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ABSTRACT 

Determination of heat transfer in channel flow is important in many fields, with 

particular interest to this research being the cooling channels in gas turbine engine blades. 

Validation of gas turbine engine design is an essential step in their development process. 

Accurate knowledge of heat transfer that occurs within turbine blades during their 

operation allows for reduction of thermal stresses, increasing blade life and energy 

efficiency. Measuring heat flux, q, directly is difficult, so it is often calculated based on 

Newton‟s Law of Cooling. 

Use of thermochromic liquid crystals (TLCs) in determining heat transfer 

coefficients h is common, as they allow full-field temperature measurement by allowing 

the experimenter to measure surface temperatures in a non-invasive fashion. Direct 

measurement of bulk flow temperature    is difficult, with computation requiring 

detailed upstream information.      and h are known for established geometries, but 

become uncertain in complex geometries.  

 The goal of this study was to develop a technique using inverse methods to 

estimate h and    simultaneously using experimental transient TLC surface temperature 

data. To apply this method to complex geometries, it was first desired to develop it on a 

simple geometry. An experimental apparatus was designed, immersing a flat plate in a 

wind tunnel capable of varying fluid flow speed and temperature. The surface of the plate 

was coated with TLCs and recorded with a digital camera. The plate was subjected to a 
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sudden heating of the air flow, and the TLC response was recorded. The hue camera data 

was converted to temperature data, being validated by an array of thermocouples. 

 Analytical models were developed that related surface temperature to time, h, and 

  , in which the profile of    in time was assumed first to be a step function, then a 

series of ramps. These surface convection formulations were used with a conjugate 

gradient inverse method to estimate h and    using TLC hue temperature data as the 

input. 

 The inverse method was tested with models and data of increasing complexity at 

three plate positions at various distances from the plate leading edge. First, a step change 

model was used to verify h and    could be estimated simultaneously. Then, 

experimental hue temperature data was used with the series of ramps model to estimate 

these parameters. 

 The lead position (Position 1) worked very well with the step function, producing 

   values within 4% of true values, and h values within accepted ranges. Positions 2 and 

3 had relatively successful results, predicting    with 10% accuracy but with h values 

greater than accepted correlation ranges. Use of generated data with the series of ramps 

formulation predicted algorithm convergence with large error, which was corroborated 

with parameter estimation using experimental data. Experimental data produced large 

variances in initial    slopes, but was still able to minimize the objective function in a 

stable way. It was concluded that the method works but will require additional constraints 

for increased accuracy. 
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1 INTRODUCTION 

 The gas turbine engine has become an increasingly integral part of everyday life 

due to its many advantages over other engines. Their high thermal efficiency make 

stationary gas turbine engines a mainstay for generating electricity, and their high power-

to-weight ratio make them ideal power plants for vehicles – especially aircraft. This 

makes their use in the aerospace industry pervasive. As research is conducted in 

miniaturization and increased efficiency, the use of gas turbine engines in industry is 

likely to grow larger for the indefinite future.  

1.1 Temperature Measurement Problems in Complex Channels 

 Since the efficiency of a gas turbine increases with increasing combustion 

temperatures, cooling channels were added to gas turbine blades in the 1960s to maintain 

mechanical integrity [1]. Since then, efforts have continued to maximize the cooling 

efficiency of these blades through better channel design and, concurrent with this, a need 

developed for better techniques to validate designs. The complex geometry of these 

blades makes traditional measurement techniques difficult. The goal of this thesis is to 

present an alternative heat transfer measurement technique in gas turbine cooling 

channels, a technique that combines transient experimental techniques with inverse 

parameter estimation methods. This technique has the potential to be more accurate and 

easier to perform than traditional methods. 
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1.1.1 Gas Turbine Engine Design 

Gas turbine engines operate on the thermodynamic Brayton cycle.  Air is pulled 

into the engine through the inlet and compressed in a multiple stage compressor. The 

compressed air is then injected with fuel and ignited in the combustion chamber. The 

combustion gasses push through the turbine extracting energy and then is exhausted. The 

extracted energy can then subsequently be converted to electricity on a stationary gas 

turbine engine, or diverted for use in propulsion. Figure 1.1 shows these cycle steps on a 

typical gas turbine engine. 

 
Figure 1.1 Turbine Stages: Gas turbine engines follow a Brayton cycle [2]. 

The efficiency of gas turbine engines is largely dependent on the inlet temperature 

to the turbine following the combustion chamber. Higher temperatures translate to more 

energy that can be extracted with the turbine blades. However, higher temperatures 

shorten the life of these blades.  Servicing and replacing turbine blades is a major upkeep 

cost in the life of an engine. To extend blade life and reduce costs, the blades are cast 

with internal cooling channels.  As can be seen in Figure 1.2, these channels have a 

complex geometry, with air flowing into them via the “root” at the base of the blade, 

making several passes along the length, and then exiting through both the leading and 

trailing edges. Additionally, turbulators are often added to the channels to increase heat 

transfer rates. 
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Figure 1.2 Turbine Blade Cross Section: This isometric view shows a cross section of a typical engine 

blade and its internal cooling passages. The arrow traces the path of cooling air and lists the different 

types of cooling effects [1]. 

The design challenge of these cooling channels is how to design the channels such 

that coolant flow is used effectively. The goal of the blade designer is to keep the blade at 

a uniform temperature below a temperature limit to lengthen blade life. To do this, the 

designer shapes the channel to direct coolant flow and maximize heat transfer rate at 

places where the blade is hottest, and reduce it at the places where the blade is cooler, all 

while minimizing channel pressure drop through the channel and maintaining uniform 

blade temperature.  

Current testing techniques to analyze cooling channel heat transfer in these blades 

are involved, requiring extensive work and data analysis. An example technique is the 

use of an array of heat flux gauge thermopile sensors [3]. These measure heat transfer 

coefficients indirectly by calculating heat flux based on a temperature differential. They 

require an insertion point into the walls of the apparatus for each sensor, making the 

technique invasive.  To obtain a temperature field, this and other techniques require 

approximations and interpolation of point temperature measurements.  Because of this, 

heat transfer data gathered is at times inaccurate and uncertain [4]. 
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With more accurate heat transfer values within the channel, hot spots on the walls 

of the cooling channels could be more readily and accurately identified, and more 

efficient cooling channels could be designed. This, in turn, leads to both reduced 

maintenance costs and greater engine efficiency.  Since the channels cool more 

efficiently, combustion can be run at a higher temperature without adding to operating 

costs. Or, since less air is needed for cooling, more air can be used for combustion, 

increasing the power and efficiency of the engine.  Both benefits result in a better overall 

product. Also, higher efficiency could be used for increased pressure used in fuel-air 

mixing. This would lead to a more complete combustion mixture, reducing     

emissions and enabling a cleaner engine. 

1.1.2 Defining the Driving Temperature 

The core of blade cooling channel design involves controlling heat transfer at the 

channel wall. To do this, having measurements that help the engineer calculate accurate 

heat flux, q”, values is vital. In nearly every heat transfer design scenario in which 

convection plays a role, it is desirable to also know the temperature difference between 

the fluid and the surface,        , which drives heat transfer, with accuracy. This leads 

to more accurate heat transfer coefficients, h, and surface heat fluxes, q”.  

These three variables are interrelated by Newton‟s Law of Cooling: 

               (1.1) 

where    is the temperature of the surface through which the heat flux occurs. Heat 

transfer between a fluid and a surface is a complex process. Newton‟s Law of Cooling is 

an empirical formula that simplifies calculations for this process. It has been verified 

experimentally and has been found useful for engineering purposes. The driving 
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temperature    is an abstraction.  One knows where to measure the surface temperature 

  ; its location is implicit in its name. The location of measurement of   , however, is 

not as simple. The combination of the temperature difference         and h need to be 

evaluated such that the correct heat flux, q”, is calculated.  

This evaluation is complicated by the definition of   .    is the temperature 

outside the boundary layer for an external flow, and a mixing cup temperature at a flow 

cross section in a bounded flow. In heat transfer engineering, the mixing cup temperature 

is defined as the mean temperature of the stream in a duct. It is important to note that the 

mean temperature is not an average.  Rather, it is derived from the First Law of 

Thermodynamics for a bulk flow: 

     
 

  
     

 
 (1.2) 

in which V is the average axial velocity, v is the local axial velocity, and A is the cross-

sectional area of the duct [5]. Locating    for this mixing cup temperature is difficult for 

all but the simplest of internal flow geometries. 

The true driving force behind heat transfer is not a temperature difference at all, 

but rather a temperature gradient.  The correct evaluation of heat flux in the fluid at a 

fluid-solid interface is found through Fourier‟s Law of Conduction: 

         
    

  
 
   

 (1.3) 

in which the f subscript denotes properties for the fluid. Fourier‟s Law of Conduction is 

also an empirical formula like Newton‟s Law of Cooling. However, instead of containing 

a temperature difference, Fourier‟s Law contains a temperature differential at the 

interface. Also, the kinetic theory of gasses supports the relationship [6]. This definition 

of q” is a more proper one, driven by the temperature gradient at the wall. Fourier‟s Law 
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of Conduction when combined with Newton‟s Law of Cooling leads to a more complete 

definition of h. When Equations 1.1 and 1.3 are combined and rearranged to define h, the 

result is: 

    
   

   

  
 
   

       
. (1.4) 

The heat transfer coefficient, h, is a measure of the ratio of the temperature gradient at the 

wall to the driving temperature difference. However, the problem of locating    remains.  

Figure 1.3 shows a visual representation of this gradient. 

 
Figure 1.3 Temperature Gradient: The temperature profile T is uniform as it approaches the free 

stream, but has a gradient at the wall. 

While this relationship is very useful for gaining an intuitive grasp of h, it is not 

very useful experimentally since the temperature gradient at the wall is difficult to 

measure. This is why Newton‟s Law of Cooling, despite its flaws, is useful. It contains 

only temperatures that need to be measured, and the difficulty lies in locating    for 

accurate h and q” values.  

These values have already been determined empirically for many common heat 

transfer problems. For example, when the free stream is uniform in external flow, simply 

measuring    a distance outside of the boundary layer is sufficient.  Likewise, in a 
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straight uniform channel in which flow is symmetric, calculating the mixing cup 

temperature is simplified since the channel and flow symmetry make calculating averages 

a straightforward process. However, when seeking    in the more complex system of a 

gas turbine engine blade cooling channel, the problem becomes complex.  

Such a complex geometry leads to a non-uniform flow field and a lack of 

symmetry. Defining the cross section to compute a mixing cup temperature is 

problematic. Further complications arise from the fact that, in channel flow, there is often 

not a single   . As air flows through a channel, heat is constantly flowing through the 

walls, changing    in the stream-wise direction. This means that, for each cross section 

of the duct, there exists a unique   . This    must be consistent with energy lost or 

gained through the upstream walls of the duct. Consequently, an accurate calculation of 

   requires knowing q” over all upstream wall surfaces.  

Figure 1.4 shows an example of how free stream temperature can change stream-

wise in a channel for a constant wall temperature. Dimensionless distance    is the 

distance from the start of the duct divided by hydraulic diameter, 
 

  
. Dimensionless 

temperature    is calculated from stream temperature   , wall temperature   , and inlet 

temperature    ,    
      

      
. This further reinforces the idea that defining and 

determining    through measurement is problematic. For this figure, it was assumed wall 

boundary layers had crossed, and the entrance length was neglected. Also, h was held 

constant. 
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Figure 1.4 Channel Temperature: Each stream-wise location in the duct has a unique   . The 

conditions for this example are constant wall temperature, circular duct. 

Using the mathematical definition of mixing cup temperature (Equation 1.2) in an 

experimental context is prohibitive, since there are few non-invasive ways to determine T 

at multiple points in a flow without changing the velocity distribution. There are 

methods, however, for determining the temperature field on solid surfaces. The purpose 

of this research was to explore alternate methods of arriving at accurate    and h values 

that require fewer measurements and calculations of the free stream temperature. 

Combining the use of transient experimental techniques with inverse methods, simpler 

and more accurate estimates of h and    are possible in complex geometries, requiring 

only local surface temperature history. 

1.2 Problem Description 

The goal of this research was to develop a method to determine both the local heat 

transfer coefficients, h, and the corresponding bulk free stream temperatures,   , on a flat 

plate in cross flow subjected to a transient near-step temperature change of the fluid, 
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given surface temperature response data. Instead of treating    as a value to 

experimentally measure to find the surface heat flux, it was treated as an additional 

parameter to h to determine from the experimental surface temperature history. In this 

way, the problems arising from Newton‟s Law of Cooling requiring experimental 

determination of    were no longer relevant. With accurate h and    values, q” could be 

calculated. The new problem, however, was how to solve for this additional parameter in 

  . 

To determine h and   , analytical models for forced convective heat transfer 

across the surface of a semi-infinite object were used. These models present surface 

temperature as a function of time, with h,   , and material properties as parameters 

(Equation 1.5).   

                  (1.5) 

To solve for h and   , parameter estimation with inverse methods was implemented 

using numerical methods. The role of the inverse method was to determine the 

parameters that best fit, in a least squares sense, the surface temperature data using the 

analytical model.  The particular inverse solution method used was the conjugate gradient 

method.  This method is iterative, starting with an educated guess at the parameter vector 

and using a given model to calculate a new vector to compare with data.  Based on how 

different the two vectors are, the method changes the parameters and recalculates, 

repeating this procedure until the difference between the measured data and calculated 

data is minimized within a predetermined threshold. 

For purposes of calculation, it was simplified that    was a piecewise-linear 

function to approximate its actual shape, as observed in Figure 1.5. It can be seen that the 
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initial rise of the free stream temperature and the long, slow rise portions can be very 

accurately represented by a single ramp each. The transition between the two, however, 

involved rapid shape change, and thus more ramps are needed to represent the form with 

accuracy. Second, h was assumed to be constant. It can be seen why this is true from 

Equation 1.4. For most time, the rate of increase between the temperature gradient at the 

wall  
  

  
 
   

 and the temperature difference         is very close. This relationship 

breaks down for very small times at which the wall gradient approaches infinity. 

However, work done with FLUENT numerical models revealed this time to be on the 

order of a few milliseconds, which was considered small enough for the constant h 

assumption to hold [7]. For this assumption, the fluidic boundary layer had already been 

established. 

 

Figure 1.5 Temperature Ramp Fit: Typical free stream temperature rise of a wind tunnel 

experimental trial. The    values indicate different fit slopes. 

It was desired to have a method that could accurately calculate parameters over an 

entire surface without interpolation. Therefore, the temperature history of the surface was 
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determined through use of thermochromic liquid crystals (TLC). These crystals are 

applied over a surface similar to paint and are engineered to display hues of the color 

spectrum over a certain temperature range, being clear outside of this range. TLCs can be 

manufactured to associate a hue value with a particular temperature. The crystals were 

calibrated in situ so that hue values could be converted to temperature values using a 

calibration relationship.  This method gives accurate temperature values over the surface 

of an object [8]. 

The primary goal of this work is to verify that this method works on simple, well 

understood geometries so that it can be applied to more complex geometries, such as the 

cooling channels of a gas turbine blade. A flat plate was chosen as the model geometry 

because its thermal response is well known.  

 To verify the technique, the flat plate was painted with TLCs and placed in a 

heated airstream The hue change of the TLCs was monitored by a camera and converted 

to temperature history using a temperature/hue calibration. Finally, the conjugate gradient 

inverse method was applied to the temperature history data to calculate h and   .  The 

computed values of h and    were compared with generally accepted correlations for h 

over a flat plate and the measured    values.   
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2 BACKGROUND 

The goal of the experiment was to find heat transfer coefficients h and free stream 

temperature    given the transient surface temperature response of a solid. The test 

object was a flat plate placed in a small-scale wind tunnel. The plate was subjected to a 

sudden rise in   , and the surface temperature response    was measured by recording 

the color change (color play) of a coating of thermochromic liquid crystals (TLCs) 

painted on the surface.  A semi-infinite solid analytical model was applied that related the 

parameters    and h to   , and an inverse method was used to solve for these parameters 

using the surface temperature data. 

2.1 Literature Review 

There were several notable research projects conducted in the last several years 

that lead up to and influence the motivation for this research.  A summary of these 

projects follows. 

While TLCs have been in use for decades, they are still a relative newcomer in the 

variety of ways to determine heat transfer coefficients.  Before TLCs became common, 

heat transfer coefficients were determined indirectly by measuring heat flux. Childs et al. 

[9] generalized these techniques into four categories.  

1. Heat flux measurement through differential temperature measurement 

involves a sensor comprised of two or more thermocouples (often a single 

thermopile) placed closely to one another. Knowledge of the thermal 

conductivity of the material between the thermocouples allows the heat flux 
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to be found through Fourier‟s Law. Because the sensors have to be installed 

inside the surface of the material in question, the material of the sensor needs 

to either have similar thermal properties of the surface, or the error associated 

with the thermal discontinuity needs to be addressed. 

2. Calorimetric methods use heat balance equations applied to a temperature 

sensor taking temporal measurements. Within this category, there are many 

different ways of measuring energy storage. Slug calorimeters are sensors 

that measure the temperature change of a volume of material to determine the 

heat gained, and are common. Other methods include null point calorimeters, 

thin-film sensors, and whole-surface monitoring. 

3. Energy supply or removal methods also use energy balance equations, but in 

conjunction with controlled energy that is either supplied or removed from 

the system. Methods to control energy transfer include electric heaters, 

convective passages, or the Peltier effect. 

4. Finally, the mass transfer analogy uses measurements of mass transfer instead 

of heat transfer, and uses correlations to relate the two. An example of this 

would be the naphthalene sublimation technique in which naphthalene, a 

solid that sublimates in air at standard pressure, is applied to a surface of 

interest. The mass distribution of the naphthalene is measured before and 

after the experiment, and mass loss is correlated with heat flux. 

Butler and Baughn [10] observed the long history of transient heat transfer 

coefficient measurements in their investigation on the differences boundary conditions 

have on measurements of h. The transient class of heat transfer measurement techniques 
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fall into category 3 of Childs et al. classification structure. Particularly, Butler and 

Baughn note the transition from point-sensor based measurements to surface-coating 

based measurements. Early transient experiments employed methods such as resistance 

thermometers placed on ceramic substrates immersed in shock tunnels in 1973. Thermal 

paint use is documented later in the 1970s by T.V. Jones [11]. A decade later, Butler and 

Baughn note the use of phase-change coatings and melting-point coatings. 

Ireland and Jones [8] reviewed the research done with TLC use in heat transfer 

and shear stress experiments, including the advantages and challenges of using TLC 

measurements. 

Ireland and Jones begin by explaining the physics and chemistry of TLCs and 

how their structure allows them to reflect changes in temperature with changes in color. 

Response time was discussed, which was reported to be on the order of 3 ms. Also of 

note was the discussion of TLC use in transient heat transfer experiments. Finally, Ireland 

and Jones covered the use of TLCs to solve for multiple heat transfer parameters. 

Using inverse methods with TLC generated data, Ferguson [12] outlined a method 

of solving for the coefficients of the temperature/hue calibration of TLCs simultaneously 

with heat transfer coefficients. Ferguson discussed the problems associated with using 

liquid crystals, and how those problems can be accounted for by using the inverse method 

to solve for calibration coefficients.  Froerer [13] and Jochem [14] used these methods to 

investigate heat transfer processes on a flat plate immersed in an air stream and a 

cylinder, respectively. 

Maurer [15] investigated generic convective cooling schemes of gas turbine 

engines, recognizing the lack of experimental data at the operating conditions of such an 
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engine and explored common heat transfer enhancing geometries contained in those 

systems. Maurer used a test stand outfitted with turbulators coated in TLCs to collect 

temperature data in both transient and steady-state experiments. Also, computational fluid 

dynamics simulations were employed to augment interpretation of the experimental data. 

Analytical methods for correcting for geometry effects in the solutions to Fourier‟s heat 

equation were examined. The results of cooling enhancement factors and pressure losses 

were summarized for geometries such as “V” and “W” ribs, dimples, and hemispheres of 

various heights and aspect ratios. 

Poser [4] investigated TLC data collection methods with a scaled gas turbine 

cooling channel with the goal of providing heat transfer coefficients that were both 

accurate and low in uncertainty. Poser discusses TLC application and data acquisition 

methods, including the advantages and disadvantages of using RGB and HSL color 

models. Much emphasis was given by Poser to data analysis and signal filtering 

techniques. RGB signal data was preprocessed using a wavelet filter to reduce noise, then 

normalized to minimize lighting effects.  The data reduction process was largely 

automated by the use of artificial neural networks. 

 Anderson and Baughn [16] examined hysteresis effects in thermochromic liquid 

crystals. These authors found that TLCs exhibited different peak R, G, and B values at 

the same temperatures dependent on whether the TLCs were exposed to heating or 

cooling conditions. In addition, it was found that when TLCs were heated above a certain 

temperature, their R G B values were shifted up on subsequent experiments. Baughn and 

Anderson recommended calibrating in the same thermal direction as desired experimental 

trials as well as avoiding temperatures much higher than the range of the TLCs in use. 
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 Research has also been done on gas turbine blade cooling in the past decade 

without the use of thermochromic liquid crystal thermography. Morris and Chang [17] 

measured heat transfer coefficients in a rotating geometry using channel wall heat 

transfer equations accounting for rotational and Coriolis effects. Measurements were 

done with point temperature measurements at leading and trailing channel edges 

combined with prescribed generated wall heat fluxes. 

 Frackowiak et al. [18] used inverse methods to determine heat sink power source 

values in a simply connected regions mimicking gas turbine blade channels, given 

temperature and heat flux distributions at the channel walls. A Laplace equation-based 

model was used, and inverse results were compared with published experimental data for 

the C3X-type blade, found to be in agreement with each other. 

 Heidrich et al. [19] used transient data combined with the Levenberg-Marquardt 

inverse method to determine heat transfer coefficients and rib turbulators positions in gas 

turbine blade cooling channels. The authors recognize that determination of rib location 

is difficult after blade casting but necessary as a check for design specifications. To 

measure surface temperature, the authors used infrared thermography to detect 

temperatures of the outside surface of a steel rectangular channel. The method developed 

located rib positions with 3% error, but did not report error values for h. 

 These authors also compared the use of TLCs and infrared cameras at estimating 

heat transfer coefficients [20]. They constructed a rectangular channel with turbulators; 

one side of the channel was steel, and its external temperature was measured with an 

infrared camera. The opposing tunnel wall was Plexiglas, and its internal temperature was 

measured with TLCs. The authors found infrared estimated h values 20% higher than 
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TLCs due to the effects of longer required data collection time coupled with the effects of 

lateral conduction. 

2.2 Methods of Temperature Measurement 

There are currently a variety of different ways to measure surface temperatures, 

each with their pros and cons.  The four most widespread methods are thermocouples, 

temperature sensitive paint (TSP), infrared cameras, and thermochromic liquid crystals 

(TLC). 

2.2.1 Thermocouples 

One of the earliest developed and most used method of detecting experimental 

temperatures today are thermocouples.  These thin wire analog devices use the Seebeck 

principle to generate a voltage proportional to the temperature at the junction of two 

dissimilar metals.  They are reliable, can withstand high temperatures, and are simple to 

use.  Additionally, with the use of modern day electronic cold junctions, thermocouples 

are simple to calibrate and use. 

Thermocouples come with several drawbacks, however.  Each thermocouple is 

capable of only a single point measurement. To obtain any kind of temperature field, 

multiple thermocouples are required.  They are also an intrusive measurement device.  To 

detect temperature with a thermocouple, the device needs to be both physically touching 

the surface (and immersed in the air stream) and physically connected to the data 

collection device.  Therefore, thermocouple use potentially alters the experiment they‟re 

measuring.  Minimizing this intrusiveness can be difficult in experiments that use 

thermocouples. 
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A thermocouple‟s response time is also a drawback.  Even though thermocouple 

metals are heat conductive, they still require time to change temperature to that of their 

environment. This response time is often small, on the order of several milliseconds, but 

its presence cannot be ignored in experiments requiring accuracy.  The response time can 

be minimized by choosing the smallest thermocouple possible for the application, 

minimizing its thermal capacitance. 

2.2.2 Infrared Cameras 

A more modern way of measuring temperature is with an infrared camera.  All 

surfaces emit thermal radiation in the infrared spectrum proportional to their temperature. 

An infrared camera can measure this radiation and convert it to images with 

corresponding temperatures.  These cameras offer a non-intrusive, full-field measurement 

of temperature. 

Infrared cameras are highly expensive however, with quality experimental-grade 

cameras costing tens of thousands of dollars. They also require a direct view of the object 

they are measuring.  Even objects such as quartz windows that are transparent to infrared 

radiation will interfere with an infrared camera‟s measurements, since the window itself 

emits radiation that is read by the camera. These disparate radiations cannot be separated 

by the camera, and thus skew the data. Also, use of infrared cameras introduces another 

unknown into the calculation: the surface emissivity of the TLC-coated surface. 

Therefore, accurately measuring an object inside a wind tunnel would require the lens be 

immersed in the tunnel.  In small-scale experiments, the lens is comparatively large, and 

results in a highly intrusive measurement device. 
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2.2.3 Temperature Sensitive Paint 

A temperature sensitive paint consists of a binder mixed with a luminescent 

molecule.  It works on the basis of thermal quenching, in which the active molecules in 

the paint reflect light at different wavelengths as their temperature is increased.  This 

measurement method, like the infrared camera, is both full-field and non-invasive.  

However, since the paint emits visible light, it is measured with a normal camera, and 

thus can detect accurate temperatures through clear materials such as glass or transparent 

plastics.   

The major drawback of TSP is that the color change is irreversible.  Once the 

luminescent molecules in the paint release their photons, recapturing them is difficult.  

Therefore, use of a TSP is only good for a single experimental trial, and would have to be 

reapplied with each subsequent trial.  Furthermore, TSP only functions with temperature 

increases.  To measure the temperatures of a hot surface cooling down, for example, a 

different method would be required. 

2.2.4 Thermochromic Liquid Crystals 

Thermochromic liquid crystals are similar to temperature sensitive paint in that 

they consist of a molecular structure and a binder that are painted onto a surface.  

However, rather than using a luminescent molecule, the binder is instead combined with 

micro-encapsulated cholesteric crystalline structures. Cholesteric structures align in 

planes, forming a layered helix. The structures need to be encapsulated as they are fragile 

and degrade quickly under stress. This can be an advantage in some cases, and un-

encapsulated crystals can be used to measure sheer stress. The pitch of these helical 

structures changes based on temperature, causing the helix to tighten or unwind. These 
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pitch variations result in crystals polarized to different wavelengths, reflecting different 

colors of light. TLCs are engineered to reflect different light wavelengths at different 

temperatures, resulting in a coating that can measure temperature in a full-field, non-

intrusive way but is completely reversible [8]. 

TLC measurements are not full-range, though.  They can be manufactured to 

change color through temperature ranges that can be as narrow as   C for narrow band 

crystals, and up to tens of degrees Celsius for wide band TLCs [8].  This somewhat limits 

the crystals‟ versatility in an experimental setting, but allows them to be tailored to 

experimental conditions.  Also, the color play of the crystals, which is the way in which 

the TLCs change color, is highly sensitive to different factors such as the camera viewing 

angle and lighting conditions, including incidence angle and spectral characteristics of the 

incident light.  As a result, calibration of the TLCs is difficult.  Movement of the test item 

or camera, or any change in lighting conditions can require a new calibration. 

Several other factors can affect liquid crystal measurements as well.  The way the 

surface is prepared, such as back coating, number of layers, and painting technique can 

all affect the homogeneity of the crystal surface as well as hue intensity. Varying air 

humidity can change a calibration from one day to the next. Also, TLCs have a hysteresis 

effect associated with them. When the crystals are heated beyond a certain temperature 

then cooled, their calibration curve will be different for subsequent experiments unless 

steps are taken to “reset” them. 
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TLCs were chosen as the temperature measurement tool for these experiments 

because they offer full-field temperature sensing, can perform repeated experiments with 

a single application, and are non-invasive. To account for the different factors that can 

lead to errors associated with TLCs, select thermocouples were used complementarily as 

a verification tool.  
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3 THEORY 

For this research, a mathematical model was needed that related a surface‟s 

transient temperature response with its material properties to a given convective 

boundary condition. For solids with a low thermal diffusivity and small time scale, a 

semi-infinite model is ideal. A closed-form analytical solution was developed for the 

transient surface temperature response from basic principles and appropriate boundary 

conditions. An inverse method, a mathematical method for determining parameters in 

complex models, was used to solve for the heat transfer coefficient h and free stream 

temperature    parameters, from transient surface temperature data. 

3.1 Surface Convection Model 

For a semi-infinite solid, the governing heat equation reduces to a second order, 

homogeneous differential equation. 

  
   

   
 

 

 

  

  
 (3.1) 

With boundary and initial conditions 

 B.C.             (3.2) 

 I.C.             (3.3) 

To solve this partial differential equation, a similarity solution can be used [21]. 

By selection of the similarity variable   
 

         and substituting into Equation 3.1, the 

PDE collapses into an ordinary differential equation with similarly transformed boundary 

and initial conditions. 
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 (3.4) 

 B.C.           (3.5) 

 I.C.           (3.6) 

 

 The solution to Equation 3.4 varies depending on what is chosen as the second 

boundary condition on x. Of relevance to this research is surface convection. 

       

  
 
   

              (3.7) 

The solution to the Equation 3.4 further varies depending on the form    takes. For 

example, if    is constant (step change) the closed-form solution for the surface 

temperature    becomes [21] 

                                   (3.8) 

     
    

 
  

 However, a step-step change was not the best representative of the conditions the 

wind tunnel heater was able to generate. The free stream temperature profile in the tunnel 

was characterized by a steep rise followed by a shallow rise to equilibrium. This profile 

can more accurately be modeled as a piecewise ramp function with number of ramps n. 

     

 
 
 

 
 

                       
 

                          

 
                     

  (3.9) 

 To solve the heat equation in which the surface convection boundary condition 

contains this form of   , it is convenient to first solve the problem with a single ramp, 

then take advantage of the linearity of the PDE and apply superposition techniques. The 
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use of Duhamel‟s Theorem of superposition simplifies both the ramp and series of ramps 

solutions in an elegant fashion. 

 For convenience, let 

         . 

Duhamel‟s Theorem gives the temperature response of a system with a time-varying 

boundary condition in which a fundamental solution to the problem is known [22]. The 

fundamental solution is defined as the response of the system with a zero initial condition 

to a single, constant non-homogeneous term with magnitude unity. This can be stated as 

                          

  
 
   

              
 

   
 (3.10) 

where    is the fundamental solution,  B is the time-varying boundary condition, and   is 

a dummy variable. 

 The first step to applying Duhamel‟s Theorem is finding the fundamental 

solution. For this problem, the fundamental solution solves 

  
    

   
 

 

 

   

  
 (3.11) 

With boundary and initial conditions 

             (3.12) 

      

  
 
   

 
 

 
   

 

 
 (3.13) 

This is recognized as the problem posed by Equations 3.1-3.7 with      and     . 

With this recognition, the solution to the fundamental problem is already known as 

               
 

    
      

  

 
         

 

    
    (3.14) 
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The time-varying term B(t) is the ramp function that defines    

           (3.15) 

When these are substituted into Duhamel‟s Theorem, the resulting integral 

                     
 

 
   (3.16) 

is easily solvable with analytical mathematical software such as Mathematica and yields 

the single-ramp surface response solution. 

               
 

   
 

                

    (3.17) 

 The multi-ramp solution can be achieved by breaking the integral in Duhamel‟s 

Theorem into a series of integrals for each ramp [23]. 

                         
  

      

 
    (3.18) 

In Equation 3.18, the    terms indicate the beginning of each ramp, with     ,      , 

and the    terms representing each ramp function‟s slope, respectively. Each i
th

 element 

of the summation is relevant only for times after   . For example, even though four ramps 

might ultimately be used, for times less than   ,  the surface temperature response still 

only includes the first element of the summation, being equal to the single ramp solution. 

See Appendix A for a detailed solution. 

 After three elements of the summation have been calculated, a pattern emerges. 

                                                         

   

   

 

where        
        
        

    

     
 

 
         (3.19) 



26 

 

 

        
 

    

 
        

           

  
  

 This is the surface convection model used with the inverse method. With a step 

change free stream function, the unknown parameters were    and h, a two parameter 

problem.  With this series of ramps free stream function, the number of parameters are 

increased according to the number of ramps that represent   , and the parameters 

become   ,   , and h. So, for example, a 3 ramp input temperature would have 6 

parameters. To simplify the problem, the    parameters were chosen before the inverse 

method was applied based on thermocouple data of the shape of the free stream 

temperature profile. This would reduce the example 3 ramp problem to 4 parameters (h, 

  ,   ,   ). 

3.2 The Inverse Method 

3.2.1 Forward Problem 

A forward problem is a problem in which the parameters are known, and the 

effects are unknown. A parameter is defined as something that “may define a physical 

entity directly (e.g., density, voltage...), or may be coefficients or other constants in a 

functional relationship that describes a physical process” [24].  In the equation     , 

m represents the vector of parameters, d represents the data (effects), and G is the 

functional matrix that relates the two. 

An example problem is a cube of copper on a hotplate.  The forward problem 

would be, given the temperature of the hotplate and the material properties of the copper 

(parameters, m), determine the temperature of a point in the copper with respect to time 

(effects, d).  Forward problems can often be solved analytically, and thus the solutions 

are directly applicable.  For this research, the heat transfer to a flat plate in cross flow was 
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examined. The forward problem was: given the bulk free stream temperature   , the heat 

transfer coefficient h, and material properties, find the surface temperature response of 

the flat plate. 

3.2.2 Inverse Problem 

An inverse problem is any problem in which one or more of the parameters, m, 

are unknown, but the effects, d, are known. These problems occur often in many fields 

especially in instances where the dependent variable of the forward problem is measured.  

Suppose in the above example of a cube of metal on a hotplate, a thermocouple read the 

temperature of the center of the cube, and the metal was of an unknown material.  In this 

case, the effects are known, and some of the parameters unknown.  This problem is much 

less straightforward than the forward problem, and given the model applied to the system, 

requires different solution techniques. 

 3.2.2.2 Conjugate Gradient Method. Inverse methods can be further divided into 

two categories: linear and non-linear. Linear inverse methods are based upon linear 

system models, and their solution can be typically arrived at in one calculation, or one 

step, while non-linear inverse methods, based upon non-linear system models, typically 

require an iterative solution method to solve [24]. To understand the linearity and non-

linearity of the problem, it is useful to examine the model again: 

                                                         

   

   

 

where        
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This system is linear with respect to some parameters, and non-linear with respect to 

others. In the case of the    parameters, it can be seen that they appear in the model 

simply multiplying other parameters and the data. All    parameters are raised to the first 

power, and none are found within other functions. Therefore, the system is linear with 

respect to   . The    parameter (which contains h), however, is found in the sub-function 

g. Here,    is found in both an exponential and a complementary error function, making 

the model non-linear with respect to h. So, even though there is linearity with respect to 

some parameters, the non-linearity of h requires a nonlinear solution method.  

For this research, the conjugate gradient inverse method was chosen to solve for 

the parameters.  The conjugate gradient method is popular for solving inverse heat 

transfer problems due to its robustness and the fact that no matrix inversion is necessary 

[25]. In the case of this research, the effects were known: the surface temperature of the 

flat plate with respect to time   . A model G was assumed with multiple unknown 

parameters: the slopes,   , that make up   , and h. For a non-linear problem such as this 

one, key relationships connecting the data and the parameters are given by the Jacobian 

matrix, G, defined as 

       
   

  

   

   
 

   

   
 . (3.20) 

 

Many heat transfer problems have an ill-posed Jacobian sensitivity matrix, that is, 

a Jacobian matrix whose determinant is zero or close to zero.  The degree to which a 

matrix is ill-posed can be determined by its conditioning number. This can be thought of 
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as a measure of amplification of the system matrix G. In an ill-posed matrix, small 

perturbations in the data can lead to large changes in parameter values. Attempts to invert 

such matrices lead to failure of an algorithm without some form of weighting scheme.  

Also, since inverting large matrices is computationally demanding, the conjugate gradient 

method is typically less-computationally expensive per iteration than other algorithms.   

The conjugate gradient method is not without its flaws, however.   A good starting 

guess is needed to ensure convergence.  Also, the algorithm tends to require more 

iterations for convergence than other least squares inverse methods.  However, given that 

each iteration is likely to be quicker, this flaw is negated for large iteration count 

problems. 

All non-linear inverse methods have the same basic solution method. First, the 

problem is linearized using the derivative to make it solvable using linear methods. This 

yields a matrix system containing the Jacobian, a matrix composed of partial derivatives 

with respect to the unknown parameters. 

         (3.21) 

A starting guess is then chosen for the parameters. An estimated solution vector, 

calculated using the guessed parameters, is then compared with the data vector. If the 

error between the two is not within a specified tolerance (error misfit), the algorithm 

updates the parameters in an attempt to minimize some objective function  . This 

process is then iterated until a stopping criterion is reached. 

The conjugate gradient method is an extension of the method of steepest descent 

[25], both of which attempt to minimize the objective function: 

          (3.22) 
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where e is the error misfit vector, found by taking the temperature vector data    and 

subtracting the temperature vector found calculated with estimated parameters    . In 

this way, the objective function is minimized by varying the parameters that are used to 

calculate    : h,   ,…,   .  For this inverse method and others, the objective function 

is identical to the sum of squares error (SSE)   . In the method of steepest descent, the 

search direction is based directly on the gradient of the objective function at the current 

iteration step.  In conjugate gradient, the search direction is determined from a linear 

combination of the gradient at the current location and the search direction at the previous 

iteration step. This is advantageous because the direction of steepest descent is not 

necessarily the quickest path to the answer.   

Figure 3.1 illustrates an example comparison of the solution path of steepest 

descent (light) versus conjugate gradient (dark). 

 
 

Figure 3.1 Iterative Method Comparison: The conjugate gradient path (darker line) arrives at the 

solution in two iterations, versus five for steepest descent [26]. 

In this figure, „  ‟ is the starting guess, and „X‟ is the solution.  The steepest 

descent arrives at the solution in five steps, and the conjugate gradient method takes two. 

Care must be taken, however, when choosing how to weight the current gradient with the 
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past gradient in the conjugate gradient algorithm. The weight given to each can 

significantly affect the speed of convergence of the algorithm.  In some cases, a 

weighting scheme could lead to a slower convergence than the steepest descent 

algorithm. 

3.2.2.3 Conjugate Gradient Algorithm. The algorithm for the conjugate gradient 

method uses the essential steps found in Table 3.1 [25]: 

Table 3.1 CG Algorithm: Steps in the conjugate gradient algorithm. 

1 Form an initial guess of the parameters 

in vector form P. 
   

 
  

 
  

  (3.23) 

2 
Solve the forward problem to obtain an 

estimated surface temperature vector 

   . 

          (3.24) 

3 

Compute the sum of squares error. 

Compare this value to the stopping 

criteria.  If the criteria aren‟t satisfied, 

continue. 

            
          (3.25) 

4 Compute the Jacobian sensitivity matrix 

J. 

   
   

  

   

   
 

   

   
  (3.26) 

5 
Compute the gradient vector. 

                (3.27) 

6 

Compute the conjugation coefficient   .  

There are several methods available.  

For simplicity, the Fletcher-Reeves 

formulation was used. n is the number 

of parameters, and     for k=0. 

   
      

 

  
   

       
  

   

 (3.28) 

7 
Compute the search direction   . Note 

that for k=0, the search direction is 

simply equal to the gradient. 

             (3.29) 

8 
Compute the search step size. 

  
             

         
 (3.30) 

9 Compute the new estimated parameters 

vector P. 
              (3.31) 

10 Increase k by 1 and iterate back to Step 

2. 
      (3.32) 
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This algorithm was implemented in MATLAB, and can be found in Appendix B. 

3.2.2.4 Challenges of the Inverse Method. The inverse method returns a set of 

parameters that minimizes the objective function. While the objective function may have 

a clear absolute minimum, it may also have several local minima. Depending on the 

starting parameters chosen, an inverse algorithm may converge at one of these local 

minima. In effect, the algorithm becomes “stuck,” because the gradient at a local 

minimum is zero, and the update algorithm bases its step size on the magnitude of the 

gradient.  

There are several ways to prevent this. A starting guess of parameters close to 

their true values will ensure convergence, or routines can be added to an algorithm to 

update the parameters based on different criteria if convergence isn‟t achieved after a 

certain number of iterations. Extra work can be avoided, though, if the shape of the 

objective function is examined. In doing this, one can avoid many pitfalls associated with 

inverse techniques, while gaining insight into the problem.  

Figure 3.2 shows an objective function for the case of a step function fluid 

temperature rise, parameters similar to those used in other experimental trials, and 

generated surface temperature input data without noise. The inverse problem in this case 

is a simpler version of the series of ramps fluid temperature input version used to analyze 

actual data. In this case, with a single step   , the inverse method reduces to finding two 

parameters, h and    . 
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Figure 3.2 Contour Plot: An example objective function to visualize potential problems in the inverse 

method. The dotted line indicates a path along the minimum of the trough. 

 The scales of this plot were chosen to make the existence of the minimum clearer 

visually. In the plot, the trench the objective function forms appears diagonal. This trench 

indicated the problem is more sensitive to one parameter than the other. However, 

because of the different parameter scales, which parameter the objective function is more 

sensitive to is unclear visually. Examining the gradient near the minimum shows the 

sensitivity clearer. When the conjugate gradient algorithm for these two parameters is 

allowed to converge, the gradient one iteration before the point of convergence is -18.7 in 

the    direction and -0.29 in the h direction. This is a result of the ill-posed nature of the 

problem, indicative of a poorly conditioned Jacobian matrix. The much larger slope in the 

   direction reveals that small perturbations to    can produce large changes in the 

objective function;    is sensitive, and therefore easily found. But, large perturbations in 

h produce relatively small changes in the objective function. This parameter is not 
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sensitive, and has a higher degree of uncertainty associated with it. The existence of a 

minimum for h is made more apparent if the trench in the above figure is plotted, as seen 

in Figure 3.3. 

 

Figure 3.3 Contour Plot Slice: A plot of the minimum h values from Figure 3.2. The h axis is taken 

along the minimum of the trough, indicated by a dotted line in the above figure. 

 Uncertainty in the measured data also affects the accuracy and convergence of the 

algorithm. As large changes in h can produce small changes of residuals, the inverse is 

also true: small uncertainties in the data can result in large uncertainties in h, though    

is less sensitive. It has been shown that realistic changes in uncertainty have little effect 

on the ability of the algorithm to converge, or required iterations for convergence [12]. 

3.3 Solution Appraisal 

There are many statistical tools available to appraise how well a solution 

converges and how accurate the solution is. The solution evaluation benchmarks used in 

the conjugate gradient algorithm were the sum of squares error (SSE), gradient, 

correlation, chi-squared goodness of fit, and parameter confidence intervals. Each method 
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alone does not always accurately predict convergence. However, when used together, 

they offer the experimenter a powerful way to assimilate and evaluate data. 

3.3.1 SSE 

The average sum of squares error is one of the easiest benchmarks to calculate, 

and as such is one of the first to be considered when evaluating convergence. The normal 

SSE was already calculated in Step 3 of the conjugate gradient algorithm in Table 3.1. 

            
          

The average SSE is found from: 

            
        

         

 
 (3.33) 

This gives the average error misfit between any data point and the fitted curve. 

This value can be plotted vs. iteration to appraise solution convergence and to compare 

with the data standard deviation in the chi-squared goodness of fit benchmark. 

3.3.2 Chi-Squared 

The chi-squared goodness of fit compares the error misfit of the fitted curve to the 

variance of the data:  

     
   

          (3.34) 

In this equation, r is the number of degrees of freedom, and    is the variance of the data. 

In essence, the chi-squared benchmark compares how well the algorithm fitted the 

data to how well it can reasonably be expected to fit the data. A chi-squared of 1 is a 

“perfect” fit, meaning the model fit the data as well as the data accuracy predicts it 

would. A value greater than 1 indicates the model could do better.  A value less than 1 

indicates the model fit the data too well; the fit line lies inside the error bars of the data. 
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Examining this value can give information on the model used. A value too far away from 

one can indicate the model needs to be reexamined. 

3.3.3 Gradient 

A solution is reached when a global minimization of the objective function is 

achieved.  At the minimum, the gradient of the function is zero. It was calculated in Step 

5 of the conjugate gradient algorithm in Table 3.1. 

                  (3.35) 

This value can be plotted versus iteration to examine convergence. Knowing how 

close the gradient of a solution is to zero is a good measure of convergence.  Since a 

gradient exists for each parameter, the norm of the gradient vector    was used.   

There are problems with using the gradient alone to evaluate convergence, 

however. It was found that a solution would often arrive at one or more local minima 

before arriving at the global minimum.  Therefore, an algorithm using the gradient as its 

stopping criteria would most likely stop the program too soon. 

3.3.4 Correlation 

The third appraisal technique used was the correlation between the error vector 

and time at each iteration step.  It should be noted that, in the calculation of correlation, 

the error vector e and not SSE was used.  The elements in e can be both positive and 

negative.   

             (3.36) 

The correlation between two variables, in this case e and time t, can be thought of 

a measure of how much dependence there exists between the two variables. It can also be 
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thought of as a scaled covariance, in which zero is totally uncorrelated, and 1 is complete 

correlation [24]. A correlation between e and t is calculated by: 

 

        
        

             
 

              

              
 (3.37) 

 

So, for example, if the correlation of e and t is 0, e can be thought of as random with 

respect to t.  Figure 3 shows examples of data sets with different correlations: 

 

 
 

Figure 3.4 Correlation: These are visualizations of what values of correlation different data patterns 

would have [27].  

Correlation is important because it gives a measure of the degree to which 

solution error is due to noise in the data, and how much is due to a poor choice of model. 

However, lack of correlation does not indicate a flawless model. Referring to the 

previous example, the correlation of zero would have its error completely dependent 

upon data noise, and the correlation of 1 would have its error completely dependent upon 

a poor model. 

3.3.5 Parameter Confidence Intervals 

In this study, three inter-related evaluations of solution accuracy were used: 

standard deviation of the parameters and 95% and 99% confidence intervals.  The 

http://en.wikipedia.org/wiki/File:Correlation_examples.png
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parameter covariance matrix    is obtained from the data covariance matrix   . 

Assuming the data standard deviations are the same for each data point, the parameter 

covariance matrix is given by [25]: 

                     (3.38) 

where the parameter standard deviations,   , are given by the diagonal values of   . 

The confidence interval for a parameter P is given by: 

                     (3.39) 

Where a=1.96 for 95% confidence, and a=2.576 for 99% confidence.  These solution 

accuracy statistics are only valid, however, when information is known about the data 

variances.  Unless the data variances are known or can be reasonably estimated, 

parameter accuracy cannot be determined. Data variances can be approximated by the 

uncertainty of the measurement technique. 

3.4 Light and Color 

The nature of light and color remains one of the most interesting and most studied 

subject in physics. This history can be traced back to the earliest experiments to discover 

the nature of light. While Sir Isaac Newton was not the first person to split light into its 

component colors with a prism, he was the first to conclude that light is the summation of 

all the colors of the spectrum. Newton also believed in the corpuscular view of light, that 

is, light as a particle that travels from the object to the eye. This theory would be disputed 

by Christian Huygens, who favored a wave theory of light. The theory would be 

supported later by Young‟s famous double slit experiment. With the advent of quantum 

theory, it is now thought that light behaves as both a particle and a wave [28]. 
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3.4.1 The Visible Spectrum 

Newton knew that light was made up of color. Light is indeed a combination of 

different wavelengths of the electromagnetic spectrum, each corresponding to a color. 

Figure 3.5 shows the range of wavelengths and their corresponding colors. 

 

Figure 3.5 Color Spectrum: Light is made up of a combination of electromagnetic wavelengths [29]. 

An object‟s color primarily depends on what wavelengths the object absorbs, and 

which it reflects. Secondary effects of color include the intensity of light, angle of 

perception, and how diffuse the light reflections are. For example, an apple is red because 

the skin of the apple tends to reflect higher frequencies of color and absorb lower. The 

sky is blue because blue wavelengths tend to pass through the air unmolested, while other 

wavelengths become scattered. 

3.4.2 Perception 

Visible light makes up only a small range of the electromagnetic spectrum but 

constitutes all of the wavelengths that the human eye can perceive. Light is focused by 

the eye lens to the back of the retina, which is lined with photoreceptors [30]. Two types 

of photoreceptors exist: rods and cones. Figure 3.6 shows the location of eye 

photoreceptors. 
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Figure 3.6 Rods and Cones: Photoreceptors at the back of the retina consist of rods and cones [31]. 

Of the two types, rods are used primarily to see in low-light conditions, and cones are 

used for color and daylight.  

 It is difficult to tell whether people perceive color in the same way from 

individual to individual. A “red” to one person could be different than a “red” perceived 

by another. There are also deficiencies in some individuals in the way their biology 

handles light and color, like color-blindness. It is known, however, that there are three 

kinds of cone cells in the eye: S, L, and M. These labels represent short, long, and 

middle-wavelength cone cells, referring to the wavelength of light they are sensitive to. 

This means the human eye is trichromatic, and synthesizes all colors out of the red, 

green, and blue colors the cones perceive. The eye has a particularly large number of M 

cones, which correspond to the green section of the spectrum. 

3.4.3 Color Representation 

Physical color is a complex mixture of different wavelengths and intensities of 

light. To store color as data and/or recreate color digitally, a color model (color space) is 
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needed. A color model is a mathematical way of representing color. There exists a wide 

array of color models, each with advantages that make it useful for a particular 

application or industry [32].  RGB (red, green, blue) is used by computer and television 

screens to represent color, since this most closely corresponds with the way the human 

eye perceives color. HSL/HSV (hue, saturation, lightness/value) is used in image 

processing tasks. CMY (cyan, magenta, yellow) is used by the print industry. For this 

project, the RGB and HSV color models were used. 

3.4.3.1 RGB Color Model 

The RGB color model is an additive color model, and recreates color by using 

different combinations of red, green, and blue [33]. The system can be visualized as a 

cube on a three-dimensional coordinate axis, with black at the origin and red, green, and 

blue on each of the axes, as seen in Figure 3.7. In the RGB system, values can range 

between 0 and 255. 

 
 

Figure 3.7 RGB Color Cube: The RGB color system can be represented by a cube, with red, green, 

and blue colors on the primary axis vertices, and cyan, magenta, and yellow, white, and black on the 

other vertices [34]. 
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 The RGB system is useful because it most closely mimics the response of the 

human eye, and is the most common color model used. In digital cameras, such as the 

one used in this research, it is used as the native method of recording color. Its 

disadvantage lies in the fact that all three values are needed to represent a color, making it 

a somewhat non-intuitive color system. It is difficult to look at a color and intuit how 

much red, green, and blue are in it. A more intuitive model is HSV. 

3.4.3.2 HSV Color Model 

HSV stands for hue, saturation and value, also called HSB (hue, saturation, 

brightness). Another closely related system is HSL (hue, saturation, lightness). Both are 

cylindrical-coordinate systems in contrast to the cubic system of RGB. The HSV color 

space was used in this research because of built-in conversion algorithms in the 

MATLAB computational software used. 

HSV can be represented by a cone, as shown in Figure 3.8. 

 
 

Figure 3.8 HSV Cone: The HSV system can be represented by a cone, with hue being the angular 

coordinate, saturation being the radial coordinate, and value being the height coordinate [34]. 
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In the above figure, hue is represented by the angular coordinate, saturation by the radial 

coordinate, and value as the height coordinate. Physically, hue represents the primary 

wavelength of light contained in the signal. Saturation represents the amount of white 

contained in the color, and can be thought of as the color purity. Value represents the 

amplitude intensity of the light. 

 HSV is a more intuitive color system than RGB since hue represents the color of 

the object. The hue‟s range from 0 to 1 (scaled from the 0 to 360 degree angle) represents 

all the colors of the visible spectrum. HSV is useful from an image processing standpoint 

because the color signal can be represented by the hue value alone, versus needing each 

of the R, G, and B signals. For this project, a single color signal is much easier to 

calibrate to a temperature than three. However, since cameras record in the RGB color 

space, the image must be first converted to HSV before it is analyzed. 

3.4.3.3 RGB to HSV Conversion 

There are multiple ways to convert RGB to HSV. MATLAB uses a method that 

tilts the RGB cube on a vertex and projects it onto a hexagon. Figure 3.9 shows this 

projection. 

 
Figure 3.9 Projection: The RGB cube is tilted and projected onto a plane to calculate hue [35]. 
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To calculate hue in this way, let M be the maximum value of R, G,and B, and m 

be the minimum value [35]. 

               (3.40) 

               (3.41) 

        (3.42) 

A hue value is then calculated from the RGB signal. 

     

 
 
 

 
 

                   
   

 
                

   

 
                  

   

 
                  

  (3.43) 

Finally, the hue value is normalized. 

    
  

 
 (3.44) 

It should be noted that hue becomes undefined at values of C close to 0, which 

correspond to values where each of red, green, and blue are either close to 0 or close to 

maximum. This singularity exists because a hue value at    and a hue value at      

correspond to the same color. 

The value component of HSV is simply defined at the max value of R, G, or B. 

      (3.45) 

Saturation is defined as the ratio of C to M. 

    
 

 
 (3.46) 
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4 EXPERIMENTAL METHODS 

To examine the capability of the inverse method to find heat transfer coefficients 

and fluid temperature from experimental data as outlined in Section 1.2, the simple, well 

understood geometry of a flat plate was chosen as the test object.  The plate was placed in 

a small-scale wind tunnel capable of heating the air flow. Data was collected with a 

camera/TLC and thermocouple system. The methodology of experimentation is detailed 

in the following sections. 

4.1 Experimental Apparatus 

Figure 4.1 shows the elements of the experimental apparatus, which includes a 

small-scale wind tunnel with blower and heating element, test plate, camera, and lights. 

 

Figure 4.1 Experimental Apparatus: The experimental apparatus, including blower, heater, wind 

tunnel, test plate, camera, and lights. 
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Room temperature air started by being accelerated by the blower. The air 

decelerated through an expansion and then passed through a flow straightener to produce 

a uniform velocity profile. The air then flowed through a wire mesh heater in which its 

temperature rose. Then, the flow accelerated through a contraction in the wind tunnel 

before entering the test section. Finally, the air exited to ambient temperature and 

pressure at the end of the test section. 

Elements of the apparatus: 

 Blower: The air in the wind tunnel was accelerated by a 1.5 hp Dayton blower. A 

transformer received 230 V AC input power and supplied 115 V DC power to the 

blower. A Toshiba VF-57 controller varied the rotation frequency of the blower to 

achieve desired wind velocity. The wind tunnel was capable of speeds as low as 

2.35 
 

 
 at 10% of the controller speed to 30 

 

 
 at 60% of the controller speed. 

Velocities above or below these values were not determined or desired. 

 Expansion and contraction: The structure of the wind tunnel proper was built in 

English measurements and was comprised of 1/3” acrylic plastic fastened with a 

combination of metal and plastic bolts. The expansion section expanded the flow 

from the blower to a 21” square cross section. The flow then entered a bank of 

straight 0.25” diameter tubes to remove flow irregularities. After passing through 

the heater, flow then contracted to a 6” square cross section at the beginning of 

the test section. 

 Heater: The heater element of the tunnel was placed between the tube bank and 

contraction portions. A fine stainless steel wire mesh was held between plates of 

polyethylene plastic, with additional ceramic fiber insulation to prevent melting. 
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Resistance heating was achieved by applying a voltage across ends of the wire 

mesh supplied by a 280 V DC max power supply. This heating setup was able to 

generate air temperatures up to       above room temperature at a minimal air 

flow rate of 15 
 

 
. 

 Test section: The test section was 30” long and 6” square internal cross section. 

Flow traveled 10” before reaching the front of the test plate. Small holes were 

drilled into the test section to allow mounting of the plate as well as access for 

thermocouples and a pitot tube. These holes were subsequently sealed with clear 

tape when not in use. 

 Test plate: The ½” (1.27 cm) thick test plate was mounted in the center of the test 

section with wooden dowels. The dowels allowed for rotation of the plate to 

desired angles of attack. 

 Camera: The camera used was a Hitachi VCC-151 CCD camera capable of 

collecting data at 30 frames a second at 752 x 480 pixel resolution in a native 

RGB color scheme. The camera was mounted 7.5” above the test section on a 

mounting rack (not shown). To prevent glare from overhead lights reflecting off 

of the acrylic, the space between the camera and tunnel wall used for viewing was 

shielded with black construction paper. 

 Lights: Halogen lights were mounted at select spots around the tunnel to provide 

lighting in addition to the normal fluorescent lighting provided by the room.   
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4.2 Experimental Procedure 

In this research, a polycarbonate flat plate painted with TLCs was mounted in the 

wind tunnel parallel to the flow. The leading edge of the plate was a semi-circle to reduce 

the separation “bubble” associated with a blunt leading edge, as shown in Figure 4.2. 

An experimental trial consisted of the following steps:  

1. The wind tunnel flow was activated with all test section elements being at 

the same initial temperature.  

2. The video capture program XCAP was started. A camera positioned directly 

above the plate recorded the color change of the TLC-coated surface at 15 

frames per second.  

3. Simultaneously, thermocouple data collection was started on another 

computer running LabVIEW, also at 15 frames per second. 

4. The heater was then turned on, subjecting the flow to a near step change in 

temperature to   .  

5. When the image buffer of the XCAP program was full, both data collection 

systems were stopped.  

Thermocouple data and image data was synced using an LED positioned in the 

camera window. The LED‟s activation coincided with the activation of the heater. The 

first frame in which the LED was lit was assumed to coincide with the start of the 

temperature rise of the free stream thermocouple. This was used to synchronize data from 

the thermocouple and image data sets. This data, along with temperature data from both 

free stream thermocouples and surface-mounted thermocouples, was used for analysis. 
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4.3 TLC Data Collection 

4.3.1 Thermochromic Liquid Crystals 

Thermochromic liquid crystals (TLCs) are crystalline organic molecules that are 

mixed with a binder to allow painting on surfaces. Their unique properties allow them to 

be engineered to change color over a certain temperature range. With proper calibration, 

they become a valuable experimental tool, being capable of giving full-field temperature 

measurements. 

4.3.1.1 Principle of Operation 

TLC‟s unique temperature sensing properties come from their phase transitions at 

certain temperatures and how these phases interact with light. The three basic states of 

matter are solid, liquid, and gas, which all substances can experience.  Liquid crystals, 

    

Figure 4.2 Flat Plate Boundary Layer: Side-view of the flat plate. The front was 

rounded to reduce negative flow effects, such as boundary layer separation. The red 

line indicates the coating of TLCs. 
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however, can experience additional phases between the solid and liquid phases. These are 

called their mesophases [36]. These intermediate phases are anisotropic, meaning 

direction-dependent, and contribute to their unique light properties as the directional 

dependence of the molecules change. Figure 4.3 shows the phase transition steps of 

TLCs. 

 
 

Figure 4.3 TLC Phase Transitions: TLCs have mesophases between their solid and liquid phases 

[37]. 

There are two main types of liquid crystal phases: nematic (with cholesteric being a special sub-type) 

and smectic. In the nematic phase, there is little positional order and the crystals are free to move in 

relation to each other. There is orientational order, however, as the crystals are roughly aligned as 

seen in  

Figure 4.4. In the smectic phase, there is both orientational order and positional 

order along one dimension.  
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Figure 4.4 TLC Phases: TLCs have two main phases: nematic (of which cholesteric is a special type), 

and smectic [38]. 

A chiral structure is one that cannot be superimposed on its mirror image, and 

denotes a lack of symmetry. The particular chiral structure of relevance to liquid crystals 

is the helix. The chiral nematic, or cholesteric phase of liquid crystals is characterized by 

a helical arrangement of the crystal molecules with each plate itself having a nematic 

structure, as shown in Figure 4.5. This occurs when long-range intermolecular forces 

cause the planes to align [8]. 

 
 

Figure 4.5 Cholesteric Pitch: In the cholesteric phase, TLCs align in twisted planes creating a helix 

[8]. 

The spectral properties of the cholesteric structure become relevant to temperature 

sensing when the pitch of the helix p is on the order of the wavelength of visible light. 

The wavelength of light reflected by the TLCs is given by  

              , (4.1) 

where n is the index of refraction of the material, and   is the angle of reflection. The 

crystals start out aligned in planes, clear to visible light. They then begin to twist as they 

change from nematic to cholesteric. The pitch is large at first, and the crystals reflect the 

largest wavelengths of visible light (red). As the temperature rises and the helix tightens, 
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the crystals transition through the spectrum from red to green to blue. Finally, the crystals 

transition to an isotropic liquid, and become clear once again.  

4.3.1.2 Experimental TLCs 

The experimental TLCs used in this study were made by LCR Hallcrest. Hallcrest 

manufactures custom TLC mixtures in which the temperature range for color play is 

specified. Their TLCs are labeled as “RXXCXW” in which the numbers after the “R” 

designate the temperature at which red becomes visible, or the start temperature, in 

degrees Celsius. The number after the “C” indicates the temperature range. The TLCs 

used for this study were micro-encapsulated R25C15W, indicating their color change 

started at 25 °C and stopped at 40 °C. These are considered wide-band liquid crystals 

since they change color over a wide temperature range. Any crystals whose range was 

close to 1 °C would be considered narrow-band. Accuracy of the crystals is reliant on 

response time, which has been found to be on the order of 3 ms [8]. 

There are also many forms of TLCs that can be acquired. Hallcrest offers pre-

painted TLCs that come in sheets, as well as paint designed for screen printing. The 

TLCs used in this research were micro-encapsulated SPN100, designed for spray-

painting with an airbrush. The “100” denotes a water-soluble paint for easy removal and 

reapplication. 

4.3.1.3 Thermocouple Mounting 

To mount the thin-foil thermocouples, the surface of the flat plate was first 

washed of oil and residue. The desired positioning was marked in dry-erase marker. One 

side of each thermocouple was sprayed with 3M sprayable adhesive that was not water-

soluble. Using tweezers, the thermocouples were carefully placed on the plate, with leads 
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overhanging. The leads were then tucked under the side-mount screws to ensure a tight fit 

with the thermocouple extension wire.  Finally, the lead contact areas were cleaned of 

excess adhesive with acetone. 

4.3.1.4 Painting Method 

The top surface of the flat plate, with thin-foil thermocouples already mounted, 

was first washed with soap and water to remove any dirt and oil. Because the spray 

adhesive used to mount the thermocouples was not water soluble, this did not affect their 

mount integrity. However, care had to be taken to prevent tearing of the fragile 

thermocouples. After washing, care was taken to avoid skin contact with the top surface 

to avoid oil transfer. The plate was allowed to air-dry. 

A Paasche Model H airbrush was used to coat the test plate with black 

background paint and TLCs. The various features of the chosen airbrush affected the 

painting methodology in various ways. The Model H is a single-action airbrush, meaning 

the spray button controls only the airflow (on or off), while paint flow is adjusted by 

twisting the nozzle. The single-action paintbrush was ideal for this application since a 

steady, repeatable flow of paint was desired. The airbrush was also a siphon-feed model, 

meaning it relied on the siphon action from the flow of air to pull paint into the stream, 

rather than gravity. A gravity feed allows for lower air pressures to be used and finer 

lines to be achieved with the air brush.  However, since large, thin spray areas were 

desired for painting, a siphon feed type was adequate. Finally, the airbrush was an 

external-mix model, meaning the paint mixed with the air outside of the airbrush. This 

sometimes led to paint clogging the nozzle of the airbrush, so care had to be taken to keep 

the nozzle clean. 
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A paint booth was set up under a fume hood to provide ventilation. The plate was 

set on a stand to make it elbow-level, to aid in accurate painting. First, the plate was 

prepped with a black undercoating. Black was used as an undercoating to absorb incident 

light because it was desirable to only have the color of the TLCs reflected off of the 

surface, and not that of incident light or other light reflections. A matte black finish 

absorbs the most light and reflections, allowing the TLC color signal seen by the camera 

to be as pure as possible. A water-soluble black sprayable paint that was designed to be 

used as a TLC undercoat was used. The black undercoating was made by Hallcrest, 

catalog number BB-g1.  

The painting method was designed to give as even a coat as possible. To this end, 

it was found that many thin coats provided the best surface finish. Even though the black 

paint was designed to be applied by airbrush, it was found that thinning with water was 

still needed. Water was added to the black paint in a roughly 1:3 ratio. The paint was 

added to the airbrush reservoir, and the air compressor was set to 25 psi (103 MPa). The 

nozzle was adjusted, intermittently spraying on a white surface, until the desired spray 

pattern was reached. A nozzle that was too open resulted in large blotches and splatters; a 

nozzle that was too closed resulted in too thin of a spray field or nozzle clogging. The 

nozzle was adjusted until a thin, but visible, even spray field was achieved at a distance 

of 16 cm between surface and nozzle.  

A slight splatter occasionally occurred when the spray button is first depressed or 

released. Therefore, the spray button was always depressed and released when the nozzle 

was not pointed at the plate. The paint was applied in a moderate, back and forth motion, 

starting at the top of the plate and moving toward the bottom. Only a few seconds drying 
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time were required between coats. The black undercoat was thick enough when it was no 

longer transparent and any minute surface imperfections were smoothed by paint, giving 

the surface an opaque, visually flaw-free finish. Care was taken to avoid applying more 

coats than were necessary, however, as too thick a coat could affect the thermal 

properties of the surface. About twenty coats were sufficient to achieve a good surface 

finish. 

The black undercoat was allowed to dry until it was matte to the eye, but still 

slightly tacky to the touch. The same painting method was applied to the thermochromic 

liquid crystals. Catalog number SPN100R25C15W crystals were used. Again, they 

needed to be thinned by water for application at a ratio of 2 parts water to 5 parts crystals. 

The ideal thickness of a TLC coating is the one that shows the most vivid colors. It was 

found that too thin of a coat introduced extra noise into the signal due to the variability of 

thickness as well as poor hue signal in general. Samples of polycarbonate were painted 

with thicknesses of 10, 25, and 40 coatings of TLCs. These were placed in situ under 

experimental conditions, and the 40 coating sample yielded the highest hue signal to 

noise ratio, although only marginally more vivid than the 25 coated sample. Using this 

information, 40 coatings were applied to the test plate. 

4.3.2 Video Capture 

The video capture system used consisted of a computer with X Cap video capture 

software and a CCD camera linked by coaxial cable. 

The computer used was a Dell Dimension 9150 with 2 gigabytes of RAM, a 2.8 

GHz dual-core processor, and a PIXCI SV 5 image capture card. The camera used in 
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these experiments was a Toshiba digital color CCD camera, capable of video capture at 

30 frames per second in the RGB color space at a resolution of 752 by 480 pixels.  

4.3.2.1 Camera 

A CCD, or charge-coupled device, is a mechanism for transferring movement of 

electrons into an analog or digital signal [39]. In a camera, a grid of photosensitive 

sensors and capacitors are stimulated by light focused through a lens. The CCD 

transforms the electrons gathered by the capacitors into a unique digital signal for each 

capacitor proportional to the light detected by the photosensitive sensors. Each grid 

element forms a pixel in the unified image. The camera used for this experiment 

contained a 752 by 480 grid of sensors collecting light data. 

For a color camera, a Bayer filter is placed over the grid of light-detecting 

sensors. A Bayer filter is a grid of red, green, and blue color filters that correspond to the 

pixel array on the camera [40]. Each element of the Bayer filter forms a repeating pattern 

of red, green, and blue that allows the camera to form a color picture from a synthesis the 

RGB color signals (see Section 3.4: Light and Color). Figure 4.6 shows the typical 

patterns of a Bayer filter. Because three colors are represented and the pixel grid occurs 

in sets of four, green is repeated twice, since the human eye is more sensitive to green 

than the other colors. 
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Figure 4.6 Bayer Filter: A typical Bayer filter pattern. Green is repeated twice per set of four pixels 

due to the human eye’s particular sensitivity to this color [40].  

 During experimental trials, it was found that unexpected irregularities occurred in 

the blue signal of the TLC data. Figure 4.7 shows an example RGB signal from an 

experimental trial. It can be seen that while the red and green signals are relatively 

smooth, the blue signal has a “bump” around 180 frames. Also, the blue signal has 

noticeably more noise than the other two. This “bump” was known to be an artifact, since 

the blue signal peak value occurs last for TLC color play, but the “bump” occurred before 

the green signal reached its peak value. A flaw in the manufacturing of the TLCs was not 

the cause, as the bump happened regardless of TLC type or lighting conditions. Also, this 

bump occurred before an HSV color model was applied. It was therefore assumed that 

the irregularity of the signal was a peculiarity of the camera, more specifically the 

camera‟s Bayer filter. This irregularity carried over to the conversion to hue values 

appearing as a “bump.” However, this flaw was able to be mitigated with proper care of 

the temperature-hue calibration. 
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Figure 4.7 Blue Signal Bump: Example of Bayer filter flaw in trial data. An irregular “bump” 

occurred in the blue signal data around 180 frames. 

4.3.2.2 XCap Software 

XCap Limited is image processing software published by Epix Inc. [41]. 

Designed to interface with the PIXCI SV 5 video capture graphics card used in the 

computer, XCap uses a Java-based GUI and “C” based image processing algorithms. 

While XCap is capable of a wide array of image processing features, the only ones used 

in this research were the features relevant to collecting and storing series of RGB images 

from a camera.  

XCap was capable of collecting images at 30 frames per second. To achieve this 

speed, images were stored into an image buffer during data collection, which exists in 

RAM memory.  After data collection was complete, the images could then be saved to 

long-term memory. The maximum image series of 983 images corresponded to about 1 

GB of data at native resolution and 65.5 seconds. This meant that the 2 GB of RAM in 

the computer was sufficient to store all data images, taking into account RAM used by 

normal computer processes. 
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Images were saved in a Tagged Image File Format (TIFF) image file format [42]. 

This format has advantages over others, such as JPEG or GIFF. TIFF is capable of 

storing images in a lossless format, meaning exact original data can be reconstructed 

from compressed data. This was desirable because compression losses could have 

potentially led to RGB data that was not accurate. Using loss-free image formats allow 

the experimenter to bypass this potential pitfall. Also, unlike other image formats that use 

loss-free compression, TIFF files may be edited and resaved with no loss of image 

quality. This was not necessary, however, as original images were never altered in this 

research. 

4.3.3 Lighting 

The goals in creating the lighting setup for these experimental trials were to:  

1. create lighting strong enough to provide vivid hues to the camera 

2. create lighting weak enough to keep any of the R, G, and B colors from 

reaching their max value of 255, indicating oversaturation of the CCD 

3. reduce/eliminate glare caused by the acrylic walls of the tunnel 

4. create uniform brightness values along the length of the plate 

The first source of lighting available for these experiments was the laboratory 

fluorescent overhead lighting. However, these created a strong glare off of the top side of 

the wind tunnel, which conflicted with item 3 above. To solve this problem, a black box 

was created to shield the camera and top portion of the wind tunnel from the overhead 

lights (see Figure 4.8). While this eliminated glare, it also reduced the intensity of light 

able to reach the plate, as now only the sides of the wind tunnel were available to 

illuminate the plate. 
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To increase the RGB signal levels (item 1 above), additional lighting was 

required. Two FS GU10-C 35 watt Phillips indoor floodlights were used, secured to the 

top of the wind tunnel with flex railing to allow mobility. These were Edison-style lights, 

with a medium base and 2.5” diameter. The lights were positioned above the wind tunnel, 

12” from the nearest edge of the plate and 7” above the top plane of the plate, centered 

laterally, shown in Figure 4.8. 

 

Figure 4.8 Lighting Side View: Side view of the wind tunnel, demonstrating black box and lighting 

locations. 

 To have uniform illumination as specified in item 4, the angle of the lights needed 

to be adjusted. The XCap software could track HSB values as a function of plate position, 

and this was used to evaluate brightness uniformity. In this way, it was found that small 

changes in angle could have large changes in brightness. This made it difficult to achieve 

good uniformity. Too steep of an angle, and the brightness at the edges of the plate was 

too high.  Too shallow of an angle and the lights did not provide enough light to the 

Black Box 
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middle of the plate. It was found that an angle near zero degrees with the horizontal was 

ideal, though still not providing perfect uniformity. Figure 4.9 shows an X Cap plot of the 

final lighting solution, taken with a black plate. 

 

Figure 4.9 Light Level Reading: HSB plot of lighting before experimental trial. Red, pink, and white 

lines correspond to H, S, and B, respectively. The plate was black for this plot. 

 In this plot, the x coordinate refers to the stream-wise location of the plate. The 

red, pink, and white lines are hue, saturation, and brightness, respectively. The high 

saturation indicates a vivid image. It can be seen that the white brightness line is close to 

uniform, with values being slightly higher at the back end of the plate. This was not 

enough to affect the uniformity of the hue, however. Additionally, since each position on 

the test plate was calibrated individually, this deviation in brightness was negligible.  

 To satisfy item 2, the camera aperture was adjusted to restrict the amount of light 

allowed into the camera. It was found that the red signal was most prone to reaching max, 

so this was the signal monitored. Deciding aperture adjustment was done on a trial-and-
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error basis, as the model of camera used did not have aperture adjustment marks. The 

aperture was initially left fully open, and an experimental trial was done. Subsequent 

trials were then performed, progressively tightening the aperture until the red signal was 

just short of reaching maximum value. 

 Another factor that needed to be taken into account in the lighting setup was the 

temperature of the light incident upon the black plate. Color temperature refers to the 

bias light shows to particular colors of the spectrum [43]. This value is measured in 

Kelvins (K). Figure 4.10 shows a chromaticity diagram showing how values of color 

temperature translate to colors. 

 

Figure 4.10 Chromaticity Diagram: Color temperatures are red at low values around 800 K, and 

blue at higher values around 8000 K [44]. 

It can be seen that low values around 800 K correspond to warm light (light that 

favors red), and high values, around 8000 K, correspond to cool light (light that favors 
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blue). Each light bulb or light source has a color temperature. For example, incandescent 

bulbs tend to emit warmer light, while fluorescent bulbs are cooler.  

 For an ideal black plate, the RGB color signal read by the camera would have 

zero values for each color value. Although the plate is nominally black, it is actually grey, 

reflecting low level RGB values. These low level values add to the hue values produced 

by the TLCs, skewing the resulting hue signal. To account for this, the color noise was 

measured from the RGB signal in situ and subtracted before conversion to HSB. Figure 

4.11 shows a plot of the background color noise at the 1” location of the plate, taken 

while the TLCs were in their „clear‟ region. 

 

Figure 4.11 Color Noise: Light incident upon the plate caused a bias in data originating from the 

light’s color temperature. 

It can be seen that the background color noise was warm in nature, with red 

having the highest value, and almost no blue. This was somewhat surprising, since the 

primary light sources used in the experiment, halogen and fluorescent, tend toward cooler 

color temperatures. Additional variables that could contribute to the values in Figure 4.11 
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include color bias in the black plate undercoating, filtering effects of the acrylic test 

section, and light reflections from colored surfaces. Full details of the noise-subtracting 

process can be found in Section 4.5.7: Background Gray Subtraction. 

4.4 Thermocouple Temperature Sensing 

In the 1800s, Thomas Johann Seebeck discovered that by joining two dissimilar 

metals together and applying a temperature gradient across them, a magnetic field was 

created.  This has subsequently been dubbed the Seebeck Effect.  While Seebeck initially 

thought of its applications to magnetic fields, Leopoldo Nobili would eventually 

recognize the creation of a voltage through the Seebeck Effect and invent the 

thermocouple [45]. Today, thermocouples are used as an accurate and reliable means of 

measuring temperature. In this project, thermocouples were used as a means of 

calibrating the TLCs, checking TLC temperature data gathered during experimental trials, 

and confirming parameter values of   . 

4.4.1 Types 

In this study, K-type thermocouples manufactured by Omega were used 

exclusively. K-type thermocouples are made from chromel and alumel for each 

respective lead. K-type thermocouples are one of the standard base-metal thermocouple 

types, the others being T, J, E, and N.  Base-metal thermocouples are desirable for their 

low cost.  However, they are inferior to rare-metal thermocouples such as B, R, and S 

types, due to the fact that they undergo oxidation easily.  This makes it harder to remove 

impurities in the construction of the thermocouple, and lowers the accuracy.  For class 2 

thermocouples, the tolerances for uncalibrated rare-metal thermocouples are about      , 
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versus         for base-metal thermocouples [46]. Since the increase in accuracy was not 

enough to justify the tenfold increase of cost, base-metal thermocouples were used.  

4.4.2 Principle of Operation 

When a temperature gradient exists in a wire,   , the electrons at the hot end of 

the wire move toward the colder end, and a differential Seebeck voltage     is produced 

in proportion to the gradient: 

            . (4.2)  

The proportionality constant      is called the Seebeck coefficient of the conductor, and 

is a property of the material [46]. 

To measure this voltage, another wire must be attached to the first.  This, 

however, creates another Seebeck voltage.  If the two wires have the same Seebeck 

coefficient, the two Seebeck voltages will be equal and opposite, creating a net zero 

voltage.  When two dissimilar metals are used, such as in Figure 4.12, the net voltage is 

not zero, and is on the order of tens of millivolts.   

 

Figure 4.12 Seebeck Effect: Two dissimilar metals create a thermal emf [47]. 

This voltage can be measured and, when used with proper calibration and reference 

temperatures, can accurately and quickly measure temperature. 

4.4.3 Reference Junction 
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Since thermocouples are a differential measurement device, a reference 

temperature must be known to determine the temperature of interest. Until recently, the 

traditional method of creating a reference was to add a second and third thermocouple to 

create a reference junction, then immerse the reference junction in a bath of melting ice 

water held at its freezing point, as seen in Figure 4.13 [45].  

 

Figure 4.13: Creation of a thermocouple cold junction through use of an ice bath [48]. 

The advantages of this method were simplicity in temperature calculation, since 

         [46]. This method is cumbersome, however, since an ice bath has to be 

created for every experiment, and needs to be frequently refreshed and stirred.  

Recently, advances in microelectronics have allowed for digital electronic cold-

junction compesators (CJC).  These circuits use a thermistor to measure the temperature 

of the reference junction and cancel the voltage at that point, electronically lowering the 

reference temperature to 0 °C. Such circuits contain both an amplifier and linearizer in 

one chip [45], greatly simplifying calculations and turning ice bath cold-junction methods 

into a specialized technique.  

A disadvantage of the electronic cold junction is the sample rate time constant. A 

typical CJC‟s response rate limits sampling rate, reducing data collection to the order of a 

few hertz. A data acquisition board with higher response times are available but for a 
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higher monetary cost.  For this research, a TCIC Series thermocouple interface card was 

used, supplying an electronic cold-junction, ADC conversion, and temperature 

conversion (see Section 4.4.6). The maximum sampling rate of the TCIC was 400 

samples per second. 

4.4.4 Thermocouple Layout 

Experimental trials made use of four thermocouples. One 0.01” diameter insulated 

K-type Omega thermocouple was placed halfway between the top of the test plate and the 

wind tunnel test section wall to measure free stream temperature (Figure 4.15). Three 

0.0005” thick K-type Omega surface-mount thermocouples were placed on the surface of 

the test plate, at positions shown in Figure 4.14. 

Figure 4.14 Thermocouple Layout: Positions of three surface-mount thermocouples. 

Air Flow 

TC #1 

TC #3 

TC #2 
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Figure 4.15 Free Stream T.C. Position: The free stream thermocouple was positioned near the 

leading edge, halfway between the test plate surface and the top of the test section. 

 These thermocouples were mounted with a spray adhesive directly to the 

polycarbonate surface, placed under all black and TLC paint. They terminated on the 

edges of the plate, where they were attached by K-type screws to insulated K-type 

thermocouple extension wire. This wire was run along the edges of the plate to where 

they exited the wind tunnel through small holes to the data acquisition unit. 

 The thermocouples were placed at stream-wise positions of 1”, 4”, and 7” from 

the plate leading edge, indicated in Figure 4.14. These positions allowed for multiple 

checks to the hue/temperature data obtained with the TLCs and allowed for interpolation 

between positions. The lateral positions of the thermocouples were chosen for multiple 

reasons. First, the thermocouple needed to be placed outside of the wall boundary layer 

effects. Section 4.5.2 demonstrated that the boundary layer grew no more than 0.8 cm 

(0.3 in). Therefore, the thermocouples were placed at sufficient distances from the test 

section wall. Next, it was desired that the middle stream-wise positions of the plate be 

Side View 

Free Stream Thermocouple 

To DAQ 

Air Flow 
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clear, as that corresponded with the most desirable TLC locations. So, they were placed 

at a distance of at least 1” from the centerline. The positions of the thermocouples were 

also constrained by the 6.5” length of the lead of the surface mount design as well as the 

need to have them terminate on the edges. Given these considerations, the thermocouples 

were placed as far apart as possible so that any small flow effects created by their 

minimal thickness would not influence the other two. The resulting lateral positions 

shown in Figure 4.14 were deemed most efficient to accomplish all of the positioning 

goals. 

4.4.5 Calibration 

It is always necessary to calibrate a thermocouple to verify that it is returning an 

accurate temperature. Problems such as wire resistance errors, interference errors, and 

reference junction errors can all cause a thermocouple to read incorrectly without a 

proper calibration.   

In situ calibration is preferred because it ensures immersion conditions are the 

same as those used in calibration [46].  For this reason, in situ calibrations were used for 

all thermocouples in this research. The thermocouples were calibrated in two steps: the 

free- stream thermocouple was calibrated first. Next, the three surface-mount 

thermocouples were calibrated to the free stream thermocouple. 

The free stream thermocouple was calibrated under experimental trial conditions 

without being detached from the data acquisition unit, only removed from the test section 

of the wind tunnel. Also, electrical conditions were kept the same as well: the blower, 

heater, and other electronics were running under experimental conditions during 

calibration. 
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The thermocouple was wrapped around an alcohol glass thermometer, and 

atmospheric conditions were noted (Table 4.1) with a digital barometer. 

Table 4.1 Atmospheric Conditions: Conditions at the time of calibration. 

Atmospheric 
conditions 

Humidity 23% 

Room temp 23.5 °C 

Bar. Pressure 919 mb 
 

Two calibration points were chosen: the boiling and freezing points of pure water. 

To achieve these two conditions, distilled water was poured into an insulated glass beaker 

and placed on a hot plate with stirrer. The thermocouple-wrapped alcohol thermometer 

was inserted through the insulation such that the termination points were in the center of 

the beaker, two inches from the bottom. With the stirrer and heater engaged, the water 

was allowed to heat up to boiling temperature. With the above atmospheric conditions, 

the boiling point of pure water was calculated to be 97.34 °C. However, the maximum 

temperature the alcohol thermometer reached was 95.2 °C. It was believed that this was 

due to the thermometer being too far away from the bottom of the beaker where actual 

boiling point temperatures were reached. In practice, the water closest to the hot plate 

was at boiling point, and a temperature gradient formed from that point to the surface. 

With this in mind, the temperature of the alcohol thermometer was reasonable, and 

treated as the true temperature. The values for this calibration point can be seen in the 

first column of Table 4.2. 

The second calibration point was chosen to be the freezing point of water. Unlike 

with the boiling point, pure water‟s freezing point does not change significantly with 

elevation so the true freezing point was taken to be 0 °C. To achieve this, the stirrer of the 
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hot plate was engaged but the heating element left off. Crushed ice cubes made with 

distilled water were added to the water in the beaker to create an ice bath. Melting point 

equilibrium was achieved, with additional ice cubes added periodically.  Again, with the 

thermometer placed in the center of the beaker, 0 °C was not reached due to the 

temperature gradient, but the thermometer was taken as true. The lowest temperature the 

thermometer reached was 0.5 °C, seen in the second column of Table 4.2. 

Table 4.2 Calibration Values: Alcohol thermometer and thermocouple calibration point 

temperatures. 

Boiling Temperatures (°C ) Freezing Temperatures (°C ) 

Thermometer 95.2 Thermometer 0.5 

Thermocouple 94.34 Thermocouple 0.3 
 

 With these points, a linear calibration curve was generated for the free stream 

thermocouple, seen in Figure 4.16. 

 

Figure 4.16 Calibration Graph: Calibration curve generated for the free stream thermocouple 

against an alcohol thermometer taken as “true.” 

 To calibrate the three surface-mount thermocouples, the free stream thermocouple 

was replaced in the wind tunnel test section. Using the heater and fan, the four 
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thermocouples were allowed to reach equilibrium at multiple temperatures and linear 

calibration curves were generated using the calibrated free stream thermocouple. Table 

4.3 summarizes the calibration curves calculated from this procedure. 

Table 4.3 Calibration Curves: Calibration curves for the surface mount thermocouples. 

Thermocouple Calibration Equation (°C ) 

1”                 

4”                  

7”                 

 

4.4.6 TCIC DAQ Board 

The Thermocouple Interface Card (TCIC) data acquisition unit was used as the 

interface between the thermocouples and computer, and incorporated many features that 

helped in data collection, including USB interface, on-board K-type conversion and built-

in electronic cold junction. 

 

Figure 4.17 TCIC DAQ Board: TCIC Interface Card with on-board electronic cold junction [49]. 
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The main advantage of this interface card was its high sampling rate: 400 Hz total 

(50/Hz per channel with 8 channels). Since a maximum sampling rate of 15 Hz was used, 

the rate the card provided was more than adequate. 

4.4.7 Accuracy 

The total accuracy of the temperature measured is a combination of two factors: 

system accuracy and thermocouple accuracy [46]. 

The system accuracy is the sum of the thermal EMF error and CJC (cold junction 

compensation error).  

                 (4.3) 

Thermal EMF error is caused by the junction of the leads of the thermocouple and the 

channel stations of the data acquisition board. These junctions of dissimilar metals create 

their own Seebeck effect and act as another thermocouple. However, as long as the 

temperatures around the DAQ board are steady, this error is small, on the order of 0.01 

°C. Of greater significance is the error caused by the temperature measurement by the 

CJC. This error is caused by the thermistor, which provides the reference temperature not 

being accurate, and is on the order of 0.5 °C. The total system error is given by the TCIC 

DAQ board data sheet as 1.5 °C, taking all the above factors into account. 

 Thermocouple error is caused by manufacturing errors in the thermocouple and 

impurities in the metal leads. For a typical K-type thermocouple, the accuracy is 1.5 °C.  

This gives a total accuracy of 3.0 °C.  However, it is important to note that this value is 

both an estimate and applies to an uncalibrated thermocouple.  It can be seen from Table 

4.2 that at boiling point temperatures, the uncalibrated thermocouple was accurate to 

within 1 °C, and 0.2 °C at freezing point temperatures. Since maximum experimental 
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temperatures were about 50 °C, and the thermocouples were calibrated, full system 

accuracy can be estimated to be about 0.2 °C. 

4.4.8 Response Time 

The response time of the thermocouple is the time difference between the change 

in environmental temperature and when the thermocouple reports this change. This lag in 

measurement is a function of both the heat transfer characteristics of the thermocouple 

and the response of the DAQ board CJC. 

A thermocouple does not measure the temperature of its surroundings directly. 

Rather, it measures the effect the surrounding temperature has on the thermocouple itself. 

Knowledge of the dimensions and materials of the thermocouple can be used in an energy 

balance analysis to calculate this response time and evaluate whether it can be neglected 

or not. 

 In the case of a thermocouple heating up, an energy balance equation reduces to: 

                (4.4) 

or 

               
  

  
, (4.5) 

with the initial condition being: 

         . (4.6) 

where A is the surface area of the bead tip of the thermocouple, and V is the volume of 

the bead tip. This equation can be integrated by separation of variables to give: 

  
    

     
      

 

 
  (4.7) 

    
    

  
. 
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  is known as the time constant, and represents the time it takes the thermocouple to 

reach 63.2% of the environmental temperature in response to a step change in   . This 

equation assumes lumped capacitance, which can be checked by calculating the Biot 

number of the thermocouple lead and comparing it to the threshold value of 0.1. With the 

thermal conductivity of the lead k=25 
 

   
 and using the h value calculated below, the 

Biot number is 0.005, validating lumped capacitance. 

To calculate the time constant, it can be assumed that the leading bead of the 

thermocouple is a sphere. The free stream thermocouple‟s dimensions are shown in Table 

4.4. 

Table 4.4 Thermocouple Dimensions: Dimensions of the free stream thermocouple for energy 

balance. 

Diameter (mm) 0.25 

Surface area A (     0.197 

Volume V (   ) 8.2E-3 

 

Material properties can be taken as an average of the properties of chromel and 

alumel, shown in Table 4.5. 

Table 4.5 TC Material Properties: Material properties of the free stream thermocouple. 

 Chromel Alumel Average 

Density     
  

    8730 8600 8665 

Specific Heat     
 

    
  448 523 486 

 

The h value in   can be calculated from a sphere in external flow according to Incropera 

et al. [21]:  
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With h known,   can be calculated: 

  
    

  
 

    
  
                

 
    

 

      
 

    
              

         

With   known, the actual    time delay can be found from Equation 4.7, with the original 

free stream thermocouple data being T, and    being adjusted fluid temperature. A 

visualization of this adjustment can be seen Figure 4.18.  

 

Figure 4.18 Time Delay: Time delay comparison of the 0.25 mm diameter free stream thermocouple. 

The blue line is raw thermocouple data, the red line is the adjusted data. 
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 It can be seen that the difference between values is slight from 0 to 2 seconds, and 

not visible after 2 seconds. The difference was small enough to ignore except when 

comparing   , the first ramp of    calculated with inverse methods, to the free stream 

data. 

Time delay values for the surface-mount thermocouples were provided in their 

data sheet. For the Style 2 surface-mount thermocouples from Omega used, a time delay 

tau of 2 to 5 milliseconds was given when mounted [50]. This was much less than the 

free stream wire thermocouple due to the comparative thinness of the material: 0.25 mm 

for the wire thermocouple versus 0.0125 mm for the surface-mount thermocouples. 

Because of this, it was decided no adjustments were needed for the surface-mount 

thermocouples due to heat transfer time delays.  

 The time shift caused by the data acquisition board is a function of its sampling 

rate, and the sampling rate is limited by the CJC time response. The TCIC series board 

used had 8 channels. Since the board cannot sample all 8 channels at once, it steps 

through them individually at a 400 Hz rate, equating to 50 Hz per channel. The 50 Hz 

individual channel sample rate can be neglected, since a much slower sampling rate of 15 

Hz was used to correspond with the camera sampling rate. The time delay occurs when 

the DAQ board is switching between channels at the stated 400 Hz sample rate. This 

value corresponds to a 0.0025 second delay between each channel. Assuming a 

thermocouple is sampling on the last channel, a maximum delay of                 

seconds occurs, or 0.00875 seconds if four channels are used. Again, this value is small 

enough compared to the time scales used in the experimental trials to be neglected. 
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4.4.9 LabVIEW 

LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) is a 

computer program published by National Instruments used to aid in the process of data 

acquisition. This program was the third main component of the temperature measurement 

system, and worked in conjunction with the thermocouples and TCIC DAQ board. 

LabVIEW was used to interface the DAQ board with the computer and translate 

the signals it gathered into useable data.  LabVIEW uses a visual-based block diagram 

programming language called a VI, or virtual instrument. It links the block diagram to a 

front panel, a virtual tool that allows the user to interact with the program and data 

acquisition.  

The advantages of LabVIEW to this experiment was the visualization of data in 

real-time. Temperature curves could be seen instantly during experimental trials through 

the use of LabVIEW‟s graphing subroutines, and during calibration it aided in 

determining whether the test plate was at steady-state or not. 

A disadvantage of LabVIEW is that it is designed to work with NI hardware, and 

therefore does not function as well when used with boards manufactured by other 

companies. Since the DAQ board used was manufactured by Omega, a significant 

amount of additional programming was needed for the components to work together. 

4.4.10 MATLAB 

MATLAB, short for MAtrix LABoratory, is a mathematical computer program 

designed for numerical computing. It is particularly useful for automating analysis of 

large amounts of data, and this was its primary function in this research. Since an 

experimental trial‟s data consisted of 1,000 images, each with thousands of pixels, 
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MATLAB was an essential tool. A summary of MATLAB scripts can be found in 

Appendix B. 

 

4.5 Data Analysis 

Before data could be analyzed, the following attributes and assumptions of the 

flow structure in the wind tunnel were determined or verified: 

 Velocities 

 Reynolds numbers 

 Flow wall effects 

Also, the following heat transfer attributes and assumptions were investigated: 

 Nusselt correlations 

 Semi-infinite solid assumption 

 Constant h assumption 

Next, the TLC hue to temperature calibration is described in the following steps: 

1. RGB data was converted to hue data after noise-subtracting and averaging. 

2. Steady-state and transient hue and thermocouple data was used to form a 

hue/temperature curve with a polynomial fit. 

3. This polynomial calibration was applied to the experimental trial data to achieve a 

surface temperature vs. time curve at different test plate locations. 

4.5.1 Correlations for the Test Plate 

To evaluate the results of the experimental trials, the h values that were found 

were compared to theoretical correlations. 
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4.5.1.1 Flat-Plate Correlations 

The following flat-plate correlations were used to calculate boundary layer 

thicknesses and verify experimental heat transfer data. The correlations used were 

reported by Incropera et al. [21]. 

Boundary layer thickness   is defined as the value for which         . Two 

different correlations exist, one each for laminar (found using a similarity method on the 

continuity and momentum equation), and turbulent boundary layers. To determine 

turbulence, a critical Reynolds number     was assumed to fall between     and      . 

Also, air properties were evaluated at a film temperature of 300 K for convenience, with 

a kinematic viscosity              
  

 
. The equation to calculate the Reynolds 

number based on x is 

      
   

 
, (4.8) 

where x is the stream-wise distance from the start of the boundary layer. 

The correlation for laminar boundary layer thickness on a flat surface is: 

   
     

        
. (4.9) 

The correlation for turbulent boundary layer thickness on a flat surface is: 

   
     

        
. (4.10) 

The boundary layer thickness equations were not needed for any calculations involving 

the flat plate, but were applied to calculations involving the wind tunnel test section in 

Section 4.5.2: Tunnel Side Wall Effects. 

 In a similar manner, there exists a Nusselt correlation for a flat plate, found using 

similarity methods on the energy equation. The Nusselt number for a flat plate is a 
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function of the Reynolds and Prandtl numbers. Table 4.6 contains a summary of Nusselt 

number correlations for both laminar and turbulent flow, as well as two boundary 

conditions: constant surface temperature and constant heat flux.  

Table 4.6 Nusselt Correlations: Correlations corresponding to different conditions. 

Conditions Nusselt Correlation  

Laminar,          
    

   

 
         

   
      

(4.11) 

Turbulent,          
    

   

 
          

   
      

(4.12) 

Laminar,   
        

    
   

 
         

   
      

(4.13) 

Turbulent,   
        

    
   

 
          

   
      

(4.14) 

 

For these experiments, a Prandtl number of 0.707 was used based on a 300 K air 

film temperature. In this manner, h can be found from generally accepted correlations and 

compared to h values returned by the inverse method to check for accuracy. 

4.5.1.2 Velocity Measurement 

Since calculation of the Reynolds number was needed, an accurate measurement 

of velocity was required. For this, a pitot tube and Dwyer Series 475 Mark III digital 

manometer was used. The manometer had a reported accuracy of         W.C. and a 

range of 0-1.000” W.C. The pitot tube was inserted into the top of the wind tunnel 

slightly ahead of the leading edge of the flat plate, halfway between the plate and top of 

the test section. The fan was activated with heater off, and pressure readings were taken 

at 1% fan intervals from 10% to 20%. The pressure readings were then translated into 

velocity readings using Equation 4.15, where    is the pressure differential reading from 

the manometer, and   is the density of air, evaluated at film temperature, 1.193 
  

  .  
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 (4.15) 

Table 4.7 shows the range of velocities corresponding to the pressure differences 

measured with the Dwyer manometer. 

Table 4.7 Velocity: A range of wind tunnel velocities measured. 

% Blower                        (Pa)  V  
 

 
  

10 0.016 3.287 2.35 

11 0.023 4.724 2.81 

12 0.028 5.751 3.11 

13 0.035 7.189 3.47 

14 0.042 8.627 3.80 

15 0.049 10.065 4.11 

16 0.060 12.324 4.55 

17 0.067 13.762 4.80 

18 0.078 16.022 5.18 

19 0.090 18.487 5.57 

20 0.102 20.951 5.93 
 

4.5.1.3 Boundary Layer Start Position 

An accurate value of x, the distance from the start of the boundary layer, was 

needed to calculate both Reynolds and Nusselt numbers. In an ideal flat plate, this value 

would be the distance from the leading edge. However, the reality is that a blunt edge 

creates a stagnation point at the leading edge of the flat plate [51]. This causes the flow to 

separate from the leading section of the surface of the plate, and reattach at some distance 

downstream, as seen in Figure 4.19. The flat plate was positioned in the center of the 

wind tunnel test section such that there was 10 cm between the top surface and the wall, 

and 10 cm between the bottom surface and the wall. 
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Figure 4.19 Separation Bubble: A blunted edge on a flat plate creates a separation bubble at the 

leading edge when it is immersed in a flow. 

A rounded edge was added to the leading edge of the plate to minimize this effect. The 

distance from the leading edge of the plate to the reattachment point,   , needed to be 

found to determine experimental x values. 

 To find   , the image series from experimental trials was examined. From these, the start of 

the boundary layer could be identified as the position where the TLCs first started to change color. It 

should be recognized this position will change as velocity changes. Since red is the first color the 

TLCs experience, the red signal was examined.  

Figure 4.20 shows an image closely corresponding to the start of the red signal to 

illustrate the location of the boundary layer start. The leading edge of the plate 

corresponds to the left edge of the image (the leading edge of the plate being the edge of 

the top of the half-circle leading edge). The green light at the lower edge of the image is 

an LED to denote activation of the tunnel air heater.  

   

FLOW 
Separation bubble 

Boundary layer 

Reattachment point 
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Figure 4.20 Boundary Layer Start: This image corresponds to the point where the TLCs just start to 

change color. The left edge of the image corresponds to the plate leading edge.  It can be seen the 

boundary layer starts at a distance downstream of the leading edge. 

 The pixel location of the start of the red signal near the middle of the plate was 

correlated to position. For this trial (blower at 16.4%),    was found to be 7/8” (2.22 cm) 

from the leading edge of the plate (considered to be the top of the rounded edge). The 

positions of the three surface-mount thermocouples (designated Position1, Position 2, and 

Position 3) were 1”, 4”, and 7” from the leading edge, respectively. Accounting for the 

position of   , the distance from the start of the boundary layer of the three 

thermocouples (x) becomes 1/8”, 3 1/8”, and 6 1/8”. 

4.5.1.4 Reynolds Numbers 

With V and x found, the Reynolds numbers could now be calculated. A kinematic 

viscosity of air of 1.59E-05 
  

 
 was used. Table 4.8 contains a summary of these 

Reynolds numbers. 

 

Pos.1 

Pos.2 

Pos.3 
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Table 4.8 Reynolds Numbers: A summary of the Reynolds numbers at different positions on the test 

plate. 

% V  
 

 
  Reynolds Number 

    Pos. 1 Pos. 2 Pos. 3 

10 2.35 469.01 11725.24 26737.24 

11 2.81 562.32 14058.07 32056.82 

12 3.11 620.44 15511.03 35370.04 

13 3.47 693.67 17341.86 39544.91 

14 3.80 759.88 18997.06 43319.28 

15 4.11 820.77 20519.17 46790.17 

16 4.55 908.23 22705.83 51776.44 

17 4.80 959.75 23993.80 54713.43 

18 5.18 1035.55 25888.63 59034.22 

19 5.57 1112.35 27808.85 63412.93 

20 5.93 1184.19 29604.78 67508.22 
 

To determine whether the flow is laminar or turbulent, these values are to be 

compared to a critical Reynolds number, a number that denotes transition to turbulence. 

It has been found experimentally that the critical Reynolds number varies between     

and       [21]. Referring to Table 4.8, this implies that all flows were laminar. 

However, roughness of the plate, flow inconsistencies, etc., could induce turbulence. 

Therefore, h values for both laminar and turbulent conditions were compared to 

experimental h values. These Reynolds numbers were used to calculate Nusselt number 

correlations to compare with the h values calculated with inverse methods.  

4.5.2 Tunnel Side Wall Effects 

The points to be analyzed on the plate were chosen to be outside the boundary 

layer generated by the side walls of the wind tunnel. The test section of the tunnel had a 

square cross section, with the plate positioned in the middle, flush with the side walls as 

shown in Figure 4.21. 
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Figure 4.21 Test Section Views: A top-down and side view of the wind tunnel test section. The red 

object represents the flat plate, and the blue lines show where side-effect boundary layers were 

expected to reside. 

To do this, boundary layer thicknesses,   , were calculated for the range of 

possible wind tunnel speeds, which ran at a minimum of 3 m/s to a maximum of 30 m/s, 

with the test speed being around 6 m/s. The correlation equations for laminar and 

turbulent flat plate boundary layers are given by Equations 4.16 and 4.17, respectively.  

    
     

        
 (4.16) 

    
     

        
 (4.17)  

A plot of the results is shown in Figure 4.22. 

          TOP 

   

          SIDE 
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Figure 4.22 Boundary Layer Plot: Boundary layer thickness in test section.  Plate starts at 23 cm and 

is 26 cm long. The large jump in   that corresponds to large values of x and U represents the 

transition to turbulent flow. 

 The boundary layer growth started at the beginning of the test section.  The 

forward edge of the plate started 23 cm into the test section, and the plate was 26 cm 

long. Generally, it can be seen that   is below 0.8 cm.  The discontinuity in the plot 

represents the boundary layer‟s transition to turbulence. In this case, any wind tunnel 

velocities over 20 m/s will result in a turbulent boundary layer, and a boundary layer 

thickness of 1.2 cm or higher. However, since no wind tunnel velocities over 20 m/s were 

used, it can be assumed any section of the plate significantly more than 0.8 cm from the 

side edges were unaffected by wall effects. The MATLAB algorithm for this calculation 

can be found in Appendix B. 
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4.5.3 Semi-Infinite Solid Assumption 

For analysis, it was assumed that the flat plate could be treated as a semi-infinite 

solid: a solid that extends to infinity in all directions except for one, its surface [21]. For 

the assumption to be strictly true, the centerline of the plate would see no temperature rise 

over the duration of the experiment. To evaluate the semi-infinite solid assumption, a 1-D 

plane wall with convection model was compared to a semi-infinite solid model, as the 

experimental plate experienced heating on both sides. 

The exact solution [21] for a plane wall with thickness 2L is 

  
         

     
           

               
    

     
         

             
 (4.18) 

   
 

 
 

   
  

  
 

where    is the dimensionless distance from the centerline, Fo is the Fourier number, and 

   is the nth root of the transcendental equation  

               (4.19) 

   
  

 
 

with Bi being the Biot number. In this case, 2L would be the full-plate thickness of 1.7 

cm, and L is the half-plate thickness. 

For the half-plate thickness L of 0.25” (0.635 cm), the Fourier number was found 

to be 0.162 at a time of 60 seconds (the maximum experiment duration), indicating a 
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multi-term calculation was needed. Since the centerline temperature was the point of 

interest,     . The equation becomes 

                              
     

   . (4.20) 

Four terms were chosen because it was found the fourth term only changed the 

temperature value by 0.0024%, whereas the third term contributed 2.9% to the final 

answer. 

Using this model and the conditions and material properties for polycarbonate 

listed in Table 4.9, the centerline temperature rise after 60 seconds was calculated to be 

1.3 degrees Celsius. 

Table 4.9: Variable and parameter values used in centerline temperature response calculation. 

Variable Value 

   24 °C 

   45 °C 

h 80 W/  -K 

k 0.19 W/m-K 

  1190 kg/m3 

   1470 J/kg-K 

  

This was compared to a temperature rise in a semi-infinite solid, calculated at the 

same distance from the surface and the same parameters and temperatures. For this 

calculation, the step change to model was used from Section 3 with x=0.25” (.0635 cm): 

  
         

     
       

 

    
      

  

 
 

    

        
 

    
 

    

 
  . 



90 

 

 

At a time of 60 seconds, the temperature rise given by the semi-infinite step 

change model was 0.7 °C. Figure 4.23 shows a plot of the model comparison. It shows 

that the plane-wall model follows the semi-infinite model until about 25 seconds, when 

the two models begin to diverge. At 60 seconds, the maximum length of an experimental 

trial, the difference between the two models is about 0.6 °C. This discrepancy is 

mitigated somewhat by the fact that the h used was based on the highest h values 

produced by the experiment and the step change model produces a higher temperature 

rise than the series of ramps model used. A    of 0.6 °C, 3% of the total temperature rise, 

was considered a tolerable error that did not need to be adjusted for. 

 
 

Figure 4.23 Centerline Model Comparisson: When comparing a “realistic” plane wall model with an 

“ideal” semi-infinite model, the difference is 0.6 °C at a time of 60 seconds. 
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4.5.4 Constant h Assumption 

In the development of the series of ramps model assumed for the transient surface 

temperature response of the test plate, it was assumed that the heat transfer coefficient h 

parameter was constant. It is useful to reexamine the definition for h for this assumption: 

    
   

   

  
 
   

       
. 

It is shown that h is a ratio of the temperature gradient at the surface to the temperature 

difference that drives convective heat transfer. It can be seen h is not strictly constant for 

a sudden temperature rise, as is the case for this study. In the transition from       to 

     , h varies as the rate of increase/decrease of the temperature gradient and 

temperature difference equalizes. 

 Thiele [7] performed a numerical FLUENT analysis of heat transfer coefficient 

variation over a flat plate in time under similar experimental conditions to this study. It 

was found that Nusselt values, and thus h values, become constant in the first 0-0.3 

seconds after the start of the flow temperature rise, and that for an acrylic plate (acrylic 

has very similar material properties to polycarbonate), the Nusselt numbers are very close 

to a constant surface temperature correlation, as seen in Figure 4.24. 
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Figure 4.24 Constant h Assumption: h values become constant between 0.001 and 0.3 seconds [7]. 

The dotted lines indicate the bounds of the Nusselt correlations, with the curves representing 

different plate positions. 

To understand why h becomes constant, it is useful to revisit the definition of h: 

  
     

  
 
   

       
. 

If k is constant, this implies that the gradient is proportional to the driving temperature 

difference regardless of time: 

   

  
 
   

        . 

As plate surface temperature increases, the difference between fluid temperature and 

surface temperature decreases. Also, the magnitude of the temperature of the gradient at 

the surface decreases. The above figure implies that these values decrease at the same 

rate during heating. Why this is true is not readily intuitive, however. 
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4.5.5 TLC Calibration 

To achieve a relationship between hue and temperature, a calibration needed to be 

performed. This calibration was done in situ under experimental conditions. The 

calibration procedure was as follows. 

Calibration was done after an experimental trial was performed, leaving enough 

time for the apparatus to reach equilibrium with room temperature again, about four or 

more hours. This assured that lighting and environmental conditions would be kept as 

similar as possible.  

The wind tunnel was turned on to 16.4% (4.7 
 

 
), and 3-5 seconds of 

camera/thermocouple data was taken with the heater turned off to obtain a baseline value. 

Next, the heater was activated to 20%, and 5 minutes were allowed for the plate to come 

to equilibrium with the fluid temperature. Next, 3-5 seconds of camera/thermocouple data 

was taken. This procedure was repeated, increasing the heater setting, to give 9 

calibration points between room temperature and the TLC‟s clearing temperature. 

4.5.6 RGB Data Extraction and Averaging 

At each calibration point, around 50 frames of data were taken. A pixel was 

chosen at each surface-mount thermocouple stream-wise position near the center of the 

test plate, designated Positions 1, 2, and 3, corresponding to distances from the leading 

edge of 1”, 4”, and 7”, respectively. First, a “central pixel average” was taken at each 

frame, averaging the chosen pixel‟s RGB data with two pixels each to the left and right 

(at the same stream-wise position) – a five pixel average. After position-averaging, the 

RGB values were time-averaged over each frame to obtain a single RGB value to 

correspond with each thermocouple position at the calibration point. The thermocouple 
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data was time-averaged to obtain a single temperature value per thermocouple at each 

calibration point. 

4.5.7 Background Gray Subtraction 

Background “grayness” was then removed from the RGB values whose values 

could range from 0 to 255. The values of RGB for each position were examined with the 

TLCs in their transparent state (heater off), and the amount of background color present 

in the signal was determined by measuring the average RGB value‟s distance from zero. 

Table 4.10 shows the background gray offset values. 

Table 4.10 RGB Noise: Values were subtracted from the RGB signal to make the unheated plate 

"black." 

 Position 1 Position 2 Position 3 

R 37.513 48.209 47.522 

G 16.687 22.940 27.052 

B 0.157 0.609 5.6 

 

These values were then subtracted from the averaged calibration data at each calibration 

point. 

4.5.8 RGB Data to Hue Data 

The noise-subtracted RGB calibration data was then converted to a HSV signal 

using MATLAB‟s built-in functions. The hue value was paired with thermocouple data 

as shown in Table 4.11. 
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Table 4.11 Hue Calibration Data: Hue values were paired with thermocouple data to correlate the 

two. 

  
Hue 

Heater T (°C ) Pos. 1 Pos. 2 Pos. 3 

0% 22.51 0.00 0.00 0.00 

20% 24.58 0.00 0.00 0.00 

35% 28.77 23.18 18.76 20.80 

40% 31.21 80.88 85.19 90.43 

45% 33.50 93.07 96.06 106.16 

50% 36.06 111.24 112.35 124.34 

55% 37.54 118.44 122.14 134.05 

60% 41.60 144.08 143.08 148.49 

65% 44.53 148.83 150.45 151.95 
 

The trial RGB data was also converted to hue. This conversion can be seen in Figure 

4.25.  

 
Figure 4.25 RGB to Hue Trial Data: RGB was converted to hue data. 
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It can be seen that in the initial few seconds of data where the plate is below the 

TLC color change start, the hue data alternates between its minimum value of 0 and 

maximum value of 255. This is due to the conical color model used for HSV, in which a 

position of 0 degrees and 360 degrees on the circle represents black. This manifests in the 

color model equations for hue: 

             

             

      

     

 
 
 

 
 

                   
   

 
                

   

 
                  

   

 
                  

  (4.21) 

When the components of the RGB signal are all close to 0, M and m are very close to 

each other, causing alternations between which equation in the piecewise hue function is 

used. 

 This data was eventually negatively time-shifted 58 frames (4 seconds) to 

coincide with the start of the heater, negating some of this initial noisy hue data. Any 

additional noisy hue data was disregarded for the purposes of parameter estimation from 

the inverse method. An additional 2 seconds of data was ignored for Position 1, 12 

seconds for Position 2, and 19 seconds for Position 3. 

4.5.9 Hue/Temperature Calibration 

Temperature versus hue was then plotted, and a 4
th

 order polynomial fit was 

applied to the calibration data to achieve a calibration curve. The curve was very flat 

from 29 °C to 31 °C. In this portion of the curve, hue was changing very quickly over a 



97 

 

 

short temperature range. This sensitivity of hue to temperature made it difficult to obtain 

calibration points in this region. 

As described in Section 4.3.2.1, the camera used in these experiments had a 

peculiarity where the blue signal experienced a “bump” at a certain threshold. At a blue 

value of 50, the signal rises unnaturally fast, then drops at a blue value of 75. This bump 

was translated to hue, and in turn to temperature. Unfortunately, this bump occurred in 

the region in which there was no steady-state calibration data.  

 To obtain calibration in this region of the hue signal, the experimental trial 

transient hue data was compared with the thermocouple data in the region of the bump. 

Figure 4.26 shows the hue data compared with thermocouple data. The hue data was 

given a 2
nd

 order polynomial fit, while the thermocouple data was given a power fit. 

 

Figure 4.26 Parametric Fit Pos. 1: Hue data was compared to thermocouple data in the bump region. 

The set of parametric temperature-time (power) and hue-time (polynomial) 

equations were evaluated at different times to form a set of hue-temperature points to add 

to the calibration. Table 4.12 shows that points were chosen at 0.5 second intervals. 
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Table 4.12 Parametric Fit Data: times were chosen to relate hue to thermocouple temperature in the 

chosen range. 

Time (s) Hue T.C. (°C ) 

6 58.43 30.16 

6.5 65.95 30.34 

7 72.11 30.51 

7.5 76.92 30.67 

8 80.37 30.82 

8.5 82.46 30.96 

9 83.19 31.10 

9.5 82.56 31.23 
 

These points were then added to the calibration curve and given a 3
rd

 order 

polynomial fit. Trial data was overlain to verify how well the calibration curve fit, as 

shown in Figure 4.27. 

 
 

Figure 4.27 Pos. 1 Adjusted Calibration Curve:  Points were added from transient data to provide 

more information in the flat region. Green points indicate how well the curve fits the trial data. The 

calibration was applied in a piecewise fashion. 
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It can be seen that, for this plate position, there was data to which the 4
th

 order 

calibration curve applied, and data to which the 3
rd

 order fit applied. So, a piecewise 

calibration was applied, with Equation 4.23 applied to data with hues between 60 and 85, 

and Equation 4.22 applied to all other data. 

                                                  (4.22) 

                                      (4.23) 

The hue data was also very noisy in the bump region. To account for this, any 

data more than seven standard deviations from a power curve fit of the series was 

disregarded. This method discounted 15 data points. The final temperature trial data at 

Position 1 determined from hue is shown in Figure 4.28. In this figure, the hue 

temperature data compares well to thermocouple data verifying its accuracy. Also, it can 

be seen the hue temperature data has variable noise. In the 28-30 °C region, the data has 

very little noise, and the noise increases with temperature as more blue appears in the 

signal. 

 
 

Figure 4.28 Pos. 1 Final Data: Here the hue data is compared to thermocouple data for verification. 
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The thermocouple signal in the above plot can be seen to be noisier than the hue 

temperature data. The patterns in the thermocouple noise indicate a frequency pattern to 

the noise. It was believed that the variable speed controller for the wind tunnel blower 

caused electrical interference with the data acquisition unit, as this noise only occurred 

when the blower was on. This noise was present in all thermocouples. However, as the 

thermocouples were calibrated with the blower turned on, absolute accuracy was not 

affected. This noise was present in all thermocouples. 

A similar process was performed for Positions 2 and 3 on the plate. However, because heat transfer 

was slower in these regions, the “bump” region was more protracted, involving a much larger 

percentage of the data. In fact, almost all of the data lay in the “flat” portion of the calibration curve, 

determined by the transient calibration technique. 

Figure 4.29 shows the Position 2 calibration. This steady-state calibration 

predicted a flatter curve in the 29-31 °C region than what best represented the data by the 

transient data. 
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Figure 4.29 Pos. 2 Adjusted Calibration Curve: Points were added from transient data to provide 

more information in the flat region. Green points indicate how well the curve fits the trial data. The 

calibration was applied in a piecewise fashion. 

 Since all of the data lay in the flat region at Position 2, only the 3
rd

 order 

polynomial, Equation 4.25, was applied to the trial data. Equation 4.24 shows the 4
th

 

order polynomial portion of the calibration.  

                                                 (4.24) 

                                       (4.25) 

Figure 4.30 shows the final calibrated data for Position 2 compared to the 

thermocouple data at that position. Here the best data lay between 15 and 46 seconds. 

The low noise region of the TLCs, which happened over a span of 3 seconds for Position 

1 now accounts for the entire range of data here. 

 

Figure 4.30 Pos. 2 Final Data: Here the hue data is compared to thermocouple data for verification. 

Figure 4.31 shows the Position 3 calibration. 
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Figure 4.31 Pos. 3 Adjusted Calibration Curve: Points were added to provide more information in 

the flat region. Green points indicate how well the curve fits the trial data. 

 As with Position 2, only the 3
rd

 order polynomial curve (Equation 4.27) was 

applied to the trial data. The 4
th

 order calibration curve can be found in Equation 4.26.  

                                              (4.26) 

                                      (4.27) 

Figure 4.32 shows the final calibrated data for Position 3 compared with the 

thermocouple data for that position. Here the best data lay between 20 and 48 seconds. 

While this position‟s thermocouple was particularly noisy, it can still be seen that the data 

fits well. However, since this thermocouple was used in the calibration curve above, this 

position also has the highest amount of uncertainty. As with Position 2, all of the data 

was within the low-noise portion of the TLCs. 
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Figure 4.32 Pos. 3 Final Data: Here the hue data is compared to thermocouple data for verification. 

4.5.10 Ramp Starting Parameter Guess 

Five ramps were chosen to represent the data based on areas of linearity and high 

curvature observed in the measured fluid temperature history. Figure 4.33 shows the 

division of ramps and their slopes, along with the fluid temperature history. 

 

Figure 4.33 Ramp Segments and Slopes: free stream thermocouple data was divided into five ramps. 

 The free stream response was divided into four segments: the initial quick 

temperature rise, the “knee,” and two sections following with a shallow rise to the 
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section except the “knee”; because this portion of temperature change was rapid, it was 

decided two ramps were needed in this region. Table 4.13 contains a summary of the 

ramp values and their associated transition times. 

Table 4.13 Ramp Parameter Summary: A summary of ramp transition times and ramp slope used to 

start the inverse method. 

i m t 

1 7.51 2 

2 1.74 5 

3 0.34 8 

4 0.04 34 

5 0.00 72 
 

 To calculate the ramp slopes, a linear curve-fit was applied to each section of 

data. In Figure 4.33, the ramps are not continuous; the end point of one ramp was not 

required to be at the same point as the start point of the next ramp. Therefore, the ramp 

slopes calculated with this method were used only as guidelines. They were used as the 

starting guesses in the inverse method algorithm and as “ballpark” figures. Because of 

discontinuities, when placed “end to end” continuously, the ramps as stated would cause 

the fluid temperature to rise significantly past fluid data temperature. 

 This method calculated a slight negative slope for the final, asymptotic ramp. 

Since cooling of the wind tunnel air was not possible during an experimental trial, this 

slope was attributed to thermocouple noise. This slope value was ignored, and a ramp 

slope of 0 °C/s was used. 

 Initial equilibrium temperature of stream and plate was taken as the average of the 

four thermocouples over the time before the heater was turned on, resulting in    24.3 

°C. 
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5 RESULTS 

Experimental data was analyzed with the inverse method in four steps: 

1. Experimental data was used with a step change surface convection model to 

determine if two parameters, h and a constant   , could be estimated with the 

conjugate gradient algorithm. 

2. Generated data without noise was used with a series of ramps convection 

model to determine if five parameters, 4 slopes of    and h, could be 

estimated with the algorithm. 

3. Generated data with Gaussian noise was used with the series of ramps to see 

how error effected parameter estimation compared with “perfect” data. 

4. Experimental data was used with the series of ramps convection model (5 

parameters) to determine how well the algorithm estimated parameters from 

real-world data. 

To analyze the results of the inverse method, Nusselt numbers were first 

calculated from established correlations so heat transfer coefficient, h, values could be 

compared. The fluid temperature profile,      , was compared against the free stream 

thermocouple data. 

The initial inverse analysis using the TLC temperature data in the conjugate 

gradient inverse method algorithm employs a     step change surface convection model: 

                                   (5.1) 
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This was a two parameter estimation problem (h and   ). This was done to verify the 

data produced reasonable asymptotic values for    and h. Next, fictitious surface 

temperature data was produced using the four-ramp (i=4)    surface response model: 

                                                       

   

   

 

       
        
        

  (5.2)  

     
 

 
          

        
 

    

 
        

           

  
  

with five parameters (  ,    ,    ,    , h). At first, no noise was added to this fictitious 

data to confirm functionality of the inverse method. Then, Gaussian noise on the order of 

the hue derived temperature standard deviation was added to see how this affected 

results. 

 Next, hue temperature data at each of the three plate positions was used in the 

five-parameter inverse method to determine if the algorithm would converge to a 

solution, and how good that solution was. If a solution was not achieved or was 

inaccurate, the same method was tried with fewer ramps. 

5.1 Nusselt Correlations and Expected h 

Table 4.6 in Section 4.5 contains a summary of Nusselt number correlations for a 

flat plate. Using the Reynolds numbers of each position, distances from the boundary 

layer start position, and          
 

   
 (air), h values were calculated under laminar 
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and turbulent conditions. Both constant surface temperature and constant heat flux 

conditions were calculated for comparison. 

  Pos. 1 Pos. 2 Pos. 3 

x  in. (m) 1/8" (3.175E-03) 3 1/8" (7.9E-02) 6 1/8" (0.156) 

Re 930.66 23156.63 45727.01 

h W/m2-K (            ) 72.49 14.53 10.34 

h W/m2-K (            ) 101.98 20.44 14.55 

h W/m2-K (             ) 51.8 27.2 23.7 

h W/m2-K (             ) 53.9 28.3 24.7 
 

From Section 4.5.4, it was indicated that the true h values for this study would be 

closer to the h values calculated from the           boundary condition since the plate was 

made of a low thermal conductance material. 

5.2 Position 1 Analysis 

5.2.1 Step Change Model 

Hue temperature data was taken from Position 1 and used as the input to the step 

change surface convection model conjugate gradient algorithm. This was done to verify 

the data, give a good estimation of asymptotic   , and a reasonable estimation of h. 

Figure 5.1 shows the inverse method curve (blue) fit to the data (green) and the 

corresponding estimated fluid temperature (red). It can be seen the fit is best at later 

times, but diverges from the data at earlier times, from 2 to 10 seconds. Against the fluid 

thermocouple reading of 45.17 °C, the fit estimated    to be 45.00 °C, a difference of 

only 0.8% of    . Heat transfer coefficient h returned by the inverse method was 

estimated to be 82.03 
 

   
, which is within the range of 72.49 to 102.98 

 

   
 predicted by 

the Nusselt correlations, being closer to the constant surface temperature correlation. 
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“True” 

Parameter 

Inverse 

Result 

  = 

(°C ) 

45.17 45.00 

h= 

(W/m-K) 
72.5-102 82.03 

Figure 5.1 Parameter Fit for Step Function: The step function model fits the data fairly well except 

near the initial rise in surface temperature, from 2 seconds to 10 seconds. 

Figure 5.2 shows the convergence of the solution. The blue line represents 

average (RMS) error of the fit. The convergence is slow and even, reaching a minimum 

at 2944 iterations. The correlation curve indicates the convergence of the correlation 

between residuals and time. The ideal correlation value is 0, indicating no relationship 

between error and time. This would support the validity of the surface temperature 

response model used to fit the data. Here it can be seen correlation increasing with time 

to a value of 0.44. This indicates a flaw in the model, arising from the fact that the fluid 

temperature that produced the data did not take the form of a perfect step change. The 

gradient line shows the convergence of the objective function gradient with respect to the 

parameters    and h.  
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Figure 5.2 Convergence: Convergence criteria were plotted versus iteration. 

 

Figure 5.3 shows the convergence of the chi-squared goodness of fit criterion. 

This value is the ratio of fit uncertainty to data uncertainty. For a perfect model and 

perfect fit, chi-squared would be one. The chi-squared converged value of 1.68 confirms 

that another model may fit the data better. 
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Figure 5.3 Convergence: Convergence of chi-squared goodness of fit was plotted versus iteration. 

Figure 5.4 is a plot of the residuals of the final iteration versus time. This gives 

information about where the data fits best, and any “trending” in the residuals indicates a 

poor model. This figure shows little trending of the data past 7 seconds, indicating the 

model fits the data well. However, the figure confirms that another model may fit the data 

better in the region up to 7 seconds where clear trending is visible. 

 
Figure 5.4 Residuals: residuals were plotted against time for the converged solution. 
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Summaries of the estimated parameters and solution evaluation criteria are found in 

Table 5.1. Also, the solution‟s 95% confidence interval is shown. 

Table 5.1 Solution and Evaluation Summary 

 
Solution and Evaluation 

 
Iterations 

 
2944 

 
Final RMS Error (°C ) 

 
0.2535 

 
Data Correlation 

 
0.4395 

 
Chi-Squared 

 
1.685 

 

Result Value Standard Deviation 

   ( C ) 45.00    (°C ) 0.4926 

  (W/m2-K) 82.03    (W/m2-K) 3.1646 

95% Confidence Interval 

44.03      (°C )   45.97 

75.83   h(W/m2-K)   88.23 
 

5.2.2 Generated Data 

Data was generated from the series of steps surface convection model (4 ramps) 

to test the conjugate gradient inverse algorithm for accuracy, stability, and convergence. 

Since exact parameter values are known with user-generated data, accuracy can be 

verified. In each case, starting guesses for parameters were held constant between trials, 

being 10%-20% of their true values.  

Convergence was assumed if error was minimized and gradient became small for 

an extended number of iterations. The algorithm was allowed to run for a set number of 

iterations, and then checked for convergence. If converged, the iteration parameter set 

that produced the minimum error was used as the solution. 
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5.2.2.1 No Noise, Full Data Set 

The first trial of generated data contained no noise, and represented a length of data 

from 0 to 32 seconds. Actual Position 1 data represented 2 to 32 seconds. Table 5.2 

contains the generated data‟s exact parameters    and h and their associated transition 

times. 

Table 5.2 Generated Data Parameters and Values: Generated data’s parameters were known 

exactly. 

Time Value (s) Ramp Slope Value (°C/s) 

   2    7.51 

   5    1.70 

   8    0.30 

   32    0.04 

  h 85 

 

The generated data‟s parameters were chosen to closely mimic observed hue 

temperature data parameters. When this noiseless generated data was used in the inverse 

method, the algorithm was able to match the parameters exactly, as seen in Figure 5.5. 

The algorithm converged within 1000 iterations, producing error and gradient both under 

    . For noiseless data, values for chi-squared, correlation, and residuals are 

meaningless as the data had a standard deviation of 0. 
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Figure 5.5 Generated Noiseless Data Result: The Estimated curve (inverse method results) matched 

the Data (generated) to three decimal places. 

5.2.2.2 Noise, Full Data Set 

After it was confirmed the algorithm worked with noiseless data, Gaussian noise 

was added with the same variance of the observed hue temperature data‟s, 0.038 °C
2
 (0.2 

°C standard deviation). Figure 5.6 shows the results of the parameter estimation. With 

noise added to “perfect” data, the algorithm estimated fluid temperature to be about 1 °C 

too low, and estimated h to be 99.7 
 

   
, above the true 85 

 

   
. 
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Inverse 

Result 

  = 

( °C/s ) 
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( °C/s ) 

1.7 1.67 
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  = 
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h= 
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Figure 5.6 Generated Noisy Data Result: The algorithm estimated fluid temperature low and h high. 

Inverse results for    lies beneath the experimental data. 

For convergence, chi-squared converged to 1 very quickly, within a few hundred 

iterations. Figure 5.7 shows other convergence criteria. RMS error converged to 0.2 °C 

within a few iterations. Correlation had a few oscillations then converged to a value of 

0.02, indicating a slight correlation of temperature and time. This indicates a nominal 

amount of noise will cause a slight correlation. The gradient had periods of large 

variance, eventually dampening out as the algorithm converged to a solution at 2633 

iterations. This could indicate a “wandering” of the algorithm when it arrives near the 

minimum of the objective function. A different conjugation coefficient might increase the 

efficiency of the algorithm. A plot of the residuals in Figure 5.8 indicates no obvious 

trend. 
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Figure 5.7 Convergence: All criteria are converged by 2633 iterations. 

 

 
Figure 5.8 Residuals: The residuals for this trial show no obvious trend. 
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Table 5.4 summarizes the results of this trial. One troubling aspect is the very 

high standard deviations of the data. Recall the definition of covariance: 

       
      

         (5.3) 

Covariance is a function of the Jacobian scaled by the standard deviation of the data, and 

the values of variance are the diagonal values of   . The non-diagonal values indicate 

the degree of effect one parameter has on another. In the process of inverting the Jacobian 

product, large off-diagonal values of the matrix before inversion increase the diagonal 

values of the inverted matrix. 

 Table 5.4 shows the covariance matrix for this trial. Each non-diagonal value is 

the cross-covariance of a parameter pair. For example, position (5,1) indicates the 

covariance of h and m1. It can be seen that this is the largest covariance present, 

indicating any variation in m1 has a great effect on h. Indeed, every covariance value of h 

and a slope has a large value. These heavy interdependencies translate into a high h 

uncertainty, as seen in position (5,5) of the covariance matrix. The interdependencies 

have a cumulative effect, indicating the more slopes used to represent the fluid 

temperature, the greater the uncertainty in h will be. 

Table 5.3 Trial Covariance Matrix: large inter-parameter dependence creates high uncertainty in 

parameter estimation. 

  m1 m2 m3 m4 h 

m1 32.32286 4.321282 -2.77817 -0.74477 -595.089 

m2 4.321282 1.071505 -0.62077 -0.10477 -86.2418 

m3 -2.77817 -0.62077 0.408568 0.062044 53.86219 

m4 -0.74477 -0.10477 0.062044 0.017994 13.82931 

h -595.089 -86.2418 53.86219 13.82931 11059.04 
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Table 5.4 Results of the Noisy Generated Data Parameter Estimation 

 
Solution and Evaluation 

 
Iterations 

 
2633 

 
Final RMS Error (°C ) 

 
0.1990 

 
Data Correlation 

 
-0.0031 

 
Chi-Squared 

 
1.047 

 

Result Value Standard Deviation 

   (°C/s ) 7.0     (°C/s ) 1.22 

   (°C/s ) 1.51     (°C/s ) 0.19 

   (°C/s ) 0.36     (°C/s ) 0.12 

   (°C/s ) 0.05     (°C/s ) 0.03 

  (W/m2-K) 94.47    (W/m2-K) 19.37 

95% Confidence Interval 

4.60      (°C/s )   9.38 

1.15      (°C/s )   1.88 

0.13      (°C/s )   0.60 

0.00      (°C/s )   0.11 

56.5   h(W/m2-K)   132.44 
 

5.2.2.3 Noise, Limited Data Set 

Next, it was investigated how removing the first two seconds of data would affect 

the results, since the hue temperature trial data was also missing the first two seconds. 

It can be seen in Figure 5.9 that the algorithm again estimates a lower fluid 

temperature and higher h than actual parameter values. When compared with the previous 

trial containing the first two seconds of data, this trial does worse, estimating h to be 

101.11 
 

   
 versus 99.7 

 

   
, which is closer to the true value of 85. However, the 

average error is only 0.0022 °C worse than the previous algorithm. 
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Figure 5.9 Generated Data Result: The algorithm estimates fluid temperature slightly high and h 

low. 

Figure 5.10 shows that convergence is similar to the preceding trial, with 

correlation actually being better. Figure 5.11 shows chi-squared converged to just above 

1, indicating an appropriate fit. 

 
Figure 5.10 Convergence: The algorithm converged after 4980 iterations to similar values as other 

generated data trials. 
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“True” 

Parameter 

Inverse 

Result 

  = 

( °C/s ) 

7.5 6.88 

  = 

( °C/s ) 

1.7 1.47 

  = 

( °C/s ) 

0.3 0.38 

  = 

( °C/s ) 

0.04 0.06 

h= 

(W/m-K) 
85 96.7 
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Figure 5.11 Chi-Squared: Chi-squared converged to just above 1, indicating a good fit. 

In Figure 5.12, no trending can be seen visually in the residuals. 

 
Figure 5.12 Residuals: no trending is evident. 
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The table below summarizes the results of this trial. Standard deviations and 

confidence intervals are similar to the previous data trial. 

Table 5.5 Results of the Noisy Limited Data Set Generated Data Parameter Estimation 

 
Solution and Evaluation 

 
Iterations 

 
4983 

 
Final RMS Error (°C ) 

 
0.20 

 
Data Correlation 

 
0.0018 

 
Chi-Squared 

 
1.069 

 

Result Value Standard Deviation 

   (°C/s ) 6.88     (°C/s ) 1.19 

   (°C/s ) 1.47     (°C/s ) 0.19 

   (°C/s ) 0.38     (°C/s ) 0.12 

   (°C/s ) 0.06     (°C/s ) 0.03 

  (W/m2-K) 96.69    (W/m2-K) 19.94 

95% Confidence Interval 

4.53      (°C/s )   9.22 

1.09      (°C/s )   1.85 

0.15      (°C/s )   0.62 

0.00      (°C/s )   0.11 

57.62   h(W/m2-K)   135.77 
 

 

5.2.3 Hue Temperature Data 

After it was investigated how well the conjugate gradient functioned with 

generated data with noise added, actual hue temperature trial data was used to estimate 

parameters. Like the generated data, the hue temperature data from Position 1 covered 

times from 2 to 32 seconds. 

When using actual experimental data, the algorithm converges to an incorrect 

solution, as seen in Figure 5.13. The first ramp is very large, causing estimated free- 
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stream temperature to rise to 64 °C. The second ramp is negative, while there was no 

cooling in the experimental trial. Heat transfer coefficient h was estimated to be 43 
 

   
, 

half of its likely true value. The results of the generated data with noise trials indicate that 

the method is highly sensitive to variations in data. 

 
 

Figure 5.13 Experimental Trial Data Results: Parameters estimated were inaccurate. 

 While the parameters estimated by the algorithm were highly inaccurate, they 

were the parameters that minimized the objective function, as shown by the convergence 

criteria in Figure 5.14. Error converged to 0.22 °C, slightly above the standard deviation 

of the hue temperature data. Correlation converged to -0.0045, also a good value for 

experimental data. Gradient converged to          , indicating a minimized objective 

function. Also, chi-squared indicated a good data fit in Figure 5.15, though slightly 

higher than generated data. 
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Figure 5.14 Convergence: All convergence criteria converged. 

 

 
Figure 5.15 Chi-Squared: Chi-squared indicated fit error was slightly greater than data variance. 
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 The plot of residuals versus time also indicated no trending of the data. The 

residuals around 5 seconds are visibly tighter as a result of less variance in hue data over 

that time. 

 
Figure 5.16 Residuals: While earlier data had less deviation, there was still no obvious trending of the 

data. 

Table 5.6 summarizes the results of this trial. Again, standard deviations were 

high, indicating high parameter interdependence. 
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Table 5.6 Results of the Noisy Limited Data Set Generated Data Parameter Estimation 

 
Solution and Evaluation 

 
Iterations 

 
4980 

 
Final RMS Error (°C ) 

 
0.22 

 
Data Correlation 

 
-0.0045 

 
Chi-Squared 

 
1.269 

 

Result Value Standard Deviation 

   (°C/s ) 21.22     (°C/s ) 8.23 

   (°C/s ) -2.57     (°C/s ) 1.39 

   (°C/s ) -0.34     (°C/s ) 0.43 

   (°C/s ) -0.15     (°C/s ) 0.13 

  (W/m2-K) 42.93    (W/m2-K) 18.08 

95% Confidence Interval 

5.08      (°C/s )   37.36 

-5.30      (°C/s )   0.16 

-1.18      (°C/s )   0.51 

-0.48      (°C/s )   0.11 

7.5   h(W/m2-K)   78.37 
 

 

5.3 Position 2 and 3 Analysis 

Position 2 was also analyzed initially with a step change model. The results are 

shown in Figure 5.17. Position 2 covered a greater and later time span than Position 1: 

15-45 seconds. The inverse method returned a fluid temperature of 46.96 °C and an h of 

31.31 
 

   
. Nusselt correlations for laminar flow produce an h between 14 and 20 

 

   
.  
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Figure 5.17 Position 2 Step Change Solution: The estimated fit had problems matching the slope of 

the data in this nearly linear region. 

Figure 5.18 shows the convergence of the algorithm. Over a period of 5000 

iterations, error and gradient were minimized at 188 iterations. The residuals proved to 

have a high degree of correlation, again suggesting the step change model is flawed for 

measured surface temperature response. 

 
Figure 5.18 Position 2 Convergence for Step Change: The algorithm reached its best solution at 188 

iterations. 
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Figure 5.19 corroborates the high correlation number, showing clear trending in the 

residuals. 

 
Figure 5.19 Position 2 Residuals for Step Change: Clear trending is present in the plot. 

Despite the poor fit of the data, the confidence intervals in Table 5.7 are 

reasonable. 

 

Table 5.7 Position 2 Step Change Results Summary 

 
Solution and Evaluation 
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Final RMS Error (°C ) 

 
0.294 

 
Data Correlation 

 
0.894 

 
Chi-Squared 

 
1.465 

 

Result Value Standard Deviation 

   (°C ) 46.96    (°C ) 2.1 

  (W/m2-K) 31.31    (W/m2-K) 3.7 

95% Confidence Interval 

42.9      (°C )   51.1 

23.7   h(W/m2-K)   38.3 
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Position 2 data was then used in the series of ramps algorithm. The results can be 

found below in Table 5.2. The algorithm fit the data well with an average error of 0.066, 

which is smaller than the standard deviation of the data as the chi-squared value of 0.11 

shows.

 

 

 

Figure 5.20 Position 2 Ramps Solution: Initial ramp estimation is poor. 

Convergence occurs after 456 iterations as seen in Figure 5.21 Position 2 Ramps 

Convergence, though the algorithm ran for much longer. The convergence was good, 

with all three criteria reaching minimal values. 
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Figure 5.21 Position 2 Ramps Convergence: The algorithm converged after 456 iterations. 

Figure 5.22 shows little trending, with some visible in the last two seconds of data 

as the residual values are primarily above 0 in this region. 

 
Figure 5.22 Position 2 Ramps Residuals: Little trending is visible except in the last few seconds. 
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Table 5.8 summarizes the results of this trial. Standard deviations are very large, 

as was the case with all series of ramps solution data. 

Table 5.8 Position 2 Ramps Solution Summary 

 
Solution and Evaluation 

 
Iterations 

 
456 

 
Final RMS Error (°C ) 

 
0.0657 

 
Data Correlation 

 
-0.0053 

 
Chi-Squared 

 
0.114 

 

Result Value Standard Deviation 

   (°C/s ) 8.60     (°C/s ) 1477 

   (°C/s ) -1.01     (°C/s ) 1343 

   (°C/s ) 10.23     (°C/s ) 511 

   (°C/s ) 1.05     (°C/s ) 0.6 

  (W/m2-K) 34.2    (W/m2-K) 1026 

95% Confidence Interval 

-2886      (°C/s )   2903 

-2633      (°C/s )   2632 

-1000      (°C/s )   1002 

-1.1      (°C/s )   1.2 

-1976   h(W/m2-K)   2044 
 

Position 3 was analyzed in the same manner as Positions 1 and 2. The step change 

solution for Position 3 was very similar to Position 2 (see Figure 5.23), having the same 

trending and convergence profile. The algorithm produced a fluid temperature of 46.15 

°C, slightly lower than Position 2. The h estimated was 27.6 
 

   
, again higher than the 

laminar Nusselt correlation range of 10-14, but close to the turbulent correlation range of 

23-24. 
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Figure 5.23 Position 3 Step Change Solution: The solution quality was similar to that of Position 2. 

Convergence was also similar to Position 2, as seen in Figure 5.24. Also, Figure 

5.25 shows clear trending. 

 
Figure 5.24 Position 3 Step Change Convergence: Convergence was similar to Position 2. 
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Figure 5.25 Position 3 Step Change Residuals: Clear trending can be seen. 

Table 5.9 contains a summary of the solution. 

Table 5.9 Position 3 Step Change Solution Summary 

 
Solution and Evaluation 

 
Iterations 

 
501 

 
Final RMS Error (°C ) 

 
0.267 

 
Data Correlation 

 
-0.947 

 
Chi-Squared 

 
0.8436 

 

Result Value Standard Deviation 

   (°C ) 46.15    (°C ) 1.77 

  (W/m2-K) 27.6    (W/m2-K) 2.90 

95% Confidence Interval 

41.59      (°C )   50.72 

20.14   h(W/m2-K)   33.30 
 

Position 3 data was then used in the series of ramps algorithm. The results can be 

found below in Figure 5.26. The algorithm fit the data well with an RMS error of 0.07, 
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which is smaller than the standard deviation of the data as the chi-squared value of 0.13 

shows. The resulting ramp profile of the fluid temperature is still unreasonable, similar to 

Position 1. An estimated h of 26.6 
 

   
 was returned, similar to that found by the step 

change solution. 

 
 

Figure 5.26 Position 3 Ramps Solution: Initial ramp estimation was poor, as with other positions. 

Convergence occurs after 143 iterations, at which point the parameters were 

taken, as seen in Figure 5.27, though the algorithm ran for much longer. The convergence 

was good, with all three criteria reaching minimal values. 
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Figure 5.27 Position 3 Ramps Convergence: Convergence was good, with all parameters reaching 

minimal values. 

Position 3 residuals show much clearer trending than either Positions 1 or 2 (see 

Figure 5.28).  

 
Figure 5.28 Postion 3 Ramps Residuals: Much clearer trending was present compared with Positions 

1 or 2. 
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 Table 5.10 contains a summary of the Position 3 series of ramps solution. 

Table 5.10 Position 3 Series of Ramps Solution Summary 

 
Solution and Evaluation 

 
Iterations 

 
143 

 
Final RMS Error (°C ) 

 
0.0705 

 
Data Correlation 

 
0.0046 

 
Chi-Squared 

 
0.1309 

 

Result Value Standard Deviation 

   (°C/s ) 10.8     (°C/s ) 823 

   (°C/s ) 3.80     (°C/s ) 799 

   (°C/s ) -2.90     (°C/s ) 297 

   (°C/s ) -0.12     (°C/s ) 0.77 

  (W/m2-K) 26.6    (W/m2-K) 205 

95% Confidence Interval 

-1600      (°C/s )   1624 

-1562      (°C/s )   1569 

-585      (°C/s )   578 

-1.6      (°C/s )   1.4 

-376   h(W/m2-K)   429 
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6 CONCLUSIONS 

After analysis of the data, the results were considered and conclusions were 

formed. Major conclusions obtained are as follows. 

A step change model was first considered for parameter estimation using surface 

temperature data. 

 Two-parameter estimation using a step change model was successful at 

obtaining asymptotic free stream temperature within 10% for downstream 

Positions 2 and 3, and 1% for forward Position 1. This is provided the 

temperature rise of the free stream is “sharp” and not gradual. 

 Heat transfer coefficients estimated with the step change model were within 

Nusselt correlation ranges for Position 1, and 10% higher than the upper 

Nusselt range for Positions 2 and 3. 

 The quality of results for Position 1 compared to downstream positions 

indicated that the “knee” of the surface temperature response, the area of 

greatest change, is the most important area of the curve to capture. 

 Residuals trending indicated another model may fit the data better. 

 A flaw of the step change model was an inability to estimate the initial rise of 

the free stream temperature. 
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After a step change model was verified, surface temperature data was analyzed 

with a series of ramps analytical model. 

 “Perfect” manufactured data determined the algorithm was stable and could 

converge given reasonable initial parameter guesses. 

 Once noise was added to manufactured data, corresponding parameter 

estimation difference increased to 10% for ramp slopes and 17% for h. This 

indicated that the parameters have a high degree of sensitivity to noise, even 

when the data fits the model perfectly. 

 Large inaccuracies were present when using trial data with the series of 

ramps model. These were characterized by a largely overestimated initial 

ramp followed by negative ramps attempting to correct for this initial 

overestimation. 

 h values estimated at Position 1 were 50% of the values estimated with the 

step change model, and below the Nusselt correlation range. Values 

estimated for Positions 2 and 3 had a difference of 9%.  

 The shape of convergence indicated large changes in parameters with 

comparatively small changes in RMS error. This indicates multiple parameter 

solutions nearly minimize the objective function, and the problem could be 

close to non-unique. 

 Estimation of the first ramp appears to be most important, as its effects are 

contained within each subsequent ramp. Surface data in the initial few 

seconds would add greater constraints to the first ramp and improve results. 
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 Parameters are highly interdependent, as shown by the covariance matrix, 

particularly the cross-dependence of    and h. This led to high confidence 

intervals.  

 Additional constraints could reduce this interdependency and/or a weighting 

matrix scheme. A potential constraint could be forcing the estimated fluid 

temperature through a set temperature measured at the end of the 

experimental run. 

The accuracy and quality of data could be improved in a number of ways for 

future experiments. 

 Electrical interference of the thermocouples could be minimized through 

use of a DC blower or electrical isolation of the equipment. 

 More steady state calibration data points could be taken in the area of 

greatest hue change. 

 A new camera could be purchased with a Bayer filter that provides a 

smooth curve for the blue signal. 

 A different HSV color model could be used to maximize the amount of 

initial useful TLC data. 

 Alternatively, wider band TLCs could be used to avoid the singularity 

present at their clearing point.  
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7 SUMMARY 

During the course of this study, a flat plate immersed in an air stream was studied. 

The plate was heated by a sudden increase in fluid temperature. Thermochromic liquid 

crystals, which covered the surface of the plate, were recorded during the temperature 

rise by a video camera, and this hue data was calibrated to reference thermocouples to 

provide a surface temperature history. It was desired to know if one could estimate the 

heat transfer coefficient h and the free stream temperature profile simultaneously with 

inverse methods, using the hue temperature history.  

Three positions on the plate were analyzed at equally spaced intervals. Positions 

1, 2, and 3 were analyzed with progressively sophisticated techniques. First, hue 

temperature data from the experimental trial was analyzed with a step change surface 

convection model. This revealed that a two-parameter inverse method was able to 

estimate asymptotic free stream temperature    and h with reasonable accuracy, using 

thermocouple data and Nusselt correlations to verify estimated parameters. However, it 

was found this method worked less well with data from Positions 2 and 3. Also, this 

method was poor at estimating surface temperature response in temporal regions 

experiencing rapid temperature increase. Through examining residual trending, it was 

indicated that another model may fit the data better. 
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After verifying that the method worked for two parameters, a five-parameter 

series of ramps convection model was examined. Generated data was first used with this 

method to verify accuracy and convergence. The algorithm was able to exactly estimate 

parameters with noiseless manufactured “data.” Adding Gaussian noise to generated 

“perfect” data returned errors in the free stream temperature profile of up to 2 °C by the 

inverse method. While h values lay between Nusselt correlation boundaries, exact errors 

in h could not be determined. The Nusselt correlations give a minimum h at a constant 

surface temperature boundary condition, and a maximum h at a constant surface heat flux 

condition. Neither of these conditions were true for the experiment, meaning the true 

value of h lay somewhere between the two. So, unlike    which could be measured with 

a thermocouple, the exact value of h was unknown. When the algorithm estimated 

parameters using experimental data, large inaccuracies became present in free stream 

slope and h values. Also, large confidence intervals were produced. 

 From the results of the step change model trials, it is clear the experimental 

surface temperature response does not result from a perfect step change of the fluid 

temperature as suggested upon review of the residuals. Measurement of the actual free 

stream temperature confirms this. Variations in the surface temperature curve between 

actual and predicted values in the initial temperature rise region lead to inaccuracies that 

propagate with increasing time. After a short amount of time, surface temperature rise 

becomes nearly linear. Because initial surface temperature values do not match well 

between step change model and experimental data, the difference in slope of the linear 

portions of the surface temperature response curve become more pronounced with 



140 

 

 

increasing time. It is believed this is the reason Position 1 produced better results than the 

other two, because Position 1‟s data occurred earlier than the other positions. 

 Heat transfer coefficient results from the step change trials of Positions 2 and 3 

suggest these points lay in a turbulent flow region. Turbulent flow Nusselt correlations 

for Position 2 predicted an h between 27 and 28 
 

   
. The h value estimated by the 

inverse method was 31.31 
 

   
, slightly above the upper bound of the correlations. The h 

estimated at Position 3 was 27.6
 

   
, compared to a range of 23-24 

 

   
 predicted by the 

turbulent correlations. The    of 46.96 °C returned by the algorithm at Postion 2 was 1.8 

°C above the measured value, a difference of 5% of the total temperature rise. Position 3 

predicted slightly better with a value of 46.15 °C. These estimates were fair, though not 

as accurate as those at Position 1. This could indicate that the step change model is poorer 

for later data or that the small standard deviation of the Positions 2 and 3 hue temperature 

brings into contrast model errors more readily. 

 The results of the series of ramps trials show large inaccuracies. It was shown 

that, even given perfect generated data with a realistic amount of Gaussian noise, the 

inverse algorithm produced    results up to 2 °C below actual values. The hue 

temperature trial data contained inaccuracies the generated data did not, such as 

uncertainty from the hue/temperature calibration, noise in the thermocouple data, and 

missing portions of initial surface temperature response. These realities, combined with 

the sensitivity to noise of the method shown by the generated data trials, produced 

inaccurate and physically impossible parameter estimates. The algorithm did converge to 

a solution, however, and produced a curve that fit the data well, with little trending 
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visible in the residuals. The Position 1 h estimate of 43 
 

   
 was poor, a value 50% of the 

value predicted by the step change model. The Position 2 ramp results fit fluid 

temperature the closest, and also returned an h that was close to the step change results: 

34 
 

   
 compared with 31 

 

   
, a difference of 9%.  Position 3 had a poor estimation of 

fluid temperature, estimating a maximum temperature of 56 °C. Estimated h, however, 

was closest to the step change solution, with an difference of 4%. 

 With nonlinear models, the possibility of multiple solutions that minimize the 

objective function – or solutions that nearly minimize it – become a possibility. With 

different combinations of parameters resulting in nearly the same RMS error, the four-

ramp surface convection model showed these tendencies. 

 It is believed the largest culprit in the errors in the series of ramps trials was the 

absence of the initial few seconds of hue temperature data. It is believed that the first 

ramp of the fluid temperature response is the most crucial to estimate accurately. This is 

supported by the model in which    appears in every term of the temperature response. 

This is also supported by the values of the covariance matrix, indicating a high 

dependency of other variables on the first slope. Heat transfer experienced during the 

initial ramp influences the surface temperature profile at every future time. Each 

successive ramp has diminishing influence. This was shown when the series of ramps 

model was used with a limited generated data set missing the first two seconds of data. In 

this trial, the error was increased in comparison to the full data set. Having that first two 

seconds of data in the experimental set would add greater constraint to the first ramp, 

limiting how much fluctuation it could experience. 
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 The parameters in the series of ramps model are also highly interdependent, as 

shown by the large off-diagonal values in the covariance matrices. Uncertainties in one 

parameter have a multiplying effect into other parameters‟ uncertainty. The h parameter, 

in particular, has high codependency with the slope parameters. It is believed additional 

constraints to the inverse method may reduce these interdependencies. 

 The method of estimating fluid temperature response and the heat transfer 

coefficient seems to work with a limited number of parameters, as shown by the 

estimation of    and h in the step change model trials. It is believed that the large number 

of parameters in the series of ramps formulation appears to lead to large inaccuracies in 

the estimated parameters. Ramps must be estimated sequentially, that is, if only two 

ramps are to be estimated, it must be the initial two ramps. It is not possible to only 

estimate the last two ramps as each ramp contributes heat transfer to the ones following. 

Therefore, using fewer numbers of ramps contributes to even greater inaccuracies in the 

parameter estimates, as only data up to the end of the last ramp can be used. For example, 

in a two ramp problem, only the first 5 seconds of data could be used. Since the first two 

seconds were already missing, this increased the percentage of the data set that was 

absent, increasing parameter error. 

 It is believed that the series of ramps formulation could work better with 

additional constraints added to the objective function. An example constraint would be 

forcing the fluid temperature through a set temperature measured at the end of the 

experimental run, or holding the slope of the final ramp at a constant value of zero. This 

might reduce error in initial ramp estimations as well covariance of parameters. 
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 In terms of data collection and preparation, there are a few suggestions for 

improving accuracy for future experiments. It was found that electrical interference, 

likely caused by the variable speed blower controller, caused large amounts of noise in 

thermocouple collection. Electrically isolating data acquisition equipment from the 

controller would greatly improve accuracy. Or, alternatively, use of a DC blower could 

also mitigate this problem. 

 The temperature/hue calibration is also a possible area of improvement. Steady- 

state calibration data was difficult to obtain in the narrowest portion of TLC color play. 

Special attention to this area is recommended, as many more calibration points should be 

recorded in this region than others. Transient calibration data was used to mitigate this. 

While the transient calibration method is an effective calibration tool, its downside lies in 

the fact that only locations on the plate with thermocouples could be calibrated. With the 

steady-state calibration, any plate location could be analyzed. 

 The camera used in this research had a peculiarity that caused a bump in the blue 

signal at certain hues. It is believed this was caused by a flaw in the Bayer filter in which 

green wavelength light bled into the blue sensors. It is recommended that a different 

camera be used in subsequent studies, and the color play of the camera checked carefully 

before use. 

 The HSV color model used is also a potential source of improvement. Because the 

model used was a piecewise function, based on the plane-projection of the RGB color 

cube, discontinuities were sometimes present when max (R, G, B) changed.  This 

rendered initial hue values unusable since they fluctuated between 0 and 255 at low RGB 

values. To mitigate this, a circular HSV color model could be used. This model would 
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use an angular value for hue, a value whose angle could be shifted to avoid the 

discontinuity that occurs at low RGB values. Alternatively, TLCs could be used whose 

color play starts below room temperature. However, this could potentially lead to missing 

recording of the red max portion of the TLC color play, as this occurred early and quickly 

in experimental trials. The red max point is not a necessary portion of the TLC color play 

to record, but it does contain color data with the least amount of noise. 

 Errors in results could also be a result of problems with assumptions in the 

mathematical model. It was shown in Section 4.5.3 that the centerline temperature of the 

plate differed than the temperature calculated with a semi-infinite solid solution. This had 

potential to affect the surface temperature, causing a slower temperature response and 

lower h values. The constant h assumption could also be questioned. Very large h values 

that occur in the first 0.1-0.4 seconds of an experimental trial‟s effect on surface 

temperature could be investigated. Also, due to the separation bubble at the leading edge 

of the plate, there was potential lateral conduction in the plate at forward locations. Since 

the model assumed 1-D conduction, this was also a potential source of error.  

 In summary, the method developed for estimating heat transfer parameters in gas 

turbine engine cooling channels was partially successful, and shows signs of definite 

promise. The step change surface convection model trials showed that the method works 

with two parameters, and provides estimated fluid temperature within 10% error. The 

series of ramps model displayed problems with estimating the initial ramp value causing 

subsequent ramps to try to correct for this, ultimately resulting in errors in all ramps. 

Also, this method showed a tendency toward multiple solutions of nearly the same RMS 

error. However, it is believed that increasing the amount of viable data taken with TLCs 
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combined with additional objective function constraints could correct for these problems, 

leading to a heat transfer estimation technique that increases accuracy and becomes a 

valuable tool for cooling channel engineers.  
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9 APPENDIX A 

9.1 Series of Ramps Detailed Derivation 
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For convenience, let 

         . 

Duhamel‟s Theorem gives the temperature response of a system with a time-varying 

boundary condition in which a fundamental solution to the problem is known [22]. The 

fundamental solution is defined as the response of the system with a zero initial condition 

to a single, constant non-homogeneous term with magnitude unity. This can be stated as 

                          

  
 
   

              
 

   
 (9.1) 

where    is the fundamental solution and B is the time-varying boundary condition. 

 The first step to applying Duhamel‟s Theorem is finding the fundamental 

solution. For this problem, the fundamental solution solves 

  
    

   
 

 

 

   

  
 (9.2) 

With boundary and initial conditions 

             (9.3) 

             (9.4) 

      

  
 
   

 
 

 
   

 

 
 (9.5) 

The solution to the fundamental problem is well known and is given by Equation 9.6. 
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The time-varying term B(t) is the ramp function that defines    

           (9.7) 

and 
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   (9.8) 

Also, since       , the             term of Equation 9.1 is canceled. 

When these terms are substituted into Duhamel‟s Theorem, the resulting integral, 
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is easily solvable with analytical mathematical software such as Mathematica and yields 

the single-ramp solution: 
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Setting x=0 gives the surface response solution. 

               
 

   
 

                

    (9.11) 

 The multi-ramp solution can be achieved by breaking the integral in Duhamel‟s 

Theorem into a series of integrals for each ramp [23]. 

                         
  

      

 
    (9.12) 

In Equation 9.12, the    terms indicate the beginning of each ramp, with     ,      , 

and the    terms representing each ramp function‟s slope, respectively.  

 To solve the series of ramps problem for any number of ramps, first solve for 

three ramps. Let 
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  . (9.13) 

Then, it is first useful to recognize 

                 
   

             . (9.14) 

Now, Equation 9.12 can be expanded: 

                       
     

              
     

              
  (9.15) 

Evaluating the bounds of the integrals, 

                              

                                                      (9.16) 

   
 

 
         

Each i
th

 element of the summation is relevant only for times after   . For example, 

even though three ramps might ultimately be used, for times less than   ,  the surface 

temperature response still only includes the first element of the summation, being equal 

to the single ramp solution. 

 After three elements of the summation have been calculated, a pattern emerges. 

                                                         

   

   

 

where        
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156 

 

 

 

 

 

10 APPENDIX B 

10.1 MATLAB Code 
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The following code was used to calculate the boundary layer thickness along a 

flat surface. 

%Program for calculating boundary layer thickness delta in test section 
clear 

  
%Air parameters nu in m^2/s 
nu=1.589*10^-5; 

  
%Range of velocities in the wind tunnel U in m/s 
Umin=2; 
Umax=6; 
U=[Umin:.25:Umax]; 

  
%Plate starts at 26 cm from edge of test section, plate is 23 cm long 
X=[.001:.0025:.2]; 

  
delta=zeros(length(U),length(X)); 
RE=zeros(length(U),length(X)); 

  
for i=1:length(U) 
    for j=1:length(X) 
        re=U(i)*X(j)/nu; 
        RE(i,j)=re; 
        if re>5*10^5 
            delta(i,j)=0.37*(U(i)*X(j)/nu)^(-0.2)*X(j); 
        else 
            delta(i,j)=4.92*(U(i)*X(j)/nu)^(-0.5)*X(j); 
        end 
    end 
end 

  
surf(X,U,delta); 
xlabel('y (m)') 
ylabel('U (m/s)') 
zlabel('delta (m)') 
title('Boundary layer thickness in test section') 
figure 
surf(X,U,RE); 
xlabel('y (m)') 
ylabel('U (m/s)') 
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The following code was used to calculate the centerline temperature response of 

the test plate. 

 

%% Set Up Constants 
clear 
clc 
%Starting Surface Temperature T0 (K) 
T0=24.0; 

  
%Solid material=Plexiglas(top)/stanless steel(bottom) 
%Thermal conductivity k of the solid (W/m-K) 
k=.19; 
%k=15.1; 

  
%Specific heat capacity c of solid (J/kg-K) 
cp=1470; 
%cp=480; 

  
%Density of solid p (kg/m^3) 
p=1190; 
%p=8055; 

  
%Thermal diffusivity of solid alpha (m^2/s) 
alpha=k/(p*cp); 

  
%Gas Temperature Tg (K) 
Tg=T0+21; 

  
%Heat transfer coefficient 
h=85; 

  
L=0.00635; 
x=0:.00635/100.00635; 
x=x'; 
xs=x/L; 

  
t=0:60; 
t=t'; 
Fo=alpha*t/L^2; 

  
Bi=h*L/k; 
mybitranscendental; 
G=length(xi); 

  
for i=1:G 
    C(i)=4*sin(xi(i))/(2*xi(i)+sin(2*xi(i))); 
    S(:,i)=C(i)*exp(-xi(i)^2*Fo); 
end 

  
T1=sum(S,2); 
T=(T0-Tg)*T1+Tg; 
Tchange=T-T0; 
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Tchange=[t Tchange]; 
plot(t,S(:,1),'r') 
hold on 
plot(t,S(:,2),'y') 
hold on 
plot(t,S(:,3)) 
hold on 
plot(t,S(:,4),'g') 
figure 

  
plot(t,T); 

  
XI=0:.1:10; 
CN=4*XI./(2*XI+sin(2*XI)); 
figure 
plot(XI,CN) 
xlabel('Xi') 
ylabel('Cn') 

 

The sub-function calculates the roots of the transcendental Biot number equation: 

             
xi=0; 
Bi=2.8408; 
for j=0.1:0.1:10 
    x=(j-0.1):.0001:j; 
    Y1=x.*tan(x); 
    Y2=Bi*ones(length(x)); 
    for i=1:length(x)-1 
        Num1=Y1(i)-Y2(i); 
        Num2=Y1(i+1)-Y2(i+1); 
        if (Num2>=0) && (Num1<=0) 
            xi1 = INTERP1([Y1(i);Y1(i+1)],[x(i);x(i+1)],Bi); 
            xi=[xi;x(i)]; 
        end 
    end 
end 
xi=xi(2:length(xi)); 
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The following algorithm uses the conjugate gradient inverse algorithm to estimate 

two parameters using a step change surface convection model. 

 
%This program computes parameters h and Tg for a step function using 

the 
%conjugate gradient method. 
clear 
clc 
%% Set Up Constants 
%Starting Surface Temperature T0 (K) 
T0=24.3; 

  
%Solid material=Plexiglas(top)/stanless steel(bottom) 
%Thermal conductivity k of the solid (W/m-K) 
k=.19; 
%k=15.1; 

  
%Specific heat capacity c of solid (J/kg-K) 
cp=1470; 
%cp=480; 

  
%Density of solid p (kg/m^3) 
p=1190; 
%p=8055; 

  
%Thermal diffusivity of solid alpha (m^2/s) 
alpha=k/(p*cp); 

  
%For reference: htrue=80, Tgtrue=333.15 

  
%% Guess at Initial Parameters and Set Up Vector 
%Input initial parameter estimation h (W/m^2-K) and Tg K 
Tg=44; 
h=35; 
P=[Tg;h]; 
Pmatrix=P'; 

  
%Read in surface temp data 
%tT=xlsread('hue1inversemethod.xlsx'); 
tT=xlsread('hue4inversemethod1.xlsx'); 
t=tT(:,1); 
Ts=tT(:,2); 
t=tT(1:256,1); 
Ts=tT(1:256,2); 
L=length(t); 

  
%Define standard deviation of the data 
var=0.0383; 
stdev=sqrt(var); 
%Max iterations 
countmax=159; 
%Chi squared=1 stopping criteria 
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chistop=0; 

  
%% Check Initial Guess 
%Calculate initial B 
B=h*sqrt(t)/(p*cp*k)^.5; 

  
%Find estimated surface temperature response 
[Tes]=mystepfunc(T0,Tg,B); 

  
%Find sum of squares error by comparing with actual response 
error=sum((Ts-Tes).^2); 
AvgE=sqrt(error/length(t)); 

  
 %Compare to stoping criteria 
chi=error/(length(t)-2)/stdev^2; 
% if chi-1<=chistop 
%     return 
% end 
 CHI=[chi]; 
%Start storing error in vector 
E=error; 

  
%Set up correlation vector 
e=Ts-Tes; 
eavg=sum(e)/length(e); 
tavg=sum(t)/length(t); 
eavgvec=e-eavg*ones(length(e),1); 
tavgvec=t-tavg*ones(length(t),1); 
uppersum=sum(eavgvec.*tavgvec); 
lowersum=(length(t)-1)*std(e)*std(t); 
corr=uppersum/lowersum; 
CORVEC=[corr]; 

  
%% First Iteration 
%Start Count 
count=1; 

  
%Compute Jacobian Sensitivity Matrix 
[DTDTg]=mydiffTTg(B); 
[DTDh]=mydiffTTh(T0,Tg,B,h); 
J=[DTDTg DTDh]; 

  
%Obtain Gradient Tensor S 
S=-2*J'*(Ts-Tes); 
Svector=[S']; 

  
%For first step, use steepest descent; move in direction of gradient  
%So conjugation coefficient G=0, so ignore 
%For conjugation coefficent G=0, directon of descent d=S 
d=S; 

  
%Find search step size beta (minimizes objective function) 
beta=((J*d)'*(Tes-Ts))/((J*d)'*(J*d)); 

  
%Compute new parameters Tg and h, new estimated after taking step 
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Pnew=P-beta*d; 
Pmatrix=[Pmatrix;Pnew']; 
%Tg=Pnew(1,1); 
h=Pnew(2,1); 
B=h*sqrt(t)/(p*cp*k)^.5; 
[Tes]=mystepfunc(T0,Tg,B); 
error=sum((Ts-Tes).^2); 
E=[E;error]; 

  
%Continue Correlation vector 
e=Ts-Tes; 
eavg=sum(e)/length(e); 
tavg=sum(t)/length(t); 
eavgvec=e-eavg*ones(length(e),1); 
tavgvec=t-tavg*ones(length(t),1); 
uppersum=sum(eavgvec.*tavgvec); 
lowersum=(length(t)-1)*std(e)*std(t); 
corr=uppersum/lowersum; 
CORVEC=[CORVEC;corr]; 

  
%% Iterate in earnest 
while  count<countmax 
    count=count+1; 
    %Calculate new estimated T, Tes 
    B=h*sqrt(t)/(p*cp*k)^.5; 
    [Tes]=mystepfunc(T0,Tg,B); 
    %Find sum of squares error by comparing with actual response 
    error=sum((Ts-Tes).^2); 
    erroravg=sqrt(error/length(t)); 
    E=[E;error]; 
    AvgE=sqrt(error)/length(t); 

     
    %Calculate Chi Squared 
    chi=error/(length(t)-2)/stdev^2; 
    CHI=[CHI;chi]; 

     
    %Continue Correlation vector 
    e=Ts-Tes; 
    eavg=sum(e)/length(e); 
    tavg=sum(t)/length(t); 
    eavgvec=e-eavg*ones(length(e),1); 
    tavgvec=t-tavg*ones(length(t),1); 
    uppersum=sum(eavgvec.*tavgvec); 
    lowersum=(length(t)-1)*std(e)*std(t); 
    corr=uppersum/lowersum; 
    CORVEC=[CORVEC;corr]; 

     
    %Compute the new Jacobian Sensitivity Matrix 
    [DTDTg]=mydiffTTg(B); 
    [DTDh]=mydiffTTh(T0,Tg,B,h); 
    J=[DTDTg DTDh]; 
    %Obtain new gradient tensor S 
    Snew=-2*J'*(Ts-Tes); 
    %Obtain conjugation coefficient G Using Fletcher-Reeves Formulation 
    n=length(S); 
    sum1=0; 
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    sum2=0; 
    for i=1:n 
        sum1=sum1+Snew(i,1)^2; 
        sum2=sum2+S(i,1)^2; 
    end 
    gamma=sum1/sum2; 
    %Find new direction of descent dnew 
    dnew=Snew+gamma*d; 
    %Find new search step size betanew 
    betanew=((J*dnew)'*(Tes-Ts))/((J*dnew)'*(J*dnew)); 
    %Compute new parameters 
    Pnew1=[Tg;h]-.05*betanew*dnew; 
    Pmatrix=[Pmatrix;Pnew1']; 
    Tg=Pnew1(1,1); 
    h=Pnew1(2,1); 
    %Iterate 
    d=dnew; 
    S=Snew; 
    Svector=[Svector; S']; 
    disp(count); 
end 

  

  

  
%% Solution Evaluation 

  
disp('Solution and Solution Evaluation'); 
%Plot the estimated temperature curve on top of the data curve 
plot(t,Tes); 
hold on 
plot(t,Ts,'g'); 
hold on 
plot(t,Tg*ones(length(t)),'r'); 
axis([0 t(length(t)) 24 48]); 
title('Temperature Curve Fit') 
xlabel('Time (s)'); 
ylabel('Temp. (C)'); 
legend('Estimated','Data','Fluid Temp'); 
grid on 
grid minor 
figure 

  
Svectornorm=sqrt((Svector(:,1).^2)+(Svector(:,2).^2)); 

  
plot(sqrt(E/length(t))); 
hold on 
plot(CORVEC,'r'); 
hold on 
plot(Svectornorm,'g'); 
axis([0 count+1 -2 2]); 
legend('Average Error (C)','Correlation of Error and Time','Average 

Gradient') 
xlabel('Iteration') 
title('Convergence') 
figure 



164 

 

 

  
%Plot chi-squared convergence criterion 
plot(CHI); 
title('Chi-Squared Goodness of Fit'); 
xlabel('Iteration'); 
ylabel('Chi-Squared'); 
axis([0 count+1 0 3]); 
disp('Chi-squared converged value'); 
disp(chi); 

  
%Calculate standard deviation of the parameters and 95% and 99% 

confidence 
COVm=stdev*(J'*J)^-1; 
stdevm=[sqrt(COVm(1,1));sqrt(COVm(2,2))]; 
disp('Standard Deviation (T/h)'); 
disp(stdevm); 
con99=[Pnew1-2.576*stdevm Pnew1 Pnew1+2.576*stdevm]; 
disp('99% Confidence Interval (T/h)'); 
disp(con99); 
con95=[Pnew1-1.96*stdevm Pnew1 Pnew1+1.96*stdevm]; 
disp('95% Confidence Interval (T/h)'); 
disp(con95); 
disp('Iteration count'); 
disp(count); 
figure 
plot(t,(Ts-Tes),'.') 
xlabel('Time (s)') 
ylabel('Residuals (Tactual-Testimated)') 
title('Residuals') 

 

The following are sub-functions for the CG algorithm. 

 
function TS=mystepfunc(T0,Tg,B) 
TS=T0+(Tg-T0)*(1-exp(B.^2).*erfc(B)); 

 
function DTDTg=mydiffTTg(B) 
DTDTg=1-exp(B.^2).*erfc(B); 

 
function DTDh=mydiffTTh(T0,Tg,B,h) 
DTDh=(Tg-T0)*(-2*B.^2/h.*exp(B.^2).*erfc(B)+2/sqrt(pi)*B/h); 
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The following algorithm uses the conjugate gradient inverse algorithm to estimate 

five parameters (four fluid temperature ramps and h using a series of ramps surface 

convection model. 

 

%This program computes parameters h and mi's for a series of steps 

function using the 
%conjugate gradient method. 
clear 
clc 

  
%% Set Up Constants 
%Starting Surface Temperature T0 (K) 
T0=24.3; 

  
%Solid material=Plexiglas 
%Thermal conductivity k of the solid (W/m-K) 
k=.19; 

  
%Specific heat capacity c of solid (J/kg-K) 
cp=1470; 

  
%Density of solid p (kg/m^3) 
p=1190; 

  
%Thermal diffusivity of solid alpha (m^2/s) 
alpha=k/(p*cp); 

  
%% Guess at Initial Parameters and Set Up Vector 

  
%Read in surface temp data 
%tT=xlsread('E:\THESIS\MATLAB\CGSeriesramps\hue1inversemethodadjusted1.

xlsx'); 
%tT=xlsread('E:\THESIS\MATLAB\CGSeriesramps\noisytempgen.xlsx'); 
tT=xlsread('E:\THESIS\MATLAB\CGSeriesramps\hue7inversemethod.xlsx'); 
t=tT(:,1); 
Ts=tT(:,2); 
%t=tT(30:479,1); 
%Ts=tT(30:479,2); 
L=length(t); 

  
%Thermocouple data 
tTtherm=xlsread('E:\THESIS\MATLAB\CGSeriesramps\therm1inversemethod.xls

x'); 
ttherm=tTtherm(:,1); 
Tstherm=tTtherm(:,2); 
Ltherm=length(ttherm); 
TCinf=xlsread('E:\THESIS\MATLAB\CGSeriesramps\TCinf.xlsx'); 

  
%Set ti's (s) 
t0=0; 
t1=2; 
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t2=5; 
t3=8; 
t4=32; 
%t5=ttherm(length(ttherm)); 
tvec=[t1;t2;t3;t4]; 

  
%Input initial parameter estimation h (W/m^2-K) and mi's (K/s) 
%"Real" Values 
% m1=7.5117; 
% m2=1.7401; 
% m3=.3368; 
% m4=.0362; 
% m5=0; 
%h=80; 

  
m1=7.4; 
m2=2; 
m3=.3; 
m4=0.06; 
mvec=[m1;m2;m3;m4]; 
%Set Number of Ramps 
R=length(mvec); 

  
h=25; 

  
P=[mvec;h]; 
Pmatrix=P'; 

  
%Variance and standard deviation of the temperature data 
VAR=0.0383; 
STDEV=sqrt(VAR); 

  
% /////Set Max iterations///// 
countmax=143; 

  
%% Plot Initial Results 
%Calculate initial Bi's 
B=mybeta(h,k,alpha,t,tvec,R); 

  
%Find estimated surface temperature response 
[Tes]=myseriesrampfunc(T0,t,R,mvec,tvec,B,@myG); 

  
disp(m1) 
%Form initial Tinf 
Tinf=zeros(length(t),1); 
Tinf(1)=T0; 
for i=2:length(t) 
    if ttherm(i)<=t1 
        Tinf(i)=Tinf(i-1)+m1*1/15; 
    elseif (t1<ttherm(i)) && (ttherm(i)<=t2) 
        Tinf(i)=Tinf(i-1)+1/15*m2; 
    elseif (t2<ttherm(i)) && (ttherm(i)<=t3) 
        Tinf(i)=Tinf(i-1)+1/15*m3; 
    elseif (t3<ttherm(i)) && (ttherm(i)<=60) 
        Tinf(i)=Tinf(i-1)+1/15*m4; 
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    end 
end 
%Plot the estimated temperature curve on top of the data curve 
%figure 
plot(t,Tes); 
hold on 
plot(t,Ts,'.g','linewidth',0.01); 
hold on 
plot(ttherm(1:211),Tinf(1:211),'r'); 
hold on 
plot(ttherm(1:length(t)),TCinf(1:length(t)),'c'); 
title('Temperature Curve Fit') 
xlabel('t (s)'); 
ylabel('T (K)'); 
legend('Estimated','Data','Gas Temp'); 
hold on 
plot(ttherm,Tstherm,'r-.') 
grid on 
grid minor 
figure 

  
xlabel('Time (s)') 
ylabel('Temp (C)') 
title('Series of ramps solution compared with hue temp and 

thermocouple') 
legend('Analytical','Huetemp','Thermocouple','Tinf') 

  
%% Check Initial Guess 
%Calculate initial Bi's 
%Find sum of squares error by comparing with actual response 
error=sum((Ts-Tes).^2); 
AvgE=sqrt(error/length(t)); 

  
%Compare to stoping criteria 
chi=error/(length(t)-R-2)/VAR; 
CHI=chi; 
%Start storing error in vector 
E=AvgE; 

  
%Set up correlation vector 
e=Ts-Tes; 
eavg=sum(e)/length(e); 
tavg=sum(t)/length(t); 
eavgvec=e-eavg*ones(length(e),1); 
tavgvec=t-tavg*ones(length(t),1); 
uppersum=sum(eavgvec.*tavgvec); 
lowersum=(length(t)-1)*std(e)*std(t); 
corr=uppersum/lowersum; 
CORVEC=corr; 

  
%% First Iteration 
%Start Count 
count=1; 

  
%Compute Jacobian Sensitivity Matrix 
[dTdm]=diffTdm(t,R,mvec,tvec,B,@myG); 
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[dTdh]=mydiffTdh(alpha,k,t,R,mvec,tvec,B,@diffGdh); 
J=[dTdm dTdh]; 

  
%Obtain Gradient Tensor S 
S=-2*J'*((Ts-Tes)); 
Svector=S'; 

  
%For first step, use steepest descent; move in direction of gradient  
%So conjugation coefficient G=0, so ignore 
%For conjugation coefficent G=0, directon of descent d=S 
d=S; 

  
%Find search step size beta (minimizes objective function) 
beta=((J*d)'*(Tes-Ts))/((J*d)'*(J*d)); 

  
%Compute new parameters Tg and h, new estimated after taking step 
Pnew=P-beta*d; 
Pmatrix=[Pmatrix;Pnew']; 
m1=Pnew(1,1); 
m2=Pnew(2,1); 
m3=Pnew(3,1); 
m4=Pnew(4,1); 
mvec=[m1;m2;m3;m4]; 
h=Pnew(5,1); 

  
B=mybeta(h,k,alpha,t,tvec,R); 

  
[Tes]=myseriesrampfunc(T0,t,R,mvec,tvec,B,@myG); 
error=sum((Ts-Tes).^2); 
AvgE=sqrt(error/length(t)); 
E=[E;AvgE]; 

  
%Continue Correlation vector 
e=Ts-(Tes); 
eavg=sum(e)/length(e); 
tavg=sum(t)/length(t); 
eavgvec=e-eavg*ones(length(e),1); 
tavgvec=t-tavg*ones(length(t),1); 
uppersum=sum(eavgvec.*tavgvec); 
lowersum=(length(t)-1)*std(e)*std(t); 
corr=uppersum/lowersum; 
CORVEC=[CORVEC;corr]; 
Q=[0;0;0;0;0]; 
%% Iterate in earnest 
while  count<countmax 
    count=count+1; 
    %Calculate new estimated T, Tes 
    B=mybeta(h,k,alpha,t,tvec,R); 
    [Tes]=myseriesrampfunc(T0,t,R,mvec,tvec,B,@myG); 
    %Find sum of squares error by comparing with actual response 
    error=sum((Ts-Tes).^2); 
    AvgE=sqrt(error/length(t)); 
    E=[E;AvgE]; 

     
    %Calculate Chi Squared 
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    chi=(error/(length(t)-R-2))/VAR; 
    CHI=[CHI;chi]; 

     
    %Continue Correlation vector 
    e=Ts-(Tes); 
    eavg=sum(e)/length(e); 
    tavg=sum(t)/length(t); 
    eavgvec=e-eavg*ones(length(e),1); 
    tavgvec=t-tavg*ones(length(t),1); 
    uppersum=sum(eavgvec.*tavgvec); 
    lowersum=(length(t)-1)*std(e)*std(t); 
    corr=uppersum/lowersum; 
    CORVEC=[CORVEC;corr]; 

     
    %Compute the new Jacobian Sensitivity Matrix 
    [dTdm]=diffTdm(t,R,mvec,tvec,B,@myG); 
    [dTdh]=mydiffTdh(alpha,k,t,R,mvec,tvec,B,@diffGdh); 
    J=[dTdm dTdh]; 
    %Calc Cov M 
    COVm=(J'*J)^-1; 
    %Then scale by the residual values 
    Qxx=VAR*COVm; 
    

stdevm=[sqrt(Qxx(1,1));sqrt(Qxx(2,2));sqrt(Qxx(3,3));sqrt(Qxx(4,4));sqr

t(Qxx(5,5))]; 
    Q=[Q stdevm]; 
    %Obtain new gradient tensor S 
    Snew=-2*J'*(Ts-Tes); 
    %Obtain conjugation coefficient G Using Fletcher-Reeves Formulation 
    n=length(S); 
    sum1=0; 
    sum2=0; 
    for i=1:n 
        sum1=sum1+Snew(i,1)^2; 
        sum2=sum2+S(i,1)^2; 
    end 
    gamma=sum1/sum2; 
    %Find new direction of descent dnew 
    dnew=Snew+gamma*d; 

    
    %Find new search step size betanew 
    betanew=((J*dnew)'*(Tes-Ts))/((J*dnew)'*(J*dnew)); 
    %Compute new parameters 
    Pnew1=Pnew-.5*betanew*dnew; 
    Pmatrix=[Pmatrix;Pnew1']; 
    m1=Pnew1(1,1); 
    m2=Pnew1(2,1); 
    m3=Pnew1(3,1); 
    m4=Pnew1(4,1); 
    mvec=[m1;m2;m3;m4]; 
    h=Pnew1(5,1); 
    Pnew=Pnew1; 
    %Iterate 
    d=dnew; 
    S=Snew; 
    Svector=[Svector; S']; 
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    disp(count); 
    %Reform Tinfinity 
Tinf=zeros(length(t),1); 
Tinf(1)=T0; 
for i=2:length(t) 
    if ttherm(i)<=t1 
        Tinf(i)=Tinf(i-1)+m1*1/15; 
    elseif (t1<ttherm(i)) && (ttherm(i)<=t2) 
        Tinf(i)=Tinf(i-1)+1/15*m2; 
    elseif (t2<ttherm(i)) && (ttherm(i)<=t3) 
        Tinf(i)=Tinf(i-1)+1/15*m3; 
    elseif (t3<ttherm(i)) && (ttherm(i)<=t4) 
        Tinf(i)=Tinf(i-1)+1/15*m4; 
    end 
end 
end 

  

  

  
%% Solution Evaluation 

  
%Plot the estimated temperature curve on top of the data curve 
%figure 
plot(t,Tes); 
hold on 
plot(t,Ts,':g','linewidth',2); 
hold on 
plot(ttherm(1:length(t)),Tinf,'r'); 
hold on 
plot(ttherm(1:length(t)),TCinf(1:length(t)),'c'); 
title('Temperature Curve Fit') 
xlabel('Time (s)'); 
ylabel('Temp. (C)'); 
legend('Estimated','Data','Gas Estimated','Gas Thermocouple'); 
grid on 
grid minor 

  
%Display solution evaluation parameters 
disp('Solution and Solution Evaluation'); 
disp('Final average error'); 
disp(AvgE); 
disp('Data correlation'); 
disp(corr); 

  
figure 
grid on 
grid minor 
gradient=(Svector(:,1)+Svector(:,2)+Svector(:,3)+Svector(:,4)+Svector(:

,5))/5; 
subplot(4,1,1), plot(gradient); 
title('Average Gradient'); 
xlabel('Iteration'); 
ylabel('Gradient'); 
axis([0 count+1 -5 5]); 
subplot(4,1,2), plot(E); 
title('Average Error'); 
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xlabel('Iteration'); 
ylabel('Average error (C)'); 
axis([0 count+1 0 .2]); 
subplot(4,1,3), plot(CORVEC); 
title('Correlation of Error and Time'); 
xlabel('Iteration'); 
ylabel('Correlation'); 
axis([0 count+1 -0.5 0.5]);  
plot(CHI); 
title('Chi-Squared Goodness of Fit'); 
xlabel('Iteration'); 
ylabel('Chi-Squared'); 
axis([0 100 0 3]); 
disp('Chi-Squared converged value'); 
disp(chi); 
disp('Gradient') 
disp(gradient(length(gradient),:)) 
figure 

  
plot(E) 
hold on 
plot(CORVEC,'r') 
plot(gradient,'g') 
hold on 
axis([0 count+1 -3 3]); 
legend('Average Error (C)','Correlation of Error and Time','Average 

Gradient') 
xlabel('Iteration') 
title('Convergence') 

  
%Calculate standard deviation of the parameters and 95% and 99% 

confidence 
%First calculate covariance matrix 
COVm=(J'*J)^-1; 
%Then scale by the residual values 
Qxx=VAR*COVm; 
stdevm=[sqrt(Qxx(1,1));sqrt(Qxx(2,2));sqrt(Qxx(3,3));sqrt(Qxx(4,4));sqr

t(Qxx(5,5))]; 
disp('Standard Deviation (m1/m2/m3/m4/m5/h)'); 
disp(stdevm); 
con99=[Pnew1-2.576*stdevm Pnew1 Pnew1+2.576*stdevm]; 
disp('99% Confidence Interval (T/h)'); 
disp(con99); 
con95=[Pnew1-1.96*stdevm Pnew1 Pnew1+1.96*stdevm]; 
disp('95% Confidence Interval (T/h)'); 
disp(con95); 
disp('Initial Parameters t/m'); 
disp([tvec mvec]); 
disp('Iteration count'); 
disp(count); 

  
figure 
plot(t,(Ts-Tes),'.') 
xlabel('Time (s)') 
ylabel('Residuals (Tactual-Testimated)') 
title('Residuals') 
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The following are sub functions for the series of ramps conjugate gradient 

algorithm. 

This sub function takes the derivative of G with respect to h. 
 

function [dGdh]=diffGdh(alpha,k,t,B) 
dGdh=sqrt(alpha*t)/k.*(4/sqrt(pi)*1./B.^2+2./B.^3.*(exp(B.^2).*erfc(B)-

1)-2./B.*(exp(B.^2).*erfc(B))); 
 

The following sub function takes the derivative of surface temperature with 

respect to slope of the free stream ramps. 

 

function [dTdm]=diffTdm(t,R,mvec,tvec,B,myG) 

  
L=length(t); 
dTdm=zeros(L,R); 
for j=1:R 
    if j==1 
    dTdm(:,j)=t.*myG(B(:,1)); 
    for i=1:L 
        if t(i)>tvec(j) 
            dTdm(i,j)=dTdm(i,j)-(t(i)-tvec(j))*myG(B(i,j+1)); 
        end 
    end 
    elseif (1<j) & (j<R) 
    for i=1:L  
        if t(i)>tvec(j-1) 
            dTdm(i,j)=dTdm(i,j)+(t(i)-tvec(j-1))*myG(B(i,j)); 
        end 
        if t(i)>tvec(j) 
            dTdm(i,j)=dTdm(i,j)-(t(i)-tvec(j))*myG(B(i,j+1)); 
        end 
    end 
    elseif j==R 
    for i=1:L 
        if t(i)>tvec(j-1) 
            dTdm(i,j)=dTdm(i,j)+(t(i)-tvec(j-1))*myG(B(i,j)); 
        end 
    end 
    end 
end 
 

The following sub function takes the derivative of surface temperature with 

respect to h. 

function [dTdh]=mydiffTdh(alpha,k,t,R,mvec,tvec,B,diffGdh) 
L=length(t); 
dTdh1=mvec(1).*t.*diffGdh(alpha,k,t,B(:,1)); 
dTdh2=zeros(L,1); 
for j=1:R-1 
    for i=1:L  
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        if t(i)>tvec(j) 
            dTdh2(i)=dTdh2(i)+mvec(j+1)*(t(i)-

tvec(j))*diffGdh(alpha,k,(t(i)-tvec(j)),B(i,j+1)); 
            dTdh2(i)=dTdh2(i)-mvec(j)*(t(i)-

tvec(j))*diffGdh(alpha,k,(t(i)-tvec(j)),B(i,j+1)); 
        end 
    end 
end 
dTdh=dTdh1+dTdh2; 
 

The following sub function calculates beta. 

function B=mybeta(h,k,alpha,t,tvec,R) 
B(:,1)=h/k*sqrt(alpha*t); 
for i=1:R-1; 
    B(:,i+1)=myheaviside(t-tvec(i))*h/k*sqrt(alpha*(t-tvec(i))); 
end 

 

The following sub function calculates the surface temperature response. 

function T=myseriesrampfunc(T0,t,R,mvec,tvec,B,myG); 
L=length(t); 
T1=mvec(1).*t.*myG(B(:,1)); 
T2=zeros(L,1); 
for j=1:R-1 
    for i=1:L  
        if t(i)>tvec(j) 
            T2(i)=T2(i)+mvec(j+1)*(t(i)-tvec(j))*myG(B(i,j+1)); 
            T2(i)=T2(i)-mvec(j)*(t(i)-tvec(j))*myG(B(i,j+1)); 

  
        end 
    end 
end 
T=T0+T1+T2; 

 

 

 

 




