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Abstract

In this paper, while considering the impact of antenna correlation and the interference from neighboring users,

we analyze channel estimation and training sequence design for multi-input multi-output (MIMO) two-way relay

(TWR) systems. To this end, we propose to decompose the bidirectional transmission links into two phases, i.e., the

multiple access (MAC) phase and the broadcasting (BC) phase. By considering the Kronecker-structured channel

model, we derive the optimal linear minimum mean-square-error (LMMSE) channel estimators. The corresponding

training designs for the MAC and BC phases are then formulated and solved to improve channel estimation accuracy.

For the general scenario of training sequence design for both phases, two iterative training design algorithms are

proposed that are verified to produce training sequences that result in near optimal channel estimation performance.

Furthermore, for specific practical scenarios, where the covariance matrices of the channel or disturbances are

of particular structures, the optimal training sequence design guidelines are derived. In order to reduce training

overhead, the minimum required training length for channel estimation in both the MAC and BC phases are also

derived. Comprehensive simulations are carried out to demonstrate the effectiveness of the proposed training designs.

I. INTRODUCTION

Relay assisted cooperative communications has been regarded as one of the most promising techniques in

combating long distance channel fading in complex wireless communication systems. One popular example is

one-way relaying, which has been well studied in the past decade [1]–[3]. Although one-way relaying shows

great potential in reducing power consumption, enhancing reliability, and extending coverage, it suffers from low

spectral efficiency due to the half-duplex nature of the network. To overcome this disadvantage, by using the idea

of network coding, two-way relaying (TWR) has been proposed and has received great attention recently [4]. In

fact, TWR can maintain the advantages of traditional relaying while doubling spectrum efficiency.

The improvement in spectrum efficiency in TWR is achieved by applying self-interference cancelation at each

source node and extracting the desired information from the received network-coded messages. In this case,
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the accuracy of the self-interference cancelation process significantly affects the performance of TWR systems.

Moreover, when using the popular amplify-and-forward (AF) relaying strategy, the accuracy of self-interference

cancelation process is highly dependent on the precision of the channel estimation process. Thus, obtaining highly

accurate channel state information (CSI) becomes more important in TWR systems compared to traditional one-way

relaying systems. In fact, devising new channel estimation schemes for TWR systems has received great attention

recently. For example, in [5], the authors propose to estimate the cascaded channel of TWR systems under the

AF relaying strategy. By using multiple phase shift keying (M-PSK) training symbols, blind and partially-blind

channel estimators are investigated in [6], [7]. Different from [5]–[7], where flat fading channel are assumed, the

authors in [8] investigate time varying channel estimation via a new complex-exponential basis expansion model.

Moreover, in [9], [10], the channel estimation process for TWR is extended to the scenario of orthogonal frequency

division multiplexing (OFDM) systems.

It is worth noting that the works summarized above are concerned with single-antenna TWR systems. As

expected, the multi-antenna or multi-input multi-output (MIMO) technique can be introduced to TWR systems to

further improve transmission reliability and bandwidth efficiency. One efficient way to realize such performance

improvement is to exploit the estimated CSI for the application of source and relay precoding [11]–[14]. Therefore,

in MIMO TWR systems, in addition to affecting the performance of self-interference cancelation, inaccurate channel

estimation also imposes a negative effect on the precoder design.

Fig. 1 depicts a MIMO TWR setup. Let us denote the process of data transmission from the source nodes to

the relay and relay to the source nodes as the broadcasting (BC) and multiple access (MAC) phases, respectively.

In [15], a MIMO channel estimator is proposed that uses the self-interference as a training sequence to estimate

the channel matrices corresponding to the BC phase. In [16], the performances of different channel estimators,

including individual and cascaded channel estimators, are compared based on the least squares (LS) criterion. In

[17], an LS estimator is used to obtain the cascaded channel matrices corresponding to the BC and MAC phases

using a single carrier cyclic prefix. Note that in the contributions of [15]–[17], the channel statistics, whether

cascaded channels or the individual channels, are assumed to be unknown deterministic matrices. Based on the

estimation theory, if channel statistics are known, the channel estimation can be conducted under the Bayesian

framework and the estimation accuracy can be further enhanced. Hence, by taking these statistics into account, we

seek to improve upon the channel estimators in [15]–[17].

Very recently, the authors in [18], [19] independently investigate the minimum mean-square-error (MMSE)

channel estimation for TWR systems based on a correlated Gaussian MIMO channel model. In particular, in [18],

the cascaded channel matrices for AF TWR systems are estimated and the training sequences at the two source

nodes are optimized to minimize the total channel estimation MSE. Different from [18], the authors in [19] aim to

estimate the individual channel matrices for each link. To reach this goal, two different estimation schemes, i.e.,
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Fig. 1. An illustration of MIMO two-way relay system.

the superimposed channel training and the two-stage channel estimation schemes, are proposed. In addition, the

training sequences at the two source nodes, as well as, at the relay node are jointly optimized to improve channel

estimation accuracy.

In this paper, similar to [15]–[19], while assuming that the channel statistics are known, we analyze and devise

channel estimators for correlated MIMO TWR systems. Specifically, we consider the Kronecker-structured channel

model, such that the individual channel matrices can be estimated based on the Bayesian framework. However,

unlike [18], [19], we take into account the interference from the nearby users. Thus, in this model, the disturbance

at the source nodes and the relay node consists of both noise and interference. Note that the considered colored

estimation environment may be more practical for applications in today’s more densely deployed wireless networks.

Although channel estimation in point-to-point MIMO systems in colored environments has been studied in [20],

[21], to the best of our knowledge, this topic has not been addressed in the TWR scenario.

To enhance TWR performance, we seek to estimate the individual channel matrices corresponding to source-to-

relay and relay-to-source links, see Fig. 1. To this end, a new two-phase estimation scheme is proposed, where the

bidirectional transmission of a TWR system is decomposed into the MAC and BC phases. For the MAC and BC

phases, the channel estimation is performed at the relay node and two source/user nodes, respectively. The proposed

estimation scheme is different from the ones in [18], [19], where the channel estimation is assumed to only be

conducted at the user ends. As such, our proposed estimation scheme can more efficiently support precoding at

the relay since it requires significantly less feedback overhead [13], [22], [23]. Based on the proposed estimation

scheme, we derive the optimal linear MMSE (LMMSE) estimator for each phase. Next, the corresponding training

design problems are formulated with the aim of minimizing the total MSE of channel estimation process for each

phase. The training design problem considered here is different from that of [18], [19], since we take into account

the effect of colored disturbances caused by interference at the relay node and user ends. Moreover, the training

design scenarios for point-to-point systems in [20], [21] are different from the scenario under consideration in

this paper, since our proposed training sequence design is optimized to simultaneously enhance channel estimation
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accuracy over both links in the BC and MAC phases. Although, for the general scenario, it is difficult to derive

the optimal training sequence structures as in [18]–[21], we propose two iterative design algorithms to solve the

training design problems. These algorithms are verified to converge quickly to the near optimal solution and to not

be sensitive to the initialization process. For some special cases, where the covariance matrices of the channels

or disturbances have specific forms, two specific approaches are applied to obtain the optimal training sequences:

1) the original problem is converted into a standard convex optimization problem; 2) the optimal structures of

the training sequences are first derived and then used to reduce the original non-convex problem into a simple

power allocation problem. Finally, to reduce training overhead, the minimum required training length for channel

estimation in both the MAC and BC phases are derived and extensive simulations are carried out to support the

findings of the paper.

The rest of the paper is organized as follows. In Section II, we present the system model. The optimal LMMSE

estimators for both MAC and BC phases are derived in Section III. The training designs for the MAC and the BC

phases are analyzed in Section IV and V, respectively. Simulation results are provided in Section VI. Finally, we

conclude the paper in Section VII.

Notations: E(·) denotes the expectation operator. ⊗ denotes the Kronecker operator. vec(·) signifies the matrix

vectorization operator. Superscripts AT , A∗, and AH denote the transpose, conjugate, and conjugate transpose of

matrix A, respectively. Tr(A), A−1, det(A), and Rank(A) stand for the trace, inverse, determinant, and rank of

A, respectively. λ(A) denotes a vector containing eigenvalues of A. Blkdiag(A1,A2, · · · ,AN ) denotes a block

diagonal matrix constructed by matrices Ai, for ∀i. Diag(a) denotes a diagonal matrix with a being its diagonal

entries. A(n : m, :) and A(:, n : m) denote the sub-matrices constructed by n to m rows and n to m columns of A,

respectively. ||A||2F denotes the Frobenius norm of A. 0 and I denote the zero and identity matrices, respectively.

�(z) denotes the real part of complex variable z. The distribution of a circular symmetric complex Gaussian vector

with mean vector x and covariance matrix Σ is denoted by CN (x,Σ). Cx×y denotes the space of complex x× y

matrices. SN and SN+ denote the set of symmetric N × N matrices and the set of positive semidefinite N × N

matrices, respectively. x � y denotes that the vector y majorizes the vector x.

II. SYSTEM MODEL

Consider a TWR system, where source nodes S1 and S2 intend to exchange messages with one another through

a relay node R. S1, R, and S2 are assumed to be equipped with N1, M , and N2 antennas, respectively. The

channel matrices from S1 and S2 to R are denoted by H1 and H2, respectively, and the channel matrices from R

to S1 and S2 are denoted by G1 and G2, respectively.

Signal transmission within the TWR system is assumed to be achieved in two time slots. In the first phase,

referred to as the MAC phase, the source node Si, for i = 1, 2, transmits its signal to the relay node R, while in
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the second phase, referred to as the BC phase, the relay node R forwards the its combined received signal to the

two source nodes S1 and S2. The proposed channel estimator aims to obtain the individual channels of the two

hops, i.e., {H1,H2,G1,G2}. Note that different from the cases studied in [5], [18], where the cascaded channels

are estimated, here, the individual channel matrices are estimated. This approach enhances precoding design and/or

power allocation at the relay node, which can further improve the overall system performance [11]–[14], [22], [23].

Following the transmission model in Fig. 1, we assume that H1 and H2 are estimated in the MAC phase via

the training signals sent from the two source nodes, and G1 and G2 are estimated in the BC phase via the training

signal transmitted from the relay.

The received training signals at the relay node in the MAC phase can be expressed as

yR(t) = H1s1(t) +H2s2(t) + nR(t), (1)

where si(t) ∈ CNi×1 denotes the training signal at the source Si and nR(t) ∈ CM×1 represents the correlated

Gaussian disturbance at the relay node. nR(t) models the total background noise as well as the interference from

adjacent communication links. nR(t) is modeled as a stochastic process with respect to the time variable t [20],

[21], [24]. Here, the channel matrix Hi ∈ CM×Ni is modeled by the Rayleigh fading with mean zero and covariance

ZHi
∈ S

MNi×MNi

+ , i.e., vec(Hi) ∼ CN (0,ZHi
). To estimate the channel matrices at the relay, the source nodes

typically need to send a sequence of known training signals. Assuming training sequences have a length of LS ,

the received signal in (1) can be written in matrix from as

YR = H1S1 +H2S2 +NR, (2)

where YR � [yR(1),yR(2), · · · ,yR(LS)] ∈ CM×LS , Si � [s1(1), s1(2), · · · , s1(LS)] ∈ CNi×LS and NR �

[nR(1),nR(2), · · · ,nR(LS)] ∈ CM×L. Here, the disturbance NR is modeled as vec(NR) ∼ CN (0,KR) with

KR ∈ S
MLS×MLS

+ . Suppose that the source node Si has a maximum power of τi during the channel estimation

phase, the training sequence Si should fulfill the following power constraint

Tr(SiS
H
i ) ≤ τi. (3)

In the BC phase, the received training signals at the source nodes are given by

yi(t) = GisR(t) + ni(t), i = 1, 2 (4)

where sR(t) ∈ CM×1 denotes the training signal at the relay node and ni(t) ∈ CNi×1 represents the correlated

Gaussian disturbance at the node Si. The channel matrix Gi ∈ CM×Ni is modeled by a Rayleigh fading parameter

with mean zero and covariance ZGi
∈ S

MNi×MNi

+ , i.e., vec(Gi) ∼ CN (0,ZGi
). As in (1), here, the disturbance

term ni(t) also includes the total background noise and interference from nearby communication nodes. By rewriting

(4) into matrix form, we have

Yi = GiSR +Ni, i = 1, 2, (5)
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where Yi � [yi(1),yi(2), · · · ,yi(LR)] ∈ CNi×LR , SR � [sR(1), sR(2), · · · , sR(LR)] ∈ CNi×LR and Ni �

[ni(1),ni(2), · · · ,ni(LR) ∈ CM×LR . The disturbance Ni is modeled as vec(Ni) ∼ CN (0,Ki) with Ki ∈

SNiLR×NiLR . Here, we assume that the training sequence length at the relay is LR. The following condition

must be met to satisfy the power constraint at the relay node

Tr(SRS
H
R ) ≤ τR. (6)

In (6), τR denotes the maximum power at the relay node during the training phase.

In this work, we assume that the channel covariance matrices ZHi
and ZGi

and the covariance of disturbance

KR and Ki, for i = 1, 2, are structured and their statistics are known. Let us first focus on the properties of the

channel statistics.

The correlation amongst the channel parameters can be caused by insufficient antenna spacing as verified by

measurements in [25], [26]. Accordingly, the channel matrices are assumed to follow the Kronecker-structured

model, i.e., the covariance matrices are separated between the transmitter and receiver sides and given by ZHi
=

Zt,Hi
⊗ Zr,H , ZGi

= Zt,G ⊗ Zr,Gi
for j = 1, 2. Here, indexes ‘t’ and ‘r’ denote ‘transmitter’ and ‘receiver’,

respectively. In addition, since the channels H1 and H2 terminate at the relay node and the channels G1 and G2

begin at the relay node, we have that Zr,H1
= Zr,H2

= Zr,H and Zt,G1
= Zt,G2

= Zt,G. Using the Kronecker

model and the above definitions, the channel matrices can be expressed as [18]–[21], [24]

Hi = Cr,HWHi
CT

t,Hi
, Gi = Cr,Gi

WGi
CT

t,G, i = 1, 2 (7)

where Zt,Hi
= Ct,Hi

CH
t,Hi

, Zr,H = Cr,HCH
r,H , Zt,G = Ct,GC

H
t,G, and Zr,Gi

= Cr,Gi
CH

r,Gi
. WHi

and WGi
are

unknown matrices, where their entries are modeled by CN (0, 1).

The structured disturbance covariance Ki, for i ∈ {R, 1, 2}, are assumed to be modeled by [20], [21], [24]

Ki = Kq,i ⊗Kr,i, i = R, 1, 2, (8)

where Kq,1/Kq,2 ∈ CLS×LS , Kq,R ∈ CLR×LR denote the temporal covariance matrix and Kr,1 ∈ CN1×N1 ,

Kr,2 ∈ CN2×N2 , and Kr,R ∈ CM×M denote the received spatial covariance matrix. Moreover, it is assumed that

Kr,1, Kr,2, and Kr,R share the same eigenvectors with Zr,G1
, Zr,G2

and Zr,H , respectively. This assumption is

valid when the disturbances are either spatially uncorrelated or share the same spatial structure as the channel

[21], [24]. In addition, as summarized in [21], this assumption models the following scenarios: 1) Additive noise-

limited scenario, Kr,i = μiI with μi being some variance, for i = R, 1, 2; 2) Interference-limited scenario,

Kr,i = Zr,Gi
, for i = 1, 2, and Kr,R = Zr,H ; 3) Additive noise and temporally uncorrelated interference scenario,

Kr,i = μiI + νiZr,Gi
, for i = 1, 2, and Kr,R = μRI + νRZr,H with νi, for i = R, 1, 2, being the number of

interfering users; and 4) Additive noise and spatially uncorrelated interference scenario, Kr,i = I.
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The singular value decomposition (SVD) of Zt,Hi
, Zr,H , Zt,G, and Zr,Gi

are given by

Za,b = Ua,bΣa,bU
H
a,b, a ∈ {r, t}, b ∈ {H,H1,H2, G,G1, G2}, (9)

where Ua,b denotes the unitary eigenvector matrix and Σa,b is a diagonal matrix with [Σa,b]n,n = σa,b,n being the

n-th eigenvalue of Za,b. Accordingly, the SVD decomposition of Ca,b is denoted by Ca,b = Ua,bΣ
1/2
a,b Ũ

H
a,b with

Ũa,b represting a unitrary matrix. The SVD decomposition of Kq,i and Kr,i is denoted by

Ka,b = Va,bΔa,bV
H
a,b, a ∈ {r, t}, b ∈ {1, 2, R}, (10)

where Va,b denotes the unitary eigenvector matrix, Δa,b is a diagonal matrix with [Δa,b]n,n = δa,b,n being the

n-th eigenvalue of Ka,b. As mentioned before, it is assumed that Vr,1 = Ur,G1
, Vr,2 = Ur,G2

and Vr,R = Ur,H .

III. CHANNEL ESTIMATION FOR TWO-WAY RELAY SYSTEMS

Following the proposed estimation scheme in Section II, we next obtain the channel estimates based on (2) and

(5). For the estimation during the MAC phase, we rewrite (2) as

YR = Cr,HWH1
CT

t,H1
S1 +Cr,HWH2

CT
t,H2

S2 +NR = Cr,HWHCT
t,HS+NR, (11)

where WH � [WH1
,WH2

], CT
t,H � Blkdiag(CT

t,H1
,CT

t,H2
), and S � [ST

1 ,S
T
2 ]

T . Vectorizing YR in (11) and

applying the identity
vec(ABC) = (CT ⊗A)vec(B), (12)

we can rewrite (11) into

yR =
(
STCt,H ⊗Cr,H

)
wH + nR, (13)

where yR � vec(YR), wH � vec(WH) and nR � vec(NR). The estimation of wH based on the LMMSE

criterion can be obtained as ŵH = TRyR. The estimation matrix TR has the following form [27]

TR = RwhyR
R

−1
yRyR

. (14)
where

RwhyR
�E(wHyH

R ) = CH
t,HS∗ ⊗CH

r,H

RyRyR
�E(yRy

H
R ) =

(
STCt,H ⊗Cr,H

) (
STCt,H ⊗Cr,H

)H
+KR = STCt,HCH

t,HS∗ ⊗Cr,HCH
r,H +KR.

Let us define h � vec(H) = (Ct,H ⊗Cr,H)w with H � [H1,H2], the resulting estimation error, or mean-square-

error (MSE), eR can be derived as

eR =E
(
||h− ĥ||22

)
=Tr

[
C0,H(wH − ŵH)(wH − ŵH)H

]
=Tr

[
C0,H(wH −TRyR)(wH −TRyR)

H
]
,
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where C0,H � CH
t,HCt,H ⊗ CH

r,HCr,H . Substituting TR into (15) and using the matrix identity (I + AB)−1 =

I−A(I+BA)−1B, we obtain the following more compact form for eR

eR = Tr

[
C0,H

(
I+

(
STCt,H ⊗Cr,H

)H
K−1

R

(
STCt,H ⊗Cr,H

))−1
]
. (15)

Note that since the channel estimation model in (13) is linear and Gaussian, the proposed LMMSE estimator is

equivalent to the optimal MMSE estimator.

During the BC phase, the channel estimation should be based on the received signal in (5). By vectorizing Yi

in (5), we have

yi =
(
ST
RCt,G ⊗Cr,Gi

)
wGi

+ ni, i = 1, 2 (16)

where yi � vec(Yi), wGi
� vec(WGi

), and ni � vec(Ni). Similar to steps above, the estimation MSE of gi can

be obtained as

ei = E
(
||gi − ĝi||

2
2

)
= Tr

[
C0,Gi

(wGi
− ŵGi

)(wGi
− ŵGi

)H
]

= Tr
[
C0,Gi

(wH −Tiyi)(wH −Tiyi)
H
]
, i = 1, 2

(17)

where C0,Gi
� CH

t,GCt,G ⊗CH
r,Gi

Cr,Gi
and

Ti = RwGi
yi
R

−1
yiyi

. (18)

In (18),

RwGi
yi
=E(wGi

yH
i ) = CH

t,GS
∗
R ⊗CH

r,Gi

Ryiyi
=E(yiy

H
i ) =

(
ST
i Ct,G ⊗Cr,Gi

) (
ST
RCt,G ⊗Cr,Gi

)H
+Ki = ST

RCt,GC
H
t,GS

∗
R ⊗Cr,Gi

CH
r,Gi

+Ki.

By substituting Ti into (17), we obtain

ei = Tr

[
C0,Gi

(
I+

(
ST
RCt,G ⊗Cr,Gi

)H
K−1

i

(
ST
RCt,G ⊗Cr,Gi

))−1
]
. (19)

IV. TRAINING SEQUENCE DESIGN FOR MAC PHASE

In this section, the design of the training sequences for the MAC phase are analyzed. Namely, we shall optimize

the training sequences S1 and S2 subject to two source power constraints to minimize the total estimation MSE,

i.e., eR in (15). The corresponding training sequence optimization problem can be formulated as

min
S1,S2

Tr

[
C0,H

(
I+

(
STCt,H ⊗Cr,H

)H
K−1

R

(
STCt,H ⊗Cr,H

))−1
]

s.t. Tr(SiS
H
i ) ≤ τi, i = 1, 2.

(20)

Before solving (20), we first introduce the following lemma that deals with the minimum length of the training

sequence S, LS .
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LEMMA 1. To achieve an arbitrary small MSE with infinite power at the source nodes, the minimum length of the

source training sequence should be set to LS = N1+N2. Otherwise, even with infinite power at the source nodes,

the total MSE is lower bounded by
∑M

n=1 σr,H,n
∑N1+N2

m=LS+1 σt,H,m with σt,H,m being the m-th element of λ(Zr,H)

and Zt,H = Blkdiag(Zt,H1
,Zt,H2

). Moreover, for Kq,R = qI and any power constraint at the source node, if the

optimal solution of S in (20) has a rank r, the minimum length of source training sequence can be set to LS = r.

Proof: See Appendix A

With the minimum length of the training sequences determined, we seek to solve the non-convex optimization

problem in (20) with respect to S1 and S2. Although the objective function in (20) has a similar form to that of

point-to-point systems, there are two power constraints in (20) that make the problem of solving this non-convex

optimization problem more difficult than that of point-to-point systems in [20], [21]. In order to proceed, we first

note that eR in (15) can be obtained by substituting (14) into (15). Thus, to make the problem tractable, we propose

an iterative algorithm, which decouples the primal problem into two sub-problems and solves each of them in an

alternating approach. Let us rewrite (15) into the following form

ẽR =Tr
[
C0,H(wH −TRyR)(wH −TRyR)

H
]

=Tr
[
C0,H −

(
STCt,H ⊗Cr,H

)H
TH

RCH
0,H −C0,HTR

(
STCt,H ⊗Cr,H

)
+ C0,HTR

(
STCt,H ⊗Cr,H

)
×
(
STCt,H ⊗Cr,H

)H
TH

R +C0,HTRKRT
H
R

]
.

(21)

Then, the optimization problem in (20) is equivalent to

min
TR,S1,S2

ẽR

s.t. Tr(SiS
H
i ) ≤ τi, i = 1, 2.

(22)

In the first subproblem, we intend to optimize the LMMSE estimator matrix TR for a given S1 and S2. Since

TR is not related to the the power constraint, the problem simplifies to an unconstrained optimization problem

given by

min
TR

ẽR. (23)

Given that (23) is convex with respect to TR, by setting its gradient to zero, it can be shown that the optimal TR

is equal to (14).

In the second subproblem, the training sequences S1 and S2 need to be optimized for a given TR by solving

the following optimization problem

min
S1,S2

ẽR

s.t. Tr(SiS
H
i ) ≤ τi, i = 1, 2.

(24)
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Next, it is shown that the optimization problem in (24) can be transformed into a convex quadratically constrained

quadratic programable (QCQP) problem [28]. To achieve this goal, we first reformulate the last term in (21) as

Tr
[
C0,HTR

(
STCt,H ⊗Cr,H

) (
STCt,H ⊗Cr,H

)H
TH

R

]
(a)
=Tr

[
TH

RC0,HTR(S
T ⊗ I)(Ct,HCH

t,H ⊗Cr,HCH
r,H)(S∗ ⊗ I)

]
(b)
=vec(S⊗ I)H

(
TH

RC0,HTR ⊗CT
tr

)
vec(S⊗ I)

(c)
=sHEH

(
TH

RC0,HTR ⊗CT
tr

)
Es,

(25)

where Ctr � Ct,HCH
t,H ⊗ Cr,HCH

r,H , s � vec(S), E � Blkdiag(Ẽ(1), Ẽ(2), · · · , Ẽ(LS)), Ẽ(i) = Ẽ, Ẽ �[
Ē(1); Ē(2); · · · ; Ē(M)

]
, Ē(i) � Blkdiag(ei, ei, · · · , ei︸ ︷︷ ︸

N1+N2 elements

), and ei � [0, 0, · · · , 1︸︷︷︸
i−th element

, · · · , 0]T . In (25), Eq. (a) is

obtained by using the circular property Tr{AB} = Tr{BA} and the matrix identity

(A⊗B)(C ⊗D) = AC⊗BD, (26)

Eq. (b) is obtained by using the identity

Tr(ABCD) = vec(D)T (A⊗CT )vec(BT ) and (A⊗B)H = AH ⊗BH , (27)

and Eq. (c) is obtained by using vec(S ⊗ I) = Es. Similarly, the term Tr
[
C0,HTR(S

TCt,H ⊗Cr,H)
]

can be

expressed as

Tr
[
C0,HTR(S

TCt,H ⊗Cr,H)
]
=Tr

[
(S⊗ I)T (Ct,H ⊗Cr,H)C0,HTR

]
=vec(S⊗ I)Tvec(CT )

=vec(CT )
TEs,

(28)

where CT � (Ct,H ⊗Cr,H)C0,HTR. To obtain (28), we use the fact

Tr(ATB) = vec(A)T vec(B). (29)

The source power constrain in (24) can be rewritten as

Tr(SiS
H
i ) = Tr(EiSS

H), (30)

where E1 � Blkdiag(IN1
,0N2×N2

) and E2 � Blkdiag(0N1×N1
, IN2

). Based on the property that Tr(ABCD) =

vec(DT )T (CT ⊗A)vec(B), Eq. (30) can be further modified as

Tr(SiS
H
i ) = sH(I ⊗Ei)s. (31)

According to (25), (28), and (31), the optimization problem in (24) can be transformed into

min
s

sHEH
(
TH

RC0,HTR ⊗CT
tr

)
Es− 2�(vec(CT )

TEs)

s.t. sH(I⊗Ei)s ≤ τi, i = 1, 2.

(32)

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at IEEE Transactions
on Wireless Communications, published by IEEE.   Copyright restrictions may apply.  doi:  10.1109/TWC.2015.2390645



11

Since both EH
(
TH

RTR ⊗CT
tr

)
E and I⊗Ei are positive semidefinite matrices, we conclude that the optimization

problem in (32) is a convex QCQP problem, which can be easily solved by applying the available software package

in for example [29].

In summary, we outline the proposed iterative training design algorithm as follows:

Algorithm 1

• Initialize S1, S2

• Repeat

– Update the LMMSE estimator matrix TR using (14) for fixed S1 and S2;

– For fixed TR, solve the convex QCQP problem in (32) to get the optimal S1 and S2;

• Until The difference between the MSE from one iteration to another is smaller than a certain predetermined threshold.

THEOREM 1. The proposed iterative precoding design in Algorithm 1 is convergent and the limit point of the

iteration is a stationary point of (22).

Proof: Since in the proposed iterative algorithm, the solution for each subproblem is optimal, the total MSE

is not increased after each iteration. Meanwhile, the total MSE is lower bounded by zero. Hence, the proposed

algorithm is convergent. It further means that there must exist a limit point, denoted as X̄ =
{
T̄R, S̄i, i = 1, 2

}
after the convergence. At the limit point, the solutions will not change if we continue the iteration. Otherwise, the

total MSE can be further decreased, which contradicts the assumption of convergence.

Since at the limit point X̄, T̄R is the local minimizer of subproblem (23), it can be concluded that T̄R satisfies

the following Karush-Kuhn-Tucker (KKT) condition [28]

∂ẽR(S̄1, S̄2)

∂TR
|TR=T̄R

= 0, (33)

where ẽR(S̄1, S̄2) denotes the function eR with S1 and S2 being evaluated at S̄1 and S̄2, respectively. Similarly,

S̄i, for i = 1, 2, is the local minimizer of subproblem (24), which satisfies the following KKT conditions

∂ẽR(T̄R)

∂TR
|Si=S̄i

= 0, λi

(
Tr(S̄iS̄

H
i )− τi

)
= 0, i = 1, 2 (34)

where λi is the lagrangian multiplier associated with the source power constraint. By summing up the KKT

conditions given in (33) and (34), it can be concluded that the limit point X̄ satisfies the KKT conditions of the

primal problem in (22), which further means that X̄ is a stationary point of (22).

To this point, it is shown that the joint source training design can be solved via Algorithm 1. In the following,

we illustrate that for some special cases, the optimal solution of (20) can be obtained in closed-form.

A. When Kr,R = Zr,H

We first consider the case with Kr,R = Zr,H . This case is applicable in the scenario where the disturbance is

dominated by the interference from neighboring users as shown in [24]. As summarized in Section II, this scenario
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corresponds to the interference-limited case. Accordingly, the LMMSE estimator given in (14) can be rewritten as

TR =
[
CH

t,HS∗ ⊗CH
r,H

] [
STCt,HCH

t,HS∗ ⊗Cr,HCH
r,H +KR

]−1

=
[
CH

t,HS∗ ⊗CH
r,H

] [(
STCt,HCH

t,HS∗ +Kq,R

)−1
⊗ Z−1

r,H

]
=CH

t,HS∗
(
STCt,HCH

t,HS∗ +Kq,R

)−1︸ ︷︷ ︸
�TR,1

⊗C−1
r,H,

which further leads to

TH
RC0,HTR = (TR,1 ⊗C−1

r,H)H(CH
t,HCt,H ⊗CH

r,HCr,H)× (TR,1 ⊗C−1
r,H) = TH

R,1C
H
t,HCt,HTR,1 ⊗ I,

and

Tr
[
C0,HTR

(
STCt,H ⊗Cr,H

) (
STCt,H ⊗Cr,H

)H
TH

R

]
=Tr

[(
STCt,HCH

t,HS∗ ⊗Cr,HCH
r,H

) (
TH

R,1C
H
t,HCt,HTR,1 ⊗ I

)]
(a)
=Tr(Zr,H)Tr

[
STCt,HCH

t,HS∗TH
R,1C

H
t,HCt,HTR,1

]
(b)
=Tr(Zr,H)

2∑
i=1

Tr
(
ST
i Zt,Hi

S∗
iT

H
R,1C

H
t,HCt,HTR,1

)
.

(35)

In (35), Eq. (a) is obtained by using the identity Tr(A⊗B) = Tr(A)Tr(B), and Eq. (b) is derived based on the

fact that Ct,H is a block diagonal matrix as shown in (11). In addition, the term Tr
[
C0,HTR(S

TCt,H ⊗Cr,H)
]

can be reexpressed as

Tr
[
C0,HTR(S

TCt,H ⊗Cr,H)
]
= Tr

[
(STCt,HCH

t,HCt,HTR,1)⊗Cr,HCH
r,H

]
= Tr(Zr,H)

2∑
i=1

Tr
(
ST
i Zt,Hi

Ct,Hi
TR,1,i

)
,

(36)

where TR,1,1 � TR,1(1 : N1, :) and TR,1,2 � TR,1(N1+1 : N1+N2, :). Based on (35) and (36), (24) is equivalent

to the following optimization problem

min
S1,S2

2∑
i=1

{
Tr
(
ST
i Zt,Hi

S∗
iT

H
R,1C

H
t,HCt,HTR,1

)
−Tr

(
ST
i Zt,Hi

Ct,Hi
TR,1,i

)
− Tr

(
TH

R,1,iC
H
t,Hi

ZH
t,Hi

S∗
i

)}
s.t. Tr(SiS

H
i ) ≤ τi, i = 1, 2.

(37)

We note that compared to (24), (37) has a simpler form and as shown below can be solved in closed-form via the

KKT conditions.

To proceed, the lagrangian function of (37) is first derived as

L =

2∑
i=1

{
Tr
(
ST
i Zt,Hi

S∗
iT

H
R,1C

H
t,HCt,HTR,1

)
− Tr

(
ST
i Zt,Hi

Ct,Hi
TR,1,i

)
− Tr

(
TH

R,1,iC
H
t,Hi

ZH
t,Hi

S∗
i

)}

+

2∑
i=1

λi

[
Tr(SiS

H
i )− τi

]
,
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where λi is the lagrangian multiplier associated with the power constraint at the source Si. The KKT conditions

for (37) can be derived as follows [28]
∂L

∂S∗
i

=
(
TH

R,1C
H
t,HCt,HTR,1S

T
i Zt,Hi

)T
−
(
TH

R,1,iC
H
t,Hi

ZH
t,Hi

)T
+ λiSi = 0, (38a)

λi

[
Tr(SiS

H
i )− τi

]
= 0, (38b)

Tr(SiS
H
i ) ≤ τi, i = 1, 2. (38c)

Based on the KKT conditions shown in (38a) and by using (12), the optimal si � vec(Si) can be obtained as

si = [Xs,1 ⊗Xs,2,i + λiI]
−1

xs,3,i, (39)

where Xs,1 � TH
R,1C

H
t,HCt,HTR,1, Xs,2,i � ZT

t,Hi
, and xs,3,i � vec

((
TH

R,1,iC
H
t,Hi

ZH
t,Hi

)T ). The optimal λi in (39)

can be zero or should be chosen to activate the power constraint in (38c). For the case where λi �= 0, the following

lemma is introduced.

LEMMA 2. The function g(λi) = Tr
{
SiS

H
i

}
= Tr

{
sis

H
i

}
, with si defined above (39), is monotonically decreasing

with respect to λi and the optimal λi is upper-bounded by
√

σs,3,i
τi

− σs,min,i. Here, σs,3,i denotes the smallest

eigenvalue of Xs,1 ⊗Xs,2,i and σs,min,i = ||xs,3,i||
2
2.

Proof: See Appendix B.

By applying Lemma 2, the optimal λi that meets the condition Tr
{
SiS

H
i

}
= τi can be readily obtained via the

bisection search algorithm.

B. When Kq,R = qI

This scenario corresponds to the practical case, where the disturbance consists of both the additive white Gaussian

noise and the temporally uncorrelated interference. This is referred to as the additive noise-limited and spatially

uncorrelated interference scenario in Section II. Similar to the derivation steps in Appendix A, the total MSE can

be derived as

eR =Tr

[
C0,H

(
I+

(
STCt,H ⊗Cr,H

)H
K−1

R

(
STCt,H ⊗Cr,H

))−1
]

=Tr

[
C0,H

(
I+

1

q
CH

t,HS∗STCt,H ⊗CH
r,HK−1

r,RCr,H

)−1
]

=

M∑
n=1

σr,H,nTr

[(
Z−1
t,H + αnS

∗ST
)−1

]
,

where αn =
σr,H,n

qδr,R,n
. Subsequently, the optimization problem in (20) can be rewritten as

min
S1,S2

M∑
n=1

σr,H,nTr

[(
Z−1
t,H + αnS

∗ST
)−1

]

s.t. Tr(EiS
∗ST ) ≤ τi, i = 1, 2

(40)
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where Ei is defined in (30). Although the optimization problem in (40) is non-convex with respect to Si, it is

noted that one may optimize (40) with respect to the positive semidefinite matrix S∗ST instead of the training

sequence Si. Accordingly, after solving for the optimum S∗ST , the solution can be decomposed to obtain Si. This

approach is preferable since in (40), the objective function and the constraint both depend on S∗ST and not Si.

Hence, by defining QS � S∗ST , the following equivalent problem can be obtained

min
QS�0

M∑
n=1

σr,H,nTr

[(
Z−1
t,H + αnQS

)−1
]

s.t. Tr(EiQS) ≤ τi, i = 1, 2.

(41)

THEOREM 2. The optimization problem in (41) is convex with respect to the positive semidefinite matrix QS .

Proof: See Appendix C.

Next, it is shown that the optimization problem in (41) can be solved by transforming it into a semidefinite

programming (SDP) problem. By introducing the variables Xn, the problem in (41) can be rewritten in an equivalent

form as

min
QS�0,Xn

M∑
n=1

σr,H,nTr (Xn)

s.t. Tr(EiQS) ≤ τi, i = 1, 2(
Z−1
t,H + αnQS

)−1
	 Xn,∀n

(42)

By using the Schur complement, (42) can be further transformed into the following SDP problem

min
QS�0,Xn

M∑
n=1

σr,R,nTr (Xn)

s.t. Tr(EiQS) ≤ τi, i = 1, 2⎡
⎣ Z−1

t,H + αnQS I

I Xn

⎤
⎦ 
 0, ∀n

(43)

By solving the SDP problem in (43), the optimal solution to the optimization problem in (41) can be obtained.

However, this numerical method of solving this optimization problem has a relatively high computational com-

plexity. As such to obtain the optimal structure of Si and gain a better understanding of the optimization in (40)

the following theorem is introduced.

THEOREM 3. With the minimum training sequence length requirement LS ≥ N1+N2, the optimal training sequence

Si in (40) should satisfy the condition S∗
1S

T
2 = 0. In addition, the optimal Si has a form of Si = U∗

t,Hi
ΣsiV

H
si ,

where Vsi is chosen such that VH
s1Vs2 = 0 and Σsi is a diagonal eigenvalue matrix with [Σsi]n,n = σsi,n. Σsi
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can be obtained by solving the following water-filling problem
M∑
n=1

αnσr,H,nσ
2
t,Hi,m

(1 + αnσt,Hi,mσ2
si,m)2

= λi. (44)

In (44), the optimal λi should be selected such that
∑Ni

m=1 σ
2
si,m = τi.

Proof: See Appendix D.

Remark 1: the optimal λi in (44) can be found via the bisection search algorithm and the optimal λi is bounded

by
(
0,maxm

∑M
n=1 αnσr,H,nσ

2
t,Hi,m

)
. The upper limit of this bound is obtained via the following relationship

λi ≤ max
m

M∑
n=1

αnσr,H,nσ
2
t,Hi,m

(1 + αnσt,Hi,mσ2
si,m)2

≤ max
m

M∑
n=1

αnσr,H,nσ
2
t,Hi,m.

V. TRAINING SEQUENCE DESIGN FOR BC PHASE

In this section, we intend to optimize the training sequence SR by minimizing the total estimation MSE at the

two source ends subject to the relay power constraint. According to the MSE derived in (19), the corresponding

optimization for this problem can be formulated as

min
SR

2∑
i=1

Tr

[
C0,Gi

(
I+

(
ST
RCt,G ⊗Cr,Gi

)H
K−1

i

(
ST
RCt,G ⊗Cr,Gi

))−1
]

s.t. Tr(SRS
H
R ) ≤ τR.

(45)

It is also worth noting that the training designs for point-to-point systems in [20], [21] are not applicable to the

scenario under consideration here, since the training sequence at the relay, SR, needs to be optimized to enhance

channel estimation over both links that connect the relay to the sources nodes. Prior to solving (45), let us first

present the minimum training sequence length required for channel estimation in the BC phase.

LEMMA 3. To achieve arbitrary small MSE with sufficiently large relay power, the minimum length of the relay

training sequence must be set to LR = M . Otherwise, even with infinite power at the relay, the total MSE is always

lower bounded by
∑M

m=LR+1 σt,G,m(
∑N1

n=1 σr,G1,n +
∑N2

n=1 σr,G2,n), with {σt,G,m} being the eigenvalues of Zt,G

arranged in decreasing order. Moreover, when Kq,i = qiI, for i = 1, 2, and with any relay power constraint, if the

optimal solution of SR in (45) has a rank of r, then the minimum length of the relay training sequence should be

LR = r.

Proof: Since the proof is similar to the proof of Lemma 1, it is omitted for brevity.

In general, the optimization in (45) is non-convex. Hence, as in Algorithm 1, we first propose an iterative

approach to optimize the design of the training sequences at the relay. To this end, the MSE, i.e., ei, given in (19)
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is rewritten as

ẽi =Tr
[
C0,Gi

(wGi
−Tiyi)(wGi

−Tiyi)
H
]

=Tr
[
C0,Gi

−
(
ST
i Ct,G ⊗Cr,Gi

)H
TH

i CH
0,Gi

−C0,Gi
Ti

(
ST
i Ct,G ⊗Cr,Gi

)
+C0,Gi

Ti

(
ST
i Ct,G ⊗Cr,Gi

) (
ST
i Ct,G ⊗Cr,Gi

)H
TH

i +C0,Gi
TiKiT

H
i

]
.

(46)

Since (17) and (19) are in equivalent form, the optimization problem in (45) can be rewritten as

min
T1,T2,SR

ẽ1 + ẽ2

s.t. Tr(SRS
H
R ) ≤ τR.

(47)

In the first subproblem, for a given SR, the optimal LMMSE estimators T1 and T2 at the two source ends are

obtained as given in (18). Thus, we focus on solving the second subproblem, where the relay training sequence is

optimized for a fixed LMMSE estimator. Similar to (25) and (28), the MSE in (46) is reexpressed as

ẽi =sHREH
i

(
TH

i C0,Gi
Ti ⊗CT

tr,Gi

)
EisR − vec(CT,Gi

)TEisR − vec(C∗
T,Gi

)TEis
∗
R

+Tr(C0,Gi
TiKiT

H
i ) + Tr(C0,Gi

),

where sR � vec(SR), Ctr,Gi
� Ct,GC

H
t,G ⊗Cr,Gi

CH
r,Gi

, and CT,Gi
� (Ct,G ⊗Cr,Gi

)C0,Gi
Ti. In this case, Ei is

an NiLR ×MLR matrix that is constructed as in (25). Accordingly, (47) can be rewritten as

min
SR

sHRARsR − aTRsR − aHR s∗R

s.t. sHR sR ≤ τR,

(48)

where AR �
∑2

i=1 E
H
i (TH

i C0,Gi
Ti ⊗CT

tr,Gi
)Ei and aR � ET

1 vec(CT,G1
) + ET

2 vec(CT,G2
). Note that different

from the source training design, (48) has only one power constraint. Thus, its solution can be obtained via the

KKT conditions given by

ARsR − a∗R + λsR = 0, λ(sHR sR − τR) = 0, sHR sR − τR ≤ 0, (49)

where λ is the lagrangian multiplier associated with the relay power constraint. The closed-form solution of (48)

is obtained as

sR = (AR + λI)−1
a∗R. (50)

In (50), if the solution sR with λ = 0 violates the KKT conditions given in (49), λ should be chosen to meet

sHR sR = τR. Consequently, we introduce the following lemma.

LEMMA 4. The function g(λ) = sHR sR, with sR defined in (50), is monotonically decreasing with respect to λ.

Moreover, the optimal λ is upper-bounded by
√

σa,R
τR

− σR,min with σa,R = aTRa
∗
R and σR,min denoting the smallest

eigenvalue of AR.
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Proof: Since the proof is similar to that of Lemma 2, it is omitted for brevity.

Using the above steps, the overall relay training design algorithm can be summarized as follows:

Algorithm 2

• Initialize SR

• Repeat

– Update the LMMSE estimator matrix Ti, for i = 1, 2, using (18) for a fixed SR;

– Update the training signal SR using (50) for a fixed Ti, for i = 1, 2;

• Until The difference between the MSE from one iteration to another is smaller than a certain predetermined threshold.

Although for the general case the solution of SR can only be obtained via an iterative approach, it is shown

that for some special cases, the optimal training sequence of SR can be found in closed-form.

A. When Kq,i = qiI

In this subsection, we consider that the temporal covariance matrix, Kq,i, is a scalar multiple of the identity

matrix. This scenario corresponds to the practical case, where the disturbance consists of both the additive white

Gaussian noise and the temporally uncorrelated interference. Using similar steps as in Appendix A, we rewrite the

MSE in (19) as

ei =

Ni∑
n=1

σr,Gi,nTr
[(
Z−1
t,G + βi,nS

∗
RK

−1
q,iS

T
R

)−1]
,

where βi,n =
σr,Gi,n

δr,i,n
.

We first consider the scenario where either Kq,1 or Kq,2 is equal to a scalar multiple of the identity matrix.

Without loss of generality, let us assume that Kq,1 = q1I, while Kq,2 is assumed to be an arbitrary matrix.

Subsequently, we have that

e1 =

N1∑
n=1

σr,G1,nTr
[(
Z−1
t,G + β̃1,nS

∗
RS

T
R

)−1]
,

where β̃1,n = β1,n/q1. For this case, the original problem in (45) can be transformed to

min
SR

N1∑
n=1

σr,G1,nTr

[(
Z−1
t,G + β̃1,nS

∗
RS

T
R

)−1
]
+

N2∑
n=1

σr,G2,nTr

[(
Z−1
t,G + β2,nS

∗
RK

−1
q,2S

T
R

)−1
]

s.t. Tr(SRS
H
R ) ≤ τR.

(51)

To solve (51), the following lemma is introduced.

LEMMA 5. With the minimum relay training sequence length given in Lemma 3, i.e., LR = M , when the eigenvalues

of Zt,G, Zr,Gi
, Kq,i, and Kr,i are small compare to one, the optimal SR in (51) has the following structure

SR = U∗
t,GΣs,RU

T
q,2, (52)
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where Σs,R is the diagonal eigenvalue matrix. In (52), taking Ut,G and UT
q,2 as the eigenvector matrices of Zt,G

and Kq,2, respectively, the eigenvalues of Zt,G and Kq,2 should be arranged in an opposite order. With the structure

given in (52) and by defining [Σs,R]m,m � σ
1/2
s,R,m, σs,R,m can be obtained from

λ =

N1∑
n=1

σr,G1,nβ̃1,nσ
2
t,G,m

(1 + β̃1,nσt,G,mσs,R,m)2
+

N2∑
n=1

σr,G2,nβ2,nδ
−1
q,2,mσ2

t,G,m

(1 + β2,nσt,G,mσs,R,mδ−1
q,2,m)2

, (53)

where λ ∈
(
0,maxm

{∑N1

n=1(σr,G1,nβ̃1,nσ
2
t,G,m +

σr,G2,nβ2,nσ2

t,G,m

δq,2,m
)
})

and can be found via the bisection search

algorithm to meet the relay’s power constraint.

Proof: Please refer to Appendix E.

For the case with Kq,1 = q1I and Kq,2 = q2I, (51) can be further simplified as

min
SR

N1∑
n=1

σr,G1,nTr

[(
Z−1
t,G + β̃1,nS

∗
RS

T
R

)−1
]
+

N2∑
n=1

σr,G2,nTr

[(
Z−1
t,G + β̃2,nS

∗
RS

T
R

)−1
]

s.t. Tr(SRS
H
R ) ≤ τR,

(54)

where β̃2,n = β2,n/q2. The optimal solution of (54) is given in the following lemma.

LEMMA 6. The optimal SR in (54) is of the form

SR = U∗
t,GΣs,RV

T
s,R,

where Σs,R is a positive real diagonal matrix, Ut,G is the eigenvector matrix of Zt,G, and Vs,R is an arbitrary

unitary matrix. The corresponding eigenvalues of Zt,G are arranged in the same order as the diagonal elements

of Σs,R. The optimal Σs,R can be obtained from

λ =

N1∑
n=1

σr,G1,nβ̃1,nσ
2
t,G,m

(1 + β̃1,nσt,G,mσs,R,m)2
+

N1∑
n=1

σr,G2,nβ̃2,nσ
2
t,G,m

(1 + β̃2,nσt,G,mσs,R,m)2
,

where λ ∈
(
0,maxm

{∑N1

n=1(σr,G1,nβ̃1,nσ
2
t,G,m + σr,G2,nβ̃2,nσ

2
t,G,m)

})
can be found via the bisection search to

meet the relay’s power constraint.

Proof: The expression of MSE, i.e., ei, for i = 1, 2, in (54) contains a term Tr
[(
Z−1
t,G+ β̃i,nS

∗
RS

T
R

)−1]. If the

eigenvalues of Zt,G and S∗
RS

T
R are arranged in the same order, we have [30]

λ(Z−1
t,G) + λ(β̃i,nS

∗
RS

T
R) � λ(Z−1

t,G + β̃i,nS
∗
RS

T
R). (55)

Since the function Tr[(A)] is a schur convex function with respect to the eigenvalues of A [21], based on (55),

we can easily obtain the results in Lemma 6.
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B. When Zt,G = aI

This case corresponds to a scenario, where the relay antennas are far enough from one another such that they

are spatially uncorrelated. In this case, the corresponding training design problem can be formulated as

min
SR

N1∑
n=1

σ̃r,G1,nTr

[(
I+ β̄1,nS

∗
RK

−1
q,1S

T
R

)−1
]
+

N2∑
n=1

σ̃r,G2,nTr

[(
I+ β̄2,nS

∗
RK

−1
q,2S

T
R

)−1
]

s.t. Tr(S∗
RS

T
R) ≤ τR,

(56)

where σ̃r,Gi,n = aσr,Gi,n, and β̄i,n = aβi,n for i = 1, 2. In general, the optimization problem in (56) is non-convex

with respect to SR. However, based on the minimum training sequence length derived in Lemma 3, i.e., LR = M ,

(56) is equivalent to the following problem

min
SR

N1∑
n=1

σ̃r,G1,nTr

[(
I+ β̄1,nS

T
RS

∗
RK

−1
q,1

)−1
]
+

N2∑
n=1

σ̃r,G2,nTr

[(
I+ β̄2,nS

T
RS

∗
RK

−1
q,2

)−1
]

s.t. Tr(ST
RS

∗
R) ≤ τR.

(57)

In obtaining (57) from (56), we have used the identity Tr
([
I +AB

]−1)
= Tr

([
I+BA

]−1)
+m− n, where A

and B are m× n and n×m matrices, respectively, [31]. Similar to the Section IV-B, it is observed that in (57),

we can directly optimize the matrix ST
RS

∗
R instead of SR by solving the following optimization

min
QR�0

N1∑
n=1

σ̃r,G1,nTr

[(
I+ β̄1,nK

−1/2
q,1 QRK

−1/2
q,1

)−1
]
+

N2∑
n=1

σ̃r,G2,nTr

[(
I+ β̄2,nK

−1/2
q,2 QRK

−1/2
q,2

)−1
]

s.t. Tr(QR) ≤ τR,

(58)

where QR � ST
RS

∗
R. By using similar steps as that in Theorem 2, it can be shown that (58) is convex and it can

be readily solved via the following SDP problem

min
QR�0,Xn,Yn

M∑
n=1

σ̃r,G1,nTr (Xn) + σ̃r,G2,nTr (Yn)

s.t. Tr(QR) ≤ τR⎡
⎣ I+ β̄1,nK

−1/2
q,1 QRK

−1/2
q,1 I

I Xn

⎤
⎦ 
 0, ∀n

⎡
⎣ I+ β̄2,nK

−1/2
q,2 QRK

−1/2
q,2 I

I Yn

⎤
⎦ 
 0, ∀n.

VI. SIMULATION RESULTS

In this section, we present simulation results to verify the performance of the proposed training design algorithms.

The total normalized MSE (NMSE), defined as either 1
M(N1+N2)

∑2
i=1 E

{
||Hi − Ĥi||

2
F

}
or
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Fig. 2. Convergence behavior of the proposed iterative designs.

1
M(N1+N2)

∑2
i=1 E

{
||Gi − Ĝi||

2
F

}
, is utilized to illustrate the performance of the proposed algorithms. In all

simulations, the channel covariance matrices are assumed to have the following structures

[Zt,b]n,m = zt,bJ0(dt,b|n−m|), b ∈ {H1,H2, G},

[Zr,b]n,m = zr,bJ0(dr,b|n−m|), b ∈ {H,G1, G2},

where J0(·) is the zeroth-order Bessel function of the first kind, dt,b and dr,b are proportional to the carrier frequency

and the antenna separation vectors at the transmitter and the receiver, respectively [20]. Moreover, the scalars zt,b

and zr,b are normalization factors such that Tr(Zt,Hi
) = Ni, Tr(Zr,H) = M , Tr(Zt,G) = M and Tr(Zr,Gi

) = Ni.

The temporal covariance matrix of the disturbance is assumed to be modeled via a first order autoregressive (AR)

filter, i.e., AR(1), that is denoted by [Kq,b]n,m = Iq,bkq,bη
|n−m|
q,b for b ∈ {1, 2, R} [20]. Here, the scalar kq,b is

a normalization factor similar to Zt,b and Zr,b. Moreover, Iq,b indicates the strength of the interference from the

nearby users. Following the approach in [21], it is assumed that the received spatial covariance matrix of the

disturbance, Kr,b, shares the same eigenvalue vectors with Zr,b but with different eigenvalues. For simplicity, the

length of the source and relay training sequences are assumed to be LS = N1 + N2 and LR = M , respectively.

The sum power at the two sources are assumed to be τ1 + τ2 = 2P . If not specified otherwise, we assume that

N1 = N2 = M = 3. Furthermore, the system parameters for the MAC phase are set to: dt,H1
= 1.5, dt,H2

= 1.8,

dr,G = 1.3, ηq,R = 0.9 and Iq,R = 1, while for the BC phase, we choose dt,G = 1.9, dr,G1
= 1.95, dr,G2

= 0.3,

ηq,1 = 0.9, ηq,2 = −0.9 and Iq,1 = Iq,2 = 1.

In Fig. 2, the convergence behaviors of Algorithms 1 and 2 for different SNRs are shown in subfigures (a)

and (b), respectively. It is illustrated that in general, the proposed iterative algorithms converge very quickly and

at most 60 iterations are required for them to converge. These results also indicate that as the SNR increases

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at IEEE Transactions
on Wireless Communications, published by IEEE.   Copyright restrictions may apply.  doi:  10.1109/TWC.2015.2390645



21

0 5 10 15 20 25 30 35
10−4

10−3

10−2

10−1

100

τ1 = τ2 (dB)

To
ta

l N
M

S
E

Random−1
Random−10
Indentity

32.7 32.701 32.702 32.703
10−3.09

10−3.07

10−3.05

(a) MAC phase

0 5 10 15 20 25 30 35
10−3

10−2

10−1

100

SNR(dB)

To
ta

l N
M

S
E

Random−1
Random−10
Indentity

29.95 30 30.05 30.1 30.15

10−2

(b) BC phase

Fig. 3. Optimality for the proposed iterative designs with different initiations.

more iterations are needed for the proposed algorithms to converge. In Figs. 3(a) and 3(b), the convergence of

the proposed algorithms are verified for different sets of initializations. In this setup, “Random-1” indicates that a

random initial point is selected, “Random-N” implies that N random initial points are tested but the one with the

best performance is selected, and “Identity” indicates that

S = Blkdiag(aIN1
, bIN2

) and SR = cIM ,

where a, b, and c are used to satisfy the source and relay power constraints. The results in Figs. 3(a) and 3(b)

indicate that for various SNR values, the proposed iterative training design algorithms are not sensitive to the

selected initial point. Furthermore, it is observed that the initialization process denoted by “Identity” performs well

as an initial point and can approach the initialization scenario denoted by ”Random-10”. Hence, in the following,

if not state otherwise, the “Identity” initialization point is used.

In Fig. 4, we compare the total NMSE of the proposed iterative training design algorithm with that of [21],

which is intended for point-to-point systems. To make this comparison possible, for the training sequence design

in the MAC phase, it is assumed that two source nodes transmit their training sequences in two orthogonal time

intervals, i.e., s1(t) with t ∈ [1, 2, · · · , N1] and s2(t) with t ∈ [N1+1, N1+2, · · · , N1+N2]. In the BC phase, the

training sequence, SR is designed according to the channel from the relay to the source S1. The plots in Figs. 4(a)

and 4(b) illustrate that compared to the approach in [21], the proposed training design can significantly improve

the accuracy of channel estimation in TWR systems. This gain is even more pronounced when the two source

nodes operate at different transmit power levels during the MAC phase and when the strengths of the disturbances

at the two source nodes are asymmetric, i.e., Iq,1 �= Iq,2 during the BC phase. This can be mainly attributed to the

fact that the proposed training design algorithm, i.e., Algorithm 1, takes into account the temporal correlation of
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Fig. 5. Performance illustration of the case with Kq,R = qI for MAC phase channel estimation.

the disturbances at the relay node in the MAC phase, while ensuring that the training sequences transmitted from

the relay node simultaneously match the channels corresponding to relay-to-source links during the BC phase.

In Fig. 5, the performance of the proposed training sequence design algorithms and channel estimators in the

MAC phase for Kq,R = qI is demonstrated. Three training sequence design approaches are taken into consideration:

1) The iterative design based on Algorithm 1; 2) The SDP design based on (43); and 3) The SVD design based

on Theorem 3. As shown in Theorem 2, in this case, the optimization problem for finding the optimal training

sequences is convex. Hence, it is well-known that both the SDP and the SVD design schemes can achieve optimal

channel estimation performance. This outcome is also verified by the results in Fig. 5. However, it is interesting

to note that the proposed iterative algorithm denoted by Algorithm 1 can also achieve optimal performance, which
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further verifies its effectiveness for designing the training sequences in the MAC phase.

Figs. 6 and 7 present the channel estimation performance for the special cases presented in Sections V-A and

V-B during the BC phase. More specifically, in Fig. 6, the scenario where Kq,1 = q1I and Kq,2 is an arbitrary

matrix is taken into consideration. In this figure, the plot with the legend “SVD design” refers to the results in

Lemma 4. Although Lemma 4 shows that the training design structure given in (52) is only optimal when the

eigenvalues of Zt,G, Zr,Gi
, Kq,i and Kr,i are small, the results in Fig. 6 show that the proposed “SVD design”

method closely matches the performance of the proposed iterative design algorithm for most practical scenarios

of interest. Moreover, the optimality of Algorithm 2 is further verified via the results in Fig. 7. In this setup we

consider the special case presented in Section V-B. Note that since the proposed “SDP design” in Section V-B is
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optimal, we conclude that the iterative design in Fig. 7 can approach the optimal solution in this special case.

VII. CONCLUSIONS

In this paper, the problem of channel estimation in MIMO TWR systems was analyzed. Unlike prior work in this

field, the impact of the interference from neighboring devices and the effect of antenna correlations on the design

of training sequences and channel estimation performance were taken into consideration. To obtain the channel

parameters corresponding to each individual link, we have proposed to carry out the channel estimation process in

two phases: the BC phase and the MAC phase. Next, the optimal LMMSE channel estimators for both phases were

derived and the corresponding training sequence design problems for each phase were formulated. Subsequently,

to ensure accurate channel estimation in TWR systems, the minimum required length of the training sequences

were also analyzed. Since the resulting optimization problems were non-convex in their general form, specific

transformations were used to obtain near optimal iterative algorithms for the design of the training sequences.

Further analysis showed that the optimal structures of the training sequences can be obtained in closed-form when

the channel or the noise temporal covariance matrices have special structures. Simulation results show that the

proposed training sequence design algorithms can significantly enhance channel estimation performance in TWR

relaying systems

APPENDIX A

PROOF OF LEMMA 1

To prove Lemma 1, we first rewrite (15) into the following form

eR = Tr

[(
Z−1
r,H ⊗ Z−1

t,H +K−1
r,R ⊗ S∗K−1

q,RS
T
)−1

]
=

M∑
n=1

σr,H,nTr

[(
Z−1
t,H + βR,nS

∗K−1
q,RS

T
)−1

]
, (A.1)

where βR,n � σr,H,n

δr,R,n
. To obtain (A.1), we have used the rules (A⊗B)−1 = A−1⊗B−1 and (26). Since S∗K−1

q,RS
T ∈

C(N1+N2)×(N1+N2), if the designed training sequence S makes S∗K−1
q,RS

T full rank, the MSE can be arbitrary small

by increasing the source power. In this case, the minimum length of Si should satisfy Ls ≥ N1 +N2. Otherwise,

based on the fact that Rank(AB) ≤ min{Rank(A),Rank(B)}, we must have Rank(S∗K−1
q,RS

T ) ≤ N1+N2. Let

us consider the best case scenario, where Rank(S∗K−1
q,RS

T ) = LS , In this case, the MSE in (A.1) can be lower

bounded by

eR ≥
M∑
n=1

σr,H,n

(
Ls∑

m=1

1

σ−1
t,H,m + βR,mλSK,m

+

N1+N2∑
m=LS+1

σt,H,m

)
, (A.2)

where λSK,m is the m-th element of λ(S∗K−1
q,RS

T ). Moreover, the eigenvlaues in {σt,H,m} and {λSK,m} are

assumed to be arranged in decreasing order, respectively. To obtain (A.2), we have use the fact that the function

Tr[(A)] is a schur convex function with respect to the eigenvalue of A and the following result from [30]

λ(Zr,H) + λ(S∗K−1
q,RS

T ) � λ(Zr,H + S∗K−1
q,RS

T ).
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When the source power is large enough, the term
∑Ls

m=1
1

σ−1

t,H,m+βR,mλSK,m

in (A.2) approaches zero. Thus, eR in

(A.2) is lower bounded by eR ≥
∑M

n=1 σr,H,n
∑N1+N2

m=LS+1 σt,H,m.

If Kq,R = qI, the total MSE in (A.1) can be written as

eR =

M∑
n=1

σr,H,nTr

[(
Z−1
t,H + β̃R,nS

∗ST
)−1

]
, (A.3)

where β̃R,n � βR,n/q. With a finite power at the source, it is assumed that the optimal solution of S1 and S2 in

(20) results in the optimal S to have a rank of r ≤ N1 +N2. By using the SVD decomposition, we assume that

the optimal S can be decomposed to

S = USΣSV
H
S ,

where US and VS are matrices of size (N1+N2)×r and LS×r, respectively. Moreover, UH
S US = Ir, VH

S VS = Ir,

and ΣS is an r × r diagonal eigenvalue matrix. The optimal S1 and S2 can be denoted as

S1 = US,1ΣSV
H
S and S1 = US,2ΣSV

H
S ,

where US,1 � US(1 : N1, :) and US,2 � US(N1 + 1 : N1 +N2, :). Subsequently, a new S̃ given by S̃ = USΣS ,

can be obtained that achieves the same total MSE as that of the optimal S, however, with a shorter training sequence

length of LS = r. Furthermore, the new optimal S̃1 = US,1ΣS and S̃2 = US,2ΣS require the same power at the

sources nodes compared to the optimal training sequences. This completes the proof of Lemma 1.

APPENDIX B

PROOF OF LEMMA 2

By taking the gradient of g(λi), we can easily verify that g(λi) decreases with λi. Next, we mainly focus on

deriving the upper bound of λi. The source power constraint can be rewritten as

Tr(sis
H
i ) = Tr

[
(Xi

s + λiI)
−2xs,3,ix

H
s,3,i

]
≤

σs,3,i
(σs,min,i + λi)2

, (B.1)

where σs,min,i and σs,3,i are defined in Lemma 2. In (B.1), the inequality is obtained based on the identity

Tr(AB) ≤
∑

i σA,iσB,i [32]. Here, σA,i and σB,i are the eigenvalues of the n×n matrices A and B, respectively,

{σA,1, σA,2, · · · , σA,n} and {σB,1, σB,2, · · · , σB,n} are arranged in the same order, and the equality is achieved

when A and B are diagonal matrices. Hence we have σs,3,i

(σs,min,i+λi)2
≥ τi, which further implies λi ≤

√
σs,3,i

τi
−σs,min,i.

APPENDIX C

PROOF OF THEOREM 2

In (41), the feasible set established by the power constraints is convex since the function Tr(EiQS) is linear

[28]. To prove the convexity of (41), it is sufficient to show that the objective function is convex. Without loss
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of generality, we denote that f(QS) = Tr
[(
Z−1
t,H + αnQS

)−1]. According to [28], we can prove the convexity of

f(QS) by considering an arbitrary linear combination, given by QS = QS,1+tQS,2, where QS,1 ∈ SN+ , QS,2 ∈ SN

and QS,1+ tQS,2 ∈ SN+ . By defining g(t) = f(QS,1+ tQS,2), we have g(t) = Tr
[(
Z−1
t,H +αn(QS,1+ tQS,2)

)−1].
Then we obtain dg(t)

dt = −Tr
(
αn

(
Z−1
t,H + αn(QS,1 + tQS,2)

)−2
QS,2

)
. Based on that, we can further reach

d2g(t)

dt2
= 2α2

nTr

((
Z−1
t,H + αn(QS,1 + tQS,2)

)−2
QS,2

(
Z−1
t,H + αn(QS,1 + tQS,2)

)−1
QS,2

)
≥ 0,

(C.1)

To obtain (C.1), we use the fact that
(
Z−1
t,H + αn(QS,1 + tQS,2)

)−2 and QS,2

(
Z−1
t,H + αn(QS,1 + tQS,2)

)−1

×QS,2 are positive semidefinite matrices. Hence, we conclude that the function f(QS) is convex with respect to

the positive semidefinite matrix QS , which further implies that the objective function in (41) is convex since the

sum of multiple convex functions is a still a convex function.

APPENDIX D

PROOF OF THEOREM 3

For notation convenience, we define D0 � Z−1
t,H1

+ αnS
∗ST and let

D0 =Z−1
t,H + αnS

∗ST =

⎡
⎣ Z−1

t,H1

+ αnS
∗
1S

T
1 αnS

∗
1S

T
2

αnS
∗
2S

T
1 Z−1

t,H2

+ αnS
∗
2S

T
2

⎤
⎦ �

⎡
⎣ D1 DH

2

D2 D3

⎤
⎦ .

According to the matrix inverse identity, we have

D−1
0 =

⎡
⎣ A0 B0

C0 D0

⎤
⎦ ,

where A0 = (D1−DH
2 D−1

3 D2)
−1, B0 = −D−1

1 DH
2 (D3−D2D

−1
1 DH

2 )−1, C0 = −D−1
3 D2(D1−DH

2 D−1
3 D2)

−1,

and D0 = (D3 −D2D
−1
1 DH

2 )−1. Subsequently, we have that Tr(D−1
0 ) = Tr

[
(D1 −DH

2 D−1
3 D2)

−1
]
+

Tr
[
(D3 −D2D

−1
1 DH

2 )−1
]
. Since DH

2 D−1
3 D2 
 0 and D2D

−1
1 DH

2 
 0, the following inequalities hold D1 −

DH
2 D−1

3 D2 	 D1 and D3 −D2D
−1
1 DH

2 	 D3. This result further implies that

(
D1 −DH

2 D−1
3 D2

)−1

 D−1

1 and
(
D3 −D2D

−1
1 DH

2

)−1

 D−1

3 , (D.1)

where in obtaining the above we have used the fact that the matrices D1, D3, D1−DH
2 D−1

3 D2 and D3−D2D
−1
1 DH

2

are positive semidefinite. From (D.1), we have

Tr
[(
D1 −DH

2 D−1
3 D2

)−1
]

 Tr

(
D−1

1

)
and Tr

[(
D3 −D2D

−1
1 DH

2

)−1
]

 Tr

(
D−1

3

)
. (D.2)

Hence, if D2 = 0, i.e., S∗
2S

T
1 = 0, the value of the objective function in (40) can be always reduced.
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Next, it is shown that for any S1 and S2, letting S∗
2S

T
1 = 0 does not increase the need for power at the source

nodes. Since in (40), the values of the objective function and the power constraints are only affected by S∗
1S

T
1 and

S∗
2S

T
2 , the optimal S1 and S2 can be determined as

S̄1 = Ut,siΣsiV
H
si , (D.3)

where Vsi can be any matrix satisfying VH
siVsi = I. It is worth noting that since LS ≥ N1 + N2 based on

Lemma 1, one can always find a specific Vs1 and Vs2 such that

VH
s1Vs2 = 0, (D.4)

which further results in S∗
2S

T
1 = 0. In this case, we do not change the value of S∗

iS
T
i and the power constraint,

while decrease the value of the objective function according to (D.2).

It is noticed that the orthogonal training sequences has also been proven to be optimal for the cascaded channel

estimation in two-way relaying system in [18], [19]. Here, we show similar results hold for individual channel

estimation. With the optimal condition S∗
1S

T
2 = 0, the optimization problem in (40) can be decomposed into two

subproblems given by

min
Si

M∑
n=1

σr,H,nTr

[(
Z−1
t,Hi

+ αnS
∗
iS

T
i

)−1
]

s.t. Tr(S∗
iS

T
i ) ≤ τi, i = 1, 2

(D.5)

Based on the results derived for point-to-point MIMO systems [21], we obtain that the unitary matrix Ut,si given

in (D.3) should be of the form Ut,si = U∗
t,Hi

, and Vs1 should satisfy (D.4). Then, solving (D.5) just reduces to

solving the following power allocation problem

min
σsi,m

M∑
n=1

σr,H,n

Ni∑
m=1

σt,Hi,m

1 + αnσt,Hi,mσ2
si,m

s.t.

Ni∑
m=1

σ2
si,m ≤ τi

where the optimal σsi,m can be obtained via the water-filling approach in (44).

APPENDIX E

PROOF OF LEMMA 5

Note that when eigenvalues of Zt,G, Zr,Gi
, Kq,i and Kr,i are small, σr,Gi,n becomes very small compared to

Z−1
t,G, 1

δr,1,nq1
S∗
RS

T
R and 1

δr,2,n
S∗
RK

−1
q,2S

T
R. Based on the inverse approximation rule in [31, Eq. (167)], the original

problem can be approximated as

min
SR

N1∑
n=1

σr,G1,nTr
[
Zt,G − β̃1,nZt,GS

∗
RS

T
RZt,G

]
+

N2∑
n=1

σr,G2,nTr
[
Zt,G − β2,nZt,GS

∗
RK

−1
q,2S

T
RZt,G

]

s.t. Tr(S∗
RS

T
R) ≤ τR.

(E.1)
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By defining a new variable P � Zt,GS
∗
R, (E.1) is equivalent to

max
SR

N1∑
n=1

σr,G1,nTr
[
β̃1,nPPH

]
+

N2∑
n=1

σr,G2,nTr
[
β2,nPK−1

q,2P
H
]

s.t. Tr
[
PPH(ZH

t,G)
−1Z−1

t,G

]
≤ τR.

Assuming that the SVD decomposition of P is given by UPΣPV
H
P with the eigenvalues in ΣP arranged in

decreasing order, we have

max
SR

N1∑
n=1

σr,G1,nTr
[
β̃1,nΣ

2
P

]
+

N2∑
n=1

σr,G2,nTr
[
β2,nΣ

2
PV

H
P Vq,2Δ

−1
q,2V

H
q,2VP

]

s.t. Tr
[
Σ2

PU
H
P Ut,GΣ

−2
t,GU

H
t,GUP

]
≤ τR.

We observe that the unitary matrices UP and VP only affect the power constraint and the objective function,

respectively. Based on the trace inequality identity in [32, Eq. (3)], we have

Tr
[
β2,nΣ

2
PV

H
P Vq,2Δ

−1
q,2V

H
q,2VP

]
≤ Tr

[
β2,nΣ

2
PΔ

−1
q,2

]
Tr
[
Σ2

PU
H
P Vt,GΣ

−2
t,GV

H
t,GUP

]
≥ Tr

[
Σ2

PΣ
−2
t,G

]
,

where the eigenvalues in Δq,2 and Σt,G are arranged in increasing order and decreasing order, respectively, and

the equalities are achieved when VP = Vq,2 and UP = Ut,G. Hence, we obtain the optimal S∗
R as S∗

R =

Z−H
t,G Ut,GΣPV

H
q,2 = Ut,GΣt,GΣPV

H
q,2, which further leads to (52).

With the structure of training sequence given in (52), the original optimization problem in (51) is reduced to

the following power allocation problem

min
σs,R,n,∀n

N1∑
n=1

M∑
m=1

σt,G,mσr,G1,n

1 + β̃1,nσt,G,mσs,R,m

+

N2∑
n=1

M∑
m=1

σr,G2,nσt,G,m

1 + β2,nσt,G,mσs,R,mδ−1
q,2,m

s.t.

M∑
m=1

σs,R,m ≤ τR

(E.1)

The lagrangian function of (E.1) can be written as

L =

N1∑
n=1

M∑
m=1

σt,G,mσr,G1,n

1 + β̃1,nσt,G,mσs,R,m

+

N2∑
n=1

M∑
m=1

σr,G2,nσt,G,m

1 + β2,nσt,G,mσs,R,mδ
−1
q,2,m

+ λ(

M∑
m=1

σs,R,m − τR),

where λ is lagrangian multiplier. Based on the KKT condition, we obtain (53). Then, by setting σs,R,m = 0, we

obtain the range of λ as shown in Lemma 4.
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