High-Temperature Corrosion Testing of Uranium Silicide Surrogates

B. J. Jaques
Boise State University

G. Alanko
Boise State University

D. P. Butt
Boise State University

Copyright 2016 by the American Nuclear Society, La Grange Park, Illinois.
High-Temperature Corrosion Testing of Uranium Silicide Surrogates

K. Urso, a K. Sridharan, a B. J. Jaques, b,c G. Alanko, b,c D. P. Butt, b,c M. Meyer, d P. Xu, e and B. Tyburska-Püschel* a

a University of Wisconsin–Madison, Department of Engineering Physics, 1500 Engineering Drive, Madison, Wisconsin
b Boise State University, Department of Materials Science and Engineering, Boise, Idaho
c Center for Advanced Energy Studies, Idaho Falls, Idaho
d Idaho National Laboratory, Idaho Falls, Idaho
e Westinghouse Electric Company LLC, Pittsburgh, Pennsylvania

Received December 7, 2015
Accepted for Publication May 9, 2016
http://dx.doi.org/10.13182/NT15-155

Abstract — The corrosion resistance of cerium silicide, a surrogate of uranium silicide, is investigated to gain insight into the reaction of uranium silicide with water. As-received and proton-irradiated Ce3Si2, CeSi2, and CeSi1.5 monolithic pellets are subjected to corrosion tests in water at 300°C and 9 MPa for up to 48 h. Results show that an oxide layer composed of Ce4.85(SiO3)2O forms on the surface of all samples, and it grows thicker with extended exposure times. Irradiated samples corrode to a greater extent than their unirradiated counterparts, which is mainly a result of the existing post-irradiation cerium oxide and the presence of ion-induced defects. Most of the Ce3Si2 samples crack (as-received) or fracture (ion-irradiated) during testing, which is due to the brittleness of the samples and oxide erosion/spallation that occur during testing.

Keywords — Cerium silicide, water corrosion, surrogate.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

The nuclear power industry has benefited from incremental system, equipment, and fuel design improvements that have increased efficiency and reliability of reactors. While these improvements have supplied small uprates and have kept nuclear power competitive, they seem to approach the maximum achievable impact within current material and regulatory constraints. To obtain higher uprates and increased efficiency, a fundamental change in the fuel needs to be made. Transitioning to a high-uranium-density fuel will allow for extended cycle lengths, large power uprates, and potential high burnups helping to meet growing electricity demands and contributing to the future sustainability of nuclear power.

Uranium silicide is one of the most promising high-uranium-density intermetallic fuels because of its advantageous thermal properties, irradiation performance, and accident tolerance.1–3 U3Si2 boasts a uranium density of 11.31 g U/cm3, which is nearly 20% U more than in UO2, and it has a thermal conductivity that trends up with temperature opposed to down as seen with UO2 (Ref. 4). Calculations have shown that at temperatures capable of melting UO2 (Tm = 2850°C), the centerline temperature of U3Si2 (Tm = 1665°C) is 775°C lower than its melting point despite having a melting temperature almost 1200°C lower than UO2 (Ref. 2). While the properties of these silicides show promise for use as advanced nuclear fuels, their reactivity in light water reactor (LWR) conditions needs to be better understood.

One such environment is when the coolant comes into contact with the fuel due to a cladding breach. Cladding
breaches can occur during normal reactor operation due to fretting or pellet-cladding interactions or from embrittlement and cracking stemming from hydrogen production. Regardless of the cause, when a cladding breach occurs, the corrosion resistance of the fuel becomes important. If the fuel degrades rapidly, it can lose its structural integrity and be washed away by the circulating cooling water contaminating the primary loop. Such an accident would result in expensive cleanup costs and additional downtime for utilities. To avoid these problems, fuel must be stable in water, and its corrosion resistance should not be worse than that of UO₂ when exposed to the high pressures and temperatures associated with LWRs.

Many corrosion studies investigating uranium silicide primarily use dispersion fuels in research reactor conditions. These studies are performed by drilling a hole through the fuel plate and placing it in boiling water. Results from these tests showed that the solubility of several uranium silicides in water up to 100°C is negligible as no uranium is detected on the fuel plate surface after 150 h of testing. Experiments that did use monolithic fuel at elevated temperatures are primarily focused on U₃Si₂ because of its higher uranium density and its reported superior corrosion resistance in water. These studies found that a decrease in corrosion performance occurred due to the presence of free U (Refs. 8 and 9), U₃Si₂ (Ref. 10), or silicon content outside the range of 3.8 to 4.0 wt% (Refs. 8 and 10). With proper heat treatment of U₃Si₂ corrosion rates are found to be 0.07 to 0.14 mg/(cm²·h) at 260°C and 0.06 to 0.09 mg/(cm²·h) at 343°C and 15.2 MPa, which is substantially less than the 171 mg/(cm²·h) in 100°C water that is found for unalloyed uranium. Further examination of U₃Si₂ by Bourns in water at 300°C and 12 MPa found that there is no trend in corrosion rate with silicon values between 3.6 and 4.0 wt%, which is in agreement with Howe and Bell.

These corrosion studies only referenced the U₃Si₂ as fractional additions to U₃Si due to an excess amount of silicon added during the fabrication processes. While having excess silicon to convert free uranium to U₃Si₂ is beneficial, too much U₃Si₂ has been shown to be detrimental to the fuel's corrosion resistance. Corrosion seems to be accelerated in areas surrounding U₃Si₂ particles. It is not fully understood why U₃Si preferentially hydrides to UH₃ (Ref. 15) around U₃Si₂, but it may be related to surface energies associated with the interphase or with differing diffusion rates. Reaction rates are derived from data from several experiments, and it is found that as-cast U₃Si₂ has a corrosion rate that is an intermediate between as-cast U₃Si and heat-treated U₃Si (Ref. 16). It is known that microstructure affects corrosion resistance and heat-treated U₃Si₂ may provide even greater corrosion resistance.

While previous studies have mentioned U₃Si₂ only as trace additions to U₃Si, few studies have focused solely on U₃Si₂. Two studies that did investigate pure U₃Si₂ found that it performs no worse than UO₂ pellets at 300°C and 9 MPa in water. After 29 h of exposure, U₃Si₂ powder does not react to any more extent than UO₂ sintered pellets during the same exposure time despite the orders-of-magnitude difference in surface-to-volume ratio. Additionally, U₃Si₂ sintered pellets between 85% and 87% theoretical density (TD) are tested, and after 29 h of exposure, the pellets did not hydrolyze to any more extent than UO₂ sintered pellets did after 1 h of exposure despite having lower TDs than the UO₂ pellets. Further studies that are more representative of the water used in reactors need to be conducted to better understand the properties of these uranium silicides in water. However, investigation into surrogate materials can give additional insight with reduced cost and risk.

The use of surrogates in place of radioactive elements has several advantages including reduced risk and cost and the number of safety protocols that need to be in place. Cerium is chosen as a surrogate for uranium with these silicides because Ce₃Si₂ is isostructural with U₃Si₂ (Refs. 19, 20, and 21). Investigation into the thermodynamics of oxide formation using HSC Chemistry shows that many Ce₃Si₂ and U₃Si₂ reactions in water are comparable. No comparison between Ce₃Si₂ and U₃Si₂ is made in this fashion as HSC Chemistry does not include many of the cerium silicide compounds. Table I shows the Gibbs free energies, enthalpies, and entropies for these reactions because of its higher uranium density and its comparable. No comparison between Ce₃Si₂ and U₃Si₂ is made in this fashion as HSC Chemistry does not include many of the cerium silicide compounds. Table I shows the Gibbs free energies, enthalpies, and entropies for several similar reactions. These values show that these similar reactions are favored to occur for cerium and uranium silicides, further validating cerium silicide as a suitable surrogate for corrosion testing of uranium silicide fuels.

II. EXPERIMENTAL APPROACH

Three different compositions of cerium silicide are examined to determine their corrosion resistances. Both proton-irradiated and unirradiated Ce₃Si₂, Ce₅Si₃, and Ce₅Siₓ (x = 7 or 9) are tested at 300°C and 9 MPa (LWR's condition) in an Autoclave Engineers Inc. self-sealing flow-through autoclave (see Fig. 1) located at the Center for Advanced Energy Studies, Advanced Materials Laboratory, Idaho Falls. Tests are performed with a 3°C/min ramp-up rate and are allowed to air cool to room temperature. For each test 100 ml of deionized water is used. The autoclave is a 35-kg custom unit. The benchtop system consists of a Type 316 stainless steel pressure vessel enclosed in a ceramic band heater. The heater is
Corrosion testing of uranium silicide surrogates

A comparison of Gibbs free energies, enthalpies, and entropies for several reactions of USi2 and CeSi2*

<table>
<thead>
<tr>
<th>Equation</th>
<th>ΔH (kJ)</th>
<th>ΔS (J/K)</th>
<th>ΔG (kJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeSi2 + O2(a) = CeO2 + 2Si</td>
<td>-1019</td>
<td>-405</td>
<td>-786</td>
</tr>
<tr>
<td>USi2 + O2(a) = UO2 + 2Si</td>
<td>-1071</td>
<td>-373</td>
<td>-858</td>
</tr>
<tr>
<td>CeSi2 + 2O2(a) = Ce + 2SiO2</td>
<td>-1870</td>
<td>-764</td>
<td>-1432</td>
</tr>
<tr>
<td>USi2 + 2O2(a) = U + 2SiO2</td>
<td>-1929</td>
<td>-771</td>
<td>-1488</td>
</tr>
<tr>
<td>USi2 + O2(a) = U + Si2O3(g)</td>
<td>-401</td>
<td>-175</td>
<td>-301</td>
</tr>
<tr>
<td>CeSi2 + O2(a) = Ce + Si2O2(g)</td>
<td>-342</td>
<td>-169</td>
<td>-245</td>
</tr>
<tr>
<td>e+ + CeSi2 + 3OH(-a) + 4H(+a) = Ce(OH)2 + Si2H6(g)</td>
<td>-251</td>
<td>678</td>
<td>-639</td>
</tr>
<tr>
<td>USi2 + 4OH(-a) + 4H(+a) = U(OH)5 + Si2H4(g)</td>
<td>-268</td>
<td>879</td>
<td>-772</td>
</tr>
<tr>
<td>CeSi2 + 1.5OH(-a) + 2.75O2(a) + 1.5H(+a) = Ce(OH)3 + 2SiO2</td>
<td>-2936</td>
<td>-835</td>
<td>-2458</td>
</tr>
<tr>
<td>USi2 + 2OH(-a) + 3O2(a) + 2H(+a) = U(OH)3 + 2SiO2</td>
<td>-3138</td>
<td>-893</td>
<td>-2626</td>
</tr>
<tr>
<td>2e- + USi2 + 4OH(-a) + 6H(+a) = U(OH)5 + Si2H6</td>
<td>-270</td>
<td>741</td>
<td>-695</td>
</tr>
<tr>
<td>3e- + CeSi2 + 3OH(-a) + 6H(+a) = Ce(OH)3 + Si2H6</td>
<td>-253</td>
<td>539</td>
<td>-562</td>
</tr>
<tr>
<td>6e- + 2CeSi2 + 3OH(-a) + 9H(+a) = Ce2O3 + 2Si2H6</td>
<td>-358</td>
<td>621</td>
<td>-714</td>
</tr>
<tr>
<td>USi2 + 3OH(-a) + 3H(+a) = UO2 + Si2H6(g)</td>
<td>-91</td>
<td>821</td>
<td>-561</td>
</tr>
<tr>
<td>CeSi2 + 2O2(a) + 2H(+a) + 2e- = CeH2 + 2SiO2</td>
<td>-2067</td>
<td>-921</td>
<td>-1540</td>
</tr>
<tr>
<td>USi2 + 2O2(a) + 3H(+a) + 3e- = UH3 + 2SiO2</td>
<td>-2062</td>
<td>-967</td>
<td>-1508</td>
</tr>
</tbody>
</table>

*From Ref. 22. Similar reactions occur for cerium and uranium silicides, validating cerium silicide as a uranium silicide surrogate.

Prepared powders were cold pressed at 5 kN in a 21-mm die and then consolidated to high densities by spark plasma sintering (SPS). Samples were sintered for 15 min at a temperature of 75% of the melting point for each compound in a Dr. Sinter SPS-550. Sintered pellets were sectioned with a low-speed saw into smaller pieces and lightly polished to remove cutting fluids and other surface debris from sintering prior to corrosion testing. The density of all pellets is >95% TD as determined by both the Archimedes method and porosity measurements by scanning electron microscopy (SEM) combined with ImageJ (Ref. 25).

Proton-irradiation and post-irradiation examination were done at the University of Wisconsin–Madison using the facilities in the Characterization Laboratory for Irradiated Materials. Irradiation of 3-mm disks polished down to a thickness of <500 µm was performed with 2-MeV...
protons to a fluence of $3.9 \times 10^{18} \text{ p/cm}^2$ at 400°C and 800°C with a damage rate of 3.9×10^{-6} displacements per atom (dpa)/s. The irradiation resulted in an implantation zone of 20 µm with a damage level of 0.5 dpa at 10 µm (see Fig. 2). SRIM 2013.00 (Ref. 26) is used along with the method proposed by Stoller et al.27 to calculate the damage profile for Ce$_3$Si$_2$ using the Kinchin-Pease approach with displacement threshold energies of 25 and 15 eV from cerium and silicon,29 respectively. SRIM reports an inaccurate TD for Ce$_3$Si$_2$, and a TD of 5.98 g/cm3 is used in the calculations.28 Usually, the extent of corrosion is estimated by measuring the sample mass change before and after the corrosion test with the existing (weight loss) or removed oxide layer (metal loss). However, because of sample fracturing and the subsequent loss of some material during testing, the determined corrosion rates (not shown) have limited values and do not reflect the true corrosion rates of the samples. Therefore, in this paper the extent of corrosion is judged by sample stability (fracturing and cracking) as well as the thickness of the oxide layer formed during the corrosion process.

Identification of the oxide layer formed on the surface was done by X-ray diffraction (XRD) on a Bruker D8 Discovery XRD with a Cu $\phantom{\text{K}}_{\alpha}$ source ($\lambda = 1.5418$ Å). A 0.5-mm incident slit and collimator were used with a two-dimensional detector to collect θ – 2θ scans at room temperature at the range between 20°C and 80°C with four steps (150 s/step) starting at $\theta = 20°C$ and increments of 20°C. Identical parameters were used for all investigated samples, and no background or K_{α} stripping was performed. The experimental XRD spectra were compared with the Inorganic Crystal Structure Database,29 with the peak positions calculated for Cu $\phantom{\text{K}}_{\alpha}$, and for clarity, only peaks of intensity >10% /111, are shown. The half-value layers (penetration of X-rays) are 3.50 and 5.44 µm for Ce$_3$Si$_2$ and CeSi$_2$, respectively, which means that in the proton-irradiated samples, only the damaged layer is probed and not the substrate.

After corrosion testing, the samples were sectioned and mounted using a conductive mounting compound and a hot mounting press. The mounted samples were then polished with 1200 grit silicon carbide paper with further polishing being done with diamond paste. SEM and
energy dispersive spectroscopy (EDS) analysis along the sample’s cross section was done on a JEOL JSM-6610 scanning electron microscope, and data were used to determine the maximum thickness of the oxide layer. Several low-count-rate (high-resolution) EDS line scans were completed on all four sides of each sample starting from the mount material, continuing through the oxide layer, and finishing in the bulk material. Elemental data were collected using an EDS detector and quantified using the ZAF method to show the cerium silicide composition as a function of cross-sectional distance. The oxide layer thickness is found by determining where the oxygen concentration surpassed the average oxygen level in the bulk material and in the mount material. Only the thickest oxide layers found are presented in this work because oxide growth, erosion, and cracking (see Fig. 3), which can possibly lead to oxide spallation, are competing phenomena, and thinner oxide layers do not represent the extent of corrosion. Erosion is expected as the oxide layer grows thicker and material on the surface can be removed by circulating water.

III. REACTION OF Ce₅Si₃ WITH WATER: RESULTS AND DISCUSSION

III.A. Samples Prior to Corrosion Testing

Prior to testing, XRD analysis performed on all samples shows that samples from all three stoichiometries are nearly phase pure (also see Figs. 4a and 5a, black lines with full squares). The 2-MeV proton irradiation leads to CeO₂ formation on the surface of the Ce₃Si₂ samples, while no oxidation of CeSi₂ and CeSi₁ₓ (x = 7 or 9) is observed.²⁻

III.B. Ce₃Si₂ Water Corrosion

Six unirradiated Ce₃Si₂ samples are corrosion tested: two each for 1, 12, and 24 h. Slight mass gains and positive corrosion rates are observed only in the shortest tests, while mass losses are observed in the longer tests. These losses occur because large pieces of the samples fracture off during testing (as-received samples) or the

![Image](image-url)

Fig. 3. (a) Backscattered electron detector–SEM image showing the oxide layer formed on the outer edge of the 24-h corrosion-tested Ce₅Si₃, and (b) the corresponding EDS line scan showing the oxide layer thickness.

![Image](image-url)

Fig. 4. XRD analysis of the SPS-Ce₅Si₃ samples after water corrosion test conducted at 300°C and 9 MPa for up to 24 h. The results show the formation of Ce₄.5(SiO₂)O (pdf 00-043-0441) (Ref. 30). The lack of substrate signal indicates that the oxide thickness is greater than the X-ray penetration depth of ~3.5 µm.
samples turn into dust (see Table II). This behavior is believed to be due to the brittleness of the as-received CeSi2 samples. Internal stresses coupled with the stress applied by the oxide layer may have been enough to cause the larger pieces to fracture off in a brittle fashion.

The maximum oxide layer thickness increases with extended exposure times and reaches a maximum of 4.9 µm after 24 h. XRD analysis (see Fig. 4a) shows the evolution of the oxide layer formation with corrosion time with the oxide being identified as hexagonal cerium oxide apatite Ce4.67(SiO4)2O (Ref. 30) (see Fig. 4b). This oxide forms through the reaction of two binary oxides CeO2 and SiO2.

Rewriting the oxide layer composition (divide by a factor 4.67/3 = 1.56) to more closely represent the CeSi2 composition, it turns into CeSi1.5O1.35. From this, it can be seen that there is a slight loss of silicon content and a large gain in oxygen content. Substantial oxide formation starts after 12 h of water corrosion and continues such that after 24 h the oxide is thick enough that the substrate signal is no longer detected by XRD (see Fig. 4b). The X-ray penetration depth in Ce4.67(SiO4)2O (density ρ = 5.47 g/cm3) (Ref. 31) is 4.83 µm, and the oxide thicknesses measured by XRD and EDS are in good agreement, which means the oxide thickness is fairly uniform.

Two CeSi2 samples irradiated to 0.5 dpa at 800°C are corroded for 12 and 24 h. One CeSi2 sample, irradiated to 0.5 dpa at 400°C, is tested for 24 h. One edge of the sample irradiated to 0.5 dpa at 800°C for 12 h fractures off during testing, while the sample irradiated to 0.5 dpa at 800°C for 24 h fails completely, breaking up into fine dust with only small fragments remaining (see Table II). The sample irradiated to 0.5 dpa at 400°C tested for 24 h nearly breaks in half during testing, and multiple cracks are seen when investigating with an optical microscope. Higher-temperature irradiation accelerates the fracturing process, and the 400°C irradiated sample would possibly break apart in a similar fashion as the 800°C sample given additional exposure time.

The mobility of defects, especially vacancies, depends on the temperature, and it is expected that higher temperatures would lead to formation of more complex defects like vacancy clusters and voids. The melting temperature of Ce3Si2 is Tm = 1608 K and of CeSi2 is Tm = 1893 K (Ref. 19), which means that all irradiations were performed at the homologous temperatures above 0.3Tm, i.e., at temperatures that would lead to three-dimensional defect formation. We have no microstructure data from transmission electron microscopy to support this hypothesis, but it is expected that especially the 800°C irradiation leads to formation of a microstructure populated with voids and even nanopores, which causes a complete sample failure.

Maximum oxide layer thicknesses for irradiated samples are thicker than unirradiated counterparts and reach a maximum of 8.84 µm with the sample irradiated to 0.5 dpa at 400°C after 24 h of corrosion. The thickness of the oxide layer of the sample irradiated to 0.5 dpa at 800°C cannot be measured but is believed to have been thicker because of the manner in which the sample failed. No post-test XRD is performed on irradiated samples as the samples are consumed during the mounting process. Proton irradiation increases the brittleness of the samples as irradiated CeSil2 samples performed worse than unirradiated samples from a mechanical integrity standpoint. The increased brittleness may be due to the presence of post-irradiation CeO2 (Ref. 28), which leads to faster formation of Ce4.67(SiO4)2O.

III.C. CeSi2 Water Corrosion

Three unirradiated CeSil2 samples are exposed for 12, 24, and 48 h. All samples remain completely intact with...
TABLE II

Optical Images of Unirradiated and Proton-Irradiated SPS-Ce$_3$Si$_2$, SPS-CeSi$_2$, and SPS-CeSi$_{1-x}$ Before (Left) and After (Right) the Water Corrosion Test Conducted at 300°C and 9 MPa at Various Times*

<table>
<thead>
<tr>
<th>Corrosion Time</th>
<th>SPS-Ce$_3$Si$_2$</th>
<th>SPS-CeSi$_2$</th>
<th>SPS-CeSi$_{1-x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 h</td>
<td></td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td>12 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 h</td>
<td>Not tested</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proton-Irradiated Samples

<table>
<thead>
<tr>
<th>Corrosion Time</th>
<th>SPS-Ce$_3$Si$_2$</th>
<th>SPS-CeSi$_2$</th>
<th>SPS-CeSi$_{1-x}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 h</td>
<td></td>
<td>Not tested</td>
<td>Not tested</td>
</tr>
<tr>
<td>24 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 h</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Red frames (color online) mark locations were pieces of material fell off. The 1-mm scale bar shown for the SPS-CeSi$_{1-x}$ and 12-h sample applies to all images. CeSi$_2$ shows higher resistance to water corrosion than Ce$_3$Si$_2$ with prolonged exposure times.

Only a darkening in color visible on the surface as seen in Table II. The maximum oxide layer thickness for each time interval is less than that for the corresponding Ce$_3$Si$_2$ tests, and it increases with the exposure time (see Fig. 6). XRD analysis shows that the oxide layer formed is the same Ce$_{4.67}$(SiO$_4$)$_3$O (or rewritten as CeSi$_{0.64}$O$_{2.8}$) and,
Unlike Ce₃Si₂, the substrate signal is detected even after the 48-h test (see Fig. 5b). XRD pattern evolution with corrosion time shows almost no signs of surface oxidation after the 24-h tests and only slight oxidation after 48 h. This result is in contrast to the maximum oxide layer thickness measured by EDS (see Fig. 6), which indicates a nonuniform oxide distribution. XRD analysis can provide some insight as to the uniformity of the oxide as this technique is sensitive to an average oxide thickness.

At the same corrosion conditions, CeSi₂ samples perform better than Ce₃Si₂ samples with no fracturing or cracking and thinner maximum oxide layer formation. This shows a slower oxide layer growth or different corrosion mechanism in CeSi₂ than in Ce₃Si₂ samples, and it agrees with maximum oxide layer thickness measurements by EDS shown in Fig. 6. A maximum oxide layer thickness of 3.15 µm is found after 48 h of testing.

One CeSi₂ sample is irradiated to 0.5 dpa at 400°C and tested for 24 h. This sample shows only a slight darkening of the surface and has no fractures or deformations (see Table II). Surface features visible pretest are also seen post-test. The maximum oxide layer thickness is larger than the 24-h unirradiated sample with the thickest oxide layer ~4.71 µm (see Fig. 6).

The behavior of slower oxidation of CeSi₂ is expected since oxidation studies on Ce₃Si₂ have shown that secondary particles of CeSi₂ form and retard further oxidation. CeSi₂ samples are not as brittle as Ce₃Si₂ samples and maintain integrity throughout testing. While some cerium density is being forfeited in this compound, its corrosion resistance is superior and may still possess favorable properties justifying USi₂ as a replacement for UO₂. Proton-irradiated CeSi₂ performs better than Ce₃Si₂ possibly because CeSi₂ does not experience post-irradiation oxide formation as reported by Reinicke et al. However, proton-irradiated CeSi₂ experiences greater surface oxidation than its unirradiated counterpart, which is probably caused by the presence of ion-induced defects.

III.D. CeSi₁.₅ Water Corrosion

Two unirradiated CeSi₁.₅ samples are tested for 12 and 24 h, and one CeSi₁.₅ sample irradiated to 0.5 dpa at 400°C is tested for 24 h. All samples remain intact with no fractures, similar to CeSi₂ samples (see Table II). The fracture of the proton-irradiated sample occurs post-corrosion during sample removal from the pressure vessel. Maximum oxide layer thickness measurement by EDS (see Figs. 3 and 6) shows the formation of a thicker oxide layer for longer exposure times and its rapid growth for irradiated samples (see Fig. 6). Cracks in oxide are observed (see Fig. 3), which could lead to oxide spallation. XRD analysis once again shows the formation of a Ce₄67(SiO₄)₃O oxide layer, but even after a 24-h test, the substrate signal is still detected, which indicates a nonuniform oxide thickness. The maximum oxide thickness observed by EDS is <5 µm, but the substrate signal is still detected by XRD, which confirms that the oxide thickness is not uniform. That is why the CeSi₁.₅ samples did not fracture despite the fact that they have comparable or higher maximum oxide thicknesses compared to Ce₃Si₂ samples. CeSi₁.₅ sample oxide layers are thicker than Ce₃Si₂ and CeSi₂ for both unirradiated and irradiated samples, but the integrity of the samples is comparable to that of CeSi₂ as no fracturing is observed.

Optical images reveal reflective flakes of what is hypothesized to be silicon dioxide that is not seen on other samples (see Fig. 7). These particles appear only on the CeSi₁.₅ samples, and the number density of these particles increases with the corrosion time. Existence of this oxide is a prerequisite for the formation of Ce₄67(SiO₄)₃O. Because silicon dioxide is amorphous, we are unable to confirm its presence using XRD. Also, we were not able to analyze those flakes using EDS as they are not reflective under SEM and therefore are very difficult to localize.

As seen in Table II, five out of six Ce₃Si₂ samples experienced various degrees of cracking, and no cracking was observed in the CeSi₂ or CeSi₁.₅ samples. On the other hand, unlike Ce₃Si₂, the CeSi₂ and CeSi₁.₅ samples display
uneven oxide distribution, which could mean that they experienced local oxide spallation. This could be either due to the brittleness of the bulk material further enhanced by proton irradiation (no literature data are available on the hardness of those compounds) or due to the stress applied by the oxide layer that could stem from the lattice mismatch of the bulk material and the oxide. As shown in Table III, the $\text{Ce}_4\text{Si}_7(\text{SiO}_4)_3\text{O}$ oxide has a different crystal system than the bulk materials, and there is a large mismatch between lattice parameters. Such lattice discrepancy could have an influence on the brittleness of the material.

Figure 6 shows measured maximum oxide layer thicknesses against time tested. A general trend of increasing oxide thickness with increased exposure time is seen for all three compounds. In all cases irradiated samples possess a thicker corrosion layer than their unirradiated counterparts. This is connected to the known phenomena of irradiation-assisted corrosion and irradiation-assisted stress corrosion cracking, which enhance the material susceptibility to both corrosion and cracking. However, both mechanisms, especially stress corrosion cracking, are not yet fully understood, and the final corrosion/cracking results might differ between irradiation-corrosion experiments performed subsequently or simultaneously. The extent of this difference is unknown at this moment as there are only a few facilities that are able to perform simultaneous ion-irradiation and water corrosion.

III. E. ICP-MS Test Results

An oxide layer of $\text{Ce}_4\text{Si}_7(\text{SiO}_4)_3\text{O}$ was formed on the surface of all tested samples. In the case of Ce_3Si_2, this means that there is a small loss of silicon and a large gain in oxygen content. For CeSi_2 and $\text{CeSi}_{1.9}$, there is a large loss in silicon content and a small gain in oxygen. As was confirmed by the ICP-MS test for Ce_3Si_2 and CeSi_2, the excess silicon leached into water.

Figure 8 shows the ratio of cerium to silicon in the post-corrosion water. If both cerium and silicon would erode evenly, then the ratio of cerium to silicon would be 1.5,

![Fig. 8. Ratio of cerium to silicon measured by ICP test in the post-corrosion water for Ce_3Si_2, CeSi_2, and $\text{CeSi}_{1.9}$ samples. No distinction is made between as-received and irradiated samples. For even erosion the ratio of Ce/Si would be 1.5, 0.5, and 0.53 for Ce_3Si_2, CeSi_2, and $\text{CeSi}_{1.9}$, respectively.](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Crystal System</th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce_3Si_2</td>
<td>Tetragonal</td>
<td>7.79</td>
<td>4.36</td>
<td>19</td>
</tr>
<tr>
<td>CeSi_2</td>
<td>Tetragonal</td>
<td>4.19</td>
<td>13.90</td>
<td>29</td>
</tr>
<tr>
<td>$\text{CeSi}_{1.9}$</td>
<td>Tetragonal</td>
<td>4.19</td>
<td>13.89</td>
<td>29</td>
</tr>
<tr>
<td>$\text{CeSi}_{1.7}$</td>
<td>Orthorombic</td>
<td>4.10</td>
<td>13.82</td>
<td>29</td>
</tr>
<tr>
<td>$\text{Ce}_4\text{Si}_7(\text{SiO}_4)_3\text{O}$</td>
<td>Hexagonal</td>
<td>9.66</td>
<td>7.12</td>
<td>30</td>
</tr>
</tbody>
</table>
0.5, and 0.53 for Ce₃Si₂, CeSi₂, and CeSi₁₉, respectively. Especially for Ce₃Si₂, it can be seen that more Si leached into water (~80% to 95%) than one would expect from its stoichiometry (40 at. %) if Si and Ce would erode evenly. The ratio of cerium to silicon for CeSi₂ is only slightly below 0.5, which means that like for Ce₃Si₂, more Si leached into water, but the difference between the erosion strength of Ce and Si is not as pronounced as for Ce₃Si₂. For CeSi₁₉, the silicon concentration in the water is comparable to its content in this compound because the excess Si did not leach into water but precipitated on the sample surface in the form of the silicon dioxide flakes. The detected cerium-to-silicon ratio is independent of the pre-irradiation history of the tested samples.

IV. SUMMARY

Unirradiated and irradiated Ce₃Si₂, CeSi₂, and CeSi₁₉ pellets are water corrosion tested at 300°C and 9 MPa for up to 48 h. Performance of these compounds is evaluated by the integrity of the samples post-test and the observed maximum oxide layer thickness. Conclusions drawn from this work are the following:

1. As-fabricated Ce₃Si₂ fractures during testing.
2. CeSi₂ performs better than Ce₃Si₂ from the standpoints of integrity and maximum oxide thickness.
3. CeSi₁₉ shows the thickest maximum oxide layer and formation of silicon dioxide on the surface, but the XRD results indicate that the oxide thickness is not uniform (average oxide thickness is lower), which prevents the samples from cracking.
4. Irradiation promotes accelerated oxide layer growth.
5. The oxide layer formed on all compounds is that of Ce₆₅(SiO₄)₃O.

From the obtained data it is concluded that CeSi₂ is the most corrosion resistant of the tested compounds. It possessed the thinnest oxide layer and maintained its integrity throughout testing. Ce₃Si₂ did not perform to any appreciable extent worse than CeSi₂ for the thickness of the oxide layer; however, it did suffer from fracturing during testing and needs to be mechanically strengthened for future research. While Ce₃Si₂ testing may provide insights into how U₃Si₁₉ will react, further studies using uranium compounds are required to validate its potential use in commercial reactors. If CeSi₂ is found to be a suitable surrogate for U₃Si₁₉, then USi₂ may be the preferred candidate for further studies due to its enhanced corrosion resistance.

Acknowledgments

This project is supported by the U.S. Department of Energy under Nuclear Energy University Program award 11-3041. The instrumentation support is provided by National Science Foundation grant DMR-1121288.

References

