
DOCKOMATIC: AN EMERGING RESOURCE

TO MANAGE MOLECULAR DOCKING

by

Reed B. Jacob

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Interdisciplinary Studies

Boise State University

August 2012

© 2012

Reed B. Jacob

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Reed B. Jacob

Thesis Title: DockoMatic: An Emerging Resource to Manage Molecular Docking

Date of Final Oral Examination: 18 April 2012

The following individuals read and discussed the thesis submitted by student Reed B.
Jacob, and they evaluated his presentation and response to questions during the final oral
examination. They found that the student passed the final oral examination.

Owen M McDougal, Ph.D. Chair, Supervisory Committee

Tim Andersen, Ph.D. Member, Supervisory Committee

Julie Oxford, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Owen M. McDougal, Ph.D.,
Chair of the Supervisory Committee. The thesis was approved for the Graduate College
by John R. Pelton, Ph.D., Dean of the Graduate College.

iv

DEDICATION

This thesis is dedicated to all those who have helped me in my journey. I would

like to thank Dr. Owen McDougal for providing me the opportunity and direction for this

thesis; my mother, Gena Jacob, for her support and encouragement; my father, Steve A.

Jacob, for inspiring me, leading by example, and demonstrating the joys of science. I

would especially like to thank my wife, Brooke Jacob, for her unwavering resolve to

support me no matter what.

v

ACKNOWLEDGEMENTS

I wish to acknowledge Dr. Tim Andersen, Dr. C. Mark Maupin, Dr. Greg

Hampikian, Dr. Julie Oxford, Casey Bullock, Dr. Ashley Fisher, and Ken Weekes for

editorial comments and conversations that have strengthened the presentation of content

described in this thesis.

Research funded by the Defense Threat Reduction Agency under contract number

W81XWH-07-1-000, DNA Safeguard, NIH Grant #P20 RR0116454, the Idaho Idea

Network of Biomedical Research Excellence, Research Corporation Cottrell College

Scholars program, Mountain States Tumor Medical Research Institute, and Dr. Mark

Rudin, Vice President for Research, Boise State University.

vi

AUTOBIOGRAPHICAL SKETCH OF AUTHOR

Reed Jacob began his university education in 1999 and graduated with a B.A.

from Boise State University in Music Composition. He then spent a few years exploring

the continental United States. When his father, Steve A. Jacob, became ill with the

diagnosis of stage IV pancreatic cancer, Reed returned home. He brought with him his

lovely wife Brooke Jacob, and with her support returned to school at BSU. His journey

into the academic world was marked by a shift from music to science. Realizing a

tremendous aptitude for scientific discovery and computer-aided molecular docking,

Reed entered the IDS program. Within three years, Reed has presented at a number of

prestigious scientific conferences, contributed to major software development projects,

and contributed to the publication of five manuscripts to date.

vii

ABSTRACT

The application of computational modeling to rationally design drugs and

characterize macro-biomolecular receptors has proven increasingly useful due to the

accessibility of computing clusters and clouds. AutoDock is a well-known and powerful

software program used to model ligand to receptor binding interactions. A limitation of

AutoDock is the inability of a user to automatically create ligands and manage the input

and output of data when dealing with large numbers of simulations; a problem that arises

in High Throughput Virtual Screening (HTVS) or Inverse Virtual Screening (IVS). We

have designed DockoMatic, a user friendly Graphical User Interface (GUI) application

that constructs peptide-based ligands, integrates with the software program TreePack to

create user defined peptide analogs, and automates the creation and management of

AutoDock jobs for HTVS of ligand to receptor interactions. DockoMatic is a valuable

tool for studying complex systems such as conotoxins, from the genus Conus, and their

interactions with the well-characterized molecular receptor, Aplysia californica

acetylcholine binding protein (Ac-AChBP).

viii

TABLE OF CONTENTS

DEDICATION .. iv	

ACKNOWLEDGEMENTS ... v	

AUTOBIOGRAPHICAL SKETCH OF AUTHOR ... vi	

ABSTRACT ... vii	

LIST OF TABLES ... x	

LIST OF FIGURES .. xi	

LIST OF ABBREVIATIONS ... xiii	

CHAPTER ONE: INTRODUCTION TO HTVS AND MOLECULAR DOCKING
PROGRAMS .. 1	

Introduction .. 1	

HTVS Program Requirements ... 4	

Cluster Computing ... 4	

Standalone Computer Systems .. 5	

Standalone or Cluster Computing .. 6	

Hardware Independent ... 9	

Summary .. 10	

CHAPTER TWO: DOCKOMATIC: DESIGN AND DEVELOPMENT 13	

Background .. 13	

Features .. 16	

Intuitive GUI for User Controlled Automation 16	

ix

Create, Submit, and Manage AutoDock jobs ... 20	

Peptide-Based Ligand Creation ... 22	

Peptide-Analog Creation .. 24	

High Throughput Virtual Screening (HTVS) .. 27	

Summary, Screening, and Analysis of Results by an Intuitive Process ... 29	

Summary .. 31	

CHAPTER THREE: DOCKOMATIC – EXPERIMENTAL VERIFICATION AND
VALIDATION ... 32	

Introduction .. 32	

Feature Validation .. 33	

Peptide-Based Linear Ligand Creation .. 33	

Create, Submit, and Manage AutoDock Jobs .. 37	

Peptide-Analog Structure Creation .. 38	

High Throughput Virtual Screening (HTVS) .. 46	

Summary .. 50	

Future Direction ... 50	

Experimental Investigations/Publications .. 50	

Software Updates ... 51	

REFERENCES .. 53	

APPENDIX A .. 59	

Recursive Algorithm for Analog Generation ... 59	

APPENDIX B .. 63	

Analysis Algorithm for HTVS ... 63	

x

LIST OF TABLES

Table 1.1	
 A review of HTVS programs with GUIs available to educators. 11	

Table 3.1	
 DockoMatic docking of select pentapeptides showing top energy results
for Ac-AChBP and α3β2 nAChR as well as the difference in activity. 36	

Table 3.2	
 Comparative user time between manual use of AutoDock and
DockoMatic. .. 38	

Table 3.3	
 DockoMatic redocking of X-ray crystal and NMR solution structures with
associated estimated binding energy and RMSD. 42	

Table 3.4	
 Comparative results listing the estimated binding energies. Column 1 lists
the receptor PDB codes for each experiment. Column 2 lists the α-Ctx
ligands tested against column 1. Columns 3 and 4 list the results of the
NMR solution structure and the DockoMatic created structure of the α-Ctx
ligands. Columns 5 and 6 compare the results of the experiment by
standard deviation of the estimated binding energy and the RMSD of the
backbone structures. .. 45	

Table 3.5	
 Evaluation of the high throughput capability of DockoMatic. Mock
experiment results showing the number of jobs in each trial, the length of
time to submit jobs, and the job completion time based on output file
preparation. ... 49	

xi

LIST OF FIGURES

Figure 1.1	
 Depiction of high throughput virtual screening: multiple ligands are
docked to a receptor and ranked by energy estimate. 3	

Figure 1.2	
 Depiction of α3β2 nAChR in a cell membrane surrounded by both agonist
ligands and α-Ctx antagonists. .. 8	

Figure 2.1	
 AutoDock Tools work flow for AutoDock job submission. 15	

Figure 2.2	
 DockoMatic GUI interface. The Graphical User Interface for DockoMatic:
user input fields (left), current processing status (center), and
results/analysis fields (right). .. 17	

Figure 2.3	
 DockoMatic job work flow. .. 19	

Figure 2.4	
 DockoMatic Peptide Linear Ligand Creation. Illustrates the process of
creating the tripeptide WKV. .. 23	

Figure 2.5	
 DockoMatic Peptide Analog Creation. TreePack peptide manipulation
process for ligand site-directed amino acid substitution PDB file creation.
From DockoMatic initiated command to produce ligand.pdb:K4W, the
following five steps take place: A) the residue of interest (Lys4) and the
two surrounding amino acids (Asp3 and Cys5) are copied into a new PDB
file; B) the side chain atoms of the excised tripeptide are stripped from the
analog PDB file, the backbone atoms and the beta carbon atom are
retained; C) the amino acid at the point of mutation is replaced to create
the peptide analog (Lys4Trp4); D) the analog tripeptide file is submitted
to TreePack, which uses the backbone atoms in concert with beta carbon
atoms to form point vectors for the new side chains; E) the desired side
chains are then extracted from the TreePack modified analog PDB file to
be grafted back into the original ligand file. ... 26	

Figure 3.1	
 Linear pentapeptides created using DockoMatic by an automated process.
A) CCMWF, B) CDCMW, C) CFWMW, D) CHMWW, and E)
CHWWM. ... 35	

Figure 3.2	
 DockoMatic example output. DockoMatic result output PDB file image
showing the best ranked (lowest ΔG) binding conformation for CCMWF
in complex with Ac-AChBP (left) and α3β2 nAChR (right) as calculated
by AutoDock, and visualized in PyMol. ... 35	

xii

Figure 3.3	
 Structure of Ac-AChBP, showing all subunits (left) and cleaned subunit
pair (right). .. 40	

Figure 3.4	
 Ac-AChBP structures with ligand redocked using DockoMatic. Original
ligand, grey, redocked ligand, blue. (A) PnIA[A10L:D14K] rebound to
2BR8 with an RMSD of 1.01 Å; (B) ImI redocked to 2BYP, RMSD of
0.88 Å; (C) ImI redocked to 2C9T, RMSD of 1.22 Å. 43	

xiii

LIST OF ABBREVIATIONS

a.a. amino acid

α-Ctxs α-Conotoxins

Ac Aplysia californica

AChBP Acetylcholine Binding Protein

ADT AutoDock Tools

AI Aromatase Inhibitors

BCRP Breast Cancer Resistant Protein

BDT Blind Docking Tester

CADD Computer-Aided Drafting and Design

CPU Central Processing Unit

DOVIS DOcking-based VIrtual Screening

DPF Docking Parameter File

DLG Docking LoG

ePMV embedded Python Molecular Viewer

GPF Grid Parameter File

GUI Graphical User Interface

xiv

ΔG Gibbs free energy of binding

HTVS High Throughput Virtual Screening

IVS Inverse Virtual Screening

Ki Inhibition constant

MX mitoxantron

nAChR nicotinic Acetylcholine Receptor

NMR Nuclear Magnetic Resonance

OSM OncoStatin M

PDB Protein Data Bank

PDBQT Protein Data Bank with Charge(Q) and Torsions(T)

PyRx Python Prescription

RCSB Research Collaboratory for Structural Bioinformatics

SN-38 7-Ethyl-10-hydroxycamptothecin

THP three-Huang Powder

VSDocker Virtual Screening Docker

1

CHAPTER ONE: INTRODUCTION TO HTVS

AND MOLECULAR DOCKING PROGRAMS

Introduction

Technological advances over the past 20 years have made it economically feasible

to use computationally intensive algorithms for High Throughput Virtual Screening

(HTVS) and Inverse Virtual Screening (IVS) of molecular interactions. HTVS involves

docking many ligands to one or few receptors, while IVS docks many receptors to one or

a few ligands. The sheer volume of chemical data has necessitated the emergence of

computer programs for predicting molecular interactions between ligands and receptors, a

process termed molecular docking. For drug discovery, the ligand may be a drug

molecule and the receptor a protein with a structure that has been deposited in the

Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB)

[1]. Computational prediction of binding interactions can dramatically accelerate drug

screening against biological receptor targets significant to disease treatment at a fraction

of the expense of traditional methods.

Molecular docking programs, or “docking engines,” are designed to accomplish

two simultaneous tasks: 1) to identify the optimal binding orientation for a ligand within

the binding cavity of the receptor, and 2) to score the resulting ligand binding interaction,

providing a rank order that ideally predicts experimental results. Docking engines, such

as DOCK [2] and AutoDock [3,4], calculate the optimal ligand binding orientation by

minimizing the energy of interaction between molecules. Molecular docking results are

2

evaluated by visual inspection of ligand pose or quantitatively using a scoring algorithm.

Scoring algorithms may be incorporated into the docking engine, or accessed through

third-party software, such as XScore and Medusa Score [5,6]. Both XScore and Medusa

Score have been shown to improve binding energy rankings over AutoDock when

evaluated against a database of PDB benchmark standards. XScore is frequently cited as

being used to re-rank AutoDock output and serves as the basis for AutoDock Vina

[7,8,9,10].

DOCK and AutoDock were initially created during an era when computational

resources for HTVS were prohibitively expensive and relatively primitive, but these

programs have evolved over the years to be more user friendly, adaptable for HTVS, and

useful as teaching and learning tools in a classroom setting. One noteworthy advance to

AutoDock is a set of python scripts and programs called MGLTools that facilitate and

automate workflow required for management of many simultaneous docking calculations.

MGLTools contain a Computer-aided drafting and design (CADD) pipeline capable of

accessing cloud resources for HTVS [11]. To enhance usability of DOCK and AutoDock,

researchers have also developed Graphical User Interfaces (GUI) that automated job

management and submission for molecular docking calculation. The focus of this chapter

is HTVS GUI applications capable of processing large numbers of molecular docking

calculations at an acceptable speed and cost, with reliable results, on a variety of

computer platforms.

Docking engines calculate the Gibbs free energy of binding (ΔG) between a

ligand and a receptor, which is fundamental to the understanding of complex systems in

biochemistry and molecular biology. The calculation of ΔG is based on estimates of the

3

total energy of intermolecular forces of attraction including van der Waals interactions,

hydrogen bonding, and electrostatic interactions. Ligands are ranked by the calculated

ΔG value; lower ΔG values correspond to more favorable ligand binding, where higher

ΔG values are less favorable (See Figure 1.1).

Figure 1.1 Depiction of high throughput virtual screening: multiple ligands are
docked to a receptor and ranked by energy estimate.

Molecular docking experiments involving either DOCK or AutoDock require an

inordinate amount of time to setup, submit, compute, and analyze results. HTVS

programs solve these problems through process automation. HTVS programs that use

DOCK and AutoDock as their docking engines include: DOVIS, VSDocker, WinDock,

BDT, DockoMatic, PyRx, DockingServer, and MOLA. These HTVS programs are free

4

or inexpensive, and can run on hardware ranging from a personal computer to a

computing cluster. A computing cluster typically consists of two or more computer nodes

connected in parallel, with the ability to equally distribute computational jobs equally

over the nodes. This exponentially increases computational capability. Cluster-based

HTVS programs are DOcking-based VIrtual Screening (DOVIS) and Virtual Screening

Docker (VSDocker), while WinDock and Blind Docking Tester (BDT) enable job

queuing on only a single workstation. DockoMatic and Python Prescription (PyRx) can

manage jobs independent of computer architecture, using a single workstation or cluster.

DockingServer is a web-based application that operates regardless of user operating

system, while MOLA works on networks consisting of homogeneous or heterogeneous

computer architectures.

Researchers may select a molecular docking program best suited to their

computing capabilities. Open access databases of receptor and ligand structures enable

customized systems to be incorporated. Programs detailed here were selected, in-part,

based on their use in solving research problems and their relative ease of use.

HTVS Program Requirements

Cluster Computing

DOVIS and VSDocker: DOVIS and VSDocker are comprehensive HTVS

programs that automate and provide supporting features to AutoDock. These programs

can manage millions of docking calculations on large computing clusters, and efficiently

identify and order the top scoring ligands [7,8,9]. DOVIS is Linux-based, whereas

VSDocker operates on Windows™. Both programs rank and score results via user-

5

specified criteria. DOVIS contains a plug-in for third-party scoring, such as XScore or

Medusa Score [5,6].

DOVIS has been used to screen hundreds of RNA aptamers for binding to

gentamicin [12]. Aptamers are single-stranded RNA or DNA molecules, generally around

50 base pairs in length. Aptamers bind specific small ligands, such as amino-sugars,

flavin, or peptides, and are significant as diagnostic molecules associated with gene

regulation. DOVIS 2.0 is an open source program under the GNU General Public License

that is available for free download [13].

VSDocker is designed to manage jobs using Windows XP or 2003 servers.

VSDocker matches DOVIS in speed and performance, based on an evaluation of

molecular docking using ligands obtained from the ZINC database; run times were

calculated to be 420 ligands/CPU/day [9,14,15]. VSDocker is free for non-commercial

use but is not open source [9].

Standalone Computer Systems

WinDock: WinDock runs on a single Windows™ workstation. The docking

engine for WinDock is DOCK. WinDock supports receptor homology model creation.

Templates for receptors are identified via sequence alignment using ClustalX and T-

coffee [16,17]. WinDock then directs Modeller to construct a homology model [18].

WinDock includes a large 3D ligand library, or the user can access compounds of interest

from their own ligand PDB database. Users select force field, empirical, or knowledge-

based ligand scoring algorithms to assess results [19-23].

WinDock has been used to study HIV-1 integrase enzyme binding to ligands

isolated from three-Huang powder (THP), a Chinese medicinal formula [24]. Baicalein is

6

one of approximately 16 components in THP; baicalein was shown to inhibit infectivity

and replication of HIV by agonizing HIV-1 integrase. HIV-1 integrase consists of three

domains: N-terminus, core and C-terminus. WinDock identified the binding preference

for baicalein to the middle of the ligand binding domain, the same site that was identified

by co-crystallization with the inhibitor 5-CITEP [25]. A WinDock executable is available

free of charge to students, academic instructors, and researchers by contacting the

original author; the source code is not available [26].

BDT: BDT is a Linux-based HTVS application that uses AutoDock to automate

blind docking, inverse virtual screening, and ensemble docking studies [27]. BDT was

used to study the binding of volatile anesthetic ligands, like halothane or sevoflurane, to

amphiphilic pockets in volatile anesthetic binding proteins like serum albumin and

apoferritin [28]. BDT was used to predict that Van der Waals forces were the

predominant factor in the binding of volatile anesthetic ligands to compatible binding

proteins. BDT is free for academic and non-commercial research purposes, though not

open source [27,28].

Standalone or Cluster Computing

DockoMatic: DockoMatic is a Linux-based HTVS program created at Boise State

University that uses a combination of front- and back-end processing tools for file

preparation, result parsing, and data analysis [29]. DockoMatic can dock secondary

ligands and may be used to perform IVS [29,30]. The DockoMatic GUI facilitates job

creation, docking, and result analysis for beginning and advanced users. The program

can manage jobs on a single central processing unit (CPU) or cluster, and generates

7

ligand structure files by point mutation to an existing ligand PDB file or by entry of the

single letter amino acid code for the peptide ligand sequence of interest.

DockoMatic has been used to study conotoxin binding to acetylcholine binding

proteins (AChBPs) to investigate ligand binding determinants. AChBPs have similar

homology to neuronal nicotinic acetylcholine receptors (nAChRs), which are pentameric

ion channels responsible for the regulation of ions and small molecular neurotransmitters

through biological membranes [31]. Conus snail venom peptides, specifically α-

conotoxins (α-Ctxs), show targeted binding to both AChBPs and nAChRs (see Figure

1.2). As a step to evaluate conotoxin binding nAChRs, a study was performed that looked

at crystal structures of α-Ctx’s bound to multiple species of AChBPs. Conotoxin ligands

that contained a public domain nuclear magnetic resonance (NMR) solution structure

PDB file were analyzed in the bound state in the crystal structure, the peptide was

removed from the ligand binding domain, and DockoMatic was used to redock the

peptides. The peptides bound to AChBP included ImI[R11E], ImI[R7L], ImI[D5N], and

PnIA[A10L:D14K]. The results demonstrated that DockoMatic may be used for

computational prediction of peptide analog binding [29,30]. DockoMatic is free, and

open source, for academic and non-profit use and available at

http://sourceforge.net/projects/dockomatic/.

8

Figure 1.2 Depiction of α3β2 nAChR in a cell membrane surrounded by both
agonist ligands and α-Ctx antagonists.

PyRx: PyRx runs on Windows™, Mac OS X™, Unix, or Linux computer

clusters. PyRx can queue AutoDock jobs locally, or on a cloud using the Opal Web

Services Toolkit [32,33]. PyRx includes an embedded Python Molecular Viewer (ePMV)

for visual analysis of results, as well as a built-in SQLite database for result storage [34].

PyRx has been used to study aromatase inhibitors (AI). In post-menopausal

women with breast cancer, increased levels of estrogen produced by the breast cancer

cells increased cell production, creating a self-feedback loop [35,36]. AIs have

9

therapeutic value for patients that suffer from breast cancer associated with excessive

aromatase activity [35]. The AIs studied using PyRx had known crystal structures; PyRx

output was compared to X-ray structures to validate computational binding prediction

[35]. PyRx is free, open source and distributed under the Simplified BSD license, and can

be obtained from http://pyrx.sourceforge.net/downloads.

Hardware Independent

DockingServer: DockingServer is a comprehensive web service designed to make

molecular docking accessible to all levels of users. DockingServer adds a MOZYME

function, which uses atomic orbitals to calculate atomic charges, to its docking engine,

AutoDock [37,38]. The process for job submission is straightforward, and the output

report gives the specific bond type interactions between each ranked result and the target

receptor. A drawback is that the docking output structure files are large and

DockingServer user storage space is limited. Thus, the number of parallel processes that

can be run, prior to transferring or deleting files, is restricted.

DockingServer has been used to investigate human breast cancer resistance using

a homology model of breast cancer resistant protein (BCRP) to characterize the potential

interaction modes of the substrates mitoxantrone (MX), prazosin, Hoechst33342, and 7-

Ethyl-10-hydroxycamptothecin (SN-38). Results indicated there is a central cavity in the

middle of the lipid bilayer of BCRP capable of containing two substrates, instead of the

previously hypothesized single substrate [39]. This study illustrates a possible mechanism

for BCRP function that may lead to inhibitors for future drug development. The

DockingServer web-based service is available for a modest annual subscription.

10

MOLA: MOLA runs off a CD boot disk that preempts the local operating system

with its own operating system [40]. MOLA is capable of configuring a temporary

computer cluster from heterogeneous, networked standalone computers regardless of

operating platform. This program is intended for research labs without access to a

dedicated computer cluster. MOLA includes AutoDock Tools (ADT), which is a program

included within MGLTools, for GPF (Grid Parameter File) creation and ligand/receptor

preparation. ADT also generates an analysis spreadsheet ranked by the lowest binding

energy and distance to the active site [11]. MOLA does require some familiarity with

ADT and preparation of receptor files for AutoDock submission.

MOLA was used to investigate ligand binding to Retinol binding protein, HIV-1

protease and Trypsin-benzamide, each with a ligand library search of over 500 ligands

and decoys, recreating the approximate potential bell curve of these ligand sets to each

receptor. MOLA is a free download as an image file for direct burning to disk [40]. The

source code is not available.

Summary

The role of computational molecular docking in educational, research, and drug

discovery is evolving at a rapid rate. Access to this field by an ever increasing number of

students, teachers, and scientists has been facilitated by software programs similar to

those described here. Each program we describe has been used to address real-world

research problems that demonstrate the potential benefits of molecular docking in many

fields of study. Table 1.1 summarizes the capabilities and attributes of each HTVS

program reviewed. Individuals should select a program to use dependent upon their

computer hardware access, financial resources, and desired objectives.

11

Table 1.1 A review of HTVS programs with GUIs available to educators.

The HTVS programs described here were developed with the common goal of

enhancing the ability to perform molecular docking studies using one of two well-

established docking engines, DOCK or AutoDock. The optimal program for use in

instruction or research is dependent on the specific goals and needs of the project. For a

researcher in a department with limited computer availability interested in occasional

docking investigations, we suggest WinDock or PyRx, as both programs are available for

a Windows™ operating system. For more in-depth docking studies with Linux operating

system availability, BDT, PyRx, and DockoMatic may be preferable. If a Linux cluster is

available, then DockoMatic, DOVIS, or PyRx are recommended, or VSDocker for a

Windows™ cluster. If there are multiple networked computers, without a cluster, MOLA

is ideal for HTVS. For those with limited computer resources, DockingServer is an

 WinDock BDT Dovis VS Docker DockoMatic Docking
Server PyRx MOLA

PlatForm Windows Linux Linux Windows Linux Web
Linux, Unix,

Windows,
Mac OS X

All

Release Date 2007 2006 2008 2010 2010 2009 2009 2010

Reference [26] [27] [7,8] [9] [29,30] [37,38] [32] [40]
Homology
Modeling √

Ligand Library √ √ √ √ √ √ √ √

Ligand Creation √ √

Open Source √ √ √ √

Cluster/Cloud √ √ √ √ √

Installer* √ √ N/A √ √
Local Resource

Demand$ S S M M E S E E

Documentation& 1 1 2 2 1 5 3 2

Ease of Use# 1 1 3 3 2 1 3 4
* if an N/A appears that program needs no installer; it is a web interface.
$ S – minimum program requirement is a single computer workstation; M – multiple computers in a cluster are

required, and E – single or multi-processor enabled.
& Rated on a 1-5 scale with 1 being basic installation instructions to 5 being in depth tutorials and worked examples

for applications.
Rated on a 1-5 operator scale with 1 being a user with basic computer skills to 5 being an experienced programmer.

12

external web service for a reasonable subscription. Of these programs, DOVIS,

VSDocker, and BDT provide rank ordered lists of results, with limited capacity for the

user to visualize the docked molecules without accessing another software program like

PyMol. For result visualization, DockoMatic and MOLA provide a link directly to

PyMol and ADT, respectively [41,42]. WinDock, PyRx, and DockingServer contain fully

integrated visualization capabilities for all steps in the process of docking to result

analysis.

In addition to computational requirements, each HTVS program has unique

features to assist in docking studies and data analysis. BDT is optimal if the project-

specific receptor does not have a known binding pocket. If homology model construction

is required, WinDock contains a Modeller interface. If the primary goal is limited to

screening ligands, then DOVIS or VSDocker work well. To study point mutations of

small cyclic peptides like conotoxins or other peptide ligands, then DockoMatic with

automated peptide analog structure creation is a recommended option. PyRx is useful for

ligand comparison studies because it offers well-integrated storage and visualization of

HTVS results that facilitate binding analysis. For those new to the field of computational

chemistry, DockingServer is a comprehensive, user-friendly, and supported program.

The goal of all molecular docking studies is to increase understanding of the

interaction between molecules, whether protein-protein, or protein-ligand. This

broadened knowledge base can then serve to direct wet bench experimentation with

minimal cost and labor.

13

CHAPTER TWO: DOCKOMATIC: DESIGN AND DEVELOPMENT

Background

Several computer programs have been developed to estimate the Gibbs free

energy (ΔG) for molecular docking by calculating the energy associated with atomic

interactions between the ligand and a target receptor [43,44]. Examples of more popular

molecular docking programs include AutoDock [3,43], MOE-Dock [45], GOLD [46],

DOCK [47], and Glide [48]. Of these, AutoDock is the most widely cited resource for

simulating ligand docking to receptors [43]. AutoDock and other similar programs rank

ligands based on ligand to receptor binding interaction energy estimates [49]. The

strength of AutoDock is the computational algorithm, which uses a combination of linear

regression analysis in concert with a genetic algorithm and the AMBER force field [50].

The AutoDock application works very well for the analysis of a single ligand with a

specified receptor. However, AutoDock is not efficient at screening many peptide ligands

binding to a protein receptor. In these high throughput virtual screening (HTVS)

instances, it is necessary to run ligands individually through AutoDock, followed by

manual analysis of the output file to assess ligand interaction results. This process is time

consuming, both computationally and for the user. The work described in this chapter

presents DockoMatic, a Graphical User Interface (GUI) application designed to facilitate

the use of AutoDock for HTVS, by automating the setup, submission, and management

of AutoDock jobs, and summarizing and easing analysis of results.

14

DockoMatic was developed in concert between Dr. Tim Andersen in the

Department of Computer Science, and Dr. Owen McDougal in the Department of

Chemistry and Biochemistry at Boise State University. Casey Bullock, a graduate

student in Dr. Andersen’s laboratory did much of the coding for DockoMatic, while I

contributed to GUI design layout, program functionality algorithms, such as peptide

ligand creation, peptide analog creation, ease of use, validity testing, algorithm creation

for specialty applications, and use of the program for a variety of projects. Our initial

goal was to develop a program that would simplify and speed the process of creating

peptide ligands and simulating the docking of those ligands to biomolecular receptors.

DockoMatic’s intuitive user interface greatly reduces the amount of user time required to

setup, submit, and analyze AutoDock jobs.

DockoMatic was created with the following major features:

• Intuitive GUI for user-controlled automation

• Create, Submit, and Manage AutoDock jobs

• Peptide-ligand creation based on single letter amino acid codes

• Peptide-analog structure generation from parent peptide structure file

• High Throughput Virtual Screening (HTVS)

• Summary, screening, and analysis of results by an intuitive process

While other tools are available to use AutoDock on clusters of computers [8], no

tool that we are aware of includes all of the features of DockoMatic in a single package,

and no tool at this time has automated the creation of peptide ligand structure files, nor

creates automated analogs.

15

DockoMatic was designed to have a simple and intuitive interface for use by an

advanced or novice scientist with limited computer science training. A set of tools,

MGLTools, has been provided with AutoDock, which contain a GUI called AutoDock

Tools (ADT) [11]. This ADT interface provides all the necessary tools to prepare and

submit jobs to AutoDock. The difficulty with this interface is its use in HTVS studies.

ADT requires a user to be familiar with all aspects of docking in order to effectively

prepare a docking job. The workflow to use ADT is illustrated in Figure 2.1.

Figure 2.1 AutoDock Tools workflow for AutoDock job submission.

16

To manually submit a docking job for AutoDock, the ligand PDB file must be

manipulated to select flexible torsion bonds, and add atomic charges. A similar process is

needed for the receptor PDB file. Once both the receptor and ligand have been prepared,

it is necessary for the user to create a grid parameter file (GPF), which is then manually

submitted to AutoGrid. AutoGrid is a preprocessing tool provided with AutoDock that

calculates the necessary energy maps for AutoDock to evaluate and estimate ΔG. After

AutoGrid is complete, which takes an average of 10 minutes, the user must then create a

docking parameter file (DPF) in order to run AutoDock. This file lists the generated maps

for all ligand atom types, and both the ligand and receptor file names. This is the DPF

that is submitted to run AutoDock. At the completion of AutoDock, which takes

anywhere from a few minutes to many hours, depending on the system and size of the

grid, the user must manually analyze the results either using ADT, which can read the

AutoDock result files, or docking log (DLG) files. Alternatively, the user may manually

extract each of the results into a separate PDB file. This process is incredibly time

consuming, and is not conducive to HTVS experiments.

Features

Intuitive GUI for User Controlled Automation

It is the tedious and time consuming manual workflow that DockoMatic was

developed to automate (see Figure 2.1). The user does not have to be knowledgeable in

scripting or computer languages to efficiently perform functions in DockoMatic

commonly associated with command-line driven programs. Instead, the interface was

created to guide the user through the requirements for a successful AutoDock job

17

creation, submission, and result analysis. The first step in DockoMatic’s design was to

decide which files were necessary to successfully run an AutoDock job. After examining

each AutoDock job creation step, and determining the underlying commands, it was

decided that only a few files were required to be supplied by the user. These files are

both ligand and receptor PDB files, the output directory, and a grid box in the GPF file

format. To this end, DockoMatic’s design layout places the user required items on the

left, the job information or management grid in the center, and the program options on

the right (see Figure 2.2) [29].

Figure 2.2 DockoMatic GUI interface. The Graphical User Interface for
DockoMatic: user input fields (left), current processing status (center), and

results/analysis fields (right).

The left side of the window detailing user input requirements begins with the

output directory. The user selects this box and navigates to the directory where they want

18

DockoMatic to output the results. If no output directory is specified, the default is the

directory where the user is when the GUI was started. The ligand box is where the user

can either select a single PDB file, or input a string of amino acids. For HTVS, instead of

entering an individual ligand, the user may enter a file name and check the box “Use

Ligand List File.” In this case, the file name must refer to an input file that contains either

a list of single letter amino acid codes for each peptide to be created, or a directory path

to existing ligand PDB files. In a similar manner, the user selects both the “Receptor” and

“box coordinate files.” Users may also choose to specify a secondary ligand or a file

containing a list of secondary ligands to model how an additional ligand may bond in the

presence of the first ligand [29].

For example, all that is needed for DockoMatic to successfully queue a basic

AutoDock job is a ligand PDB file, a receptor PDB file, a GPF file, and a place to put the

results or output directory. So to submit the file, the files could be named as follows, the

ligand PDB file, “ligand.pdb,” and the receptor file, “receptor.pdb,” with the grid

parameters being “receptor.gpf”. The first step would be to select a directory for the

output. Each of these files would be input into DockoMatic as described above. Once

done, the user may create AutoDock jobs by pressing the “New Job” button. This

populates the management grid with a list of all jobs. Since DockoMatic may be used to

facilitate HTVS, the total number of jobs created is equal to the cross product of the

ligands, receptors, and box coordinates. For example, if just one of each were provided,

then the total number of jobs would be one. But if the user had a list of 10 ligands, with

one receptor, and one box coordinate, then the total number of jobs would be 10. At this

point, the job specifications can be manipulated before the jobs are started. If the job

19

details are satisfactory, selection of the “Start All Jobs” button will start all jobs. Figure

2.3 lists the files required by DockoMatic to perform one or many docking jobs. The

basic work flow for DockoMatic allows the user to submit the three necessary files and

an output directory followed by selection of the “New Job” button to populate the jobs.

The “Start all jobs” button submits the jobs to AutoDock. At the completion of the

AutoDock calculation, DockoMatic parses the results and creates a ranked list that can be

readily analyzed by the user. If the user wishes to start an individual job, they can do so

by selecting the desired job and pressing the “Start Selected” button. Jobs may be stopped

and removed from the management grid with either the “Remove All Jobs” or “Remove

Selected” buttons.

Figure 2.3 DockoMatic job workflow.

The management grid lists the job number, ligand specified or path to PDB file,

output directory path, path to receptor, path to box coordinate file, secondary ligand or

path to secondary ligand file, whether the job is a swarm job, and the current status of the

job. Swarm can be specified, via a checkbox, for parallel job submission to a cluster, or

20

jobs can be spawned as individual processes on a single workstation. Once jobs are

started, the status of each job in the window is automatically checked every ten seconds.

Below the management grid is the “messages box” listing the progress of the submission.

As DockoMatic detects job completion, it extracts all result ligand conformations

into individual PDB files and compiles a results file listing important information, such as

the estimated ΔG and an estimated inhibition constant (Ki). These results can then be

viewed by selecting the PyMol buttons to view individual results, or select a directory to

view all the PDB files in that directory. This ability to view each job result using PyMol

requires that PyMol be installed and accessible via the user’s environmental variables

[41].

Create, Submit, and Manage AutoDock jobs

While DockoMatic significantly reduces the time required by the user to create

and submit jobs to AutoDock, there are a few files the user must provide. These include:

1) the ligand PDB file or sequence

2) a receptor PDB file

3) a user-defined template Grid Parameter File (GPF)

Of the required files, the GPF is the most difficult to generate. A typical GPF

contains specific atom types as defined by the ligand and Cartesian box coordinates,

specified by a single center point and directional dimensions, thus making each GPF

ligand specific. It would be redundant to automate an HTVS process while requiring

manual creation of ligand-specific GPFs. This would negate the automation. To prevent

this, DockoMatic requires one GPF to use as a template to automate the creation of

21

ligand-specific GPFs based on the submitted HTVS ligand list. DockoMatic maintains

the Cartesian box coordinates while adjusting the atoms and maps to be ligand specific.

AutoDock requires that both ligand and receptor PDB files undergo preparations

as illustrated in Figure 2.1. This process results in new files with a file extension of

PDBQT, where the PDB represents the standard protein data bank file extension, and the

addition of the QT represents charge (Q) and torsion (T) bonds. These PDBQT files are

then used for molecular docking calculations. AutoDock creators have provided

MGLTools, which contain the necessary command line driven scripts and utilities for

ligand and receptor file preparation [11]. DockoMatic calls the necessary conversion

utilities, specifically: prepare_ligand4.py, prepare_receptor4.py, prepare_gpf4.py, and

prepare_dpf4.py; establishing a pipeline to create the full GPF and the necessary DPF for

AutoDock. By default, AutoDock runs 10 stochastic simulations per compound to find

the best docking site for a ligand within the specified grid space on the receptor. Running

10 simulations provides a rapid screen of potential binding sites, but it has the

disadvantage of returning less accurate results than longer runs of 50 to 100 simulations.

AutoDock documentation recommends using a minimum of 50 docking simulations to

ensure accurate molecular docking results with the added comment that more simulations

will typically result in improved statistical results. Because of this, we have set

DockoMatic to default to 100 AutoDock simulations, a number consistent with that

reported by others in the literature [51]. In addition, we have modified the number of

maximum energy evaluations from AutoDock’s default of 2.5 million to be one million.

After experimentation, this was found to be the minimum number to maintain result

integrity, as well as increase speed and efficiency.

22

Peptide-Based Ligand Creation

AutoDock requires submission of coordinate files in PDB format for all ligands.

This is not a problem if the PDB files exist, but if they do not, then the creation of novel

ligand structure files can be time consuming and tedious. To manually create a peptide

ligand requires a third-party software program like Spartan [52]. The user may manually

select each residue, one at a time, in sequence to construct the ligand. The ligand creation

procedure is time consuming, especially when performing HTVS studies with peptide

ligands.

DockoMatic automates peptide-based ligand creation, either as a prelude to

creating an AutoDock job, or as its primary function. DockoMatic constructs a PDB file

for a ligand based on the user supplied string of alphabet characters representing the

single letter amino acid sequence of the ligand. For example, if the user wanted to create

the tripeptide Trp-Lys-Val, they would enter in the ligand box the letters WKV, and

DockoMatic would create a PDB file for the ligand as illustrated in Figure 2.4. This is a

time-saving measure that facilitates job setup. DockoMatic creates peptide ligands using

pre-created PDB files. The algorithm to create a ligand structure from a peptide ligand

string can be summarized as follows; code for this algorithm was written by Casey

Bullock.

1. beginning (N-terminus)

2. if next amino acid is not proline, add backbone structure, else add

proline

3. add amino acid side chain

4. repeat steps 2 and 3 until the ligand string is exhausted

23

5. add end (C-terminus)

6. optimize ligand structure

Figure 2.4 DockoMatic Peptide Linear Ligand Creation. Illustrates the process
of creating the tripeptide WKV.

Proline was treated separately from the other amino acids due to the backbone

bend associated with the presence of this amino acid in the structure of a peptide or

protein. Since the backbone is built into the side chain PDB file, for proline, no additional

backbone adjustment needs to be made when proline is encountered on the ligand. To

avoid unintended atomic collisions, the orientation of side chains on sequential amino

acids alternate up and down. In total, there are 44 PDB files used for ligand creation; one

for the N-terminus and one for the C-terminus, a backbone with the side chain of the

twenty common amino acids oriented up, and a backbone with the side chains oriented

down. Following the complete formation of the PDB ligand structure, DockoMatic

utilizes the computer program Obconformer, from the Open Babel package, as an energy

optimization tool [53]. This feature was added because of our interest in HTVS of

pentapeptide ligands. The current project involves the study of non-naturally occurring

24

pentapeptides that show interesting biological activity. DockoMatic was designed to be

able to screen thousands of these peptides against potential targets for drug discovery.

Peptide-Analog Creation

The automated analog creation feature in DockoMatic provides an in silico

method of site-directed mutagenesis for complex peptide and protein structures based on

experimentally determined tertiary structure. To manually accomplish the same task

requires the construction of a complete homology model, a process that entails rebuilding

the structure from scratch using the existing ligand as a template. Homology model

creation is a complex process because it requires knowledge of computer scripting to use

Modeller, the most common program for this purpose [18]. DockoMatic automates this

process, the peptide analog structure file creation utility enables combinatorial

computational high throughput screening of peptide ligands against biological receptors.

This feature was implemented due to our interest in the field of conotoxin research.

Conotoxins are small 15-30 a.a. peptides constrained by a molecular scaffold where

minor variation in primary sequence may cause major changes in peptide binding

characteristics. To investigate this phenomenon computationally, a predictive method for

computational simulation of peptide analogs was developed. To implement automated

peptide analog creation into DockoMatic required incorporation of the command-line

driven utility TreePack, a program to perform side chain replacement in the creation of

peptide analogs [54,55]. TreePack is a software tool created for application in protein

homology modeling; it is comparable to the widely used program Modeller. Both

programs use direction vectors from peptide backbone atoms and attach newly calculated

amino acid side chains to the established template [18].

25

DockoMatic directs the manipulation of the ligand PDB file to prepare it for

amino acid side chain replacement, through submission to TreePack, following a five step

process (see Figure 2.5): A) the residue of interest and the two surrounding amino acids

are copied into a new PDB file; B) the side chain atoms of the excised tripeptide are

stripped from the analog PDB file, the backbone atoms and the beta carbon atom are

retained; C) the amino acid at the point of mutation is replaced to create the peptide

analog; D) the analog tripeptide file is submitted to TreePack, which uses the backbone

atoms in concert with beta carbon atoms to form point vectors for the new side chains

(except in the case of glycine, which does not have a beta carbon atom); E) the desired

side chains are then extracted from the TreePack modified analog PDB file to be grafted

back into the original ligand file, adjusting the remaining atoms to account for atom

numbering differences.

26

Figure 2.5 DockoMatic Peptide Analog Creation. TreePack peptide
manipulation process for ligand site-directed amino acid substitution PDB file

creation. From DockoMatic initiated command to produce ligand.pdb:K4W, the
following five steps take place: A) the residue of interest (Lys4) and the two

surrounding amino acids (Asp3 and Cys5) are copied into a new PDB file; B) the
side chain atoms of the excised tripeptide are stripped from the analog PDB file, the

backbone atoms and the beta carbon atom are retained; C) the amino acid at the
point of mutation is replaced to create the peptide analog (Lys4Trp4); D) the

analog tripeptide file is submitted to TreePack, which uses the backbone atoms in
concert with beta carbon atoms to form point vectors for the new side chains; E) the
desired side chains are then extracted from the TreePack modified analog PDB file

to be grafted back into the original ligand file.

This process may be repeated as many times as is necessary to form the desired

mutated ligand, depending on whether a single or multiple point mutant is defined by the

user. TreePack operates by first defining a bubble around the intended side chains to be

modified. These bubbles are the parameters for the space available for the new side chain

atoms. TreePack then minimizes the energy of the structure of the residue that is packed

27

in the bubble [54,55]. Three side chains are submitted to TreePack from the original

ligand PDB file to minimize the potential for atomic overlap when the new residue is

grafted back into the original ligand file.

High Throughput Virtual Screening (HTVS)

By itself AutoDock does not possess the functionality to efficiently setup and

process the binding of multiple ligands to a receptor simultaneously, nor can it directly

accommodate combinations of different ligands, receptors, and grid box locations. In

order to ease setup of multiple jobs, DockoMatic processes lists of ligands and box

coordinates for the desired receptor, followed by automatic job creation for each possible

combination of ligand, receptor, and grid box coordinate. For example, supplying a list of

10 peptide ligands, one receptor, and three different box coordinate files results in (10 × 1

× 3 =) 30 different jobs being created. Through the DockoMatic interface, the user can

then edit this job list, select jobs, and queue them for batch processing.

DockoMatic manages the submission of multiple ligand structures for binding to a

receptor using swarm. Swarm allows DockoMatic to submit multiple jobs to a cluster

simultaneously. The speed and efficiency of high throughput jobs is dependent upon the

architectural constraints of the cluster. While DockoMatic can be run on a standalone

workstation, it was designed to perform HTVS on a cluster, and as such, does not make

assumptions regarding the number of jobs a user would wish to run on a single

workstation at the same time, nor which job to run first. The most efficient use of

DockoMatic on a single machine is to limit the maximum number of concurrent jobs

started to the number of processors or cores in the computer.

28

An additional script has been written to ease HTVS studies where multiple

peptide-analog ligand files need to be created. To generate a full complement of multiple

point mutations manually would require thousands to millions of typed lines; each line

would specify the desired mutation. This is difficult if not impossible to manage. A

recursive algorithm was developed to automate the mutant list. The complete code for

the algorithm has been included in Appendix A; the basic functionality of the algorithm is

summarized below:

1) the ligand peptide sequence

2) path to the PDB structure file

3) comma separated numerical substitution positions (defaults to all)

4) cys flag (whether cys residues will be replaced)

5) polarity (whether it will be maintained, swapped, or random)

6) output file name (defaults to List.txt)

From the six components of the input, the HTVS algorithm processes each

possible combination of point mutations that satisfy the user-specified parameters. The

script utilizes three possible substitution sets, in which the first, polar set, contains the 11

amino acids that contain charge or polarity. The second is the non-polar set, with the

remaining nine amino acids. Then there is the third set, the complete set, which contains

all 20 amino acids. Which of these sets is used is dependent on the polarity setting as

provided by the user. If the user elects to maintain polarity, then whichever set, polar or

non-polar, the original amino acid is in is the set used for substitution. The same occurs

for the polar substitution sites. If the user desires to swap the polarity, then the inverse is

true, for an initial polar side chain, the new set of substitutions will be the non-polar, thus

29

swapping the substitution set used at that position. The final option provides the user with

a random selection, or the amino acid substitution set is all possible combinations. For

example, α-conotoxin (α-Ctx) MII with the sequence GCCSNPVCHLEHSNLC,

represents the peptide we want modified. If we want to substitute six positions on the

peptide, say N5, H9, L10, E11, H12, and L15, and maintain polarity, then the total

number of peptides that would be created by the algorithm is 1,185,921. When a polar

side chain is in the substitution position, there are 11 possible substitutions available.

When it is non-polar, there are nine possible substitutions. So the total number of analogs

would be the multiplication of the number of substitutions possible for each substitution

site. So for this example, it would be 11 X 11 X 9 X 11 X 11 X 9, as sites 5, 9, 11, and 12

are polar with sites 10 and 15 being non-polar, creating the total from above.

Summary, Screening, and Analysis of Results by an Intuitive Process

DockoMatic parses, summarizes, and simplifies AutoDock results for the user.

The results of AutoDock are output in the form of a single DLG file, with the size of the

file dependent upon the number of simulations specified by the user. Summary output

from DockoMatic includes separate ligand PDB files for each simulation in addition to a

summary of the binding energy, inhibition constant, conformation statistics, and cluster

rank. DockoMatic correlates the result information for each simulation into a single file

that serves as the source file for data ranking. The PDB file with the highest rank (1 being

the highest) represents the ligand to receptor combination with the lowest binding energy

and is generally considered to be the most favorable binding model.

To further reduce the time required for data analyses, DockoMatic provides a

results check button. This button was specifically designed for use with large grid

30

coordinates. For example, if the receptor binding site is unknown, a more general

procedure of encompassing the entire receptor inside the search grid would allow for

clusters of results. It is then possible to define a targeted GPF over the clusters, or

suspected binding site, which can then be used by DockoMatic. From this second grid,

DockoMatic screens the results and outputs the best and average values of both the

estimated binding energy and the estimated inhibition constant. This is statistically useful

to determine the location of potential binding sites. A greater number of results within the

targeted GPF is an indication that the binding site has been properly identified. The

output from this process includes: 1) the percent of runs where the ligand binds in the

secondary GPF coordinates, 2) the average and best ΔG, and 3) the average and best Ki.

This information is formatted in a simple text file similar to the ranked results list

mentioned above.

For HTVS experiments, an analysis script (see Appendix B for full code) has been

provided that will search through all results and generate a tab-separated file listing the

result location, the ligand, and the lowest estimated ΔG. The input required for this script

is simply the output path and the desired name of the list. It defaults to List.txt. Upon

activation, the script will travel through each of the job directories searching for the top

ranking result, extracting the relevant information, the ΔG for each ligand, and placing

this information inside a hash table with the ligand as the key. The ligand serves as the

key because there is likely no duplication in ligand names, whereas there may be

duplication in the ΔG estimate. Once complete this hash table is sorted in rank order, and

the results are written to the output file with the lowest ΔG listed first. This file is in a

tab-separated format, so it can be opened in a multitude of spread sheet applications,

31

which saves the user time that it would take to manually extract the given information of

the HTVS experiments.

Summary

This chapter has detailed the design and development of DockoMatic with six

associated features: 1) an intuitive GUI, 2) AutoDock job setup, submission, and

management of docking experiments, 3) creation of PDB files for linear peptide ligands,

4) peptide analog creation from a template PDB file, 5) HTVS, and 6) summary of results

and analysis. AutoDock is a great tool for molecular docking studies; it consistently

performs well and has been cited more than any other docking engine [43]. There are

limitations to AutoDock that make it difficult to use for HTVS studies. Although there

are many programs created that overcome this limitation (see Chapter 1), none of them

contain all of the features we created on DockoMatic. DockoMatic was developed in

collaboration between the Department of Computer Science and the Department of

Chemistry and Biochemistry at Boise State University as a user friendly resource to

enable undergraduate students the opportunity to perform HTVS studies. DockoMatic

eliminates many of the mundane tasks required by AutoDock to perform molecular

docking experiments. In our labs, DockoMatic has proven useful for all levels of users,

from experienced to novice. All that is required from the user is the list of ligands, a

receptor file, and a template grid box coordinate file. Once these have been submitted to

DockoMatic, the push of a button will create peptide ligands, load required AutoDock

files, select output directories, and begin processing of molecular docking calculations.

32

CHAPTER THREE: DOCKOMATIC – EXPERIMENTAL VERIFICATION

AND VALIDATION

Introduction

Chapter One provided an overview of molecular docking and a list of open source

and/or economical computational programs with GUI’s for high throughput virtual

screening (HTVS) docking experiments. In Chapter Two, the design and development of

DockoMatic as an emerging resource for molecular docking was detailed. In the current

chapter, I demonstrate how I validated the utility of DockoMatic for use in research

application. DockoMatic is an intuitive GUI designed to facilitate job submission, and

expand the capabilities of the widely used suite of automated docking tools collectively

called AutoDock [3]. DockoMatic accepts PDB files of ligands and receptors with

corresponding GPF files that specify the experimentally determined or predicted ligand

binding domain on the receptor. A significant component of DockoMatic is the ability to

enter a text file containing a list of peptide ligands for HTVS binding calculation in

AutoDock. DockoMatic allows the user to enter peptide PDB files as ligands, and it can

also create linear peptide ligand structure PDB files from strings of single letter amino

acid code. The peptide ligands that are entered into DockoMatic are prepared for

submission to AutoDock.

Each of DockoMatic’s features has been experimentally validated. The linear

ligand creation utility was tested with pentapeptide amino acid sequences. Running of

33

these experiments validated the ligand creation, submission, and management of

AutoDock jobs by DockoMatic’s ability to create, submit, and manage AutoDock jobs by

DockoMatic. The analog creation feature was tested by the generation of conotoxin

analogs. DockoMatic’s HTVS capability was demonstrated with a mock experiment in

which each of the file types (i.e. PDB, GPF, and DLG) were created and/or copied to

each output destination directory, demonstrating successful HTVS file management by

DockoMatic.

Feature Validation

Peptide-Based Linear Ligand Creation

The linear peptide ligand creation feature was developed for the purpose of

discovering the biological activity of pentapeptides. We sought to screen thousands of

peptides against a range of macromolecular receptors. A trial study consisting of five

randomly selected pentapeptide ligands (CCMWF, CDCMW, CFWMW, CHMWW, and

CHWWM) were created in DockoMatic. Two biomacromolecular receptors were chosen

for this study, Aplysia californica acetylcholine binding protein (Ac-AChBP) and a

homology model of α3β2 nicotinic acetylcholine receptor (nAChR). Out lab is interested

in the ligand binding determinants to these receptors. Understanding how peptides bind to

macromolecular receptors is expensive and time consuming by traditional molecular

biology bench laboratory methods. Computer modeling has evolved as a useful way to

study the interaction between peptide ligands and large biological receptors in a time-

efficient and economical manner [56].

34

While tools exist to create peptide-ligand structure files, we are not aware of any

that automate the process. Applications like Spartan, ChemDraw, and etc., require users

to manually create the peptide ligand by placing and rotating individual amino acids

using a mouse [52,57]. In order to create a peptide with the correct sequence, the user

must first select each amino acid, from a group of the 20 common amino acids; second,

the oxidation state of each peptide needs be set so that the amino terminus is an

ammonium and the carboxy terminus is a carboxylate. The user then selects parameters

for the program to create a three-dimensional coordinate structure for each peptide, saves

the files, or later converts them into PDB file format.

A 61 node Beowulf cluster at Boise State University was used to test the ability of

DockoMatic to automatically create linear peptide structure files. The files used for this

test included: 1) the receptor PDB files derived from the crystal structure of Ac-AChBP,

2UZ6, and a homology model of α3β2 nAChR, and 2) five pentapeptide ligands with the

following sequences: CCMWF, CDCMW, CFWMW, CHMWW, and CHWWM.

All five ligands were simultaneously submitted to DockoMatic in a single text

file, with one peptide sequence in single letter amino acid code per line. DockoMatic

successfully created the corresponding PDB structure files (see Figure 3.1). The

DockoMatic GUI that accepts the ligand text file was then prompted to take the five

ligand PDB files and automatically direct and pair them with the receptor PDB files and

matching GPF files for submission to AutoDock for processing. Upon job completion,

DockoMatic parsed the DLG files into individual result PDB files. These result files were

ranked according to the estimated ΔG and were easily viewable by clicking on the

“PyMol” button.

35

Figure 3.1 Linear pentapeptides created using DockoMatic by an automated
process. A) CCMWF, B) CDCMW, C) CFWMW, D) CHMWW, and E) CHWWM.

Figure 3.2 shows an example of one of the created ligands, CCMWF, docked with

the Ac-AChBP and α3β2 nAChR receptors as viewed by PyMol. The comparative

binding energies between the five pentapeptides and the two receptors, as they appear in

the results file, is displayed in Table 3.1.

Figure 3.2 DockoMatic example output. DockoMatic result output PDB file
image showing the best ranked (lowest ΔG) binding conformation for CCMWF in

complex with Ac-AChBP (left) and α3β2 nAChR (right) as calculated by AutoDock,
and visualized in PyMol.

36

Table 3.1 DockoMatic docking of select pentapeptides showing top energy
results for Ac-AChBP and α3β2 nAChR as well as the difference in
activity.

Pentapeptide AChBP	
 kcal/mol α3β2	
 kcal/mol Δ

CCMWF -­‐6.39 -­‐6.84 0.45
CDCMW -­‐4.85 -­‐6.41 1.56
CFWMW -­‐7.38 -­‐10.59 3.21
CHMWW -­‐6.07 -­‐9.69 3.62
CHWWM -­‐6.62 -­‐7.92 1.3

Examination of the results shows that pentapeptide CFWMW and CHMWW have

a remarkable difference in binding affinity for the two receptors, with CFWMW having

-7.38 Kcal*mol-1 for Ac-AChBP and -10.59 Kcal*mol-1 for α3β2 nAChR. This shows a

difference in binding affinity of 3.21 Kcal*mol-1. In a similar manner the pentapeptide

CHMWW has an estimated ΔG of -6.07 and -9.69 Kcal*mol-1 for Ac-AChBP and α3β2

nAChR, respectively; a difference in binding affinity of 3.62 Kcal*mol-1. From this small

trial of five pentapeptides, it is easy to see that DockoMatic can be used to accept a file

containing a list of ligands, automate the structure file creation, initiate AutoDock

calculations, and provide output that can be easily analyzed in table form or viewed using

PyMol.

An experienced user can create the PDB file for a pentapeptide using Spartan, in

approximately 2.5 minutes. It required approximately 12.5 minutes to create the five

pentapeptide ligands for the trial just described. A user unfamiliar with molecular

modeling software could take significantly longer to create these ligands. This time is

dependent upon the length of the amino acid sequence, adding more amino acids

generally causes the creation time to grow linearly with the number of amino acids.

37

In contrast, DockoMatic can prepare the same five pentapeptides in

approximately 34 seconds of computational time. For DockoMatic, essentially no user

time is required for ligand creation, regardless of the sequence length. All that

DockoMatic requires is a single string representation of the amino acid sequence.

Create, Submit, and Manage AutoDock Jobs

Our tests showed that it took 31 minutes to perform all tasks required to submit

the five pentapeptides for binding to the two receptors using AutoDock. This includes 12

minutes to create PDB files for the five pentapeptide ligands and 19 minutes to prepare

the ligand, receptor, and GPF grid files as described in Chapter Two. In contrast, the time

required to perform the same sequence of events using DockoMatic consists of the time

to enter the location of the input files and press two buttons that create and start the jobs,

which can be done in under one minute.

In this instance, with five amino acid strings listed in a ligand input file, one box

coordinate file, and one receptor, it took DockoMatic approximately 16 seconds of user

time to begin the five AutoDock jobs. Adding one minute to that time for grid box file

creation yields a total time of 1 minute and 16 seconds.

Using AutoDock, a user must wait while the atom affinity map files are created.

This process took approximately 19 minutes during our test. With DockoMatic, affinity

map file creation is automated and requires a fraction of a minute of user time. Once the

ligand, receptor, GPF grid, and the affinity map files are created and prepared, the time

required to run a given AutoDock job is hardware dependent. So, comparative job

runtimes are not particularly meaningful in the sense that they only show differences in

hardware. More relevant than the time to run a few AutoDock jobs is the user time

38

required to manage and submit the AutoDock jobs, a complete breakdown of user time is

shown in Table 3.2.

Table 3.2 Comparative user time between manual use of AutoDock and
DockoMatic.

Task Manual DockoMatic
Create 5 pentapeptides 12 min < 5 s
Prepare 5 Ligand Files 2.5 min < 5 s

Prepare 5 Receptor Files 2.5 min < 5 s
Create 5 GPFs 14 min 1 min

Total 31 min 1 min 16 s

Assuming the ligand list and the template box coordinate file have been

generated, creating and running large numbers of jobs with DockoMatic takes essentially

the same amount of user time as 1 job. The process involves browsing for the correct

ligand, receptor, and grid box files followed by job submission. For instance, if using a

list of 256 ligands, the only difference to the experiment above would be the name of the

ligand list file.

Based on the previous experiment, attempting the same task of starting 256

docking jobs manually would require approximately 26 hours of user time before the jobs

could be submitted to AutoDock. Ten of those hours would be dedicated to ligand

creation alone, whereas with DockoMatic there is no additional user time required.

Peptide-Analog Structure Creation

The analog creation feature was validated using conotoxins as ligands.

Conotoxins are small, 10-30 amino acid peptides that are cystine rich (i.e., contain

multiple cysteine residues joined by disulfide bonds), and tend to be highly constrained

39

structurally. Conotoxins are among the most potent and selective ligands in their binding

to myriad biological receptors, offering promise in the development of therapies for

diseases including epilepsy, Parkinson’s, Alzheimer’s, schizophrenia, and many others

[58,59]. Conotoxins can be broken down into superfamilies and further subdivided based

on their Cysteine arrangement, cystine pattern, and target receptor [60]. For the purposes

of evaluating the analog creation feature of DockoMatic, we chose to study the α-

conotoxins (α-Ctxs) of the A-superfamily that selectively bind to nAChRs [61,62,63].

The cysteine-rich sequence and cystine composition of conotoxins results in structure

rigidity a quality that is conducive to nuclear magnetic resonance (NMR) structure

elucidation.

A comparative study was performed for α-Ctx structures obtained from the

RCSB, elucidated by either NMR spectroscopy or X-ray crystallography versus the

DockoMatic-generated peptide analog structures and their binding to three different Ac-

AChBP structures. The specific ligands used for this study were: 1) ImI[R11E], PDB

code 1E74; 2) ImI[R7L], PDB code 1E75; 3) ImI[D5N], PDB code 1E76; and 4) PnIA,

PDB code 1PEN. The receptor models used for this study consisted of X-ray crystal

structures: 1) Ac-AChBP with ImI bound, PDB code 2BYP; 2) Ac-AChBP with ImI

bound, PDB code 2C9T; and 3) Ac-AChBP with PnIA[A10L:D14K], PDB code 2BR8.

The Ac-AChBP PDB files were manually cleaned to remove bound ligand and water

molecules. AChBPs are homopentameric proteins (see Figure 3.3). At the intersection of

each subunit is a binding cavity. The result of this cleaning procedure is a structure

consisting of only a pair of subunits containing the ligand binding domain where

40

conotoxins are found to be present in crystal structures of ligand/receptor complexes (see

Figure 3.3). This structure was then used as the receptor for ligand binding studies.

Figure 3.3 Structure of Ac-AChBP, showing all subunits (left) and cleaned
subunit pair (right).

To access the analog utility in DockoMatic, the user enters the filename, including

full location path, of the native RCSB retrieved peptide PDB file, followed by a colon,

and then the desired substitution. To generate the α-Ctx ImI analog that substitutes an

arginine amino acid in position eleven of the peptide with a glutamate, the user would

enter: ImI.pdb:R11E. Each additional replacement is added and separated by colons (i.e.,

PnIA.pdb:A10L:D14K). DockoMatic further allows the user to submit list files of peptide

analogs to AutoDock that begin by stating the original PDB file, with its location,

followed by the substitutions separated by colons. A sample list using PnIA as the ligand

and including various analogs is:

 /home/username/conotoxins/PnIA.pdb

 /home/username/conotoxins/PnIA.pdb:A10L

41

 /home/username/conotoxins/PnIA.pdb:A10L:D14K

When submitted to DockoMatic, the above text list prepares three different

ligands: one the original PDB file for α-Ctx PnIA, and the other two are analogs using the

original structure as a template. This approach can be used to automate the submission of

hundreds of analogs of a known ligand structure to accomplish HTVS of peptide ligands

to a desired receptor.

The analysis of AutoDock binding results was performed to evaluate how

DockoMatic/TreePack generated peptide analog structures bound to the Ac-AChBP

receptor model compared to structures of the peptides independently determined by NMR

spectroscopy or X-ray crystallography. By employing the result-check feature, the most

energetically favorable conformations were compared and their backbone coordinates

entered into the root mean square deviation (RMSD) calculator of the computer program,

Visual Molecular Dynamics (VMD) [64]. A comparison of two structures with an RMSD

under 2.0 Å indicates that bound ligand structures are in similar orientation.

Peptide analog structures, created through the DockoMatic GUI using the

integrated TreePack software, were compared to structures of conotoxins deposited in the

RCSB by two sets of experimental procedures. For experiment one, the first step

required the creation of a model that provided an accurate depiction of a bound ligand to

the Ac-AChBPs. To do this, crystal structures of Ac-AChBP receptors with bound ImI or

the PnIA analog PnIA[A10L:D14K] were selected from the RCSB. The conotoxin

ligand was computationally eliminated from the binding cavity of the Ac-AChBP

followed by removal of water molecules from the receptor. Receptor cleaning eliminates

the non-essential ligand and all water molecules. To test the ability of DockoMatic to run

42

jobs through AutoDock and generate reliable results, the conotoxin peptide ligand that

was extracted from the ligand bound receptor/crystal structure complex was redocked

into the now vacant (i.e., cleaned) receptor. Table 3.3 includes the results of ligand

redocking with respect to ligand-binding orientation and binding energy as compared to

the original crystalline structure.

Table 3.3 DockoMatic redocking of X-ray crystal and NMR solution structures
with associated estimated binding energy and RMSD.

Receptor Ac -AChBP
PDB codes

Ligand
Estimated Binding
Energy kcal*mol-1

RMSD
Angstrom (Å)

2BR8 PnIA[A10L:D14K] -15.44 1.01
2BYP ImI -16.03 0.88
2C9T ImI -13.87 1.22

For native ImI, there were two different crystal structures in the RCSB that were

used for this exercise (i.e., 2BYP and 2C9T). Redocking of the extracted ImI peptide to

the 2BYP receptor provided a peptide-ligand overlay between the crystal structure

complex and the computationally determined binding complex with a rmsd of 0.88 Å.

Conotoxin peptide redocking to the Ac-AChBP receptor model 2C9T yielded an overlay

of bound peptide ligand between experimentally determined structure and

computationally calculated structure of 1.22 Å. When the structure of the double mutant

PnIA[A10L:D14K] was redocked into 2BR8, the RMSD was 1.01 Å. A visual

representation of the bound ligand demonstrating the structural orientation of each

peptide overlaid in the ligand binding domain of the receptor is shown in Figure 3.4. This

result is significant because it demonstrates that the peptide sequence files entered into

43

DockoMatic, followed by submission to AutoDock, provide output that is within

reasonable agreement to experimentally determined structure binding images (i.e., RMSD

≤ 1.2 Å).

One goal of this work is to scale the process by several orders of magnitude

relative to the number of ligands that can be simultaneously submitted to AutoDock for

binding calculations (i.e., high throughput screening of potential drug candidates). In this

control experiment, we have validated the successful integration of AutoDock into

DockoMatic to yield good homology between expected binding and computationally

predicted binding to a common receptor [29].

Figure 3.4 Ac-AChBP structures with ligand redocked using DockoMatic.
Original ligand, grey, redocked ligand, blue. (A) PnIA[A10L:D14K] rebound to
2BR8 with an RMSD of 1.01 Å; (B) ImI redocked to 2BYP, RMSD of 0.88 Å; (C)

ImI redocked to 2C9T, RMSD of 1.22 Å.

Next, validation of the TreePack driven utility for the automated creation of

peptide analogs in DockoMatic was performed by comparing conotoxin analog structures

generated by DockoMatic with NMR solution structures deposited in the RCSB.

DockoMatic requires a parent peptide file for analog creation; the ligands submitted were

the NMR solution structure PDB files for PnIA and ImI, PDB codes 1PEN and 1IMI,

respectively. Three analogs of ImI: ImI[R11E], ImI[R7L], and ImI[D5N], and one analog

44

of PnIA: PnIA[A10L:D14K] were selected based on solution structure availability in the

RCSB.

Two sets of experiments were conducted in parallel: 1) the solution structures

were used as the ligands to bind to the Ac-AChBP receptor, and 2) the analog sequence

was entered into DockoMatic, the ligand generated, and the ligand binding calculation

automatically performed through AutoDock. The results were filtered using the result-

check feature in DockoMatic, followed by orientation and docking conformation

comparisons evaluated by calculated RMSD and estimated binding energy. Peptide

ImI[R11E] was bound to three receptor crystal structures of Ac-AChBP, 2BR8, 2BYP,

and 2C9T, with calculated binding energy of -12.16, -10.67, and -10.62 Kcal*mol-1,

respectively (Table 3.4). The overlay of the same analog generated in DockoMatic

resulted in ligand binding energies of -11.13, -11.88, and -10.58 Kcal*mol-1 to the three

Ac-AChBPs, showing a difference in energy of 1.03, 1.21, and 0.04, respectively. The

RMSD of the three receptor overlays for peptide ImI[R11E] are 0.94, 0.56, and 0.81 Å,

respectively.

The result of the redocking experiment with ImI analog, ImI[R7L] as compared to

the DockoMatic generated docking of the TreePack created ImI[R7L] with the three Ac-

AChBP receptors produced energy differences of 0.15, 0.17, and 0.89 Kcal*mol-1, and

demonstrated ligand RMSDs of 1.82, 0.76, and 0.85 Å. The same experiment using

peptide ImI[D5N] provided energy differences of 0.67, 2.04, and 3.46 Kcal*mol-1

respectively, and RMSD differences of 1.18, 1.47, and 1.15 Å, respectively. For final

comparison, the extracted ligand analog of PnIA, PnIA[A10L:D14K] was redocked to the

Ac-AChBP 2BR8 with a calculated binding energy of -15.44 Kcal*mol-1. The same

45

experiment was performed with the structure of native PnIA, 1PEN, yielding a binding

energy of -14.6 Kcal*mol-1, thus a difference of 0.84 and an RMSD between bound

ligands of 0.43 Å.

Table 3.4 Comparative results listing the estimated binding energies. Column 1
lists the receptor PDB codes for each experiment. Column 2 lists the
α-Ctx ligands tested against column 1. Columns 3 and 4 list the results
of the NMR solution structure and the DockoMatic created structure
of the α-Ctx ligands. Columns 5 and 6 compare the results of the
experiment by standard deviation of the estimated binding energy and
the RMSD of the backbone structures.

2BR8
PnIA[A10
L:D14K] -15.44 -14.60 0.59 0.43

ImI[R11E] -12.16 -11.13 0.73 0.94
ImI[R7L] -11.09 -11.24 0.11 1.82
ImI[D5N] -13.80 -13.13 0.47 1.18
ImI[R11E] -10.67 -11.88 0.86 0.56
ImI[R7L] -12.59 -12.76 0.12 0.76
ImI[D5N] -14.88 -12.84 1.44 1.47
ImI[R11E] -10.62 -10.58 0.03 0.81
ImI[R7L] -13.49 -12.66 0.59 0.85
ImI[D5N] -15.54 -12.08 2.45 1.15

RMSD (Å)
Receptor
Ac -AChBP
PDB code

α-Ctx
Ligands*

NMR Solution
Structure
Estimated

Binding Energy
(kcal*mol-1)

DockoMatic+

Structure
Estimated Binding
Energy (kcal*mol-1)

Standard Deviation
Comparing Estimated

Binding Energy

2BR8

2BYP

2C9T

*PDB codes solved structures: PnIA[A10L:D14K] 2BR8,ImI[R11E] 1E74, ImI[R7L] 1E75, and
ImI[D5N] 1E76.
+PDB codes for DockoMatic templates: PnIA 1PEN, ImI 1Im1

The RMSD of all conotoxin peptide ligand structures ranged from 0.56 to 1.82 Å

in binding comparisons between experimentally determined peptide structure and

DockoMatic-created ligand structure analogs. The difference in estimated binding energy

from matching poses varied by less than 3.5 Kcal*mol-1. These results demonstrate that

the TreePack analog creation tool in DockoMatic provides ligand structures that bind

46

with similar orientation and affinity to RSCB structures determined experimentally.

DockoMatic offers the ability to generate analog structures for peptides in a fraction of

the time and expense of experimentally determined peptide ligand structures.

High Throughput Virtual Screening (HTVS)

The HTVS functionality of DockoMatic was tested by mock experiment; the file

types (i.e., PDB, GPF, and DLG) were created and/or copied to corresponding output

directories. The purpose of this experiment was to evaluate whether DockoMatic could

be used to process hundreds to thousands of jobs simultaneously, and to verify that job-

specific files were organized correctly without loss or corruption. We chose not to test the

HTVS capability against a specific biological system for these studies because our goal

was to validate the ability of the software to manage the large numbers of files required

for and generated from HTVS. The time required to actually run the molecular docking

calculations in a HTV screen is dependent on the site and complexity of the

ligand/receptor structure files, the number of docking calculations, and the computational

capabilities of the cluster. It was the purpose of this investigation to demonstrate the

ability of DockoMatic for HTVS, not to evaluate the computer hardware it is run on.

There are a number of factors that must be considered to determine the high-

throughput capacity and limitations of DockoMatic. For example, the maximum number

of jobs that can be submitted as a set from DockoMatic is dependent on both the number

of subdirectories a given file system can accommodate, and the amount of disk space that

is available to store results. For most file systems, there is a maximum number of

subdirectories that can be created within each directory; for instance, the most common

file systems used with a Linux kernel, ext3 and ext4 are limited to 32,000 and 64,000

47

subdirectories, respectively. This file system limitation can become a factor because each

AutoDock trial in a set of jobs uses one subdirectory for output, and DockoMatic

typically creates the output subdirectories for a set of jobs in a single output directory.

The device currently used by our laboratory for storing output results uses Lustre, which

is a parallel file system designed for use in a clustered environment. Lustre allows a

maximum of 25 million subdirectories, although in practice this is not the predominant

limitation. For instance, disk space becomes an issue for large numbers of jobs. Each

DockoMatic job generates output files that are an average of 115 MB in size. At 115 MB,

1 million jobs requires on the order of 115 Terabytes of disk space, which easily exceeds

the current raw capacity of 72 Terabytes of the Lustre file system.

Each ligand specified as input by the user in DockoMatic is automatically

submitted to the cluster for processing as an AutoDock job. The AutoDock job performs

a default of 100 ligand to receptor binding calculations, though this number can be

changed by the user, and compiles the output into a single DLG file. For each completed

AutoDock job, DockoMatic extracts in priority order the 100 receptor binding

calculations into the PDB reference file. DockoMatic determines that an AutoDock job is

complete when the DLG and the PDB reference files are created. Thus, for 1 ligand, 100

results are summarized and listed in a single DLG file, and the results are put into a user-

specified rank order in the PDB reference file (e.g., from lowest to highest binding

energy). Thus, DockoMatic incurs a very small amount of computation time to setup a

job and submit it for processing as well as a relatively small amount of computation

(relative to the total job run-time) time to parse, process, and summarize each completed

job. It is important to note that DockoMatic processes each job as it completes (i.e., it

48

does not wait for all submitted jobs to complete before beginning the process of

summarizing results).

There are also other factors that can be equally as important, such as the speed of

the machine that is used to host DockoMatic, the amount of system memory available,

the computational capacity of the cluster itself, and etc. Although any assessment of

capacity is dependent on the setup and environment, it is important to have an estimation

of limitation to assess the feasibility of a potential set of experiments using DockoMatic.

The DockoMatic GUI performs two primary computational functions for each

AutoDock job. These are the following:

1. DockoMatic directs the flow of jobs by creating a folder for the assigned

AutoDock output and then starts the AutoDock job.

2. DockoMatic monitors the output directory of each AutoDock job for the

presence of a reference file that contains a summary of the job statistics.

The DockoMatic GUI is unaware of the process used to create the output file it is

looking for, so it is not necessary to initiate AutoDock jobs in order to evaluate

throughput limitations of the DockoMatic GUI. To evaluate the high throughput capacity

of the software, a series of mock jobs were created to populate the output folders with the

required reference file, rather than running actual AutoDock experiments. The evaluation

was performed in this manner due to time constraints; the goal was to test how many jobs

DockoMatic could adequately handle, regardless of job type. All aspects and

functionality of DockoMatic were preserved. The experiment worked by the following

series of steps: (1) a list of jobs was submitted to DockoMatic, (2) DockoMatic created

all output folders, (3) DockoMatic populated the monitoring grid, listing each job and the

49

output location, (4) each job (in this case a file copy) was submitted to swarm and queued

to the cluster with its status changed to ‘‘Started,’’ and (5) after the file was copied,

DockoMatic recognized each job as being complete and the status was changed to

‘‘Done.’’ This process was timed for jobs ranging from 100 to 1,000,000 submissions

(Table 3.5). For mock job lists of 100 and 1000, it took DockoMatic less than 1 s to

create directories and populate management grids. The process of distributing files and

acknowledging job completion required 51 s and 8.7 min, respectively. To initiate,

10,000 jobs required on the order of 8 s with the final recognition of all jobs completed

just over an hour and a half later (1.57 hours). The time to set up 100,000 jobs and submit

them was on the order of 231 s with an estimated completion time on the order of 15

hours. A trial consisting of 1,000,000 jobs is estimated to take on the order of 1 week of

computer cluster time. In summary, in its current configuration, DockoMatic can

reasonably handle the submission of 10,000–100,000 jobs for binding calculation.

Table 3.5 Evaluation of the high throughput capability of DockoMatic. Mock
experiment results showing the number of jobs in each trial, the
length of time to submit jobs, and the job completion time based on
output file preparation.

Number of Jobs Initiation time (s)* Completion time$

100 <1 51 s
1,000 <1 8.7 min
10,000 8 1.57 hours
100,000 231 ~15 hours&

*Time required to create job submission directories and
populate grid boxes. $Time required to copy DLG and PDB
reference files into output directories. &Estimated time.

50

Summary

DockoMatic is a standalone utility consisting of an intuitive GUI that can be used

for the following purposes: (1) create linear peptide ligands; (2) create, manage, and

submit AutoDock jobs; (3) produce analogs based on structure templates; and (4) perform

high throughput submission to AutoDock. It was demonstrated that DockoMatic is

efficient in handling automatic linear peptide ligand creation, through creating and

validating small pentapeptides for bioactivity investigations [29]. The user controlled

pipeline necessary to use AutoDock has been greatly reduced and simplified into a single

button click by DockoMatic, to assist in using molecular docking in current laboratory

research [29]. The expanded functionality of DockoMatic to perform in silico site-

directed mutagenesis using the TreePack utility offers the opportunity for chemists and

biologists to apply the extraordinary tools developed by computer scientists toward

predictive science [30]. AutoDock has been successfully integrated into DockoMatic for

the routine submission of hundreds to thousands of jobs with more possible based on

computer cluster access, and the limitation of file system architectures. DockoMatic is

freeware that calls on other freeware software (TreePack, OpenBabel, MGLTools,

PyMol, and AutoDock) for successful integration of command line applications into a

simple and elegant GUI.

Future Direction

Experimental Investigations/Publications

• Proteomics: Work in progress investigating pentapeptides and their

bioactivity in various systems by inverse virtual screening.

51

• DockoMatic in education: Creation of a molecular docking lab exercise

for use in the undergraduate curriculum; students will analyze the

published crystal structure of the α-Ctx TxIA bound to the Ac-AChBP,

propose analogs that will bind better based on their analysis, create the

analogs, perform the molecular docking calculation, and explain the

results using an analysis of atomic interactions between their analog and

the receptor. This thesis will also serve as a tutorial for new users to

DockoMatic that will be uploaded to the DockoMatic Wiki.

• HTVS α3β2 nAChR: Using DockoMatic’s peptide-analog generation

capability to run thousands of α-Ctx MII analogs against a homology

model of α3β2 nAChR to investigate binding determinants.

• Collagen XI α1: Using DockoMatic to manage molecular docking studies

to investigate collagen XI α1 interactions to extracellular matrix proteins.

• Collagen XI α1/OSM: Using molecular docking, via DockoMatic, to

investigate potential binding patterns between collagen XI and oncostatin

M (OSM).

• DockoMatic 2.0: New release of DockoMatic built on a java netbeans

platform. Responsible for testing and validating the homology modeling

wizard, Timely Integrated Modeller (TIM) for the creation of the Collagen

XI NPP domain.

Software Updates

• Multiple Operating Systems: Increase DockoMatic’s usefulness in any lab

environment, independent of operating system.

52

• Third Party Scoring: Include a plugin to direct rescoring of AutoDock

results through a standalone software scoring program such as XScore or

Medusa.

• Automatic Installation Wizard: Increase the ease of installation of

DockoMatic by including a step-by-step wizard that will direct the

installation of DockoMatic and automatic detection/installation of its

dependencies.

• Cyclic Peptide Prediction: Create cyclic peptides based on an amino acid

sequence and predict most likely cystine bridges based on minimum

energy end result.

• Macromolecular System Calibration: Create a calibration wizard that can

take a set of known ligands with experimentally determined binding

values and calibrate the computational results to narrow the gap between

experimental and predictive results.

• Receptor Point Mutation: Apply the same technique, i.e. TreePack, used in

peptide-analog generation to receptors.

• AutoDock Vina: Include the ability to use AutoDock Vina and other

docking engines.

• Bond Distance analysis: Measure the distances of ligand atoms to those of

the receptors to identify and catalog inter- and intramolecular interactions.

53

REFERENCES

1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein
Data Bank. Nucleic Acids Res 28: 235-242.

2. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach
to macromolecule-ligand interactions. J Mol Biol 161: 269-288.

3. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, et al. (1998) Automated
Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy
Function. J Comput Chem 19: 1639.

4. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by
simulated annealing. Proteins 8: 195-202.

5. Wang R, Lai L, Wang S (2002) Further development and validation of empirical
scoring functions for structure-based binding affinity prediction. J Comput-Aided Mol
Des 16: 11-26.

6. Yin S, Biedermannova L, Vondrasek J, Dokholyan NV (2008) MedusaScore: An
Accurate Force Field-Based Scoring Function for Virtual Drug Screening. J Chem Inf
Model 48: 1656-1662.

7. Jiang X, Kumar K, Hu X, Wallqvist A, Reifman J (2008) DOVIS 2.0: an efficient and
easy to use parallel virtual screening tool based on AutoDock 4.0. Chem Cent J 2.

8. Zhang S, Kumar K, Jiang X, Wallqvist A, Reifman J (2008) DOVIS: an
implementation for high-throughput virtual screening using AutoDock. BMC
bioinformatics 9.

9. Prakhov ND, Chernorudskiy AL, Gainullin MR (2010) VSDocker: a tool for parallel
high-throughput virtual screening using AutoDock on Windows-based computer clusters.
Bioinformatics 26: 1374-1375.

10. Trott O, Olson AJ (2010) Software news and update AutoDock Vina: Improving the
speed and accuracy of docking with a new scoring function, efficient optimization, and
multithreading. J Comput Chem 31: 455-461.

11. Sanner MF (1999) Python: a programming language for software integration and
development. J Mol Graph Model 17: 57-61.

54

12. Chushak Y, Stone MO (2009) In silico selection of RNA aptamers. Nucleic Acids
Res 37: e87.

13. Jiang X, Kumar K, Hu X, Wallqvist A, Reifman J (2008) DOVIS 2.0.

14. Irwin JJ, Shoichet BK (2004) ZINC − A Free Database of Commercially Available
Compounds for Virtual Screening. J Chem Inf Model 45: 177-182.

15. Collignon B, Schulz R, Smith JC, Baudry J (2011) Task-parallel message passing
interface implementation of Autodock4 for docking of very large databases of
compounds using high-performance super-computers. J Comput Chem 32: 1202-1209.

16. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Ress 22: 4673-
4680.

17. O'Sullivan O, Suhre K, Abergel C, Higgins DG, Notredame C (2004) 3DCoffee:
combining protein sequences and structures within multiple sequence alignments. J Mol
Biol 340: 385-395.

18. Sali A, Blundell T (1993) Comparative Protein Modelling by Satisfaction of Spatial
Restraints. J Mol Biol 234: 779-815.

19. Muegge I, Martin YC (1999) ARTICLES - A General and Fast Scoring Function for
Protein -- Ligand Interactions: A Simplified Potential Approach. J Med Chem 42: 791.

20. Wang R, Liu L, Lai L, Tang Y (1998) SCORE: A New Empirical Method for
Estimating the Binding Affinity of a Protein-Ligand Complex. J Mol Model 4: 379-394.

21. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring
functions: I. The development of a fast empirical scoring function to estimate the binding
affinity of ligands in receptor complexes. J Comput-Aided Mol Des 11: 425-445.

22. Böhm HJ (1994) The development of a simple empirical scoring function to estimate
the binding constant for a protein-ligand complex of known three-dimensional structure. J
Comput-Aided Mol Des 8: 243-256.

23. Zhang C, Liu S, Zhu Q, Zhou Y (2005) A Knowledge-Based Energy Function for
Protein−Ligand, Protein−Protein, and Protein−DNA Complexes. J Med Chem 48: 2325-
2335.

24. Hu JZ, Bai L, Chen DG, Xu QT, Southerland WM (2010) Computational
investigation of the anti-HIV activity of Chinese medicinal formula Three-Huang
Powder. Interdiscip Sci 2: 151-156.

55

25. Goldgur Y, Craigie R, Cohen GH, Fujiwara T, Yoshinaga T, et al. (1999) Structure of
the HIV-1 integrase catalytic domain complexed with an inhibitor: A platform for
antiviral drug design. Proc Natl Acad Sci USA 96: 13040-13043.

26. Hu Z, Southerland W (2007) WinDock: structure-based drug discovery on Windows-
based PCs. J Comput Chem 28: 2347-2351.

27. Vaqué M, Arola A, Aliagas C, Pujadas G (2006) BDT: an easy-to-use front-end
application for automation of massive docking tasks and complex docking strategies with
AutoDock. Bioinformatics 22: 1803-1804.

28. Streiff JH, Jones KA (2008) Volatile Anesthetic Binding to Proteins Is Influenced by
Solvent and Aliphatic Residues. J Chem Inf Model 48: 2066-2073.

29. Bullock CW, Jacob RB, McDougal OM, Hampikian G, Andersen T (2010)
Dockomatic - automated ligand creation and docking. BMC Research Notes 3.

30. Jacob RB, Bullock CW, Andersen T, McDougal OM (2011) DockoMatic: Automated
peptide analog creation for high throughput virtual screening. J Comput Chem 32: 2936-
2941.

31. Albuquerque EX, Alkondon M, Pereira EFR, Castro NG, Schrattenholz A, et al.
(1997) Properties of Neuronal Nicotinic Acetylcholine Receptors: Pharmacological
Characterization and Modulation of Synaptic Function. J Pharmacol Exp Ther 280: 1117-
1136.

32. Wolf LK (2009) digital briefs: New software and Websites for the Chemical
Enterprise. C&EN 87.

33. Ren J, Williams N, Clementi L, Krishnan S, Li WW (2010) Opal web services for
biomedical applications. Nucleic Acids Res 38: W724-W731.

34. Johnson Graham T, Autin L, Goodsell David S, Sanner Michel F, Olson Arthur J
(2011) ePMV Embeds Molecular Modeling into Professional Animation Software
Environments. Structure (London, England : 1993) 19: 293-303.

35. Suvannang N, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2011)
Molecular Docking of Aromatase Inhibitors. Molecules 16: 3597-3617.

36. Fontham ETH, Thun MJ, Ward E, Balch AJ, Delancey JOL, et al. (2009) American
Cancer Society Perspectives on Environmental Factors and Cancer. CA Cancer J Clin 59:
343-351.

37. Virtua Drug Ltd (2009) DockingServer. Available: http://www.dockingserver.com.
Accessed December 2010.

56

38. Bikadi Z, Hazai E (2009) Application of the PM6 semi-empirical method to modeling
proteins enhances docking accuracy of AutoDock. J Cheminf 1: 15.

39. Cai X, Bikadi Z, Ni Z, Lee E-W, Wang H, et al. (2010) Role of Basic Residues within
or near the Predicted Transmembrane Helix 2 of the Human Breast Cancer Resistance
Protein in Drug Transport. J Pharmacol Exp Ther 333: 670-681.

40. Abreu R, Froufe H, Queiroz M, Ferreira I (2010) MOLA: a bootable, self-configuring
system for virtual screening using AutoDock4/Vina on computer clusters. J Cheminf 2:
10.

41. Shrodinger L (2009) The PyMOL Molecular Grphics System. Version 1.3 ed.
Available: http://www.pymol.org. Accessed March 2009.

42. Li C, Xu L, Wolan D, Wilson L, Olson A (2004) AutoDock Tools: Virtual Screening
of Human 5-Aminoimidazole-4-carboxamide Ribonucleotide Transformylase against the
NCI Diversity Set by Use of AutoDock to Identify Novel Nonfolate Inhibitors. J Med
Chem 47: 6881 - 6690.

43. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual
screening for drug discovery: methods and applications. Nature reviews Drug discovery
3: 935-949.

44. Kontoyianni M, McClellan L, Sokol G (2004) Evaluation of docking performance:
comparative data on docking algorithms. J Med Chem 47: 558 - 565.

45. Chemical Computing Group (2010) MOE. Available: http://www.chemchomp.com.

46. Gold (2010) Version 1.2. Available:
http://www.ccdc.cam.acuk/products/life_sciences/gold/.

47. Ewing TJA, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: Search strategies
for automated molecular docking of flexible molecule databases. J Comput-Aided Mol
Des 15: 411-428.

48. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, et al. (2004) Glide: A
New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of
Docking Accuracy. J Med Chem 47: 1739.

49. Cavasotto CN (2006) Ligand Docking and Virtual Screening in Structure-Based Drug
Discovery. AIP conference proceedings 851: 34-49.

50. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, et al. (1995)
AMBER, a package of computer programs for applying molecular mechanics, normal
mode analysis, molecular dynamics and free energy calculations to simulate the structural
and energetic properties of molecules. Comput Phys Commun 91: 1-41.

57

51. Li C, Xu L, Wolan D, Wilson I, Olson A (2004) Virtual screening of human 5-
aminoimidazole-4-carboxamide ribonucleotide transformylase against the NCI diversity
set by use of AutoDock to identify novel nonfolate inhibitors. J Med Chem 47: 6681 -
6690.

52. Wavefunction, Inc. (2003) SPARTAN. Version 2004. Availabe:
http://www.wavefun.com/products/spartan.html

53. The Open Babel Package. (2011) Version 2.2.3. Available:
http://www.openbabel.org. Accessed: December 2011.

54. Xu J (2005) Rapid Protein Side-Chain Packing via Tree Decomposition. In: Miyano
S, Mesirov J, Kasif S, Istrail S, Pevzner P et al., editors. RECOMB: Springer Berlin /
Heidelberg. pp. 423-439.

55. Xu J, Berger B (2006) Fast and accurate algorithms for protein side-chain packing. J
ACM 53: 533-557.

56. Zoete V, Grosdidier A, Michielin O (2009) Docking, virtual high throughput
screening and in silico fragment-based drug design. J Cell Mol Med 13: 238 - 248.

57. Mills N (2006) ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark Drive,
Cambridge, MA 02140. www.cambridgesoft.com. Commercial Price:   $1910 for
download, $2150 for CD-ROM; Academic Price:   $710 for download, $800 for CD-
ROM. JACS 128: 13649-13650.

58. Dutertre S, Lewis RJ (2006) Toxin insights into nicotinic acetylcholine receptors.
BPharm 72: 661-670.

59. Millard EL, Daly NL, Craik DJ (2004) MINIREVIEW: Structure-activity
relationships of α-conotoxins targeting neuronal nicotinic acetylcholine receptors.
EJB 271: 2320-2326.

60. Jacob RB, McDougal OM (2010) The M-superfamily of conotoxins: a review.
CMLS: 17.

61. Dutertre S, Lewis RJ (2004) MINIREVIEW: Computational approaches to
understand α-conotoxin interactions at neuronal nicotinic receptors. EJB 271: 2327-2334.

62. Groebe DR, Dumm JM, Levitan ES, Abramson SN (1995) alpha-Conotoxins
selectively inhibit one of the two acetylcholine binding sites of nicotinic receptors. Mol
Pharmacol 48: 105-111.

63. McIntosh JM, Azam L, Staheli S, Dowell C, Lindstrom JM, et al. (2004) Analogs of
a-Conotoxin MII Are Selective for a6-Containing Nicotinic Acetylcholine Receptors.
Mol Pharmacol 65: 944.

58

64. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol
Graph 14: 33-38.

59

APPENDIX A

Recursive Algorithm for Analog Generation

#!/usr/bin/python
#Filename: analogs.py
import getopt, sys

#Polarity Sets
nonpolar = set(["A","G","I","L","M","F","W","V"])
polar = set(["R","N","D","E","Q","H","K","S","T","Y", "C"])
all = set (["A","G","I","L","M","F","W","V", "R","N","D","E","Q","H","K","S","T","Y",
"C"])

#Default variable values
sequence = "CCCCNCCCHLEHCCLC" #Owens adjusted Sequence
#sequence = "GCCSNPVCHLEHSNLC" #Actual Sequence
positions = []
polarity = ‘’
path = "/home/rjacob/MIIScreen/MII.pdb"
cflag = 1
filename = "List.txt"

#Main program function
def main ():
 try:
 opt, arg = getopt.getopt(sys.argv[1:], "s:n:f:cp:ho:")
 except getopt.GetoptError, err:
 usage()
 sys.exit(2)

 for o, a in opt:
 if o in ('-s'):
 sequence = a
 positions = range(len(sequence)+1)
 positions.pop([0])
print positions
 elif o in ('-n'):
 positions = a.split(',')
 elif o in ('-c'):
 cflag = 0

60

 elif o in ('-p'):
 polarity = a
 elif o in ('-h'):
 usage()
 elif o in ('-o'):
 filename = a
 elif o in ('-f'):
 path = a
 else
 usage()

 fout = open(filename, "w")
 analog(sequence,path,positions,"",fout, polarity, cflag)
 fout.close()
 fout = open(filename, "r")
 splitFile(fout)

def usage():
 print "USAGE: analogs.py -s <sequence> [-n <substitution positions> -p
<Polarity> -o <output file> -c -h]\n"
 print "\t-s single letter amino acid sequence\n"
 print "\t-n comma seperated numerical substitution positions\n"
 print "\t-p Polarity (I)nverted, (M)aintained or (R)andom\n"
 print "\t-o output filename\n"
 print "\t-c turn on substitution of cys residues\n"
 print "\t-h displays this help message\n"

def analog (sequence, path, positions, adjust, file, polarity, cflag=1):
 num = positions.pop([0])-1
 letter = sequence[num]

 if (cflag==1 and (cmp(letter,"C")==0)):
 if (num < (len(sequence)-1)):
 analog(sequence,path,positions,adjust,file,polarity, cflag)
 else:
 file.write(path+adjust+"\n")
 elif (((letter in nonpolar) and (cmp(polarity,"M")==0)) or ((letter in polar) and
(cmp(polarity,"I")==0))):
 for i in nonpolar:
 if (num < (len(sequence)-1)):
 test=":" + letter + str(num+1) + i
 if (cmp(letter,i)==0):

 analog(sequence,path,positions,adjust,file,polarity,cflag)

61

 else:

 analog(sequence,path,positions,adjust+test,file,polarity,cflag)
 else :
 test=":" + letter+ str(num+1)+i
 if (cmp(letter,i)==0):
 file.write(path+adjust+"\n")
 else:
 file.write(path+adjust+test+"\n")
 elif (((letter in nonpolar) and (cmp(polarity,"I")==0)) or ((letter in polar) and
(cmp(polarity,"M")==0))):
 for j in polar:
 if (num < (len(sequence)-1)):
 test=":" + letter + str(num+1) + j

 if (cmp(letter,j)==0):

 analog(sequence,path,positions,adjust,file,polarity,cflag)
 else:
 analog(sequence,
path,positions,adjust+test,file,polarity,cflag)
 else:
 test= ":" + letter + str(num+1) + j
 if (cmp(letter,j)==0):
 file.write(path+adjust+"\n")
 else:
 file.write(path+adjust+test+"\n")
 elif (cmp(polarity,"R")==0):
 for j in all:
 if (num < (len(sequence)-1)):
 test=":" + letter + str(num+1) + j

 if (cmp(letter,j)==0):

 analog(sequence,path,positions,adjust,file,polarity,cflag)
 else:
 analog(sequence,
path,positions,adjust+test,file,polarity,cflag)
 else:
 test= ":" + letter + str(num+1) + j
 if (cmp(letter,j)==0):
 file.write(path+adjust+"\n")
 else:
 file.write(path+adjust+test+"\n")
 else:
 file.write("Not a valid amino acid\n")

62

def splitFile (file):
 numLines = 0
 nfiles = 1
 while 1:
 lines = file.readlines(100000)
 if not lines:
 break
 files = "MIIanalogs%02d.txt"%nfiles
 newFile = open(files,"w")
 for line in lines:
 newFile.write(line)
 newFile.close()
 nfiles = nfiles+1

if __name__ == "__main__":
 main()

63

APPENDIX B

Analysis Algorithm for HTVS

#!/usr/bin/perl

#This script will analyze the docking results for HTVS experiments.
#use String::Util qw(trim);

$mainDir = $ARGV[0];
@temp = split(//,$mainDir);

if ($temp[-1] eq "/") {chop($mainDir);}
print $mainDir."\n";

$myFile = $ARGV[1];

my($analog)="";
my %hash = ();

my $aDir;

chdir($mainDir) or die "Can't enter specified directory: $!\n";

opendir(DIR, ".") or die "Can't open the specified directory: $!\n";
@names = sort readdir(DIR) or die "Unable to read current directory:$!\n";

closedir(DIR);

foreach $name (@names) {
 next if (!($name =~ m/dock_\d+/)); #Skip everything that's not a dock folder

 opendir(ANA,$name) or die "This didn't work:$name\t$!\n";
 @files = readdir(ANA);

 $analog="";

64

 foreach $file (@files){
 if ($file =~ m/rank_1\.pdb/) {

 #print "$file\n";
 $analog = $file;

 break;
 }

 }
 $analog =$name ."/".$analog;

 print $analog."\n";
 open(FILE,$analog) or $num=5000;

 while (<FILE>) {
 if ($_=~ /Binding\s+\=(.+)Kcal/) {

 $num = $1;
 $num =~ s/\s+//g;

 break;}
 }

 $aName = $mainDir."/".$analog;
 $hash{$aName}=$num;

 close(FILE);

 closedir(ANA);
}

open (MYFILE, ">>$myFile");

$hash{$a} <=> $hash{$b};
foreach $key (sort hashSort(keys(%hash))){

 print MYFILE "$key\t\t$hash{$key}\n";
}

sub hashSort {

 $hash{$a} <=> $hash{$b};
}

