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ABSTRACT

Single-phase induction machines are found in various appliances such as refriger-
ators, washing machines, driers, air conditioners, and fans. Large concentrations
of single-phase induction motor loads such as air conditioners and other motor-
compressor loads can adversely impact the dynamic performance of a power system.
An understanding of the dynamics of this type of induction machine is needed to
improve the current state of the art in running power system dynamic studies.

In this thesis, a novel approach of modeling an exact fourth-order model of a
single-phase induction machine is developed that gives credence to the well-known
double revolving-field theory. Using a standard averaging technique, an augmented
seventh-order dynamic model is derived using forward- and backward-rotating com-
ponents. The double-frequency terms causing torque and speed pulsations in the
original model can be recovered as a byproduct of the theory. It is proved that two
three-phase induction machines with their stator windings connected in series but
with opposite phase sequence have the same dynamical behavior as the averaged
single-phase induction machine model. The dynamic and steady-state performances
of the single-phase machine are investigated using the new augmented model and

compared with the exact model.
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CHAPTER 1

INTRODUCTION

1.1 Research Motivation

The adequate modeling of all power system configurations and components is critical

to the determination of accurate power system stability results [1]. Power system

loads are modeled with both static and dynamic load models. Static load models are

represented by constant power, constant current, and constant impedance models, or

some combination of these three types. Induction motor loads are usually separated

using a first-order speed model for small-type motors and by a third-order model for

large-type induction motors.

R+jX
Single-Phase Small Large Transformer Constant Remaining
Motors Motors Motors Saturation MVA Load

Figure 1.1: Complex Load Model



Modeling the diverse characteristics of a system load gives a more detailed and
accurate system response to voltage and frequency changes [2]. Load types are
decomposed into groups of similar components, as shown in Figure 1.1, where Vg
and TCL respectively stand for the high-voltage bus and a tap-changing-under-load
transformer, and R + j.X represents a subtransmission line.

Electrical motors consume about 70% of the electrical energy produced in the
United States. Mostly static models are used to represent induction machines which
accurately model the real power consumption but ignore the reactive power. There-
fore, dynamic models must be used [3]. With stability and voltage problems on the
rise, it has become necessary to include the dynamic characteristics of single-phase
induction machines in the dynamic simulation of power systems.

Single-phase induction machines are commonly found in many household appli-
ances. Most single-phase induction machines are small and built in the fractional
horse-power range. Since single-phase induction motor loads make up a significant
portion of some power systems, it is important to develop accurate models for use in
stability studies.

The dynamic model of the single-phase induction machine currently used exhibits
small double-frequency pulsations superimposed on a steady-state speed. These
double-frequency oscillations exist at an operating point and make it difficult to assess
its small-signal stability. Therefore, it is important to develop an equivalent model
with no oscillations in steady state.

This thesis proposes a new approach to the modeling of a single-phase induc-
tion machine by combining averaging and double revolving-field theories. Applying
this approach to the well-known model of single-phase induction machine yields a

new model where double-frequency terms can be averaged over time yielding an



autonomous system with a static equilibrium point. This new averaged model can
be linearized and its eigenvalues can be used to assess the stability of an operating

point.

1.2 Literature Review

How a single-phase induction motor functions has been a topic of discussion for many
years. Even though these theories describe the motor performance well, no adequate
analysis has shown how the various theories compare on the shortcomings [4].
Several theories such as the cross-field theory, the double revolving-field theory,
and dynamic phasors [5] have been proposed to explain the behavior of single-phase
induction machines. In the following sections, the fundamentals of double revolving-

field theory and dynamic phasors will be reviewed.

1.2.1 Double Revolving-Field Theory

The double-field revolving theory was proposed to explain why there is zero shaft
torque at standstill and yet torque once rotated. This theory is based on resolving an
alternating quantity into two components rotating in opposite directions with each
one of them having half the maximum amplitude of the alternating quantity.

Two conditions will be discussed for a single-phase induction machine using the
double revolving-field theory: when the rotor is standstill and when the rotor is
running. When the rotor is at standstill, the torque developed by the forward- and
backward-rotating components is zero.

When the rotor is spinning, as speed increases, the forward flux increases the

driving torque while the backward flux decreases and reduces the opposing torque.



The motor quickly accelerates to a final speed near synchronous speed. In the
single-phase induction machine shown in Figure 1.2, the stator winding produces
a stationary alternating magnetic field B, (OP), which can be decomposed into a
forward-rotating field B (with magnitude OR) and a backward-rotating field B,
(with magnitude OR) such that OP=20R.

Figure 1.2: Forward and Backward Components of a Stationary Sinusoidal Magnetic
Field

Based on the double revolving-field theory, the forward and backward components
of the field are rotating in opposite directions and the machine rotates in the forward
direction. Therefore, these components interact with each other at twice the electrical

frequency resulting in double-frequency speed pulsations as shown in Figure 1.3.
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Figure 1.3: Speed Oscillations

As these two components rotate, they cut the rotor conductors inducing currents
in the short-circuited rotor windings. As shown in Figure 1.4, the torque resulting
from the forward-rotating current components is positive while the torque due to the
backward-rotating components is negative. By symmetry, the net produced torque is

zero at standstill [6] where w is the machine speed and s is the slip defined as
Ws — W

s = : (1.1)

Ws
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Figure 1.4: Forward and Backward Torque

1.2.2 Dynamic Phasors

The main idea behind dynamic phasors is to approximate a possibly complex time

domain waveform z(7) in the interval 7 € (t—T,¢] with a Fourier series representation

of the form
w(r) = Y Xkt
k=—o00
where
1 [ :
Xkt = —/ r(r)e R Tdr = < x> (1)
T Jer

and w, = 27/T and X*(t) is the k-th time-varying Fourier coefficient in complex

form, also called a dynamic phasor, and k is the set of selected Fourier coefficients,



which provide a good approximation of the original waveform (e.g., k = 0, 1, 2) [5].

In this approach, each of the state variables is expressed in terms of a Fourier series
with time-varying coefficients, and at steady state the dynamic phasors X* become
constant [7]. This approach can average the state variable oscillations by retaining
some of the harmonics that are often based on physical intuition [5]. Simulating the
single-phase induction machine by this approach yields the green upper envelope and

red lower envelope of the speed response as shown in Figure 1.5.
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Figure 1.5: Simulation of the Single-Phase Induction Machine Using Dynamic Phasors

The authors in reference [5] object to the traditional derivation of the equivalent
circuit of a single-phase induction motor that relies upon the principle of superposition
by decomposing a quantity such as magnetic field into the sum of two separate
components. Their argument is justified by the fact that the principle of superposition

cannot be applied to a nonlinear system model.



In this thesis, we will reconcile the double revolving-field theory and the use of
dynamic phasors by showing that the principle of superposition applies to the torque

equation of an averaged augmented model that will be derived in Chapter 2.

1.3 Thesis Organization

In Chapter 2, we develop a novel approach of modeling a fourth-order model of
a single-phase induction machine based on an exact transformation of the original
electrical variables into well-defined forward and backward components yielding an
augmented seventh-order model that produces an identical dynamic behavior of the
single-phase induction machine under loading transients.

This novel approach is based on standard averaging theory applied to find a
seventh-order averaged model of a single-phase induction machine in which there
are no speed pulsations in steady state.

In Chapter 3, a new model is obtained for two three-phase induction machines
connected in series but with opposite stator phase sequence. The derived seventh-
order model represents both machines coupled on the same shaft and is dynamically
equivalent to the augmented averaged model of a single-phase induction machine with
forward and backward components. These two models clarify the objection in [5] and
yield a seventh-order dynamic model suitable for power system stability studies.

In Chapter 4, several applications are used to validate the developed models. An
eigenvalue analysis is used to confirm the speed or slip at which maximum pull-out
torque occurs. A participation factor analysis shows that the shaft speed is the state
variable associated with a dominant real eigenvalue. This analysis is used to derive

a first-order speed model of the machine in conjunction with a quasi-steady-state



circuit describing the stator and rotor transients. Finally, a transient stability analysis
gives comparable values for the critical torque applied from a no-load condition to
various models of a single-phase induction machine. Chapter 5 summarizes the main

conclusions derived in this work and makes some recommendations for future work.



10

CHAPTER 2

MODELING OF SINGLE-PHASE INDUCTION
MACHINES

In this chapter, the modeling of a single-phase induction machine is developed for the
type commonly referred to as a squirrel-cage motor. In this rotating machine, the
rotor consists of a number of conducting bars short-circuited by conducting rings at

both ends of the squirrel cage.

2.1 Model in Rotor ab-Coordinates

A single-phase induction machine has one distributed stator winding and two equiv-
alent rotor windings modeling the squirrel cage. One of the main characteristics
of a single-phase induction machine is that the machine does not produce a torque
at standstill. As with other types of single-phase machines, it needs an auxiliary
winding to produce a non-zero starting torque at standstill that will cause the shaft to
accelerate to near synchronous mechanical speed at no load. A fifth-order differential

model of the single-phase induction motor in rotor (a,b) coordinates is given by



dAsa
sa — Rs.sa
v lgq T 0t
dMrq
0 = Rr.ra
lpg T+ 0t
. d)\rb
0 = Rrr
Zb+ dt
w _
d
id_w = T.—-T,
p/2 dt

11

(2.1)
(2.2)
(2.3)
(2.4)

(2.5)

where the label “s” denotes the stator winding, and the labels “ra” and “rb” denote

the rotor phase-a and phase-b windings. The variable \; is the stator flux and A, and

A are, respectively, the rotor fluxes of phases a and b. The electrical angle between

the stator winding and the phase-a rotor winding is defined as #. The electromagnetic

torque and the mechanical load torque are defined, respectively, as T, and T,,.

Asb axis
q axis
rb axis P <« ra axis
. 4l AN
pS rb R
/ /}‘ 7 /()J \\ \ 0
/ (\ ) // ) ra ‘\“ \ )
‘ [ \ ~ daxis
‘ e g_‘,g
‘\ /
\ /
/

Figure 2.1: Stator and Rotor Windings in ab Coordinates

I s sa axis

The auxiliary winding equation is not included in this model because it is open-

circuited by a centrifugal switch when the shaft speed reaches 75 to 80% of its rated

speed. The flux-current relationships are given by
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Asa Lo+ L, Lyscos@ —L,.sinf| |is,
Mal = L,,scos0 Ly + L, 0 lra (2.6)
)\Tb —Lms Sin 9 0 L(r + Lms Z.'rb

where Ly, and Ly, are the stator and rotor leakage inductances, respectively, and L,
is the stator magnetizing inductance. It is assumed that the rotor variables have been
referred to the stator side through the use of an effective stator-to-rotor turns ratio.

Assuming an electrically-linear machine, the magnetic co-energy is equal to

1. 1. . 1. .
Wr,n = §>‘salsb + éAralra + 5)‘7‘6%17' (27)

Using Equation (2.6), the co-energy is expressed in terms of inductances as

1 , 1 . .
Wyln = 5 ( es + LmS) Zga + 5 (LfT + Lms) (272"0 + Zzb)

+Linsisq (1rq cOSO — iy, 8in6) . (2.8)
The electromagnetic torque developed by the machine is then given by

Te

_ W _ (2)% (2.9)

00, 2/ 00

where 6,, denotes the mechanical angle of rotation related to the electrical angle 6 by

0 = <Z—)> 0, (2.10)

where p denotes the number of poles per phase. Taking the derivative of Equation

(2.8) with respect to 6, the developed electromagnetic torque is equal to
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T, = - <Z_)> Linsisa (ira sin 6 + 4,5 cos 9) : <211)

2.2 Model in Rotor dg-Coordinates

The rotor variables of a single-phase induction machine in ab-coordinates are now
transformed to dq coordinates as shown in Figure 2.2, where the fictitious dq windings

appear stationary with respect to the stator.

sb axis
q axis

rbaxis ——G— A redaxe
Nl rg XN\ N\
/Ry 1b 24NN
/ Sk — Ara \
y/ \’2 ; /Av \
f S| A rd | | d axis
U/ [ L | | . )
\ /‘ sa axis
« /
\

Figure 2.2: Projecting Rotor Windings to dq Coordinate

The new dq reference frame is stationary with respect to the stator sa-axis. In this
case, the d-axis is aligned with the sa-axis, whereas in another case the g-axis may
be aligned with the sa-axis [8]. To clarify this notation, the model of a single-phase
induction machine will be obtained in both ways. First, the model will be obtained
with the d-axis aligned with the sa-axis. Currents are given by

rd cosf —sinf| |ty
= (2.12)

irg sinf) cos@ Trb
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and fluxes by

Urg cos —sinf| |,
Yrq sinf cos@ Urp
The inverse transformations are given by
Ira cosf sinf| |i,q4
= (2.14)
I —sin® cost| |iy
and
Ura cosf sinf| |14
= ) (2.15)
Uy —sinf cosf| |y,

Using Equations (2.12) through (2.15), a fourth-order model is obtained in dg-coordinates

as

. dAs
Vsa = Ryiga+ dtd (2.16)
A\,
0 = Riig+ dtd+mm (2.17)
A\,
0 = Rrim—i-#—w)\rd (218)
df
— = 2.1
o w (2.19)
J dw
A 2.2
p/2 dt (220)

where vy = Vs, tsqg = tsq, and A\gg = Agq. The new flux-current relationships are

given by



15

)\sd LZs + Lms Lms 0 Z.sal
)\Td = Lms Lér + Lms 0 Z-7“d (221)
Arg 0 0 Ly + Lins | |irg

and the electromagnetic torque simplifies to

T, = _<§> Linsisdirg. (2.22)

This model is expressed using flux linkages and inductances. By using the following
transformation matrix, the model is now expressed in terms of voltage variables and

reactances as

wsd )\sd XES + Xms Xms 0 Z.sd
7vZer = Ws >\rd = Xms Xﬁr + Xms 0 Z.Td (223)
Prq Arg 0 0 Xor + Xons lrq

where w, = 1207 and 60-Hz reactances have been substituted for inductances. The

final model in dq-coordinates is given by

1 d¢sd

Vsg = Rsisd—l-w—s o (2.24)
0 = Rrird+id§;d iqu (2.25)
0 = Rrirq+id§;q—iwrd (2.26)
% = w (2.27)
ﬁ‘é—j - T.-T, (2.28)

along with the new flux-current relationships



wsd st + Xms Xms 0 Z'sd
wrd = Xms Xér + Xms 0 Z.rd
qu 0 0 XZT + Xms irq

The electromagnetic torque expression using reactances becomes

P\ [ Xms ) . .
Te — — <§> ( w, )'Lsdqu'

16

(2.29)

(2.30)

Next, an alternative model found in reference [8] is obtained where the q-axis aligned

with the sa-axis. Consider the g-axis in Figure 2.3, where now it is aligned with

sa-axis.

Asb axis

rbaxis ——— A LEaRIS

/> rh

/ O N

rd¢

y d axis

Figure 2.3: Stator and Rotor Windings in dq Coordinate

The new dq transformations are

irg cos) —sinf| |i,,

Ird —sinf —cosf| |

(2.31)
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and for currents and

. cosf) —siné ra
Vral _ Vel (2.32)

Wrg —sinf —cos@| [V

for fluxes. Equations (2.31) and (2.32) are the new transformations with the q-axis

aligned with the sa-axis. The final model in these dq coordinates is given by

vy = Riig+ (2.33)
0 = RrirdJF—st;der%d’m (2.34)
- i LS -
% — (2.36)
]%Cfi_j - T-T, (237)

where VUsq = Usa, lsq = Usa, wsq - 1/}8(17 and

T — (g) ()im) isqiva (2.38)

S

along with the flux-current relationships

¢sq st + Xms Xms 0 isq
Urg| = Xns  Xor + X 0 irq | - (2.39)

77D7°cl 0 0 XET + Xms Z.rd



18

2.3 Augmented Dynamic Model of a Single-Phase Induction

Machine

To develop an augmented model, a stationary dq reference frame is used in this
thesis, where the d-axis is aligned with sa-axis. To lighten up the notation, new

current variables are defined as

By = s (2.40)
ig = irg (2.41)
iq = g (2.42)

and similarly for flux linkages and voltage variables. The stator winding is excited

with a sinusoidal source voltage of the form
‘/:9 jwst VvS —jwst
vs(t) = V2Vicoswgt = V2 5 et 4 \/2 5 )€ Jest, (2.43)
The existence of current solutions is postulated for is(t), i4(t), and i,(¢) in the form

is(t) = V2 ([T(t)) et +1/2 (IT@)) eIt (2.44)
it = (de(f)> et 4 /3 (IdT(t)) it (2.45)

i(t) = V2 (L’T(t)> et /2 (IqT(t)) eiwst, (2.46)

where the new complex current solutions are defined in capital letters by I, I;, and

I,. It can be similarly verified that the fluxes 15, ¥4, and 1), can also be expressed as
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o) = VE(TD e v (B e (2.47)
Ya(t) = V2 (qjé(t)) et 4 V/2 <\II‘§2(t)) g Jwat (2.48)
Y(t) = V2 (Wg(t)) et + /2 (@;2@) eIt (2.49)
where
\Ijs st + Xms Xms 0 ]S
\de = Xms Xér + Xms O ]d : (250)
v, 0 0 Xor + Xoms | |1

Substituting Equations (2.47) through (2.49) into (2.33) yields

A - A eona( ) (o)

wis% {\/5 (‘I’sT(’f>€jwst) V3 (%@)ejWSt)] . (2.51)

After identifying the coefficients of the linearly-independent functions e/t and e=7s!,

the above differential equation simplify to

1 d¥,
‘/s - Rs]s -
* ws dt

+ 50, (2.52)

Repeating this process for the rotor and the speed equations, we end up with the

following fourth-order complex differential model of a single-phase induction machine
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V, = R+ wisdis + 70, (2.53)

0 = R+ i% + iU, + w%\pq (2.54)

0 = RI,+ i% + 0, — w%\lfd (2.55)
s - -(3) @) ()i

F I Ie7t + I e 72 — T, (2.56)

2.4 Averaged Dynamic Model of a Single-Phase Induction

Machine

After averaging the right-hand sides of (2.53)-(2.56) with respect to time ¢ as explained

in Appendix A, the following autonomous system is obtained

wisdis = —RJ,—jU,+V, (2.57)
i% = —erd—j‘lld—w%‘lfq (2.58)
wis% _ —er‘q—j@q+i@d (2.59)
ma = @)@ (C) Erern e

where ¥ and I denote the time averaged quantities of the corresponding flux and
current variables, respectively. The constitutive flux-current relationships remain the

same, i.e.,

\Tjs st + Xms Xms 0 s
\de = Xms X@T + Xms 0 jd (261)
v, 0 0 Xor + Xons | |1,
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In order to simulate Equations (2.57) through (2.60), they need to be written in

terms of seven real state variables as (Vsz, Vsy, Yz, Vay, Vgu, Yy, w). This model will

be referred to as the averaged seventh-order dg-model:

1 dv,,
w, dt
1 dv,,
w, dt
1 dUy,,
w, dt
1 dw,,
w, dt
1 dv,,
wy dt
1 dv,,
w, dt
J  dw

(p/2) dt

_Rs]sac + \I}sy + V:sac

_Rslsy - \Ijsz + ‘/sy

w
_erdx + \I[dy - w_\Iqu:

S

w
~Roliy — Vs — — Ty,

s

w
_RrIqx + lI;qac + w_\ljd:c

w
“Rilyy = Wy + — Vg

P\ [ Xm
_ <§> ( ) (Lilyw + Ioylyy) — T

Ws

with the following flux-current relationships

0 X,s O 0
X 0 X,s O

0 X, 0 0
Xins X,

where X, = X, + X,.s and X, = X, + X,s.

(2.62)
(2.63)
(2.64)
(2.65)
(2.66)
(2.67)

(2.68)

(2.69)
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2.5 Model with Forward- and Backward-Rotating Compo-

nents

The obtained dg-model is now transformed to new coordinates with forward- and

backward-rotating components. Forward and backward flux variables are defined as

v 111 g v
B f - 5 _ g (270)
\Z 1 =y q
Similarly, forward and backward current variables are defined as
I 1 I,
R (2.71)
Iy 1 —j |1

The above transformation matrices have been defined differently for fluxes (or volt-
ages) and currents in order to preserve power invariance in the two models. The

inverse transformations are
V)
_ (2.72)

and

Lif 1|1 1 I (273)

Ll ?|-j j| %

Using Equations (2.70) through (2.73), a new complex model with forward and

backward components is obtained as



1 d¥,
ws dt
1 d¥,;
w, dt
1 d¥,
w, dt
J  dw
(p/2) dt
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R.-  (ws—w) =

RO v 2.
2 j( . ) / (2.75)
Rr— W T+ w —

b v 9.
5 ‘b J( w0 ) b (2.76)
P\ (Xos\ (IN[L o7y Lo 2

- (5) ( w > <§> {E (=iI; + i) + 5 (=il +i1) | = T

(2.77)

In order to simulate this model, real and imaginary flux and current components are

defined as

and

Uy = Vg +jVy, (2.78)
Uy = Up + 50y, (2.79)
Uy = Wy, + 50, (2.80)
I = L.+l (2.81)
Iy = Ip+3jlp, (2.82)
I, = I+ ijly,. (2.83)

Use of the above transformations yields the final model below,



1 dv,,
ws dt
1dv,,
w, dt
1 dvy,
wy dt
1 dvy,
ws dt
1 dU,,
ws dt
1 d\llby
w, dt
J  dw

(p/2) dt

along with its flux-current relationships,

This model will be referred to as the averaged seventh-order fb-model.

= _Rslsar + sz + \Ijsy

- _Rslsy + ‘/Zey - \Ilsm

X
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(2.84)
(2.85)
(2.86)
(2.87)
(2.88)

(2.89)

1
> <§> [Isa:Ify - [sy]fm + ]sbem - ]sm]by] - Tm

Xms

m|3< o

o O

oz

o o

e}

Xms

o O

e}

Nl

e}

wléx o [a=)

(2.90)

(2.91)
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2.6 Steady-State Equivalent Circuit

The traditional quasi-steady-state circuit can be derived using several methods in
the literature [6]. The equations of the previous section are now used to derive this

circuit.

This circuit is based on the forward and backward components. The quasi-
steady-state algebraic equations corresponding to Equations (2.74) through (2.76)

are obtained as

0 = Vi— R, —jU, (2.92)
R, - ws—w\ =

0 = —I— T 2.93
r-i (222, 293)
R, - S ws+w\ =

0 = -7, — 0, 2.94
s () w (2.94)

Recalling the flux-current relations as

_ X~ X -
Uy = (Xo+ X)L+ 55T + 550, (2.95)
_ Xps = Xor X -

U, = jomsp I 2.96
! i=5 +J< 5 T > ! (2.96)
_ Xps = Xor X -

v, o= Is+j( ; +=3 >Ib (2.97)

and substituting these relations into Equations (2.92)-(2.94) yields the standard quasi-

steady-state of a single-phase induction machine shown in Figure 2.4 and where

Ws — W
= . 2.98
s Wy ( )
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—
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0.5R, jO.5X,,

Figure 2.4: Equivalent Circuit Representation of a Single-Phase Induction Motor

The electromagnetic torque T, is calculated using forward- and backward-rotating

components computed from the equivalent circuit of Figure 2.4 using the following

b

formulas [6]:

p B 17
T., = = 2.99
f 2 25w, ( )
p RI?
Ty, = =——0b 2.100
’ 22(2 — §)w, (2.100)

T, = T.;—Th. (2.101)
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CHAPTER 3

MODELING OF TWO THREE-PHASE
SERIES-CONNECTED INDUCTION MACHINES

In the previous chapter, the averaged seventh-order model of an induction machine
was derived and expressed in terms of forward and backward components. In this
chapter, it is proved that this model is dynamically equivalent to the model of two
three-phase induction machines connected in series but with opposite stator phase
sequences. The characteristics of this new model will be investigated and compared
to the averaged seventh-order of a single-phase induction machine. For the sake
of consistency, both models will be studied in the synchronously-rotating reference

frame.

3.1 Series-Connected Induction Machines

Figure 3.1 shows two identical three-phase induction machines with their stator
windings connected in series but with opposite stator phase sequences. Each box

represents a machine with its own stator and rotor windings.
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Figure 3.1: Two Three-Phase Induction Machines Connected in Series

The rotor windings of each machine are shorted out. From Figure 3.1, it is easily

seen that

Z‘sa = isal = Z‘sa2 (31)
isb - /isbl = Z.sc2 (32)
isc = iscl = isb2 (33)

where iy, is, and i,. are the source currents. Similarly, 741, i1, and iz are the
abc stator currents of machine 1, and 74,9, 742, and i are the abc stator currents of

machine 2. In space vector form,

-

2 .
iy, = §(¢5a+a@'$b+a2isc) = g = i (3.4)

where a = 1/120° and ;:2 is the complex conjugate of iss. The dynamic equations of

machine 1 are expressed in terms of its stator and rotor fluxes and currents as
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— e dXs
Vs1 = Rszsl dtl (35)
- dX,
0 Ryip dtl (3.6)
From Appendix B,
Y 3 - 3 617
)\31 = (L@S =+ §Lm5)251 + §Lm3€ Tr1 (37)
- 3 - . 3 -
)\7’1 - §Lmszsle 301 + (LZT + §Lms)lr1 (38)
Defining X, = X,1¢%", we obtain the derivative of X., as
ANy d e e AN e
= (e = —dtleﬁl + juiAe’” (3.9)
Using Equations (3.6) and (3.9),
dN! » -
1L — Ryl + jor X (3.10)

where i’, = i,1¢/%. To sum up these results, the voltage equations for machine 1 are

given by
- dX
Vg = R+ d;l (3.11)
AN L .
dgl — Ry, + jwi A, (3.12)

along with the flux-current relationships
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Ast = (LZS + §Lms>isl + §Lm322~1 (313)
N 3 - 3 -,
/\;1 - §Lmszsl + (Lér + ELms)Z:q- (314)

Similarly, the voltage equations of machine 2 are given by

. N,
7752 = Rign+ dtz (315)
X, , .
WM = —Riiia + jw2>\;2 (3.16)
along with the new flux-current relationships
N 3 - 3 =
As2 = (Lgs + §Lm5)252 + §Lms'lr2 (317)
by 3 - 3 -,
/\;2 = §Lm5252 + (Lfs + §Lms)z;2 (318)

where ., = \0e/% and i, = i,9¢7%. With both machines connected in series through

their stator windings, the applied stator voltage U; can be expressed as

i} o AN e dX
Us = Vg + Vg9 = Rslsl + 7 + RSZSQ + dt2 . (319)
Since iy = iy = Z:Q, we have
. dX
U, = 2Rgis+ — 3.20
U is + o ( )

where the total flux linkages is defined as Xs = Aot + X:Q Using Equations (3.13) and

(3.17), this total flux can be expressed in terms of currents as

- - o 3. - 3. 4 3
As = A+ Ay = 2(Lzs+§Lms)z’s+§Lmsigl+ngsz”;‘;. (3.21)



31

The rotor voltage equations remain as they are, that is,

-
!

LA, o

0 = Ri.,+ dtl— Jur N, (3.22)
g AXS s

0 = Ruis+ dt2_]w2/\;2 (3.23)

To sum up, the series-connected induction machines are modeled by the following

complex differential voltage equations

L dX,
o dN -
0 = Ry, + —dgl — jwi A, (3.25)
AN .
0 = Ryiy+ d;“’ — Jwa N (3.26)
together with the flux-current relationships
NS 3 - 3 - 3 -,
N 3 - 3 -,
)\;1 = iLmsis =+ (Lﬂr + §Lms)Z;1 (328)
N 3. = 3 .
>‘:"2 = §Lmsis + (Lfs + ELms)Z‘/rQ- (329)

3.1.1 Mathematical Model of Two Series-Connected Three-Phase Induc-

tion Machines in dg-Coordinates

The previous model is now transformed into dg-coordinates by decomposing all fluxes

and currents into real (d) and imaginary (q) components. Defining
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X = Aad+ jhsg (3.30)

i = Mear 4 At (3.31)

X2 = Araz 4 jArg2 (3.32)
for fluxes and

by = lsq+ Jisg (3.33)

Z/‘l = lrql +ji7“q1 (334)

Zf‘? - 'L.rdQ +jirq2- (335)

for currents, and substituting Equations (3.30) to (3.35) into Equation (3.27), yields

o . 3 . .. 3 . .
)\s = >\sd + j>\sq = 2<L£s + ELms)(st + ]qu) + §Lms(z7"d1 + ]qul)

3 . y
+§Lms(2rd2 - ]quZ)- (336)

Collecting real and imaginary components on both sides of this equation, we obtain

3 3 3

/\sd - 2(L€s + éLms)isd + §Lmsird1 + éLmsirdQ (337)
3 . 3 . 3 .

>\sq = 2(Lgs + éLms)qu + §Lmszrql — §Lms7/rq2- (338)

A similar decomposition of the rotor flux X;l of machine 1 yields

> . 3 ) g 3 ) ..
>\;1 = )\rdl + ])\rql = §Lms<st + Jqu) + (LZT + §Lms)(lrd1 + jzrql)

(3.39)
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and

3 3

)\rdl = §Lmsisd + (LZT + §Lms>ird1 (340)
3 ) 3 .

>\rq1 == §Lmslsq + (Lﬁr + ELms)qul- (341)

Applying the same procedure for the rotor flux X;Q of machine 2 yields

v . 3 . g 3 . ..
)\;2 = ()\rdZ + j)\rq2> = _Lms@sd - ]qu) + (LZT + _Lms>(2rd2 + .7qu2)

2 2
(3.42)
and
3 , 3 .
Ard2 = §Lms7'sd + (Lér + §Lms)7'rd2 (343>
3 , 3 .
)‘TqQ = _éLmslsq + (LZT + §Lms)2rq2- (344)

After decomposing all space vector fluxes into real and imaginary components, the

flux-current relationships for the d-axis are given by

>\sd 2(L€s + %Lms) %Lms %Lms lsd
)\rdl %Lms (Lér + %Lms) 0 irdl (345)
)\T’d2 %Lms 0 (Lﬁr + %Lms) irdZ
and
>\sq Q(Lés + %Lms) %Lms _%Lms Z'sq
)\rql = %Lms (Lfr + %Lms) 0 Z‘7”q1 . (346>

)\rq2 _%Lms 0 (LZT + %Lms) Z"rq2
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for the g-axis. Lumping Equations (3.45) and (3.46) together, we obtain the following

composite flux-current relationships

Asd 2L, 0 3L,s 0 3L, 0
Asq 0 2L, 0 2L,., 0 =3L,,
Ard1 $Lms O L, 0 0 0
Arql - 0 3 Lins 0 L, 0 0
Ard2 3 Lms 0 0 0 L 0
Arg2 0 3L, 0 0 0 L,

where Ly = (Lgs + %Lms) and L, = (Lg + %Lms).

(3.47)

3.1.2 State-Space Form of the Voltage Equations of Two Series-Connected

Induction Machines

State-space variables are defined by decomposing each space vector in the previous

model into real and imaginary parts. By decomposing XS, X,.l, and XTQ, our model

will have six flux states. First, Equation (3.24),

. dX
_)s = 2Rs ‘s —=
U s + 0t

is replaced with

. . » d .
(Usd + ]vsq) = 2Rs(zsd + ]qu) + E(Asd + ])‘sq)

yielding two real stator differential equations,

(3.48)

(3.49)
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dAs .
dtd = _2RSZSd + Vsd (350)
dAs .
Dot 5Bt u (351)

Similarly, the rotor flux vector equation for machine 1,

Ay
dt

— Ryl + jun X, (3.52)
is replaced with

d . . g . .
E()\rdl + ])\rql) = - Rr(ldl + ]qu) + Jwi ()\rdl + ])‘qu) (353>

yielding the following two real rotor differential equations for machine 1

d, .

dtdl = _errdl — W1 )\rql (354)
d\, ,
7‘11 = — Ryl + wihvar. (3.55)

For the second machine, its rotor flux vector equation,

X,

o — R,y + junN., (3.56)

is replaced with

d . . . . .
E()\rdQ + j/\rq2) - _RT(ZTd2 + .]ZTQQ) + Jw2<>"rd2 + ])‘qu) (357)

yielding the following two real rotor differential equations



d)\rdQ

dt
d)\qu

dt

= _RrirdZ - w2>\rq2

= _Rriqu + w2)\7”d2

To summarize, the following six voltage equations have been obtained

d)\sd

dt
Ay

dt
d/\rdl

dt
d>\'rq1

dt
d/\’/‘d2

dt
d)\qu

dt

—QRSiSd + vg
—2Risq + v
_Rrirdl - wl)\rql
_Rrirql + wr )\rdl
_RrirdQ - WQ)\qu

- Rriqu + wo )\rd2
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(3.58)

(3.59)

(3.60)
(3.61)
(3.62)
(3.63)
(3.64)

(3.65)

Replacing flux variables in Equations (3.60) to (3.65) by voltage variables and induc-

tances by 60-Hz reactances yields the following equations

1 d¥,,
W, dt
1 dv,,
w, dt
1 dU,q
W, dt
1 dU,,
wy dt
1 dq}rdQ
w, dt
1 dW,,
w, dt

_2Rsisd + Vsq
—2Rgi5q + Vgq
_Rrirdl - _\Ijrql

. w1

- R’/‘qul + — \I[rdl
Ws
w2

- Rrird2 - \I]qu
Ws

. w2
- R’/‘quQ + — \IlrdQ
Ws

A common reference speed direction w is chosen so that

(3.66)
(3.67)
(3.68)
(3.69)
(3.70)

(3.71)
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W = W = Wa. (372)

By substituting this speed relation into Equations (3.66) through (3.71), the following

dynamic equations are obtained

wisdgtsd — —2Ryisq + Vua (3.73)
L (3.74)
wisdifl = Ry + (3.76)
wlsd\l;;ﬁ = —Rrim—i‘l’m (3.77)
i% — —Rr@‘rq2‘|‘wﬁsqud2- (3.78)

3.1.3 Torque Equation

According to Appendix A, the developed electromagnetic torque in a three-phase

induction machine is given by

3 P ,3 2 50 .3 —i07
Te = - <_> e _Lmsrje* _Lms ]95* .
(4) 5 {?R {j2 ir€"ig + J 5 Lnse sty (3.79)

which simplifies to

no= (5n) (5) () sutiiy (3:50)

where
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(3.81)

is a space vector in the stationary stator reference frame. Recalling Equations (3.33)

to (3.35) and decomposing them using real and imaginary components, we get

isdl + jisql

Z.scl2 - jisq2

= 1y = Z-sd_|—jisq

ls = g +]qu

(3.82)

(3.83)

Substituting these current components into the torque expression for the first machine

yields

7~ N "

A~
I3

oW olw N

h

=~
3 A~
N DO o
/N /N /N Sb‘
NG

NIT I NI

N—— —

7~ N " N~
N— —

N|W NWw N Ww N W

VR

R

m{zsll_.:*l
m{ (st + Jisq) (ihgy — Jing1)}

m{(isd + jisq)(i;dl o ji;ql)}

) (isqi/rdl - isdi;ql)

Similarly, the torque produced by the second machine is given by

TeZ

VR

N
NITD NI™ NI
— N

N W

m{(isdQ + jisrﬂ)(i;zﬂ - ji'/qu)}
m{(isd - jisq)(i;’dQ - .]Z;qQ)}

(isqi;ﬂdQ + iSdi;qZ) ‘

(3.84)
(3.85)
(3.86)

(3.87)

(3.88)
(3.89)
(3.90)

(3.91)
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Since the two machines are rigidly coupled through the shaft, the aggregate torque

equation is given by
J dw
(p/2) dt

where J is the sum of the inertias of both machines and 7;,, is the applied mechanical

=T+ Ty — T (3.92)

torque.

Substituting Equations (3.87) and (3.91) into (3.92) yields the following torque

equation

J dw  (p\ (Lms\ ,. . o o o
m% - <§> ( 4 ) (isglrar = ZSCﬂ:’ql — lsqlyar — stzlnﬂ) — T (3.93)

3.1.4 Three-Phase Induction Machine Model in a Synchronously-Rotating

Reference Frame

In this section, the complete model derived in a stationary reference frame is repro-

duced below using voltage variables as

1 dWUgy

Wg dt - _2R5i5d+vsd (394)
1 dv, |

ws el 2 (3.95)
1 d¥, g o

1 dv,,, o

g = Rt Y -
1 A0, o

1 dv, ., L

gt = Riet 500
J dw P\ [ IM,, o o o o

(p/2) dt - [(5) ( 4 > [(isqirar — tsdivgr) = (isqlyan + tsdings)] — T | -

(3.100)
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Since the synchronously-rotating reference frame is a special and useful reference

frame for running simulations, the previous model is now transformed to this reference

frame using a standard procedure as

1 d¥,,
we dt

1 dv,,
w, dt
1 dU,,
w, dt
1 d\lqul
wy dt
1 dU,
w, dt
1 d\I/TqQ
w, dt

J dw

(v/2) dt

_2Rsisd + \Ijsq + Vsq
—QRSiSq — ‘Ifsd + Vsq
. w
_errdl - _\Ijrql + \I/rql
Ws
X w
_errql + _\I]rdl - \Ijrdl
Ws
w
—Ryipgo — — Vo — VU,
d2 w q2 q2

s

. w
_errq2 + \Ilrd2 + ‘Ilrd2
Ws

P\ (9Xms \ . . o -
|:<§> ( ) [(zsql;dl - ZSdZ{r’ql) - (qul,/’,d2 + stl;q2)] — Tm

4

(3.101)
(3.102)
(3.103)
(3.104)
(3.105)

(3.106)

(3.107)

where the new variables have kept the same names in both reference frames. After

some manipulations, this model simplifies to

1 d\I’sd
w, dt

1 dv,,
wy dt
we dt

1 dU,,
wy dt
1 d¥,q
ws dt

1 d¥,,
ws dt T

= _2Rsisd + \Ijsq + Vsq

= —2Rsisq — \Dsd + Vsq

(3.108)
(3.109)
(3.110)
(3.111)
(3.112)

(3.113)
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= <E> ( ) [(isgiray — dsairgr) — (isqiran + sdipge)] — Tin-

2 4w,

(p/2) dt

The flux-current relationships remain as in (4.38), that is

U,y 2X, 0 $Xpms 02X,
Wsg 0 2X, 0 32X, 0
Va1 2 Xoms 0 X, 0 0
Vg1 1o 3 X s 0 X, 0
o $Xms 0 0 0 X,
U, 0 -3X,s O 0 0

where X, = (X5 + %Xms), X, = (Xo + %Xms), and X,,s =

(3.114)
0 isd
%Xms 1sq
0 Ty
"I )
0 Z.qu
0 ird2
Xr irq2
WeLis.
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CHAPTER 4

MODEL VALIDATION AND SIMULATIONS

4.1 Simulation Results

In this section, the dynamic performance of the models derived in previous chapters

is compared. The models simulated in this chapter include the following:

Exact fourth-order dq model,

Exact seventh-order dq model,;

Averaged seventh-order dq model;

Averaged seventh-order fb model;

Seventh-order model of two three-phase induction machines.

The auxiliary winding of a single-phase induction machine has been neglected in
all of these simulations. All models will be simulated with an initial speed condition
of 75% of rated speed and with zero initial currents.

A load torque 7T,, = 2.5 N-m is applied at ¢ = 0.5 s and removed at t = 1.5 s.
All models are simulated using classical fourth-order Runge-Kutta method with a

uniform step size At = 0.1 ms.
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4.1.1 Simulation of Exact Fourth-Order dq Model

Figure 4.1 shows the dynamic speed response of a single-phase induction machine
using its original fourth-order model described by Equations (2.33) through (2.35)

and (2.37). The following initial conditions are used in this simulation:

1hs(0) 0

va)| | 0 )
14(0) 0

I w(0) | 0.75ws |

360
340
~~
(2]
2
o
o]
=
320 H
©
QO
()
o
(7))
300H
280
260 I I I I I I I I I J
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

Figure 4.1: Speed Response of Exact Fourth-Order Model
As expected, the steady-state speed pulsates at twice the synchronous frequency
for both no-load and loaded conditions. Based on the characteristics of an induction

machine, as the machine is loaded at t = 0.5 s, the speed of the machines drops to
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a lower value and, after removing the load at ¢ = 1.5 s, the speed of the machine

returns to its no-load steady-state value.

4.1.2 Simulation Comparison of Fourth-Order and Exact Seventh-Order

dq Models

To simulate the seventh-order dg-model, the initial conditions used are

(4.2)

o o o o O

0

w(0) 0.75ws

Figure 4.2 illustrates the speed responses of both the fourth-order and seventh-
order models in dg-coordinates. This figure shows that both models yield identical

dynamic speed responses verifying the validity of the augmented model.

4.1.3 Simulation Comparison of Fourth-Order and Averaged Seventh-

Order dq Models

Equations (2.57) through (2.60) describe the averaged seventh-order model of a single-
phase induction machine in dq coordinates. By averaging the double-frequency terms
(€72t and e 72! ) in the exact seventh-order model, a model where the speed is

constant in steady state is obtained.



45

380~

360 — :
340
Q
ke
g
N—
5 320 H
(]
(]
[oR
n
300
280 —
—— Original Fourth-Order Model
—— Seventh-Order Model in dg coordinates
260 | | | | | | | | | |
0 0.2 04 0.6 0.8 1 12 14 16 1.8 2

Time (s)
Figure 4.2: Speed Responses of Exact Fourth-Order and Seventh-Order dq Models

Transforming the dg-model to a model with forward and backward components
using the defined power-invariant transformation matrices in (2.70) and (2.73) does

not change the dynamic speed response that is shown in Figure 4.2.

4.1.4 Simulation Comparison of Fourth-Order and Averaged Seventh-

Order fb Models

In this section, we compare the speed responses of the original fourth-order model
and the averaged seventh-order fb-model. As expected, the speed of the machine is
constant during steady state and without oscillations as shown in Figure 4.3 in the

averaged model.

During the initial electrical transient, the speed of the averaged model does not

match the exact speed of the original model. The explanation is that the stator
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Figure 4.3: Speed Responses of Averaged Seventh-Order fb-Model and Seventh-Order
Model of Two Three-Phase Series-Connected Induction Machines

and rotor electrical transients are differently excited in both models. Following the
mechanical disturbance at t = 0 s, the stator and rotor electrical transients are not
excited and in this model the averaged speed follows the average of the exact pulsating

speed.

4.1.5 Simulation Comparison of Averaged Seventh-Order fb-Model and
Seventh-Order Model of Two Three-Phase Series-Connected Induc-

tion Machines

The simulations of the fb-model of a single-phase induction machine and two three-
phase series-connected induction machines yield interesting results. Figure 4.4 clearly
shows that both models are superimposed with identical dynamic speed responses

during both transient and steady states.
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Figure 4.4: Speed Responses of Averaged Seventh-Order fb-Model and Seventh-Order
Model of Two Three-Phase Series-Connected Induction Machines

4.2 Applications

In this section, the small-signal stability of the averaged seventh-order fb-model using
eigenvalue analysis is studied. At a certain operating speed, the system will become
unstable. As will be shown, this instability occurs when one real eigenvalue becomes

zero at the maximum pull-out torque.

4.2.1 Eigenvalue Analysis

For a system with n state variables, the eigenvalues of an n x n matrix A are the n

solutions of the characteristic equation

p(A) = det(A—XI) = 0 (4.3)
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Using the machine parameters in Table 4.2, Equations (2.84) to (2.90) yields a 7 x 7

system matrix A for the averaged seventh-order fb-model. The maximum torque of

Torque—-Speed Characteristic Curve
3 T T T T T
X: 275
Y:2.615
|
25} .

15 : v .

Torque (N-m)

0.5F 4

0 Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400

Speed (rad/s)

Figure 4.5: Torque-Speed Characteristic Curve for Averaged Seventh-Order fb-Model

about 2.6 (N-m) occurs at an electrical speed of 275 (rad/s) as shown in Figure 4.5.
The machine cannot handle additional torque and it is expected that the machine will
stall for a torque larger than 2.6 (N-m). This analysis assumes a constant mechanical

load torque.

Figure 4.6 shows the real eigenvalue corresponding to each operating speed. At
the speed of 275 (rad/s), this eigenvalue becomes zero, verifying the instability of the

system at speeds below 275 (rad/s).
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Figure 4.6: Speed-Eigenvalue Curve for Averaged Seventh-Order fb-Model

4.2.2 Participation Factors

In the study of dynamic systems, it may be necessary to construct reduced-order
models for dynamic stability studies by retaining only a few modes of interest. It
then becomes important to determine which state variables significantly participate
in the selected modes.

Verghese et al. [9] proposed a tool known as a participation factor to calculate a
dimensionless measure of how much each state variable contributes to a given mode.

Given a linear system

r = Ax (4.4)
the participation factor is defined as

Pri = Dk (4.5)

t
W;V;

where wy,; and vy; are the k™ entries in the left and right eigenvectors associated with

the i*" eigenvalue. The normalization of the left and right eigenvectors yields
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wiv; = Zpki = L (4.6)
k=1

In order to obtain these participation factors for the sole real mode, the seventh-order

fb-model is linearized for a defined speed range from 0 to w,. For example, the

participation

(pk7)T

factors at w = 350 (rad/s) are

= |-0224 0.014 —0.263 0294 —0.007 0.008 0.977 (4.7)

indicating that ¥, ¥¢,, and w are the dominant variables in this real mode.
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Figure 4.7: Participation Factors of the Seven States in the Real Eigenvalue Mode

As shown

in Figure 4.7, the seventh speed state has a large participation factor

at all operating points and, at w = 275 (rad/s), it reaches its lowest value in that
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region. It is also interesting that at w = 275 (rad/s) the machine becomes unstable.

Using a participation factor analysis where p;; has a greater value compared
to the other states, the slowest state corresponding to the dominant eigenvalue is
determined as the speed of the machine. This suggests that the stator and rotor
electrical transients are much faster than the rotor speed. Eliminating these fast
electrical variables by using a quasi-steady circuit model, a first-order speed model
of the machine can be derived. By setting the left-hand sides of the stator and rotor

electrical transients to zero, the averaged fb-model in (2.62) to (2.68) becomes

0 = —RJI,,+V,, + Vg 48
Yy
0 = _sts —\Ifsm—l—‘/s 4.9
Y q
R, . —
- _TIf”(ww w) Yy (4.10)
R, Ws — W
YTy fy_( w )q’ff (4.11)
RT s+
oo _7]””(ww w) o (4.12)
RT‘ ws"—w
Y by_( X )‘I’bw (4.13)
J  dw D Xms 1
7 Y = Usadypy — IgyI I lvw — Ispdvy| — T
g = () (2 (3) et ot v =1t -
(4.14)

After solving the above equations, the first-order speed model is

J dw P Xms 1
S dw S Uaadyy — Loglps + Loyl — Lunlyy] — T
e = () () () ottt e = 1k

(4.15)
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where the currents in (4.8) - (4.13) are solved in terms of speed, w, using

vl | -m X, 0 0 s | [n]
Vay X, e AL R I
0| 0 s A 0 gz (4.16)
0 —s g 0 -y 0 0 Ly
0 0 2-9) Xz 0 0 —E  @ogXl| |,
0 — (2 s) Xpe 0 0 0 -@2-s & Iy

where s = (ws — w)/ws is the slip. Simulating the above model and comparing it with

the averaged seventh-order fb-model yields the graph shown in Figure 4.8.
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Figure 4.8: Speed Respond of Seventh-Order and First-Order fb-Models

As shown in Figure 4.8, the dynamical speed response of the first-order model

follows closely the speed of the seventh-order model after the mechanical disturbance
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Figure 4.9: Speed Responses of Seventh-Order and First-Order fb-Models During
Start-Up

at t = 0.5 s. In other words, they are almost identical when the rotor and stator
transients are not excited. Since the simulation started with the stator and rotor
transients excited, there will be some discrepancies during the initial transient pe-
riod. By zooming in the time interval of [0s,0.2s], these discrepancies become more
distinguishable as shown in Figure 4.9.

Both models have been simulated with zero initial conditions for the stator and
rotor currents. In other words, the electrical transients are simulated as if they
were excited since their values differ from their quasi-steady-state circuit values.
Using the steady-state circuit in Figure 2.4, it is possible to find the initial current
conditions that do not excite the stator and rotor electrical variables. For a slip
s = (1—0.75ws/ws) = 0.25, it is found that the initial stator and rotor flux linkages

should be
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-¢sx(0)- [ 0.8503 |

Yy (0) —96.6142

Y4 (0) —28.0604

Yay(0)| = | —75.4346 | - (4.17)
Y4 (0) —57.6281

Y4y (0) 17.600

| w(0) | | 075w

Simulating both the first-order and seventh-order models using these initial conditions

improves the speed response during the transient state.

[
@
o

W w w [ w
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o o o o o
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—— Averaged First-Order fo—Model
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Figure 4.10: Speed Responses of Seventh-Order and First-Order fb-Models with
Stator and Rotor Electrical Transients Not Excited
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4.2.3 Critical Torque

In this section, the critical torque that can suddenly be applied to a machine at no
load is found. The critical torque is the maximum mechanical torque that a machine
can handle without stalling. By trial and error, several mechanical load torques are

applied until the machine stalls. The case studies will be in the following order:
e Critical torque for original fourth-order
e Critical torque for exact seventh-order dg-model
e Critical torque for averaged seventh-order dg-model and fb-model
e Critical torque for first-order fb-model.
Figure 4.11 shows how the machines will stall for different load torques. Having
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—400 | 1= First—Order ;0
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Time (s)

Figure 4.11: Critical Torque Determination Using Several Models

simulated the remaining models, Table 4.1 shows the results for each model.
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Table 4.1: Values of Critical Torque for Each Model

Models Critical Torque (N-m)
Original Fourth—Order 2.612
Seventh—Order dq—Model 2.612
Averaged Seventh—Order dq—Model 2.614
Seventh—Order fb—Model 2.612
Averaged Seventh—Order fb—Model 2.614
First—Order 2.614
TPIM 2.614

From this table, it is obvious that all models become unstable for the same critical

load torque of about 2.61 (N-m) as the original fourth-order model does.

4.2.4 Recovering Torque and Speed Pulsations from the Averaged Model

In this section, it is shown how the double-frequency torque and speed oscillations
can be recovered using the averaged model. This procedure gives a profound under-
standing of how a single-phase induction machine behaves.

The stator currents of the exact seventh-order dg-model are first plotted as shown

in Figure 4.12.

Stator Currents
T T T

- - -
N e m e m e ...

Current (pu ?)

i i i i i i
0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

Figure 4.12: Exact Stator Currents I, and I, from the Exact Seventh-Order dg-
Model
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By zooming in the time interval of [1.45s,2s], Figure 4.13 illustrates the negligible

ripples in the stator currents.

Stator Currents
T T

Isx
6 Isy B

Current (pu ?)

6 i i i i i i i i i i
1.45 15 1.55 1.6 1.65 1.7 1.75 1.8 1.85 19 1.95
Time (s)

Figure 4.13: Exact Stator Currents I, and I, from the Exact Seventh-Order dg-
Model

As the ripples or oscillations in these currents are already small, we surmise
that the averaging process will eliminate these oscillations in the averaged model.
Assuming that these currents are constant, we infer that the speed pulsations can be
simply recovered by integrating the double-frequency torque components that were
discarded in the averaging process. The averaged current variables obtained in the
averaged seventh-order in lieu of the exact current variables are used since they differ

by a small oscillatory component.

To integrate and recover the speed oscillations, an eighth differential equation
is added to the model with an additional variable denoted as ws. It is important,
however, to mention that this added differential equation is not part of the model.
In other words, it is only used after we have integrated the averaged seventh-order

model and found its solutions for the averaged currents. Recalling Equation (2.56),



o8

J  dw . 1 p Xm * * J2wst * 7 — 2wt
(p/2) dt (5) (5) ( Wy ) (Lol + I5Tg + Lsdge + I e ]
i (4.18)

this differential equation is separated into two differential equations as shown below

o = ()@ (G)eeeman e

J  dw 1 P X - R
(19/2)cl_t2 - (5) <§> (w ) [ dge?" 4 LT 1 e 72"] (4.20)

where w; represents the averaged speed and ws represents the double-frequency oscil-

lations of the speed. Expanding Equations (4.19) and (4.20) yields

(p/2) d_tl - (5) <§> ( w > [stqu + ]Squy] — T (421)
W E (5) (3) ( % ) (Lo Lyw = Loy Tyy) cos 2t
—(Ipdyy + Ty I,e) sin 2wit]. (4.22)

The initial conditions for the seven state variables have been obtained from the quasi-
steady-state circuit at 75% of synchronous speed. Since one differential equation, the
eighth equation, is used to recover the double-frequency oscillations, it should have an
appropriate initial condition. The initial condition for the eighth differential equation

is obtained by integrating both sides of Equation (4.22) and setting time t = 0 s

yielding
w0 = = (5) &) (5) () (32) 10000 + 1 n0) 220
(4.23)

which is equal to -3.8660. The eighth-order model will be simulated using the following
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corrected initial conditions for wy, and ws:

() 9.8503

14, (0) —96.6142

i (0) —28.0604

bay(O)| ~75.4346 | o)
() —57.6281

14y (0) 17.600

w,(0) 0.75ws + 3.8660

| ws(0) | | -3.8660

After adding w; and ws together, an almost exact dynamic speed response is obtained

as shown in Figure 4.14.
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Figure 4.14: Recovering Speed Oscillations
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4.2.5 Physical Interpretation

The oscillations from the eighth-order model match perfectly those in the original
fourth-order model. It is important to note that the obtained averaged speed and
oscillations are added together to get a complete speed response similar to the speed

of the fourth-order model.

The following paragraphs explain how these pulsations arise in the single-phase

induction machine.

)

>
a—axls

Figure 4.15: Magnetic Fields of Motor and Generator

In Figure 4.15, H, is the stator magnetic field leading the induced forward-rotating
rotor magnetic field H ¢ in the left machine. In the right machine, H ¥ is the stator
magnetic field lagging the induced backward-rotating rotor magnetic field H,.

The corresponding stator and rotor magnetic fields in one machine do not interact

with those in the other machine. Each three-phase machine will therefore produce a

steady torque (forward or backward) on the shaft.
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By merging both machines into one solid machine, these four magnetic fields are
now located in a common air gap. As shown in Figure 4.16, these four magnetic fields
interact with each other and produce double-frequency pulsations in addition to the

original two steady torque (forward and backward) components.

Figure 4.16: Magnetic Fields of the Single-Phase Induction Machine

These interactions can be recovered using Equation (4.22). Since it was possible
to recover almost exactly the torque and speed oscillations in a single-phase induction
machine, we conclude that these formulas quantify the interactions between the

magnetic fields revolving past each other at twice the synchronous speed.

4.3 Parameters

This section provides the parameters of a single-phase induction machine equivalent
to those of two three-phase series-connected induction machines. These parameters
have been used to simulate the models derived in the previous chapters. There are
two different sets of parameters values to simulate the single-phase induction machine

and the two three-phase induction machines.
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It is shown in Figure 4.4 that the averaged model of a single-phase induction ma-
chine and two three-phase series-connected induction machines are identical and have
the same dynamic response at both no load and loaded conditions. The parameters
of this new setup have been adjusted by aggregating three single-phase induction
machines coupled on the same shaft. Figure 4.17 shows how these three single-phase
induction machines are connected. To clarify the notation, 1¢ and 3¢ will be used
to represent, respectively, the parameters of a single-phase machine and each of two

three-phase induction machine connected in series.

Jw ‘]1¢ J1¢
SPIM SPIM SPIM
A N B N C N
ARRRI R
I/sa V;b Vcb

Figure 4.17: Three Single-Phase Induction Machines Coupled on the Same Shaft

In Figure 4.17, J,4 represents the inertia of a single-phase induction machine. Each
of the induction machines above has an equivalent circuit, which is shown in Figure
4.18. The forward component of the single-phase induction machine is highlighted
by box M. On the other hand, box N shows the total backward components of three

single-phase induction machines rigidly coupled on the same shaft.

The parameters of this representation of three single-phase induction machines
are compared to the parameters of two three-phase induction machines, as shown in

Figure 3.1.
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Figure 4.18: Three Quasi-Steady-State Circuits of a Single-Phase Induction Machine

In two three-phase induction machine connected in series, the left machine acts as
a forward-torque producing machine and the right machine acts as a backward-torque

producing machine.

Figure 4.19(a) simply shows a three-phase induction machine where its circuit is
compared with the circuit for single-phase induction machine. The inertia constant of
each three-phase machine is represented by Js4. Therefore, the total inertia constant

of both three-phase machines is 2.J3,.

By comparing the circuits of both machines, the following relationships are ob-

tained for the stator and rotor resistances,

gl
»
e
©-

Ryso = -2 (4.25)

2N

=
&

Ry = — (4.26)
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Figure 4.19: (a) Circuit of Three-Phase Induction Machine (b) Circuit of a Two
Three-Phase Induction Machines Connected in Series with Opposite Stator Phase

Sequences

and for the moment of inertia,

25y = 3Jip.

The leakage reactances are also identified as

Xisn
Xis3p = —; ¢

Xora
Xor3se —; ¢

and the magnetizing reactance is obtained as

(4.27)

(4.28)

(4.29)
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Xms,lqb

Xmsse = (4.30)

The illustrated results for the single-phase machine have been simulated with numer-
ical example of a 1/4 horse power machine from [10] (page 438) with a peak source
voltage of 110v/2 V. The values of the parameters such as resistances, inductances,

and moment of inertia are given in Table 4.2.

The terms SPIM and TPIM used in Table 4.2 represent the single-phase induction
machine and each of the two three-phase induction machines (TPIM) connected in

series.

Table 4.2: Parameters of Each Single-Phase and Three-Phase Induction Machines

Parameter Type SPIM TPIM

Ry 2.02 1.01

R, 4.12 2.06

Xons 66.8 (1/3)66.8/2
X 2.79+ X, | 2.79+(3/2) X
X, 2.12+4X,, | 2.124+(3/2) X
J 0.00146 3(0.00146)/2
P 4 4

In the final model (3.108) through (3.114), inertias of both machines are added
together. The final model for the two three-phase series-connected induction machines

is
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with the following flux-current relationships
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(4.31)
(4.32)
(4.33)
(4.34)
(4.35)

(4.36)

) - (isqi;zﬂ + isdi/rqz)] — Ty

(4.37)

where Xs,?)d) = (XZS,3¢ + %Xms,3¢)a XT,3¢ = (XZT,3¢ + %Xms,3¢)7 and Xms,3¢ = wsLms,3¢'
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4.4 Experimental Validation

This section gives the results of an experiment verifying the behavior of two three-
phase series-connected induction machines. As explained, the net produced torque
at standstill is zero for both setups. The machine shaft did not rotate after powering
the setup of Figure 4.20, which illustrates how the three-phase induction machines

are connected.

Figure 4.20: Two Three-Phase Induction Machine Connected in Series

After powering this setup, the experiment showed that none of the shafts rotated
and both shafts remained fixed. Manually turning the shaft in either the forward or
backward direction caused both shafts to rotate in the applied torque direction. The

setup exhibited this behavior in both directions.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this thesis, a seventh-order dg-model of a single-phase induction machine has been
developed by postulating the existence of current and flux solutions in a certain form
in the original model. This seventh-order dg-model has the exact dynamical behavior

as the original fourth-order dg-model.

There are double-frequency terms in the torque equation that cause the single-
phase induction machine to have oscillations in its speed. These oscillations can be
eliminated by applying standard averaging theory yielding an averaged seventh-order
dg-model. Applying an additional transformation using forward and backward com-
ponents yields a seventh-order fb-model and the standard steady-state equivalent

circuit of a single-phase induction machine.

Using space vector theory, a new model for two three-phase induction machines
connected in series has been derived. Interestingly, this new model is dynamically
equivalent to the averaged model of a seventh-order fb-model single-phase induction
machines. This is a new proof of the well-known theory in [4] that supports that two

three-phase induction machines connected in series have the same dynamic response
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as a single-phase induction machine.

Finally, it has been proved that the double-frequency terms can be recovered using
the solution of the averaged model. This recovery is done by assuming that the stator
and rotor electrical transients are on their quasi-steady-state manifolds. Appropriate
initial conditions have to be determined using the quasi-steady-state circuit. The
speed pulsation recovery explains the fact that, in a single-phase machine, the torque
and speed vibrations are due to the interaction of the magnetic fields located in the

same air gap.

5.2 Recommendations for Future Work

This new model of a single-phase induction machine will be useful in modeling single-
phase motor loads in power system stability studies. The dynamic behavior of a
single-phase induction machine can be predicted and simulated by using a first-order
speed model.

The torque equation of this new model for the single-phase induction machines
can be extended to account for the vibrational torques, which include not only
the averaged torque but also the double-frequency components and other negligible
harmonics. The effect of the vibration on the emitted acoustical noise can be investi-
gated as well as the improvements in the structural design of single-phase induction

machines.

In the case of two three-phase induction machines connected in series, the satura-
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tion level of rotor or stator windings can also be studied with the help of this model.
It is not clear at this point how saturation effects the single-phase machine where all

the magnetic fields are present in the same air gap.
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APPENDIX A

STANDARD AVERAGING THEORY

The theory of averaging is a technique for replacing a possibly time-varying vector
field by its average over time with the goal of obtaining asymptotic approximations

of the original system [11]. Consider a first-order differential equation of the form

dx

i ef(z,tye), z(0) = =z, =z 2, € DCR (A.1)

where D is an open set on which f is defined. The parameter € is assumed small. Let

us also assume that f is periodic in ¢ with period T'. Let us define the average

flz) = %/0 f(z,s,0) ds (A.2)

The idea behind averaging is to replace the nonautonomous differential equation (1)

with a first-order averaged and autonomous differential equation

d _
== ), 20 = w (A.3)
dt
Let x(t) be the solution of (A.1) and let z(¢) be the solution of (A.3) and let L,
independent of €, be such that z(t) € D for 0 < e < L. Then, there exists an

e-independent constant C' [11] such that
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lz(t) = 2()]] < Ce (A.4)

for 0 < et < L. We say that

z(t) = z(t)+O(e) (A.5)

on the time interval T'/e.

As an example, consider the equation

dx

o e(x(l — z) 4 sint), z(0) = 2, ¢ = 0.05 (A.6)

which models a slow logistic growth (the x(1 —x) term) with a seasonal influence (the

sint term). Its averaged system is

dz

= = czl=2),  #(0) = 2 ¢ = 005 (A7)

Figure A.1 shows the exact solution in a solid line and its averaged approximation in

a dashed line showing that the seasonal influence is O(e).



—— Original Model
1.8 : : —— Averaged Model

12F

0.8 i i i i i i i i i i
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Figure A.1: Solutions of the Original and Averaged Differential Equations
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APPENDIX B

MODELING OF A THREE-PHASE INDUCTION

MACHINE

In nearly all applications, the induction machine is operated as a motor with the
stator windings connected to a balanced three-phase source and the rotor windings
short-circuited. The flux-current relationships of a three-phase induction machine

with sinusoidally-distributed windings are given in [8] (page 140) as

>\sa Lsasa Lsasb Lsasc Lsara Lsarb Lsarc isa

)\sb stsa stsb stsc stra strb strc Z.sb

)‘sc Lscsa Lscsb Lscsc Lscru Lscrb Lscrc isc
- (B.1)

)\ra Lrasa Lrasb Lrasc Lrara Lrarb Lrarc ira

>\rb Lrbsa Lrbsb Lrbsc Lrbra Lrbrb Lrbrc irb

)\rc chsa chsb chsc chra chrb chrc l.rc

where

Lsasa - stsb = Lscsc - L€5+Lms (B2)
L = L = L = L = L = L = Loms B.3
sasb — sbsa — sasc — scsa sbsc — sesb — 9 ( . )
L = L = L = L = L = L = Loms B.4
rarb — rarc — rbra — rbrc — rcra rerb — T 9 ( . )

Lsara = strb = Lscrc = Lms cos 0 (B5>
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Lsarb = strc = Lscra = Lrasc = LTbSCL = chsb = Lms COS<9+]~2OO)(B6>
Lsarc - stra - Lscrb = Lrasb - Lrbsc - chsa - Lms 008(9_1200)(B7>

Lraﬂ'a - Lrbrb - chrc - L€r+Lms (Bg)

assuming that rotor variables have been referred to the stator side. By defining the

following stator and rotor space vectors of currents and fluxes

fo = 2 Dt ade+ a0 (B.9)
iy = §[@ + @iy + G ire] (B.10)
X = g [Ara + @ + a2\, ] (B.11)
i = g[im + Ty + Goire) (B.12)

where a = 1/120°, the flux-current relationships of a three-phase induction machine

can be compactly expressed as

- 3. - 3. o
X, = (Lgs+§Lms)is+§Lmsireje (B.13)
- 3 - - 3 -

N, = iLmsise’je—l—(Lgr—i—iLms)ir. (B.14)

The voltage equations for both stator and rotor windings are defined as follows

d\

sa s'sa > B.1

v Rgisq + o (B.15)
, dg

Ve = Ryig+ dt” (B.16)
dAse

dt
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dAsa

0 = Rgig B.18
lsq + o ( )
. d)\sb
0 = R, B.19
Leh + at ( )
dXge
0 = R, B.20
lse + = (B.20)
and, in vector form
. dh
U, = Rgiz+ — B.21
U s + o ( )
- dX,
0 = Ry, +— B.22
iy + o ( )

where X, and X, are given by Equations (B.13) and (B.14).

B.1 Torque Equation in a Three-Phase Induction Machine

Assuming an electrically-linear machine, the magnetic co-energy is given by

1 1 1 1 1 1
Wr,n = EAsaira + EAsbisb + 5)\scisc + 5)\7“(12.1%1 + 5)\rbirb + 5)‘Tcirc' <B23)

Using the previously-defined space vectors, it can be shown that

. 2 2
)\SZ: = g(Asaisa + )\sbisb + )\scisc> - §L€S (isa + isb + isc)Q
243 . . . . . .
]%_ [)\sa(lsc - Zsb) + )\sb(lsa - Zsc) + )\sc(lsb - Zsa)] . (B24)

Hence,

. . . 3 o 2 1 . . .
()\sazsa + )\stsb + )\sczsc) = 5%6{)\525} + gLés (Zsa + 1sb + 250)2 (B25)
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Similarly, for the rotor windings, it can be shown that

3 - 1
(Araira + )\TbiT'b + Arcirc) - §%€{AT‘Z:} + gLfr(ira + irb + irc)Z- <B26)

Using Equations (B.25) and (B.26), the co-energy can be expressed as

1 1 1 1 1 1
, _ - . - . - . - . - . - .
Wm — 2)\5(127"(1 + 2/\sblsb + 2)\50250 + 2>\TGZT’(Z + 2A7‘blrb + 2/\7“627’(: (B27)
1 1
= § (Asaisa + )\sbisb + )\scisc) + 5 ()\raira + Arbirb + )\rcirc> <B28)
1/3 R 1
= § <§§Re{)\s'l:} + gLér(Z’sa + Iisb + Z'sc>2)
1 /3 omy 1.
+§ §%e{>\r r} + gLZ'r’(@ra + 1y + Zrc) <B29)
3 N N 1 . . . 2
= Zé}?e{)\s s + )\rzr} + ELZT(Zsa + 15 + Z50)
1
+_L€r (ira + irb + 'L.rc)2 (B?)O)

6

Taking the electromagnetic co-energy as a function of the stator and rotor currents

and the electrical angle 6,

Wyln = Wyln(ism isb7 isc; iraa irln irm 0) (B?)l)

the electromagnetic torque is obtained as the partial derivative of the co-energy with

respect to the physical angle of rotation 6,

T ow/ _ (p) ow/

90, 2/ 00 (B:32)

since
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2
On = (-0 B.33
) .39
Thus,
_ (P 0 |3 o o Ly . ‘ o . _ .
Te - <2> o6 |:4(§R€{>\S s+)‘r r})+ 6 (( Sa+25b+'lsc) +('lra—|—Zrb—|—er) )
which simplifies to
— 3 p a N T X

7= () (5) 5y (Rt + 5.2) (B.34)

Using the flux-current relationships from Equation (B.13) and (B.14), we have

3 0 S S B
T, = (-) (p ) - {%e {(Lgs 5L )it + 5 Ly 4 5 L 0T,

4)\2/ 90 2 5

+(Ler + ;Lm)m’:H : (B.35)
Hence,

7. = (2) (5) 5 |Re | SLmc: 4 S e i (B.36)

e 4 2) 99 9 mslr s 5 ms sty .
or

— § ]_9 § K j9_"‘*_ § 7j9_.,_.,*
T. = <4> <2> {3%6 {]2Lmslr€ iy szmse isiy o | - (B.37)

After simplifying the above expression, the developed electromagnetic torque is

7= (5) () (5zm) om (i), (B.33)



