted value or the constant
value in the scene association matrix. The possible explanation is
that adaptively assigning weights to each dimension feature main-
tains richer information. Hence, the above ablation studies prove
that the vector knowledge attention and the weighted scene asso-
ciation matrix are essential to enhance the feature representation
of questions in the proposed S-KMN framework.

5.3.3. Results on question types
Most existing question annotation models are only suitable for

a few question types. In contrast, the knowledge features proposed
in this work directly correspond to knowledge points, and there are
no restrictions on question types. The experimental results shown

Fig. 8. The ablation study on the S-KMN. ‘‘S” denotes the semantic features
extraction, ‘‘KF” denotes the knowledge representation, ‘‘KM” denotes the knowl-
edge mapping, and ‘‘VA” denotes the vector knowledge attention mechanism.

Table 6
The comparison of Macro-F1 on different question types using S-KMN.

Model Multiple choice questions Fill-in-the-blank All question types

Macro-F1 D Macro-F1 D Macro-F1 D

Att-BLSTM 0.8159 1.26% 0.7903 1.37% 0.8322 1.21%
+KMN 0.8285 0.8040 0.8443

AC-BiLSTM 0.8205 1.24% 0.8052 1.40% 0.8392 1.18%
+KMN 0.8329 0.8192 0.8510
Bert 0.8269 1.19% 0.8126 1.32% 0.8426 1.13%
+KMN 0.8388 0.8258 0.8539

Fig. 9. Effects of different sliding window lengths.
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in Table 6 verify this hypothesis. Since multiple choice questions
and fill-in-the-blank questions account for a relatively high pro-
portion of the dataset, there are enough data to train all models.
Therefore, the above-mentioned dataset is divided into three parts:
a multiple choice dataset with 8,883 questions, a fill-in-the-blank
question dataset with 7,266 questions, and the whole dataset.
The ratio of the training set to the test set is 8:2. Experiments
are conducted to evaluate the performance of the S-KMN based
on Att-BLSTM, AC-BiLSTM, and BERT, which are selected as repre-
sentatives of different model types over the above three datasets.

The results, as shown in Table 6, illustrate the performance
comparison of text classification models and the S-KMN on differ-
ent question types. The results show that the three baseline models
perform outstandingly after integrating the knowledge features.
For instance, compared to BERT, S-KMN (BERT) shows an apparent
improvement in macro-F1 on the multiple-choice question set, the
fill-in-the-blank question set, and the whole dataset of
1:19%;1:32%, and 1:13%, respectively. Hence, the experimental

results show that the growth rate of the S-KMN on the three data
sets is significant, thus indicating that our model is not limited by
the question type and is applicable to all question datasets.

5.3.4. Hyperparameter research
5.3.4.1. Effects of sliding window length. To investigate the influence
of sliding window length, we conduct several experiments by
selecting sliding windows of different lengths in the process of
aggregating the contextual information of knowledge attribute
words. As shown in Fig. 9, the x-axis represents the length of the
sliding window, and the y-axis represents macro-F1. The experi-
mental results show that the S-KMN performs better when the
length of sliding window is equal to 3. The macro-F1 decreases
when the length of the sliding window is too long or too short.
The key explanation for this phenomenon is that an excessively
short sliding window fails to fully capture the contextual informa-
tion of knowledge attribute words, and an excessively long sliding
window means the repetition and superposition of surrounding
words, adding additional interference information.

5.3.4.2. Effects of different aggregators. The sum aggregator, mean
aggregator, and concatenation aggregator are three types of aggre-
gators utilized in the S-KMN models, which reflect different aggre-
gating ways of knowledge attribute words integrating surrounding
contextual information. As a result, experiments are carried out to
see how different aggregators affect the S-KMNs’ performance.
Fig. 10 shows the macro-F1 score for the quiz question datasets
using different aggregators. The figure shows that the sum aggre-
gator and concatenation aggregator produce quite comparable
results, but the mean aggregator achieves better experimental
results. The reason for this could be that the feature information
obtained by the sliding window has certain repeatability, and the
mean aggregation makes the final representation of questions
strengthen the important feature while reducing the feature
dimension.

Fig. 10. Effects of different aggregation methods.

Fig. 11. t-SNE Plots of question feature representation obtained from randomly selecting 10 knowledge points. Different colors represent different knowledge points.
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5.3.5. Visualization of question representation
In this subsection, we verify that the knowledge features

extracted by the KMN enrich the feature representation of ques-
tions. t-SNE is performed to visualize the question representation
before and after the fusion of knowledge features. First, we output
the question vector of the feature extraction layer from the base-
line model and the S-KMN model, that is, Q �

s and Qsk, which
directly determine the accuracy of subsequent question annota-
tion. Since Q �

s and Qsk are both high-dimensional vector represen-
tations, we apply a t-SNE (Van der Maaten and Hinton, 2012) to
transform high-dimensional vector into a two-dimensional space
to visualize the question representation. As shown in Fig. 11, we
randomly select 10 of the 30 knowledge points and visually display
the feature representation of questions belonging to these knowl-
edge points.

Fig. 11(a)(b)(c) show that Att-BLSTM, AC-BiLSTM and Bert
extract only semantic features of the question text, thus blurring
the boundaries of the question feature under different knowledge
points. This is prone to cause misjudgment, and the improvement
of annotation accuracy can be limited. In contrary, the question
features enhanced by superimposing knowledge features are more
discriminative, and it is easier to distinguish the questions belong-
ing to different knowledge points, as shown in Fig. 11(d)(e)(f).
Fig. 11 also reasonably explains why BERT outperforms Att-
BLSTM and AC-BiLSTM.

6. Conclusion and future work

In this paper, a Semantic-Knowledge Mapping Network (S-
KMN) is proposed to simulate the process of an annotator thinking
about a question, which further mines the knowledge connotation
on the basis of understanding the explicit semantics of a question.
Designing the KMN to extract knowledge features is the focus of
this paper. First, for each question, we construct a knowledge attri-
bute graph, which captures the relationship among a question,
knowledge attribute words, and their neighborhood to form the
knowledge representation of questions. Then, the knowledge rep-
resentation is mapped to a latent knowledge space through a
learnable projection matrix for extracting knowledge features. To
further enrich question representation, the vector knowledge
attention mechanism is applied to assign the attentive weights to
the combination of explicit semantic features and implicit knowl-
edge features. The effectiveness of the S-KMN framework, espe-
cially the important role of the extracted knowledge features, is
verified by experiments on the physics quiz question set.

In the future, we will further study the generalization ability of
S-KMN in other disciplines and question types, as well as the dis-
tinction and connection between knowledge and semantics in
question representation. In another promising direction is to com-
prehensively consider the multimodal information in the question,
including text modality and image modality, which reflect the
knowledge connotation of the question frommultiple perspectives,
thereby further enriching the feature representation of quiz
questions.
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