1-1-2013

Caspase-Cleaved Glial Fibrillary Acidic Protein Within Cerebellar White Matter of the Alzheimer's Disease Brain

Troy T. Rohn
Boise State University

Lindsey W. Catlin
Boise State University

Wayne W. Poon
Institute for Memory Impairments and Neurological Disorders

This document was originally published in International Journal of Clinical and Experimental Pathology. This work is provided under a Creative Commons Attribution-NonCommercial 3.0 license. Details regarding the use of this work can be found at: http://creativecommons.org/licenses/by-nc/3.0/, http://www.ijcep.com/
Caspase-cleaved glial fibrillary acidic protein within cerebellar white matter of the Alzheimer’s disease brain

Troy T Rohn¹, Lindsey W Catlin¹, Wayne W Poon²

¹Department of Biology, Boise State University, Boise, ID 83725, USA; ²Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine CA 92697, USA

Received September 17, 2012; Accepted October 25, 2012; Epub November 20, 2012; Published January 1, 2013

Abstract: Although the cerebellum is generally thought of as an area spared of Alzheimer’s disease (AD) pathology, recent evidence suggests that balance and mobility dysfunction may be magnified in affected individuals. In the present study, we sought to determine the degree of pathological changes within the cerebellum utilizing an antibody that specifically detects caspase-cleaved GFAP within degenerating astrocytes. Compared to control subjects, application of this antibody, termed the GFAP caspase-cleavage product (GFAPccp) antibody, revealed widespread labeling in cerebellar white matter with little staining observed in grey matter. Staining was observed within damaged astrocytes, was often localized near blood vessels and co-localized with other markers of apoptosis including TUNEL and caspase-cleaved tau. Of interest was the association of beta-amyloid deposition in white matter together with GFAPccp in cerebellar AD sections. In contrast, utilizing the tangle marker, PHF-1, neuritic pathology was completely absent in AD cerebellar sections. It is suggested that the observed pathological changes found in the white matter of the cerebellum may contribute to the declined motor performance in AD.

Keywords: GFAP, caspase, cerebellum, Alzheimer’s disease, neurofibrillary tangles, TUNEL, beta amyloid, immunohistochemistry, PHF-1

Introduction

The cerebellum is a subcortical brain structure that is essential for learning and controlling movement [1]. The cerebellum does not initiate movement, but it contributes to the proper timing, coordination, and fine-tuning precision of movement [2]. Consequently, lesions in the cerebellum may lead to postural instability, loss of balance and of normal gait [3]. While Alzheimer’s disease (AD) is characterized by the extent of plaques and tangles predominantly within the hippocampus and cortex, the cerebellum is thought to be largely spared of pathology and is often used as an area of comparison (for example see, [4, 5]). In this regard, studies in AD have documented the relative lack of neuropathological changes in the cerebellum including the integrity of granule cell number and density [6]. However, several studies have indicated that despite the absence of tau pathology [7, 8], it is not uncommon to find diffuse amyloid deposits both in the granular cell layer as well as in white matter of the cerebellum of AD subjects [9-11].

In spite of the relative lack of pathology associated with the cerebellum, several studies have documented mobility dysfunction, loss of balance, and an increase risk for falls in Alzheimer’s patients as compared to nondemented controls [12-16]. The motor impairments, including gait and balance dysfunctions in AD might suggest that pathological changes are evident in this structure that may occur independently of neuritic changes due to the lack of neuropathology found in the cerebellum. To examine this possibility, we tested for the presence of white matter changes utilizing an antibody (GFAPccp) that specifically detects caspase-cleaved GFAP within degenerating astrocytes of the AD brain [17-19]. Using this antibody, we now document the labeling of damaged astrocytes along blood vessels in cerebellar white matter of AD sub-
jects. Moreover, there was a clear association in the pattern of labeling of the GFAPccp antibody with beta-amyloid deposition suggesting a potential interaction between astrocytes and deposited beta-amyloid. The presence of pathological white matter changes within the cerebellum may contribute to the gait and balance abnormalities associated with AD.

Materials and methods

Antibody dilutions

The rabbit GFAPccp (in house, 1:100). The anti beta-amyloid mAb 1560 clone 6E10 (1:400), and PHF-1 (mouse monoclonal, 1:1000). The mAb TauC3 (caspase-cleaved tau) was utilized at 1:100. To visualize beta-amyloid staining, sections were pretreated for 5 minutes in 95% formic acid. To assess apoptosis, the Apoptag peroxidase kit was employed according the manufacturer’s instructions (Millipore).

Immunohistochemistry

Autopsy cerebellum brain tissue from five neuropathologically confirmed AD cases and five neuropathologically normal cases were studied. Human brain tissue sections used in this study was provided by the Institute for Memory Impairments and Neurological Disorders at the University of California, Irvine. Free-floating 50 μm-thick sections were used for immunohistochemical studies as previously described [20].

For single labeling, all sections were washed with 0.1 M Tris-buffered saline (TBS), pH 7.4, and then pretreated with 3% hydrogen peroxide in 10% methanol to block endogenous peroxidase activity. Sections were subsequently washed in TBS with 0.1% Triton X-100 (TBS-A) and then blocked for thirty minutes in TBS-A with 3% bovine serum albumin (TBS-B). Sections were further incubated overnight at room temperature in various primary antibodies as listed above. Following two washes with TBS-A and a wash in TBS-B, sections were incubated in anti-rabbit or mouse biotinylated anti-IgG (1 hour) and then in avidin biotinylated Alexa Fluor 488-labeled tyramide (green, Ex/Em = 495/519) for one label and streptavidin Alexa fluor 555 (red, Ex/Em = 555/565) for the second label, both from Invitrogen (Carlsbad, CA).

Results

Caspase-cleaved GFAP in cerebellar white matter of the AD brain

As an initial approach, we screened cerebellum tissue sections from AD subjects or age-matched controls utilizing our in house GFAPccp antibody that detects caspase-cleaved GFAP within degenerating astrocytes [17]. Immunohistochemical analysis revealed widespread labeling of the GFAPccp antibody principally within white matter of AD cerebellum tissue sections (Figure 1A). In contrast, we observed very little staining of the GFAPccp antibody in age-matched control sections in either white or gray matter of the cerebellum (Figure 1B). Closer examination of the GFAPccp labeling in AD sections indicated strong staining of damaged astrocytes that were in close proximity to blood vessels. This type of staining was very similar to previous results that we found in hippocampal regions of the AD brain [17].

The GFAPccp antibody colocalizes with other markers of apoptosis

To confirm that labeling in cerebellar white matter of the GFAPccp antibody was occurring in astrocytes undergoing apoptosis, double-label experiments were performed using two additional markers for apoptosis including TUNEL.
and caspase-cleaved tau. Using TUNEL labeling, we confirmed both by bright field and immunofluorescence the colocalization with GFAPccp within astrocytes in cerebellar white matter of the AD brain (Figure 2A and 2B). Additional experiments were carried out using an antibody that selectively detects caspase-cleaved tau. This antibody, termed TauC3 recognizes the C-terminal cleavage fragment of tau following cleavage at D421 and has been used as a marker for the activation of apoptosis in the AD brain [21]. Double-label immunofluorescence experiments utilizing GFAPccp together with the TauC3 antibody indicated strong colocalization between the two markers (Figure 2C). Double labeling appeared to be confined to a large extent within damaged astrocytes along blood vessels in cerebellar white matter (Figure 2C).

Association between beta-amyloid deposition and GFAPccp in cerebellar white matter of the AD brain

Experiments were performed to determine any possible relationship between the presence of caspase-cleaved GFAP with pathological features of AD including beta-amyloid deposition and neuritic pathology. Staining of cerebellum sections with anti beta-amyloid mAb 1560 clone 6E10 revealed diffuse, punctate beta-amyloid deposition predominantly within white but not gray matter of the AD brain (Figure 3A and 3B). The diffuse pattern of labeling was in contrast to staining of beta-amyloid in AD frontal cortex sections that led to the characteristic labeling of senile plaques containing a well-defined core (Figure 3C). To identify a possible association between beta-amyloid deposition...
and GFAPccp, double-labeling experiments were performed. In this case, the two markers often appeared localized within the same areas of white matter in the cerebellum (Figure 3D). In this regard, we often found damaged astrocytes labeled with GFAPccp that were in close proximity to diffuse plaques (arrowhead, Figure 3D). In addition, GFAPccp-labeled astrocytes appeared to exhibit punctate beta-amyloid labeling upon their surface (arrows, Figure 3D). In contrast to the diffuse beta-amyloid deposition, we could find no evidence of any neuritic changes as indicated by the complete absence of PHF-1 labeling in the cerebellum of AD subjects (Figure 3E). As a positive control, we performed side-by-side staining of AD frontal cortex sections with PHF-1, leading to the extensive staining of NFTs and neuropil threads as expected (Figure 3F).

Discussion

Although the major symptoms associated with AD are cognitive in nature, emerging data suggests that motor dysfunction is an important component to the disease process. Thus, recent studies have documented gait and balance impairments as well as an increase risk
Caspase-cleaved GFAP in cerebellar white matter of the AD brain

for falls [12-16]. Because of the predominant role that the cerebellum plays in providing precise timing for coordinated movement, a likely hypothesis for explaining motor dysfunction in AD is some underlying dysfunction in this brain structure. However, the cerebellum has the distinction of being spared from the classic pathology of AD, namely plaques and tangles and because of this is often used as control region for comparison purposes (for example see, [4, 5]). Several studies have documented the presence of beta-amyloid deposition in the cerebellum [9-11] but there is very little evidence for any neuropathological changes including the presence of NFTs [7, 8]. The purpose of the present study was to examine the

Figure 3. Association of GFAPccp with beta-amyloid deposition within white matter of the cerebellum in the AD brain. A-B: Representative labeling with anti-Ab antibody, clone 6E10 at low (A) and high (B) magnification in representative cerebellum AD brain sections indicated diffuse staining predominately within white matter (left half of Panel A). Scale bars represent 20 µm in Panel A and 10 µm in Panel B. C: Illustrates comparison staining with the same antibody utilizing frontal cortex AD sections revealing labeling of amyloid plaques with a central core. D: Double-immunofluorescence labeling in the cerebellum of a representative AD case utilizing anti-Ab antibody, clone 6E10 (red) and GFAPccp antibody (green) indicated a close association between the two markers within white matter. Arrows in Panel D represent putative degenerated astrocytes while arrowhead in same panel designates a diffuse plaque. Scale bars in Panels C and D are equivalent to 10 µm. E and F: Representative staining of the AD brain using the tangle marker, PHF-1 in cerebellum (E) and frontal cortex (F) indicated a complete lack of neuritic pathology in the cerebellum as compared to frontal cortex. Scale bars in Panels E and F represent 20µm.
cerebellum in AD for other pathological features in addition to beta-amyloid and NFTs. Numerous studies have suggested the activation of apoptotic pathways in the AD brain. In this regard, the activation of caspases and cleavage of critical proteins including beta-amyloid, tau, fodrin, and GFAP may promote the underlying pathology associated with AD (for review see [22]). To date, whether the activation of apoptotic pathways occurs in the cerebellum has not been investigated. Therefore, we examined cerebellar AD brain sections employing a custom-made, in house antibody (GFAPccp) that specifically detects caspase-cleaved GFAP within degenerating astrocytes [17-19]. Application of GFAPccp revealed widespread labeling in white matter of cerebellar AD sections, while little staining was noted in age-matched control sections. Specifically, GFAPccp labeled damaged astrocytes in white matter that were often localized near blood vessels. The morphological appearance of GFAPccp-labeled astrocytes suggested that these cells were severely damaged and exhibited characteristics of apoptosis. These results mirrored our previous findings with the GFAPccp antibody in AD hippocampal sections [17]. One important role of astrocytes is in the formation of the blood-brain barrier and in this role, astrocytes confer a protective role against hypoxia and aglycemia by extending end feet that encapsulate brain capillaries [23]. Our current results suggest that activation of apoptotic pathways and cleavage of cytoskeletal proteins, such as GFAP and tau, may be one of many factors that contribute to the compromised blood-brain barrier observed in AD [24-27].

Another finding of the present study was the apparent association between beta-amyloid deposition and caspase-cleaved GFAP in cerebellar white matter. Diffuse beta-amyloid staining was observed in white matter but was rarely found in gray matter of AD cerebellum sections. Moreover, double-label immunofluorescence experiments revealed punctate beta-amyloid staining on GFAPccp-labeled astrocytes (arrows, Figure 3D). We observed a similar relationship in AD hippocampal brain sections [17] and taken together the results suggest that astrocytes are activated and recruited to sites of beta-amyloid deposition. Several studies have now documented the important role that astrocytes may play in clearing beta-amyloid via the ability to internalize deposited beta-amyloid peptides [28, 29]. In the process of clearing beta-amyloid, astrocytes themselves may be subjected to beta-amyloid-induced toxicity leading to the activation of apoptosis and eventual degeneration. Indeed, in a previous report we documented the ability of beta-amyloid to induce apoptosis and caspase-cleavage of GFAP in cultured astrocytes [17]. White matter labeling of degenerating astrocytes were independent of any neuropathological changes as evidenced by the complete lack of PHF-1 labeling in all regions of AD cerebellar tissue sections (Figure 3E).

In conclusion, results from the present study support the caspase cleavage of cytoskeletal proteins including tau and GFAP within astrocytes in cerebellar white matter of the AD brain. The cleavage of critical cytoskeletal proteins may lead to the breakdown of the framework of the astrocyte and contribute to astrocytic degeneration along blood vessels. It is suggested that these events may be initiated in astrocytes following their interaction with deposited beta-amyloid in white matter of the cerebellum. Although the cerebellum has historically been defined as a brain structure largely spared from AD pathology, recent clinical evidence indicating an increase risk for falls and impairment of gait and balance suggest otherwise. Our results provide a potential molecular mechanism involving astrocyte degeneration and disruption of the blood brain barrier in cerebellar white matter as a putative contributing factor to mobility impairments associated with AD.

Abbreviations

AD, Alzheimer’s disease; AB, beta amyloid; CCP, caspase-cleavage product; GFAP, glial acidic fibrillary protein; NFTs, neurofibrillary tangles; PHF, paired helical filaments; TBS, tris-buffered saline.

Acknowledgements

This study was funded by the KO Dementia Foundation, Boise Idaho and a NASA grant, NNX10AN29A to TTR.

Address correspondence to: Dr. Troy T Rohn, Department of Biology, Science/Nursing Building, Room 228, Boise State University, Boise, ID 83725, USA. Phone: (208)-426-2396; Fax: (208)-426-4267; E-mail: trohn@boisestate.edu
Caspase-cleaved GFAP in cerebellar white matter of the AD brain

References

[25] Popescu BO, Toescu EC, Popescu LM, Bajenaru O, Muresanu DF, Schultzberg M and Bogdanovic N. Blood-brain barrier alterations in age-
Caspase-cleaved GFAP in cerebellar white matter of the AD brain

