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ABSTRACT

In semi-arid regions, like southwest Idaho, snowmelt is a significant source of
water. Anthropogenic activities continue to increase demand for this vital natural
resource. Water resource managers must be able to quantify both the timing and quality
of snowmelt. Atmospheric contaminants can deposit on the snow, altering its physical
properties. For example, deposition of atmospheric particulate matter (PM) can cause
snow to darken, thereby increasing radiative forcing on the snowpack, potentially causing

a change in snowmelt timing.

This research is to calibrate a laser particulate counter (LPC) to a federal
reference standard. The LPC provides real-time PM concentration data and can
potentially be deployed in a wireless network of atmospheric sensors to measure temporal
and spatial distributions. This calibration model will then be used to calibrate other LPCs
for use in the network. This work will improve our understanding of the environment
through real-time atmospheric monitoring in remote locations and over heterogeneous

topography.
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INTRODUCTION

Motivation
Population growth continues to increase demand on natural resources, especially
water. Snowmelt is a significant source of water for millions of people in the western
United States. Snowmelt in a semi-arid region, like that of southwest Idaho, is a critical
driver for local stream flows and groundwater levels. It is vital that scientists, water
resource managers, and community leaders are able to understand both the timing and
quality of this water source. Contaminants in snow threaten water quality because they

can be transported into local tributaries and aquifers.

Decreased air quality may result in a corresponding decrease of snow quality in a
watershed. Increased anthropogenic activities have resulted in changes to regional air
quality, including higher levels of criteria pollutants such as particulate matter (PM), O3,
SO,, NOy, CO, and Pb. These contaminants can be scavenged from the atmosphere and
deposited on snow [1]. It is important to monitor contaminant deposition in watersheds
with significant snow cover as this is the mechanism by which contaminants often first
enter the ecosystem [2]. Quantifying the transport of atmospheric contaminants to a
snowpack requires understanding their size, mass, chemical composition, as well as their
temporal and spatial distribution. It is also important to understand the physical processes

by which contaminants are deposited on snow.



PM and gaseous compounds are scavenged from the atmosphere by wet (rain and
snow) and dry deposition [3]. Studies have shown that over half of the total PM
deposition may occur during snow events [2]. Contaminant deposition can result when
PM accumulates on the snow surface, which in turn decreases the snow albedo [4].
Albedo is a measure of the reflectivity of a substance. Pure snow is very reflective with
albedo values near 1.0, indicating almost all light is reflected. Changes in albedo will
increase radiative forcing on snow due to a darkening effect from PM accumulation,
which may cause snowmelt to occur sooner [5]. In the San Juan Mountains of
southwestern Colorado, increased radiative forcing was estimated to shorten snow cover
duration by as much as 18 to 35 days [6]. A change in snowmelt timing due to particulate
contamination also risks decoupling snowmelt from seasonal temperatures. In areas
where average temperatures are below freezing, this effect is minimal, but at elevations

where temperatures fluctuate near freezing this can impact phenological events [7].

It can be difficult to remotely sense contaminants, such as PM, due to their
simultaneous presence in both the atmosphere and snow [8]. There are very few locations
equipped to directly and accurately measure either albedo or PM concentration in the
western United States and more are required [9-11]. A network of sensors could be
deployed to various locales ranging from remote watersheds to urban centers in a
temporary or permanent configuration. Currently, methods to monitor PM concentrations
in remote locations are limited to aerochem-style precipitation collectors, providing only
average concentrations for excessively long time scales on the order of days or weeks

[12, 13]. Deposition levels of PM vary by topography, landcover, and precipitation



amount [14-17]. Capturing these trends requires a large number of sensors deployed in a

region. These networks would dramatically improve current monitoring programs.

Quantifying the relationship between atmospheric contaminants and changes in
snowpack albedo could be used to verify the accuracy of remotely sensed data. Ground
verification requires sensors that are able to monitor PM levels in real time while
spatially distributed throughout a sampling area. The location of ground verification is
dependent upon the flight time and path of orbiting satellites and a sensor network could

be aligned to any specific flight path.

Scope

The hypothesis of this research is that a laser particulate counter (LPC), designed
to estimate PM concentrations in real time, can be calibrated to a federal reference
standard. Testing this hypothesis was accomplished by completing three research stages.
The first stage was to operate a LPC and a Micro-Orifice Uniform-Deposit Impactor
(MOUDI) simultaneously to collect calibration data. The sample runs included varying
time intervals as well as duplicate MOUDI and LPC samples. Also, a high volume air
sampler (hi-vol), outfitted with a cascade impactor, was used to further validate the LPC

and MOUDI results.

The second stage was to analyze the data to ensure compatibility between these
different measurement processes. This included performing a data inversion of the
MOUDI results. Lastly, this calibrated LPC was used to calibrate a second LPC thereby
demonstrating the reproducibility of deploying a series of particle counters throughout a
watershed and other remote or distributed networks without the need for a long, labor-

intensive calibration process.



LITERATURE REVIEW

Background

The complex effects of atmospheric PM deposition on a watershed snowpack
have been studied extensively by researchers over the past 50 years. This work includes
analyzing the effect of PM deposition on snowpack albedo as well as its spatial and
temporal distributions, composition, and monitoring methods. Recently, different analysis
algorithms have been developed to better quantify PM concentration data collected in the
field. Though the breadth of this work is extensive, it illustrates a need for improved
monitoring methods. The field-testing and calibration of a LPC is a fundamental step for

deploying new leading-edge research equipment to the field.

Albedo, the reflective power of a surface, is calculated as the ratio of incident to
reflected sunlight. It is an important descriptive parameter in both energy balance and
snowmelt models. In 1980, Wiscombe and Warren developed a model to measure the
spectral albedo of snow; this research has become a seminal work, spawning a multitude
of subsequent studies [18, 19]. These studies identify key parameters affecting snow
albedo, including: snow depth, solar angle, snow grain size, and ratio of diffuse to direct
incoming solar radiation. The albedo of snow containing a variety of contaminants was
measured in an attempt to explain the variation between experimental albedo and

theoretical albedo.



Increasing snowmelt rates, corresponding to decreasing snowpack albedo, were
reported as early as 1981 by Drake et al. This work showed that increased dust deposition
on a snowpack resulted in up to an order of magnitude change to snowmelt timing. A thin
dust layer, coupled with high solar radiation and low wind speeds, resulted in an
advanced snowmelt rate [20]. By relating the changes in atmospheric PM concentration
to corresponding changes in snow albedo, a link can be made between PM concentration

and snowmelt rate.

In 1997, Ranalli et al. [13] studied PM deposition in a remote, high-alpine
watershed. Bulk deposition collectors were used because real-time atmospheric
monitoring instruments had prohibitive power and labor requirements. The following
year, Lovett et al. [12] demonstrated that deposition in a complex watershed is dependent
on topographical features such as landcover, aspect, and elevation. These works illustrate
the need to monitor PM concentrations in remote locations using instruments capable of
providing spatial and temporal distributions without excessive power or labor

requirements.

The need to monitor PM concentrations in remote locations is further supported
by the works of Heuer et al. [15] and Turk et al. [21]. Heuer’s team demonstrated that PM
could be transported long distances. For example, PM originating in the southwestern
United States was deposited on the snowpacks in Colorado. Turk’s team examined this
PM and found it to be a potentially significant source of contaminants within the
snowpack. This is because PM, in addition to being a contaminant, also provides a

location for organic contaminants to sorb to before being transported to remote locations.



It is important to quantify the changes to both snowmelt rate and timing resulting
from PM deposition. Painter et al. [22] estimated a change in snow cover duration
between 18 and 35 days in the San Juan Mountains of the western United States. These
changes were attributed to increased radiative forcing on the snowpack indicated by
decreased albedo values measured during dust deposition events. The results also
indicated an increased snowmelt rate of up to 40%. Although these values were attributed
to decreased albedo during deposition events, corresponding changes in atmospheric PM
concentration were not measured. These measurements could have provided a
quantifiable link between atmospheric PM concentration and snowmelt rate. One reason
these measurements were not taken was because the current air monitoring instruments
were not suitable for remote location monitoring (e.g., excessive power requirements) nor

do they offer sufficient time-scale resolution.

PM deposition is not the sole cause of change to snowmelt rate. For example,
atmospheric PM blocks solar radiance from reaching the snowpack, this is referred to as
dimming. Simultaneously, atmospheric PM absorbs solar radiance causing the
troposphere to warm, increasing the temperature above the snowpack and resulting in a
higher snowmelt rate (solar heating). Flanner et al. [5] found the effects of snowpack-
bound particulates outweighed the effects of solar heating and dimming by six-fold. They
outlined differences in model-observation trends while highlighting potentially
significant sources of error. Some modeling problems include inaccurate observational
data and insufficient aerosol distribution data. Both of these shortcomings would be

greatly improved using real-time PM monitoring.



Particulate Matter Monitoring Equipment
A variety of instruments are available for estimating and measuring PM
concentration. Each instrument operates by applying a different measurement theory,
resulting in unique benefits and shortcomings. It is important to understand and correct

for these differences before comparing results made using different instruments.

Optical particle counters (OPC) count and size particles based on the frequency
and magnitude of a reflected laser beam passing through a stream of air. They provide
real-time measurements but are susceptible to counting artifacts at higher concentrations.

LPCs, such as the ones used in this research, are a class of OPCs.

Cascade impactors measure concentration based on gravimetric analysis. Particles
are sized according to their behavior in an air stream, resulting in an aerodynamic
diameter. One of the most common types of impactors is the Micro-Orifice Uniform-
Deposit Impactor (MOUDI). A high volume air sampler (hi-vol) can also be outfitted
with a cascade impactor. Impactors are very reliable and capable of producing accurate
PM measurements. Because impactors physically collect PM on a substrate, they can

require long sample times to meet minimum detection limits (MDLs).

Differential mobility analyzers (DMA) size particles based on their behavior in an
electric field. A significant draw back to many of these devices (MOUDI, DMA, and hi-
vol) is an excessive power requirement, often hindering field deployment. All of these

devices, including the OPCs, offer the ability to size segregate PM.

Multiple studies have been performed using an OPC to estimate atmospheric

concentrations of PM in a laboratory setting where concentrations are typically low.



Improvements in OPC performance have allowed their use in the field. Hughes et al. [23]
simultaneously operated an OPC, DMA, and MOUDI to monitor and characterize
atmospheric PM in Pasadena, CA during the winter of 1996. The results of this study
showed strong agreement between number concentrations estimated by the OPC and the
MOUDI (assuming a spherical particle with a density of 1.7 g/cm®). These results were

found by averaging 24 hr sample times.

Kleeman and Schauer [24] used an OPC, DMA, and MOUDI to characterize PM
in vehicle exhaust. In this study, the air source was diluted to prevent coincidence errors
that OPCs are prone to experience under high PM concentrations. When operating
simultaneously, all instruments measured similar particle-size distributions. PM
monitoring often requires the assumption of ideal, homogenous physical particle
characteristics. Because the operating principles of each particular device vary, they can
measure different magnitudes of PM concentration. It was recommended by these authors

that multiple instruments be used to monitor atmospheric PM.

Field measurements have been made using an electrical low-pressure impactor
(ELPI) in conjunction with different particle counters. The agreement between
measurements was good, except for lower particle sizes (7 to 30 nm). The authors found
that comparison of number, mass, and size distributions made using a high-volume air
sampler, OPC, and ELPI did not follow a Gaussian distribution and therefore were
evaluated using a Spearman’s rank correlation coefficient. A very strong agreement,
between the OPC and ELPI, was found when considering all stages. Individual stage

comparisons were not provided [25].



OPC Performance Comparison with Cascade Impactors
OPC concentration measurements have been compared to concentration
measurements from gravimetric analysis in a variety of studies. These comparisons are
critical because gravimetric analysis is the federal reference standard for mass based air
quality standards [26]. The LPC used in this work is a specific type of OPC used to

estimate PM concentrations.

In 1995, Hand et al. [27], working in the Great Smokey Mountains, analyzed
differences between OPC and MOUDI measurements. The MOUDI mass concentrations
were first converted to number concentrations to allow direct comparison to OPC number
counts. These number concentrations typically agreed within 30% and the standard
deviations were within 8%. Discrepancies were attributed to MOUDI data inversion
artifacts, lower size resolution of the MOUDI data, and OPC counting methods. This
research illustrates a level of agreement that can be expected from these different
sampling methodologies. In 1998, Hughes et al. [23] compared results from a pair of
MOUDIs, a DMA, and an OPC. Again, MOUDI mass concentrations were converted to
number counts. Comparisons were made for particle number distributions, mass
concentrations, and chemical compositions. Although the results generally showed
agreement, only the total number concentrations between the OPC and MOUDI were

compared.

An Anderson cascade impactor, operating under the same physical principles as a
MOUDI, was used to compare total suspended particulate (TSP) mass concentrations to
those estimated with an OPC [28]. The impactor underreported concentrations due to

particle bounce and carryover between stages. The OPC performed well when estimating
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relative mass concentration, as compared to the impactor, but due to calibration factors
did not provide an absolute concentration measurement. This indicates a need to calibrate

or compare OPC concentrations to a measurement standard.

In 2009, Wang et al. [26] developed an OPC to estimate mass concentration. The
testing demonstrated that OPCs are capable of very accurately counting particles present
in low concentration but sensors can be overwhelmed during periods of high
concentration. OPCs measure optical particle diameter, a size based on a calibration
aerosol. The authors performed a linear regression comparing the OPC results to those
obtain by a Tapered Element Oscillating Microbalance (TEOM). They found good
agreement from results taken in ambient air, although not as good as those from a
laboratory. The agreement was stronger for smaller particle sizes. This indicates that a
linear regression comparison can be used to compare the results between an OPC and a

gravimetric-based analysis method.

Data Analysis and Inversion Techniques
MOUDIs size segregate PM by collecting individual particles on a series of
impactor stages. This collection method produces a discrete data set with each impactor
stage representing an individual data point. Generally, this data is reported as a
histogram. A complete analysis and calibration requires a numerical inversion to
transform the discrete data into a continuous distribution function [29]. Numerous

methods exist to perform this type of inversion [30-34].

The Twomey algorithm is a nonlinear, iterative algorithm used for data
inversions. This algorithm was specifically adapted for use on cascade impactor results

by Winklmayr et al. [30]. This adaptation incorporates the use of smooth kernel functions
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that are based on impactor stage cut-off diameters as well as weighting functions and

stopping criteria (convergence and boundary conditions).

Atmospheric PM concentrations are bimodal and lognormally distributed. Dzubay
and Hasan [33] successfully fit this complex distribution to cascade impactor data. One
assumption, critical during analysis, was that the geometric standard deviations of each
mode were assumed equal. This work also showed the importance of determining the
correct cut size of each stage, as a change of 10% to the theoretical cut size may

introduce bias into the inversion results.

An iterative inversion algorithm will potentially have multiple solutions.
Therefore, it is important to select the appropriate stopping criteria [35]. Successful
application of an iterative inversion algorithm is achieved when the predicted stage mass
agrees with the experimental mass within 5% and the number of iterations is limited
(<100). In practice, convergence usually occurs within 5 to 20 iterations [29, 30]. Dong et
al. [31] demonstrated that this inversion process could be applied in situations when the
mass concentration of a particular mode or the total mass are unknown. These works
demonstrate the applicability of applying an adapted Twomey algorithm to cascade
impactor data. The inversion allows for the inter-stage estimation of PM concentration,

which is critical to this thesis.
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MATERIALS AND METHODS

Setting

Prior to field deployment, the LPC was calibrated. The calibration was performed
by operating a LPC concurrently with both a MOUDI and a hi-vol. Calibration sampling
was performed on the roof of the Micron Engineering Center (MEC) located on Boise
State University’s (BSU) engineering campus, affording easy, secure access to the
equipment, including an adequate power supply. This locale represented an urban setting
along the Boise River near the Dry Creek Experimental Watershed (DCEW) (see
Figure 1 and Figure ). A variety of equipment, as well as their functions (listed in Table

1), was used during sampling.
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Equipment Used During Calibration Process, from Left to Right,

MOUDIs, LPC, and Hi-vol



Table 1 Instruments Used During Calibration
Instrument | Manufacturer Model Function
. Critical Flow
Hi-vol Weddl.ng and High-Volume | Samples airborne particulate
Associates .
Air Sampler
Tisch . .
Cascade . . Samples and size fractionates
Environmental, Series 230 . .
Impactor Inc airborne particulate
MOUDI MSP Corp Model 100 S‘amples and.51ze fractionates
airborne particulate
Laser Met One Counts and size fractionate
Particulate 212-1 OURES and Stze Hactionates
Instruments, Inc airborne particulate
Counter
Anderson o .
Rootsmeter G28A Calibration of hi-vol
Instruments, Inc
BIOS o . .
BIOS DryCal | International DC-Lite Calibration of air sampling
Corp pumps

Laser Particle Counter

14

Laser particulate counters, such as the Ambient Particulate Profiler Model 212-1

(Met One Instruments), are a class of light scattering optical sensors that use a reflected
laser beam to count and size particulate, see Figure 3 and Figure 3. This LPC uses 8

programmable channels to report different particle sizes, ranging from 0.5 pm to 10.0

um, while providing real-time estimations of atmospheric particulate.
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Figure 3 LPC with Cover Removed (Met One, Grants Pass, OR)
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The LPC draws in air at a rate of 3.0 L/min using an internal rotary vane pump.
Two-thirds of the air stream is filtered and used as sheathed air to contain the remaining
one-third of the air stream. It is this unfiltered one-third of the air stream that is
subsequently sampled. The sheathed air acts as a clean boundary surrounding the
sampling stream, thus eliminating edge effects as well as preventing particles from
leaving the sampling stream. A laser beam, collimated through the recombined air
stream, is scattered by particulate. The magnitude of the scattering is proportional to the
cross-sectional area of the particulate. The scattered light signal is collected and focused
onto a photo diode, which converts the return signal to a voltage. The amplitude of this
voltage is compared to eight predetermined, programmable voltages (Table 2). An
internal counter is increased each time the voltage exceeds the programmed level so that

the LPC reports a count of particles exceeding a specific cut size.

Table 2 Example of LPC Channel Sizing
Channel (Suilzne) M(}Tll:ns)ize

1 0.5 0.60

2 0.7 0.85

3 1.0 1.5

4 2.0 1.5

5 2.5 2.25

6 3.0 4.0

7 5.0 7.5

8 10.0 10.0
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The LPC is outfitted with a total suspended particulate (TSP) inlet hood, matching
the inlet configuration of the MOUDI and hi-vol. This hood is configured to allow all
sizes of particles to enter the instrument. Particle size can change due to humidity as
particles absorb moisture. The air stream was heated during periods of high humidity,

ensuring a relative humidity below 50% and reducing this sampling artifact.

Optical particle counters, such as this LPC, are susceptible to sampling errors at
high concentrations when particles shield other particles from the laser beam. The PM
concentrations sampled during this work remained well below the maximum
concentration level for the LPC. High concentration artifacts are therefore assumed to be
insignificant. The LPC specifications are: maximum concentration up to 250,000
particles per m’, sensitivity is 0.5 um, and accuracy +/- 10%. Particles greater than 10.0
um were counted but sized as 10.0 um. The LPCs were operated using Windows® based
PCs and data was acquired using Microsoft Excel® software. Statistical analysis of the

results was made using SigmaP10t® software (Systat Software Inc. San Jose, CA).

The LPC provides a number count concentration of the particles in the air stream
that must be converted to a mass concentration before comparison to the MOUDI or hi-
vol data. This conversion assumes a uniform, spherical particle shape with a density of
1.0 g/cm3. Identical assumptions for shape and density were made for the MOUDI and hi-
vol. The conversion from number count to mass concentration was made using Equations

1 and 2.
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ticl

Count :M )
Liter

Crpc = Count*Q*p*V 2)

Where:
QO =flowrate (m3/s)
p = particle density (ug/m3)
V= particle volume (m?)
Cpc = concentration from LPC (ug/m?)

The flow through the LPC was confirmed using a BIOS DryCal® DC-lite Primary
Air Flow Meter (Bios International Corporation, Butler, NJ) primary flow meter. There
was no statistical difference between the flow through the LPC and flow meter. A sample

calculation with unit conversions and flow calibration results are provided in Appendix

A.

Micro-Orifice Uniform-Deposit Impactor (MOUDI)

Micro-Orifice Uniform-Deposit Impactors (Model 100, MSP Corporation,
Minneapolis, MN) were used to collect and size segregate atmospheric particulate during
two sampling sessions (summer 2010 and fall 2010) [23, 36]. The two MOUDIs were
operated in parallel using identical configurations and collection substrates. MOUDIs are
inertial impactors that collect particulate by directing a particle-containing jet of air over
and around flat impaction plates. Larger particles, with lower inertia, become trapped on
the upper impaction plates while smaller particles, with a higher inertia, are carried past

to the lower plates as illustrated in Figure [36].
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Figure 5 Cross-Section View of Typical MOUDI Stage (Images from Model
100/110 MOUDI User Guide, MSP Corp, St. Paul MN)

The particle-size distribution is, in part, a function of the airflow rate through the
MOUDI. The particles are sized according to their behavior in the air stream, based on
their aerodynamic diameter. The aerodynamic diameter is the diameter of an irregularly
shaped particle, with a unit density that behaves the same as the diameter of a perfect
spherical particle. Stokes law governs particle behavior in a fluid stream. The Stokes

number (Sk), as defined in Equation 3, is a dimensionless parameter used to predict
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whether a particle will leave an airstream and impact on a collection substrate or remain

suspended in the airstream.

Cv,D;
Sk=Pr="e"r e 3)

Where:

pp = particle density (g/cm’)

C = Cunningham slip correction factor (dimensionless)
W =nozzle diameter (um)

D, = particle diameter (pm)

u = air viscosity (g/(cm-s))

V, =air velocity (g/(cm-s))

The Stokes number is based on particle properties, airflow rate, and impactor

geometry [37]. Furthermore, the Stokes number can be related to aerodynamic diameter

f ouw
D5 = P,,CVO Sks, 4)

For a MOUDI, Sksy is defined as the square root of the Sk corresponding to a

using Equation 4.

particle size collected with 50% efficiency on a particular impaction stage. Dy 50 is the
particle diameter retained on an individual impactor stage and collected with 50%

efficiency. As evident by Equations 3 and 4, the only value that can be altered to adjust



21

the cut size of an impactor stage is the air velocity. The flow rate was 13 L/min, resulting

in the fifty percent aerodynamic cutoff diameters (Dso) shown in Table 3 [38].

Table 3 Aerodynamic Cutoff Diameters, D5y, for MOUDI Stages (13 L/min)
Impactor Size
Stage (nm)
Inlet 51
1 32
2 20
3 12
4 8
5 4.8
6 2.8
7 1.7
8 0.94
9 0.53
10 0.30

Particle collection and size fractionation are characterized by collection efficiency
curves and the individual cut size of each impactor stage. The collection efficiency curves
represent the probability of a particular sized particle being retained on an individual
impaction stage. Cascade impactors with “steep” collection efficiency curves perform
well collecting and size fractionating particulates. This MOUDI displayed steep
efficiency curves, indicating a lower probability of multi-stage impaction by identically
sized particles. Steepness values were determined by fitting calibration data provided by
the manufacturer to Equation 5 and the results are presented in Table (individual values

for E;j are provided in Error! Reference source not found.).



D 28, |}
E, = 1{( )} 5)

Where:
E;; = stage collection efficiency

Dsp; = cutoff diameter of stage i

B; = steepness of the collector efficiency curve at stage i

D,; = diameter of particle j.

Table 4 MOUDI Model 100 Steepness Values, MSP Corp., St. Paul, MN
Stage D5 Steepness
10 0.056 1.93
9 0.097 3.94
8 0.174 5.21
7 0.299 5.67
6 0.543 7.81
5 0.952 9.55
4 1.733 10.06
3 3.088 14.30
2 6.145 5.89
1 9.825 4.23

inlet 18.097 2.73
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The collection efficiency curves were generated using the initial calibration data

(Error! Reference source not found.) provided by the MSP Corporation [39, 40] and

are displayed in Figure 4. The curves for the inlet and stages 1, 9, and 10 are less steep
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than curves 2 through 8. These lower steepness values are indicative of collection
artifacts, including boundary layer effects such as blow through and particle bounce or
the use of a non-monodisperse particulate during initial calibration [41-43]. It was
assumed that these artifacts did not affect the final experiment results because these
stages were not used during the analysis. These stages were excluded because they did

not correspond with any LPC or hi-vol stages.
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Figure 4 MOUDI Model 100 Collection Efficiency Curves (MSP Corp., St.
Paul, MN)
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Gravimetric analysis is the federal reference standard for mass-based air quality
standards and was therefore used to determine the mass collected on each impactor plate.
Particulate was collected on aluminum foil substrates (47-mm nominal diameter, MSP
Corp., St. Paul, MN). These substrates were allowed to equilibrate for >24 hrs in a
desiccator both before and after sampling. Particulate mass was determined for each stage
using a Mettler Toledo XP56 ultra-microbalance (0.001 mg, Columbus, OH). These mass
measurements were converted to a concentration using Equation 6. A sample calculation

is provided in Error! Reference source not found..

Crovpri = Myoupri * Q* 1 (6)
Where:
Cumoupri = concentration on impactor stage i (ug/rn3)
myoupri = mass collected on stage i (ug/m3 )
0 = MOUDI flow rate (mS/min)
t = collection time (min)

Humidity was assumed to have a negligible effect on the PM mass accumulated
on each MOUDI stage. The pressure drop through the MOUDI minimizes the effect of
humidity. In addition, studies have shown that measurement artifacts occur on the lowest
stage during periods of high humidity [44]. Samples collected during high humidity

(>90%) were not used in during this study.
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Calibration of MOUDI Air Flow
A pair of Aircon 520 AC air sampling pumps (referred to as pump 1975 and
pump 1828, Sensidyne, Clearwater, FL) were selected to provide airflow to the MOUDISs,
see Figure 5. The airflow rate for each pump required calibration before use. A BIOS
DryCal® DC-lite Primary Air Flow Meter (Bios International Corporation, Butler, NJ)

was the primary flow standard used for calibration [45, 46].

A 1

Figure 5 BIOS DryCal Air Flow Metter, Aircon 520 Air Sampling Pump, and
MOUDI

Pump calibration was performed in a laboratory environment. The BIOS DryCal

flow meter (BIOS) was placed in line with the pump and MOUDI. Pump 1975 and Pump
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1828 were equipped with a rotameter to indicate flow rate. Airflow was varied between

5.0 L/min and 15.0 L/min, spanning the operational range of the pump. At each interval,

five BOIS flow rates were averaged and compared to the corresponding rotameter flow,

the results of which are graphed in Figure 6. Leak tests were performed on each pump

and no leaks were detected. Test results are provided in Error! Reference source not

found..
Calibration of Air Sampling Pump 1975
18
16 - Coefficients:
b[0] 0.17906
— Bi1] 0.95144
g 14 - r¥ 09963
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Figure 6 Comparison of BIOS and Pump 1975 Flow Rates

Pump 1975 performed extremely well with a near unity slope of 0.98, an offset of

only 0.18 L/min, and root mean squared error (RMSE) of 0.192 L/min. The rotameter and
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BIOS flow rates compared very well as indicated by a linear regression coefficient of
determination (rz) value of 0.9963 (Figure 8). Differences between pump 1975 and BIOS

flowrates were not significant at the 95% confidence level using the student’s t-test.

The flow rate of Pump 1828 also compared well to the BIOS flow rate as shown
in Figure 7. The r* was 0.9808, the slope was near unity (0.99). An offset of 1.36 L/min
through the MOUDI was measured and flow was adjusted to accommodate this offset.
The RMSE was 1.43 L/min. The differences were not statistically significant at the 95%

confidence level using the student’s t-test.

Calibration of Air Bampling Pump 1828

18
16 - ,
Coefficients:
h{0] 1.3694 »
— | b[1] 0.9506
£ = r* 10,9508 b
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Figure 7 Calibration of Pump 1828 with a BIOS Flow Meter
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High Volume Air Sampler
Total suspended particulate (TSP) concentrations were measured using a
Wedding and Associates Critical Flow High-Volume Air Sampler (hi-vol). Although, this
hi-vol outfitted with a cascade impactor is a federal reference standard for size
fractionating PM, it lacks sufficient temporal resolution [47, 48] for real-time monitoring.
The hi-vol TSP concentrations were used to validate TSP concentrations measured by the

MOUDI and LPC.

Hi-vols consist of three major components: a size selective inlet hood, a collection
filter, and a blower assembly, see Figure 8. The inlet hood can act as a preliminary screen
for specific sized particles such as PM o, PM; 5, or TSP. A TSP hood was selected to

correspond to the inlet hoods used on the MOUDI and LPC.
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Figure 8 Hi-vol Diagram (Image from Hi-vol Operation Manual) [49]

The hi-vol drew air through a filter and the accumulated PM mass was
gravimetrically determined. Coupling this mass to a known volume of air and sample

time, a total concentration of particulate was determined using Equation 7.

29
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Chrimvori =Myi_yor; O™ 1 (7)
Where:
Chi-vob i = concentration on impactor stage i (jg/m")
Mpiyol i = mass collected on stage i (ug/m3 )
(@) = hi-vol flow rate (mS/min)
t = collection time (min)

Whatman 8 inch x 10 inch quartz microfiber filters (QMF, Tisch Environmental,
Cleaves, OH) were used as the collection substrate. Quartz fiber filters were selected
because they are not sensitive to changes in temperature or humidity [50]. Each filter was
allowed to equilibrate in a desiccator for >24 hours before initial and final weighing. The
filters were weighed using a Mettler Toledo (Model AB104, 0.1 mg, Columbus, OH) top

loading balance.

The hi-vol is designed to operate with an airflow rate of approximately 1.13
m’/min. This flow rate is maintained by a volumetric flow control (VFC) system. The
VEC is simply a choked venturi tube attached to a blower motor. Air is pulled though the
venturi tube where it accelerates until maximum velocity is achieved. This maximum
velocity is a function of tube geometry, ambient air pressure, and temperature. Therefore
a reliable, steady flow is provided, assuming sufficient downstream pressure is

maintained.

The airflow rate was determined by performing a multipoint calibration using a
variable flow orifice called a rootsmeter (Anderson Instruments, Inc., Smyrna, GA). The

rootsmeter is a National Institute of Standards and Technology (NIST) calibration tool
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allowing fully variable flow rates through the hi-vol (see Figure 9). This calibration
established a numerical relationship between the volumetric flow rate through the hi-vol
and both the stagnation pressure and ambient air pressure [51]. The stagnation pressure is

the area of low pressure directly behind the filter, labeled P; in Figure 8 [49, 52].

Figure 9 Hi-vol Outfitted with a Rootsmeter Variable Flow Orifice (Wedding
and Associates, Fort Collins, CO)

The calibration process was performed by operating hi-vol while the airflow was
varied by the rootsmeter as shown in Figure 9. Flow rates were then measured for five
different flows and the corresponding change in pressure through the rootsmeter were

recorded. Airflow through the rootsmeter was determined using Equations 8-10.



Calibration curves for the rootsmeter are provided in Error! Reference source not

found..

T
AP —* —b,
Pﬂ
0 = 3
ml"
Where:
Q, =flow through the rootsmeter (m3 /min)

AP, = pressure change through rootsmeter (in H,0)

T, = air temperature (K)
P, = ambient air pressure (in H,O)
b, = y-intercept from rootsmeter calibration curve
m, = slope from rootsmeter calibration curve
0,

X=F O

P, — AP,
Y=P =-% "% (]0)

rat P
Where:

P,,; = pressure ratio

Py, =pressure at the stagnation point (in H,O)

The X and Y values were graphed and linear regression was used to generate a

calibration curve. The slope (m.) was 6.526 and the y-intercept (b.) was 0.5061. The I’
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value was 0.9987, which was acceptable [53]. The actual flow through the hi-vol could

then be determined using Equation 11.

. (Prat _bc)'\/Ta (11)

act
¢

Where:

Q.: = flow through the hi-vol (m*/min)

P,.; = pressure ratio
b, = y-intercept from calibration curve
m, = slope from calibration curve

The calibration chart and sample calculations for hi-vol (blower motor B) are
provided in Error! Reference source not found.. Once calibrated, the airflow was
determined in the field by using a manometer to measure the stagnation pressure
immediately behind the filter. Flow measurements were taken at the beginning and end of
each sampling period and averaged to determine flow. Time-weighted average
temperatures were obtained from the National Weather Service at the nearby Boise

Airport.

Cascade Impactor

The hi-vol was outfitted with a High Volume Cascade Impactor Series 230 (Tisch
Environmental, Cleaves, OH), which was used to size fractionate airborne particulate.
The impactor operates by directing an air stream through a series of staggered openings

on aluminum plates as shown in Figure 10. As air travels between the plate openings,
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particles with sufficient inertia are retained on filters while smaller particles pass by. The
cascade impactor size fractionates the particulate into the 5 stages shown in Table 4.
Particles smaller than 0.49 um were retained on a back-up filter. The operating flow rate

was approximately 1.13 L/min.

Stage 1
Stage 2
Stage 3
Stage 4
Stage 5
Base Plate
87 x 10” Gasket
Cartridge Screen
9 Filter Paper
10-Cartridge Bolt
11 Thumb-nut
12 Thumb-nut

= B e R e S

Figure 10 Image of Cascade Impactor Exploded View (Image from Hi-vol
Operation Manual) [49]
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Table 4 Aerodynamic Cutoff Diameters for Hi-Vol Cascade Impactor Series
230
I“;‘::;"r Size (jum)
Back up filter <0.49
1 0.49
2 0.95
3 1.5
4 3.0
5 >7.2

This style of cascade impactor may be susceptible to high blow through and
particle bounce. Blow through occurs when a particle bypasses the appropriate impaction
plate and impacts on a later stage. Particle bounce occurs when a particle dislodges from
the appropriate impactor stage and is re-entrained in the air stream. Particles that bounce
tend to stay in the air stream before being retained on the back up filter [54]. The particle
distribution, as a percent of TSP, can be compared to other impactors when blow through

and bounce rates are high.

Data Analysis
Because of the differences in measurement methodologies, extensive data analysis
was required to calibrate a LPC to a MOUDI and sub-sequentially a second LPC. The
analysis was divided into four activities: (1) data inversion of the MOUDI results, (2)
calibration of a LPC to a MOUDI, (3) time-step analysis, and (4) calibration of a second
LPC using the original LPC. These sections, taken together, were used to develop an

algorithm for calibrating LPCs before they are integrated into a wireless network.
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The initial step in calibration was the data analysis, which required comparing the
LPC and MOUDI results. Two problems had to be overcome before this was possible.
First, the instruments had unique cut sizes, making direct comparison of concentrations
impossible. For example, the LPC had a mid-range cut size of 4.0 um while the
corresponding MOUDI cut size was 4.8 um. Second, inter-stage estimation of particle
concentrations from the MOUDIs is difficult as identically sized particles can impact on
different stages. These two issues were overcome by performing a data inversion on the

MOUDI results.

The data inversion was the most computationally intensive portion of the
calibration process. Gravimetric analysis was initially used to determine mass
accumulated on each MOUDI stage, producing a discrete data set. This data is generally
presented as a histogram [30, 35]. A fundamental issue with this style of data display is
that it does not account for particles of the identical diameters depositing on multiple
stages. To account for this disparity, as well as inter-stage losses, a data inversion was
performed to convert these discrete results into a continuous function [29, 32, 44]. This
continuous function was then used to estimate inter-stage concentrations, allowing for

direct comparison between the LPC and MOUDI.

Aerosol measurements typically display a bi-modal, lognormal distribution which
results from aerosols having a nuclei and an accumulation mode [55]. The data inversion

process outlined in Dong et al. (2004), as shown in Equation 12, was applied [31].
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2 2
—(logD  —logD —(logD . —logD,,
W exp ( Y 3 gf) (WT —Wf}xp ( 2 3 ¢ )
M 2(10go-gf) 2(10gaa)
W, = ZKi . + Alog D
Pl V2rlogo, \2zlogo,, g
(12)
Where:
W; = concentration of PM mass on stage i (jg/m")
D,  =particle diameter (um)

Dy = geometric mean diameter, first mode (um)

D,, = geometric mean diameter, second mode (um)

W;  =mass concentration, first mode (ng/m’)

Wr = total mass concentration, both modes (pg/m”)

oy = geometric standard deviation, first mode (pum)
0.« = geometric standard deviation, second mode (pum)
K;; = kernel function

This inversion method was selected because it accounts for either a bi-modal,
lognormal distribution or can be adapted to a uni-modal, lognormal distribution. Values
for W; and Wt were measured experimentally while the values of the five remaining
parameters (Dgf, Dga, Wy, 041, and 6,4,) were determined through the inversion process. Wi
measurements were determined for seven of the impactor stages, leaving the inversion
equation with five unknown parameters. These parameters were determined using a

system of equations and Solver in Microsoft Excel® software (Frontline Systems Inc.,
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Incline Village, NV) [56]. The inter-stage losses were accounted for through the use of

kernel functions [31].

Kernel functions are important because they show the particle distributions
between impactor stages [37, 57]. These functions, also known as response functions, are
critical when converting discrete impactor data to a continuous function as the collection
of particles on individual impactor stages is not perfect. This means some particles of a
specific size are captured on previous stages while others are allowed to pass through.
Accounting for this imperfect collection involves graphing the collection efficiency of
each impactor stage with particle diameter [41, 44, 56]. Steep efficiency curves, such as
those of the MOUDY], indicate efficient impactor collection, making it a good calibration
standard. These functions are shown in Figure 11. Sample calculations and complete

results are provided in Error! Reference source not found..
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Kernel Functions MOUDI Model 100/110
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Figure 11 Kernel Functions for the MOUDI Model 100/110

The second stage, upon completion of the data inversion, was the calibration of
the LPC to the MOUDI. The sampling data set was divided into two portions, a
calibration and a validation set. Standard regression analysis was performed to compare
the LPC and MOUDI concentrations. The magnitude of the LPC measurements were
adjusted to better fit the magnitude of the MOUDI concentrations. These same
adjustments were then applied to the validation data set. An analysis of variance

(ANOVA) was used to determine if the changes made during calibration were necessary
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or significant. A one-way ANOVA can be used to test the hypothesis that the mean from
two groups is equivalent. The data collected had large, unequal variances (due to
differences in concentration magnitudes) and was not normally distributed. These
conditions met the standards for applying a Kruskal-Wallis analysis of variance on ranks.

This test is a non-parametric version of a one-way ANOVA [58].

Third, a time-step analysis was required because the LPC sampled in real time
while the MOUDI time steps ranged between 18 hr and 48 hr. The MOUDIs required
substantial accumulation of mass on a substrate and as such, despite having access to an
ultra-microbalance (i.e., measurements to 0.001 mg), long sample times were required to
meet MDLs. This work required demonstrating that calibration standard occurring on a
scale of hours or days could be applied to a sensor capable of real-time measurements.
The relative percent difference of the TSP concentration measurements was calculated

using Equation 13.

oL
2
Where:
RPD = relative percent difference (%)
Crpc = LPC TSP concentration (ug/m3 )

Cyvoupr = MOUDI TSP concentration (ug/m3)

These results were then normalized by hour. This process was used to show that

measurements made in real time by the LPC could be summed to correspond to the long
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sample times of the MOUDI. Sample calculations are provided in Error! Reference

source not found..

Finally, the initial LPC (labeled unit 1) was used to calibrate an additional LPC
(labeled unit 2). The LPCs were operated simultaneously under both laboratory and field
conditions. A student’s t-test was used to determine if the differences between
concentrations estimated for each instrument were statistically significant. This process
was done to develop an algorithm for integrating future LPCs into a wireless sensor

network. Sample calculations are provided in Error! Reference source not found..
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RESULTS

General Results

Two sampling sessions were conducted to measure PM concentrations using a
combination of LPCs, MOUDIs, and hi-vols. The first session, during the summer of
2010, used two LPCs and two hi-vols. This session was used to test the feasibility of
calibrating a LPC to a hi-vol outfitted with a cascade impactor, and using one LPC to
calibrate a second LPC. The second sampling period, during the fall of 2010, included a
LPC, a hi-vol, and a pair of MOUDIs. This sampling period was used to calibrate a LPC
to a MOUDI, compare PM concentration measurements made using all three instruments,

and evaluate the effects of different collection time steps on the results.

The three instruments showed varying levels of agreement depending on the
sampling methodology and the collection time. As expected, the instruments often
measured different concentration magnitudes but similar concentration distributions [24].
The agreement between devices was validated using different statistical methods (student
t-test, ANOVA, Kruskal-Wallis ANOVA, and Mann-Whitney Rank Sum test) depending
on the type of data collected. Because of the different concentration magnitudes, the
corresponding data often exhibited unequal variances requiring use of the non-parametric
ANOVA testing. Five comparisons were made of PM concentrations: LPC and MOUDI,

LPC and hi-vol, MOUDI replicate testing, time-step analysis, and LPC 1 and LPC 2.
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LPC and MOUDI Comparison
The LPC and MOUDI data were collected during the fall sampling session. Each
device was operated for an identical time period so that the concentrations measurements
were comparable. The complete data set was divided into two groups, one for calibration
and one for validation. The MOUDI data was inverted, allowing for inter-stage
concentration estimation and a direct comparison to the LPC data. Following the
calibration of the LPC, an ANOVA was performed, which showed no statistically

significant difference between the LPC and MOUDI concentration measurements.

Both the LPC and MOUDI size fractionated particulate into different cut sizes,
making the direct comparison of the results difficult. It is customary to present cascade
impactor data (average concentration measurements) as a histogram because these
concentrations represent a collection of particles within a specific size range. Also, the
use of a histogram accounts for the deposition of identically sized particles on different
impaction plates. The LPC is not susceptible to the same collection artifacts as a cascade
impactor and as such a standard curve could be fitted to this discrete data. The LPC and

MOUDI results are shown in

Figure 12 and for clarity these results are limited to the cut sizes used during the
data inversion and calibration processes. The size distribution of the LPC curve mirrors
that of the histogram, albeit with different magnitudes. The calibration process was used

to adjust for these differences of magnitude.
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LPC 1 Concentrations and MOUDI 1 Concentrations
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Figure 12 LPC and MOUDI Average Concentrations

In Figure 14, the MOUDI results were also maintained as discrete points (each
point is an impactor stage at the midway point of the histogram), while the LPC results
are presented as both discrete and continuous functions. This graph illustrates how the cut
sizes between the LPC and MOUDI do not directly align, preventing calibration. Because
standard curve fitting techniques are inadequate to fit a continuous function to the
MOUDI data, a data inversion was applied to convert this discrete MOUDI data into a

continuous function.
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The PM concentration measurements displayed a bi-modal, lognormal
distribution [55]. The inversion process as outlined in Dong et al. (2004) [31] and adapted
from the Twomey algorithm was performed on the MOUDI data. This inversion process

required solving for the unknown parameters in Equation 15.

PM concentration was determined for seven of the MOUDI stages (W;) and were
selected because they span the same operating range as the LPC. The software Solver
(Frontline Systems Inc., Incline Village, NV and Microsoft Excel®) was used to fit this
measured data to Equation 12 by optimizing the difference between a set of modeled

concentrations with measured concentrations.

This inversion technique required minimizing the root mean squared error
(RMSE) between measured (W;) concentrations and modeled (W.) concentrations.
Because there were seven solutions and six unknowns numerous solutions were possible.
By applying specific stopping criteria, an acceptable solution set was achieved [35]. The
stopping criteria included rapid convergence, specific boundary conditions, and the
difference between measured and model sample weight is less than 5%. The solution
converged quickly (<15 trials) and the solutions were bounded using the following
constraints: W <5.0 pug (mass concentration of first mode), Dgr < 0.50 um (average
diameter of the first mode), 6, >1.01 (standard deviation of the first mode), 4 < 10.0
(standard deviation of second mode), Ggf = Gga, Dot < Dga, and Dgr > 2.5 um (average
diameter of second mode). This inversion was performed on both the calibration and the
validation data sets with the unknown parameter values shown in Table 5. The PM

concentrations made by the LPC and MOUDI 1 are superimposed on the inverted
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MOUDI concentrations in Figure 13 and Table 6. The values shown in Table 6 were used

during calibration.

Table 5 Results from Data Inversion
Equation Calibration | Validation
Parameter Data Set Data Set
Wi 5.00 pg 4.99 ng
W 13.58 ug 9.11 pg
Dyt 5.16 um 5.17 um
Dy, 12.56 pm 10.0 um
Oof 341 3.39
Cga 341 3.39
LPC, MOUDI, and Inverted MOUDI Calibration Concentrations
3.5
LPC
3.0 A \
MA 25 T
£
2
=t 2.0 A
= MOUDI
s
= 1.5 4
3
=)
o
© 1.0 - /
0.5 -
\
0.0 .
1 10
Cut Size (um)
Figure 13 LPC, MOUDI 1, and Inverted MOUDI PM Calibration

Concentrations
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Table 6 LPC and Inverted MOUDI PM Calibration Concentrations
Cut Size LPC Inverted MOUDI
(um) Concentration (ng/m’)
(pg/m’)

0.60 0.30 0.593

0.85 0.20 0.541

1.50 0.66 0.645

2.5 1.15 0.755

4.0 2.14 1.078

6.0 2.35 1.375

8.0 2.17 1.510

The RMSE between the calibrated LPC concentrations and validation MOUDI
concentrations was optimized (minimized) using identical methods and constraints as the
calibration data set. Again, convergence was achieved quickly (< 20 trials). The
difference between the sampled and model weight was less than 5%. The values are
shown in Figure 14 and Table 7. The graph shows a higher estimation of particulate near

the 1.0 um and slightly lower concentrations near the 0.6 um and 2.0 um.
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LPC, MOUDI, and Inverted MOUDI Validation Concentrations
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Figure 14 LPC, MOUDI 1, and Inverted MOUDI PM Validation Concentrations

Table 7 LPC and Inverted MOUDI PM Validation Concentrations
Cut Size LPC Inverted MOUDI
(um) Concentration (ng/m’)
(pg/m’)
0.60 0.37 0.559
0.85 0.22 0.517
1.50 0.54 0.599
2.5 0.83 0.678
4.0 1.55 0.959
6.0 1.59 1.194
8.0 1.94 1.286
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LPC to MOUDI Calibration
Following the data inversion process, a direct comparison between the LPC and
the MOUDI concentrations was performed. Based on these results, a calibration of the
LPC to the MOUDI was completed to adjust for the different concentration magnitudes.
The calibration was performed on a subset of the data generated during the fall sampling
session while the unused data was reserved for validation. Statistical testing was
performed during each step of the calibration process to measure the significance of the

adjustments.

The calibration was performed on individual LPC cut sizes, 0.60 um, 0.85 pm,
1.50 pm, 2.5 pm, 4.0 um, 6.0 um, and 8.0 pm. First, the LPC and MOUDI concentrations
were averaged for each cut size. Next, the relative percent difference between the
concentrations was calculated and ranged from a low of 9.2% (1.50 pm) to a high of
158.5% (0.85 pum). The magnitude of each LPC cut size concentration was adjusted by

this percent difference as shown in
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Table 8. The original LPC concentrations, inverted MOUDI concentrations, and adjusted
LPC concentrations are graphed in Figure 15. The LPC consistently underestimated the
concentrations below 2.0 um while overestimating concentrations above this cut size.
Therefore, the magnitude of the lower cut sizes was increased and upper cut size
magnitudes decreased. These same adjustments (% change by cut size) were then applied

accordingly to each LPC concentration in the validation set.



Table 8 Calibration PM Concentrations from LPC and MOUDI
LPC Inverted LPC
Cut Size Concentration MOUDI % Concentration
(nm) ( g/m3) Concentration | Difference Calibrated
a (ng/m’) (ng/m)
0.60 0.30 0.56 86.3 0.56
0.85 0.20 0.52 158.5 0.52
1.50 0.66 0.60 9.2 0.60
2.50 1.15 0.68 -41.0 0.68
4.0 2.14 0.96 -55.2 0.96
6.0 2.35 1.19 -49.2 1.19
8.0 2.93 1.29 -56.1 1.29
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Calibration of LPC Concentrations to Inverted MOUDI Concentrations
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Figure 15 Calibration of LPC Concentrations to Inverted MOUDI

Concentrations
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An ANOVA was used to determine the significance of the differences between
the mean values of each cut size before and after calibration. This statistical measure was
applied twice on the calibration data and twice on the validation data. The first
application compared the raw LPC data and MOUDI inverted data (from the calibration
group). A successful application of a one-way ANOVA required the data set to have
equal variance, which this data set did not. The unequal variance was expected because of
the different concentration magnitudes. Although, a non-parametric ANOVA, the
Kruskal-Wallis one way ANOVA on rank test could be applied, a more robust ANOVA
(parametric) was desired for calibration. The ANOVA was rerun on the calibrated LPC
data and inverted MOUDI data. There were no statistically significant differences at the
95% confidence interval between the results, which was expected because the LPC was

specifically adjusted to match the MOUDI data.

The results from this calibration process required validation; therefore, the second
half of the data generated during the fall sampling session was reserved for this purpose.
The adjustments made to each cut size concentration were applied to the LPC validation

data set as shown in
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Table 9. The LPC concentrations, inverted MOUDI concentrations, and adjusted LPC
validation concentrations are graphed in Figure 16. This illustrates the improvement
made to the magnitude of the LPC concentrations. There is marked improvement in the
agreement below and above the 2.0 um cut size. The general distribution of the LPC

concentrations is maintained throughout the calibration process and generally agrees with

the MOUDI distributions.



Table 9 Validation Data Set
LPC Inverted LPC
Cut Size Concentration MOUDI % Concentration
(nm) (ng/m’) Concentration | Adjusted Calibrated
a (pg/m®) (ng/m)
0.60 0.37 0.67 86.3 0.69
0.85 0.22 0.62 158.5 0.57
1.50 0.54 0.90 92 0.49
2.50 0.83 0.40 41 0.49
4.0 1.55 0.87 -55.2 0.69
6.0 1.59 0.78 -492 0.81
8.0 1.94 1.15 -56.1 1.08
Validation of LPC Concentrations to Inverted MOUDI Concentrations
2.0 H
Uncalibrated LPC
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Figure 16 Validation of LPC Concentrations to Inverted MOUDI

on the non-calibrated LPC validation data and MOUDI inverted validation sets, once

Concentrations
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The same ANOVA testing was repeated twice more on the validation results. First
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again the ANOVA failed due to unequal variance concentrations. This was expected
because the LPC data set had yet to be calibrated but represented the need to improve the
compatibility between the instruments. As with the calibration data, set a non-parametric
ANOVA was possible but not robust enough for a calibration. Finally, the ANOVA was
performed to compare the calibrated LPC data to the inverted MOUDI data. The test
passed and showed there was no statistically significant difference between the data sets
(p=0.05). A key result here is that the calibrated data set passed the equal variance test.
Because there is no longer a statistically significant difference between the LPC and
MOUDI concentrations, this LPC can potentially act as a master LPC used to calibrate

future LPCs.

LPC and Hi-Vol Comparison
Three hi-vols (labeled A, B, and C) were operated concurrently with two LPCs
during the summer and fall sampling sessions. The summer session tested the feasibility
of calibrating a LPC to a hi-vol outfitted with a cascade impactor. The fall sampling
session was used to validate the results obtained using the MOUDI and LPC. Because
both the hi-vol and MOUDI are federal reference standards for measuring PM

concentration, it is valuable to determine how these measurements compare.

During both sampling sessions, the LPCs and hi-vols were situated such that their
inlet hoods were at identical heights and configured to capture TSP. The instruments
were located a minimum of 15 feet from the nearest building or wall and aligned
perpendicular to the prevailing wind direction. Hi-vol B was outfitted with a cascade

impactor and used to size segregate particulate into five sizes: 0.50 pm, 0.95 um, 1.5 um,



56

3.0 um, and 7.2 um and larger. Hi-vols A and C used standard collection filters to

measure TSP concentrations, as described in Chapter 3.

During the summer testing, hi-vols A and B were operated with the LPC 1 and
LPC 2 (see Figure 17, Unit B and LPC 1 shown). Unfortunately, the blower on hi-vol A
failed during testing, rendering the results from this instrument inconclusive. The unit
remained in the field where it was converted to test trip blanks. The trip blank testing was
performed by loading hi-vol filters but not operating the hi-vol during the testing period.
The filters were stored and weighed using identical methods as hi-vol B. Any change in
filter weight could be indicative of testing artifacts. The results from these trip blanks
were favorable with no statistically significant differences in the change in filter weights
at the 95% confidence level (student t-test). The results of the trip tests are provided in

Appendix J.
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Figure 17 LPC and Hi-vol (Unit B) During Summer of 2010

As with the MOUDI and LPC, the hi-vol and LPC used different detection
methodologies to measure PM concentrations. The cascade impactor and LPCs also
segregated particulate into different cut sizes, making the direct comparison of
concentrations difficult except when comparing TSP. Attempts were made to invert the
hi-vol data (using the Twomey Algorithm) to allow for interstage estimation of PM
concentrations. The cascade impactor used five stages, each stage representing a solution
to the data inversion. The inversion process required solving for six unknown parameters.
Five solutions with six unknowns is inadequate to solve a system of equations. Despite
this difficulty, the sampling was not without merit. The hi-vol was still used to compare

TSP results in lieu of its use as a calibration standard.
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PM concentrations measured using LPC 1, LPC 2, and hi-vol B were compared.
The first comparison was between the individual impactor stages and LPC 1 stages.
Before comparison, the LPC’s individual sizes were combined to better align with the hi-
vol. For example, impactor stage 3 collected particles ranging in size from 1.5 pum to 3.0
pm. The LPC counts particles ranging from 1.5 pm to 2.5 um using stage 3 and stage 4,
hence the results from these were combined into a single stage. Stage combinations and

the corresponding hi-vol stage are shown in Table 10.

Table 10 Stage Equivalents Between LPC and Hi-vol

Stage Equivalents
LPC Impactor Impactor
LPC Stage | Median Size Range Stage
10 10
7 8.5 7.2 and up 1
> 6 30to7.2 2
3 4
2 25 1.5 10 3.0 3
1 1.5
0.7 0.85 0.95to 1.5 4
0.5 0.6 0.5 to .95 5

The concentrations from the hi-vol and LPC are graphed. The results for stage 2
are shown in Figure 18 (remaining stages are provided in Error! Reference source not
found.). The concentrations between the two LPCs compared very well, each showing
similar size distribution and magnitude. This was expected because each device sampled
for the same time period, under identical conditions, and using similar cut sizes. Figure
19 is the graph of TSP concentrations showing the strong agreement between LPC and

hi-vol concentrations.
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The LPC and hi-vol concentrations showed similar size distribution but different
magnitudes. There were two primary reasons for this difference. First, the cut stages were
not properly aligned. Second is that the cascade impactor used in this study was
susceptible to high blow through. Blow through occurs when particles are initially
entrapped on a substrate but break loose and become re-entrained in the air stream. These
particles are carried past the correct impaction stage and then deposited on subsequent
stages. This was confirmed by the high levels of particulate accumulated on the back up

filters.

The three instruments compared favorably for TSP concentration. The non-
parametric A Kruskal-Wallis one way ANOVA ranks test was performed because the
mean concentrations did not have equal variances. The unequal variances were expected
due to the difference in magnitude between the LPC and hi-vol concentrations. The
Kruskal-Wallis test was performed on each individual cut size and the differences were
found to be statistically significant (p=0.05). This test was repeated using TSP
concentrations and the differences were no longer statistically significant (p=0.05). This
agreement was expected; TSP concentrations included the back-up filters so all particles
were accounted for by each instrument. This agreement indicates that the LPC and hi-vol
are both measuring the same particulate but estimating different size distributions due to
operating differences. The hi-vol would be a good measurement standard to calibrate the

LPC using TSP but not robust enough for individual cut sizes.
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LPC 1, LPC 2, and Hi-vol Concentrations for Stage 2
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Figure 18 Stage 2 Concentrations for LPC 1, LPC 2, and Hi-vol
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Figure 19 TSP Concentrations Measured by LPC 1, LPC 2, and the Hi-vol
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The results from the fall testing were analyzed by comparing both individual cut
size concentrations and TSP concentrations from the LPC, hi-vol, and MOUDI. The
average concentrations are graphed in Figure 20 by curve fitting the LPC concentrations
and presenting the hi-vol and MOUDI results as histograms. Although, direct comparison
of individual points is not possible (due to low number of impactor stages for the hi-vol),
the three instruments displayed similar size distributions. For example, each instrument
displayed peak concentrations between 8.0 um to 10.0 um. The LPC and MOUDI
demonstrated a similar PM concentration magnitudes while the hi-vol consistently
measured significantly higher concentrations. This result also occurred when comparing

the TSP concentrations for each device as shown in Figure 21.

Average Concentration by Cut Size for the LPC, MOUDI, and Hi-vol
5

4 A Hi-vol

1 MOUDI
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\S)
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Figure 20 Average Cut Size Concentration for the LPC, MOUDI, and Hi-vol
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TSP Concentrations for LPC 1, MOUDI, and Hi-vol
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Figure 21 TSP Concentrations Measured Using the LPC, MOUDI, and Hi-vol

Although direct comparison between individual cut sizes was not feasible, the
TSP concentrations were analyzed using an ANOVA. The results did not compare
favorably. A Kruskal-Wallis one-way ANOV A ranks test was performed and it was
determined that the differences between concentrations were statistically significant
(p=0.05). The lack of agreement was because the hi-vol typically measured higher
concentrations than the LPC or MOUDI. There are a few possible reasons for the higher

hi-vol concentrations.

First, mechanical failure and power outages limited the number of days that each
device sampled during the same time period so that there were only eight sample periods

during which all three instruments were operated simultaneously. Unlike the summer
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testing session, the sample time steps were varied significantly during the fall testing.
These sample times ranged from 18 to 48 hours. The greatest variation between the hi-vol
and the other two instruments (on 10/19/10 and 11/4/10) corresponded to the 18 hr
sample periods. The higher agreement tended to occur during the longer sample periods
(10/04/10 and 10/25/10). This could be indicative of small measurement artifacts being
masked during longer sample times. Unfortunately, there were insufficient samples
during each of the time steps to determine if this cause was significant. Second, the hi-vol
sampled at a higher flow rate (30 L/min) than the MOUDI (13 L/min), allowing it to
reach MDLs quickly. The shorter sample times prevented the MOUDI from reaching
MDLs of the smaller cut sizes. This was indicated by a lack of measurable difference in

change of weight on the stages of the MOUDI.

Despite the lack of definitively positive results during the fall testing campaign,
there was enough agreement during the summer testing that more extensive testing with
the hi-vol is recommended. Once calibrated, the cut sizes on the LPC could be adjusted to
align with the cascade impactor. Also, further testing could be performed using improved
sampling periods, allowing the MOUDI and hi-vol to reach MDLs. Further testing could
also be used to determine if the percent composition of each impactor stage can be related

to a percent composition of stages for the LPC or MOUDL

MOUDI 1 and MOUDI 2 Comparison
During the fall testing period, duplicate sampling was performed using MOUDI 1
and MOUDI 2 to ensure reproducibility. The MOUDIs were placed at identical heights
and spaced approximately 2 m apart. The average concentrations and linear regression

are displayed in Figure 22 and Figure 25. The correlation was 0.896, indicating good



64

agreement. The offset was just 0.087 and the slope of the regression line was near unity at
1.03. The high coefficient of determination indicates an agreement between the
instruments; small differences were attributed to particle bounce or the natural
heterogeneity of particulate concentration that occurs for two instruments located 2 m

apart.

The average concentrations by cut size for each MOUDI are displayed in Figure
25. Both devices showed a slight bimodal distribution of particulate concentration with
peaks near the 0.53 pm and 20 pum. MOUDI 1 and MOUDI 2 consistently measured
similar concentrations and differences could be a result of measuring artifacts due to
instrument location. The measurement differences tended to be greater at the lower and
higher cut sizes although, all measurements are within the confidence intervals (p = 95%)
shown in the graph. A student t-test was performed and MOUDI 1 had a mean of 3.969
(ng/m’/dlogd) and a standard deviation of 2.386 while MOUDI 2 had a mean of 3.922
(ng/m’/dlogd) and a standard deviation of 2.184. These differences were not statistically
significant (p=0.05). These results demonstrate that good testing and operating

procedures were followed.
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MOUDI 1 and MOUDI 2 Average Concentration by Cut Size

65



66

Time Step Analysis

The LPC and MOUDI each operated using different sampling or collection time-
steps. The LPC operated in real time while the MOUDI collected particulate over a long
sampling period. Therefore, the fall collection sampling times were varied between 18
hours and 48 hours. The long sample periods ensured enough particulate mass was
collected by the MOUDI to meet MDLs. A second reason was to examine the
compatibility between the different collection time steps of the MOUDI and LPC. The
MOUDI operates by collecting particulate over a long sample time, resulting in an
average concentration during that time. Meanwhile, the estimated LPC concentrations
were the result of a series of small, real-time measurements summed and averaged over
the duration of the total collection period. Therefore, the hypothesis was that short time
step measurements made using a LPC were equivalent to a single MOUDI measurement
made over a long period of time. To answer this, a comparison was made of the relative
percent difference (RPD) normalized by hour between the MOUDI and LPC as shown in

Figure 24.
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Figure 24 RPD Normalized by Hour for the LPC and MOUDI

The RPD between the instruments was small. The magnitude is fairly constant,
consistently near 1% with an error range of approximately +/- 1%. A student’s t-test was
performed to determine if this difference between the mean was significant. The LPC had
a mean of 22.71 ug/m3 and a standard deviation of 8.263 ug/m3 compared to the
MOUDIs mean of 23.79ug/m’ and standard deviation of 8.166 pg/m’. There was no
statistically significant difference between the measurements at the 95% confidence level.
This indicates that it was acceptable to use the long time steps required by the MOUDI to

calibrate the real-time measurements made with the LPC.
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LPC 2 to LPC 1 Calibration
After the initial LPC was calibrated to a MOUDI, it could act as a master LPC
used to calibrate future LPCs as they are added to a wireless sensor network. This would
enable rapid integration of LPCs without the need for a long, labor-intensive calibration
process. Two LPCs were operated concurrently during a laboratory sampling session to

test the feasibility of this concept.

A pair LPCs (labeled LPC 1 and LPC 2) were set up in a laboratory located in the
first floor of the Engineering Technology building on the BSU campus. The LPCs
sampled for approximately 12 hrs under identical conditions. The number concentrations
were converted to mass concentrations by assuming the particulate was spherically
shaped with a unit density of 1.0 g/cm’. The LPCs were positioned so that the inlet hoods

were located at identical heights, approximately 1.0 m apart.

Both TSP and individual cut size concentrations were compared, generally
agreeing. The TSP concentrations ( ug/m3 ) presented in Figure 25 illustrate that both
devices respond similarly to changing particulate concentration while also recording
similar concentration magnitude. Although the graph illustrates strong agreement
between these LPCs, this was not enough to preclude the calibration of individual cut

sizes of LPC 2 to LPC 1.
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LPC 1 and LPC 2 Replicate Monitoring
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Figure 25 LPC 1 and LPC 2 TSP Comparison

Some individual cut size concentrations agreed well enough that calibration was
not requited and small adjustments were made to the magnitude of the remaining cut size
concentrations. The LPCs were configured to size segregate particulate according to cut
sizes: 0.5 um, 0.70 ym, 1.0 pm, 2.0 pm, 3.0 pum, 5.0 pm, 7.0 um, and 10.0 um. The
individual stage comparison included both a regression analysis and student’s t-test. The
regression analysis results are shown Figure 26 and Figure 27 for the 0.5 pm and 10.0 pm

and the remaining cut sizes graphs are provided in Error! Reference source not found..
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Figure 26 Regression Analyses for 0.50 pm (LPC 1 and LPC 2)
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Figure 27 Regression Analyses for 10.0 um (LPC 1 and LPC 2)
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Table 11 contains the regression analysis results for each cut size. The r* ranged from a
low of 0.9142 (10.0 um) to a high of 0.9898 (0.5 um). This indicates a very strong
agreement between the measurements made by each LPC. The slope ranged from a low
of 0.7002 at the 5.0 um size to a high of 1.830 at the size 7.0 pm. The slopes were near
1.000, indicating that both devices are capturing similar concentration levels. A high (+/-)
y-intercept value can be indicative of measurement or instrument bias. The intercept
ranged from a low of -14.0 to a high of 57.0, which demonstrates an absence of

significant measurement or instrument bias.

Student t-tests were performed on the individual cut sizes and the results are

provided in
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Table 11. The differences were not significant (p=0.05) for the 1.0 um and 2.0 um cut
size and as such no adjustments were made to those cut sizes on LPC 2. The remaining
cut sizes had unequal variances, therefore the Mann-Whitney Rank Sum test, a non-
parametric t-test, was used, showing that the differences for the remaining cut sizes were
statistically significant. Each cut size for LPC 2 was calibrated to LPC 1 by adjusting the
measurements according to the offset from LPC 1. This offset was applied to a validation
data set and the Mann-Whitney test was rerun. The differences were not statistically
significant for the remaining cut sizes. The calibrated and original results are shown in
the graphs in Figure 28 and Figure 29 for cut sizes 0.5 pm and 10.0 um and the remaining
cut size graphs are provided in Error! Reference source not found.. The graphs and
statistical tests both show very good agreement between LPC 1 and LPC 2 post

calibration.
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Table 11 Regression Analyses for Individual Cut Sizes (LPC 1 and LPC 2)
Statistically
Statistically | Significant
Size (um) Agreement | Slope Intercept Significant | Mann-Whitney
HY 1 (r2) (m) (b) Student Rank Sum
t-test Test
Calibrated
0.50 0.9898 0.9134 57.76 Yes No
0.70 0.9659 0.7355 -14.00 Yes No
1.0 0.9837 0.9968 3.094 No No
2.0 0.9794 1.014 2.448 No No
3.0 0.9792 0.8917 0.7990 No No
5.0 0.9593 0.7002 2.758 Yes No
7.0 0.9326 1.830 2.403 Yes No
10.0 0.9142 1.155 1.472 Yes No
LPC 1 and LPC 2 Sample Particulate Count (0.50 pm, 5 min interval)
4000 4| —— LPC1
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Figure 28 LPC 1 and LPC 2 Calibration Results for 0.50 pm Cut Size
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LPC Particulate Count

LPC 1 and LPC 2 Sample Particulate Count (10.0 um, S min interval)
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Figure 29

LPC 1 and LPC 2 calibration results for 10.0 pm Cut Size
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CONCLUSION

Water is a vital natural resource in a semi-arid region like the western United

States. It is imperative that scientists and water resource managers are able to quantify
both its quantity and quality. PM scavenged from the atmosphere by snow can alter the
physical properties of the snow. Understanding the link between PM and snow requires
real-time monitoring of PM, ideally using multiple sensors in a networked array. This
research demonstrated the applicability of LPCs to fulfill those requirements. Ultimately,
this research provides a valuable link between atmospheric quality and water quality in a
watershed. By understanding how atmospheric contaminants affect water runoff, we can

better manage this valuable resource.

The hypothesis of this research was that a LPC, designed to estimate PM
concentrations in real time, could be calibrated to a federal reference standard. This was
accomplished by completing three research stages. First, a LPC was operated
concurrently with a MOUDI and a hi-vol (outfitted with a cascade impactor). The PM
concentrations estimated by the LPC and those made using the MOUDI and hi-vol were
compared and analyzed using a variety of statistical testing. The initial results showed
that size distributions of the PM concentrations were similar but the concentration
magnitudes were significantly different. The magnitudes of the LPC concentrations were

adjusted to match the MOUDI concentrations. The LPC concentrations were then
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validated and an ANOVA was performed. The differences between the MOUDI and LPC

mass concentrations were no longer statistically significant.

Next, the data was analyzed to ensure compatibility between the different
measurement processes. This required performing a data inversion of the MOUDI results.
The different measurement time steps between the LPC and MOUDI were compared.
These differences were not significant, indicating that real-time measurements made

using a LPC were equivalent to the long collection process used by the MOUDI.

Finally, two LPCs were operated simultaneously to compare their performance.
The two devices measured very similar size distributions and magnitudes. The initial
LPC was used to calibrate a second LPC, thereby demonstrating the reproducibility of
deploying a series of particle counters throughout a watershed and other remote or

distributed networks without the need for a long, labor-intensive calibration process.

This work was successful in demonstrating the applicability of field deploying
LPCs in a wireless sensor network. The next stage of research could be to deploy the
LPCs in a remote location such as the Dry Creek Experimental Watershed (DCEW).
Currently, there are two aerochem-style precipitation collectors located in the watershed
to collect particulate. These collectors and the LPCs could be used to study the

relationship between atmospheric concentrations of PM and its deposition.

Further testing of the LPCs could be conducted to better understand their
performance and reliability. One shortcoming of the current research was the inability to
precisely identify the causes for each device measuring different magnitudes. Operating a
LPC and a MOUDI in a controlled environment, such as a laboratory, could be used to

better identify operating and measurement differences between the instruments. For
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example, the instruments could be exposed to particulates of a single, specific size. This

would allow researchers to better quantify measurement artifacts such as blow through.

One feature of the LPC, that was not fully tested, was the ability to alter the
sampling cut sizes. The devices have the capability of adjusting the cut size between 0.5
pm and 10 pm. This offers the possibility to compare LPC concentrations to those made
by other devices with predetermined cut sizes. This would allow the LPC to be operated

concurrently with a TEOM to measure 2.5 pum.

As reported in this research, the size distribution of particulate between the hi-vol
and LPC was similar. Studies have indicated that the percent composition of the hi-vol
could be correlated with the LPC concentrations and initial results from this study
support that. A hi-vol outfitted with a cascade impactor could be used to further verify the
results obtained using a LPC. This is valuable because hi-vols can be configured to

collect particulate and used to determine particle composition, a feature LPCs lack.

Finally, the LPC could be used in conjunction with local research and
environmental monitoring. The Geoscience department at BSU is studying snowpack
albedo in the DCEW. These LPCs could be used to establish a link between changing
atmospheric PM concentrations and changing snowpack albedo. The link could be crucial

to predicting changes to snow melt rates.

These LPC were field tested by operating them concurrently to both a MOUDI
and hi-vol. They performed as expected and the concentrations generally compared well

to reference standards. The measurement differences were statistically insignificant



following a calibration to the MOUDI. The LPCs are ready for field deployment to a

remote location such as the DCEW.
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Figure A.1 Hand Calculations of LPC Count to Calculation
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Table A.1 Flow calibration for LPC

LPC Flow (L/min) BOIS Flow (L./min)
3.10 3.091
3.10 3.123
3.10 3.075
3.10 3.670
3.10 3.206
3.00 3.052

Table A.2 Statistical test results of pump flow rate between LPC and BIOS flow
meter.

t-test Wednesday, September21 2011, 5:34:10FM
Data source: LPC Pump Calibrationin LPC pump calibration JNE

Normality Test: Pazzed (P=0.176)

Equal Variance Test: Paszed (P=0410)

Group Name N Missing Mean  5td Dev SEM

Coll 7 1 3083 0.0408 0.0167
Col 2 7 1 3.102 0.0363 00230
Dhfference £0.0190

t=-0660 with 10 degrees of freedom (P =0.318)

05 percent confidence interval for difference of means: 00822 to 00442

The difference in the mean values ofthe two groups is not great enough to reject the possibility that the
differenceis dueto random sampling varability. There is not a statistically significant difference between
the mput groups (P =0.518).

Power of perfonmed test with alpha=0.030:0.030

The power ofthe performedtest (0.050) iz below the desired power of 0.200.

Less than desired power indicates vou areless likely to detecta difference when one actually exists.
MNegative results should be interpreted cautiously.
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Figure B.1  Calibration Data Provided by MSP for MOUDI Eff Curves
Table B.1 Original Calibration Data Provided by MSP Corp. for MOUDI
100/110 Stages 10 to 7
DaSt10 | Eff St 10 DaSt9 Eff St 9 Da St 8 Eff St 8 DaSt7 Eff St 7
0.035 6 0.062 1 0.13 4 0.195 0
0.04 13 0.073 6 0.139 13 0.213 2.3
0.043 17 0.08 15 0.146 17 0.23 4.9
0.046 22 0.084 26 0.153 24 0.247 15
0.049 27 0.091 42 0.159 33 0.264 25
0.052 34 0.097 50 0.167 42 0.28 39
0.054 42 0.1 58 0.174 50 0.297 48
0.056 49 0.103 62 0.179 60 0.313 66
0.059 53 0.108 70 0.186 69 0.33 78
0.061 58 0.124 81 0.192 75 0.346 85
0.065 63 0.138 88 0.211 AN 0.361 90
0.073 69 0.228 97 0.377 92
0.079 75 0.451 96
0.083 82 0.477 98
0.09 86
0.1 90
0.13 95




92

Table B.2 Original Calibration Data Provided by MSP Corp. for MOUDI
100/110 Stages 6 to 3
Da St 6 Eff St 6 Da St5 Eff St 5 Da St 4 Eff St4 Da St 3 Eff St 3
0.426 1 0.66 0 1.38 2.09 2.8 0
0.48 3.7 0.75 2.9 1.64 27.9 2.98 34
0.506 13 0.94 31 1.77 58.7 3.12 54.7
0.534 30 0.986 56.4 1.87 86.2 3.26 83.4
0.548 43 1.06 88.7 2.05 96.7 3.4 94
0.561 54 1.24 98 2.12 100 3.8 97.2
0.572 64 4.73 99.9
0.587 77
0.614 86
0.63 91
Table B.3 Original Calibration Data Provided by MSP Corp. for MOUDI
100/110 Stages 6 to 3 (continued)

Da St 2 Eff St 2 Da St 1 Eff St 1 Da St 0 Eff St 0
8.91 96.2 14.9 90.8 19.4 64.7
7.98 95.6 13.8 95.1 18.5 52.7
7.15 91.5 12.3 83.7 15.2 30.6
6.69 84.5 10.9 77.2 12.3 10.8
6.45 53.7 104 74 8.91 2
6.32 63.6 9.99 64.4 7.98 1.1
6.2 41 9.63 32.9 7.15 0.8
6.11 55.1 8.91 17.7
5.99 35.9 8.12 16.9
5.95 47.9 7.98 14.7
5.84 26.6 7.15 7.3
5.61 37.3 6.69 5.2
5.46 31.1 6.45 2.4
5.25 0 6.2 1.6
4.73 5.9 5.99 1.6
3.8 1.6
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Figure C.1 Hand Calculations of MOUDI Concentration
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Original Data from BIOS Testing
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Results for MOUDI Pump Flow Calibration

Pump Flow | BIOS Flow
Pump 1975 L/min L/min
5.0 5.01
6.0 5.92
7.0 6.99
8.0 8.07
9.0 9.11
10.0 9.91
11.0 10.86
12.0 11.79
13.0 13.07
14.0 13.81
15.0 15.55
Pump Flow |BIOS Flow
Pump 1828 |L/min L/min
: 5.0 4.26
6.0 5.06
7.0 5.74
8.0 6.51
9.0 7.26
10.0 8.22
11.0 9.73
12.0 10.75
13.0 11.20
14.0 12.46
15.0 14.65

All BIOS Flows are an average of 5 readings.

Figure D.1  Original Data from BIOS Testing
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Calibration Calculations and Charts for Hi-Vols
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Calibration of Hi-Vol Samplers
Performed by Ben Seely on 05-12-2010

Lab Conditions Q. (m®/min) Qsta (m*/min)
Ta (K) 294.5 m=| 0.9840 m= 1.5710
P, (mm Hg 692.3 b=| -0.015030 b=| -0.023585
r=| 0.999986 r=| 0.999986
Hi-Vol "B"
AH,0 Stag Port Q. . .
- Y-Axis P
Rl in H,O in H,O mm Hg orifice X-Axis X! rat
1 3.50 6.05 11.29 1.25538955] 0.07314866 | 0.98369079
2 3.41 8.50 15.86 1.23934138] 0.07221357| 0.97708624
3 3.32 10.80 20.16 1.22307998 | 0.07126605 | 0.97088604
4 3.15 14.80 27.62 1.19175093 | 0.06944058 | 0.96010309
5 3.00 19.25 ~ 35.93 1.16339793 ] 0.06778852 | 0.94810707
Hi-vol "B" Calibration (70.5 °F)
0.99 - y=6:5263x+0:506
0.985 R? = 0.9987
0.98 /
8 097 - -
& 0965
0.96 /
0.955
0.95 /
(
0-945 T T T T v T 1
0.067 0.068 0.069 0.07 0.071 0.072 0.073 0.074
Q, (orifice) / sqrt (T.)
For Q. (across filter) use: Where: m 6.5263
b= 0.5061
(Bu—BNT,
Qact = m

Figure E.1

Calibration Calculations and Charts for Hi-Vols




W & A CRITICAL FLOW HIGH VOLUME SAMPLER
SINGLE- OR MULTI-POINT CALIBRATION WORKSHEET
FOR USE WITH MANOMETER OR W & A CALIBRATOR
RE: SECTIONS 5.2 AND 5.3
(TOP LOADING ORIFICE)

Site la&c Date 5 -13-0 Time Zioo Operator Pew jﬁ’f(j
Sampler Model "(' Serial Number Motor Number
P, 76290/2001 mm Hg, in Hg T, 2976k KR B, mm Hg, in Hg To K
Orifice S/N _ 2141 ( ‘2“293(/« Orifice Cal. Date ¥io/so _ WsA Cal. S/N __ AJ4 Cal. Date A
Comments:
7y ®) © Flow Rate From
Manometer Readings W&A Cal|Indicated Flow Rate W&A Look-Up Table
Orifice Top | Critical P = from orifice c(al E_ o =
Plate | Orifice | Device , |P. - AP ..{V, AV = D) | Q Q Q
Nuber | AR | &P ., f %tn Hgifd P}/l’g Quea | 9 |0, | CPM |m?/min| CB ln?/xﬁi
(LHS + RHS)|(LHS + RHS) ’ |
18 y The Critical Flow Device
2t 24.68 ¢3.20 0.8397 volumetric flow rat
3 - . values are given in th
2.4 7C25  |2gas 0.93%0 W s A Look-Up Tabl
16 < determined from previou
733 26775 T804 03344 calibration using a Root
7 P meter. Only the Singl
2.2\ 2%.75 21,70 0.9297 , Point (Design Flow Rate
5 y q0 values are presented ar
Z.13 9. 7%l 0.9267 should be equal to thos
None determined herein.
38t | 400 |75 o5
Single
Point 20.85 26,47 D a9 7
(E)
Comments:

Note: Calculation of Qgpq - Fo 537 = Fo 298
(1) in degrees R and in. Hg (1) Qstd =Q, = 29.92 (2) Qst:d = Qo = 760
(2) or degrees K and mm. Hg. To TO

() Manometer deflection read in inches water: in. Hg. = in. H,0/13.6

(B) Stagnation Pressure (Pl) downstream of the filter. Re: Figure 3

and corrected to appropriate (P,, T,) conditions. Re: Fiqure 4
(D) Q.: Q based upon T , P (average conditions) for atmospheric temperature and pressure,
e e respect?.gelyo.' o g Bh e P

(E) Critical Flow Device* design flow rate condition: one microquartz filter in plac
and no other upstream obstructions.

*U.S. Patent No. 4,649,760

(C) Volumetric flow rates (Q,) determined from prior orifice calibration using a Roots mete:

Figure E.2  Calibration Worksheet
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’ x: ENVIRONMENTAL

AIR POLLUTION MONITORING EQUIPMENT

Flow Rate (m3/min)
(—#—Qstd —A—Qa ——Qstd vs detaH |

Qstd/Qa and Qstd vs deltaH
50 40
45 36
40 32
35 / 28
30 24
. g
4 X
é 25 2 20E
X
F w
g 4 / 3
/ h-]
20 L 16
15 / / 12
10 " 8
A
05 / 4
00 T 0
0.0 041 02 03 0.4 05 08 07 08 09 1.0

* y-axis equations:
Qstd series: \/AH( Pa )(Tstd)

Pstd Ta

Qaseriess V(AH (Ta /Pa))

#5290

Figure E.3  Air Pollution Monitoring Equipment Graph
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Calibration of Hi-vol Samples Hand Calculations (cont.)
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Particular Profiler Calibration Hand Calculations (cont.)
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Particular Profiler Calibration Hand Calculations (cont.)
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Table F.1 Kernel Function Results
Kernel Function

Resulis

For MOUDI Model 100/110

M(j) = Cut

S1Z¢

N (i) = Prob of impaction on stage

N

MG) N@ N@ N@ N@ NQ@ NO®

0.06 0.10 017 0.30 0.54 0.05

001 000 000 000 000 000 000
002 002 000 000 000 000 000
003 008 000 000 OO0 OO0 000
004 021 000 000 000 000 000
005 039 001 000 000 000 000
006 055 002 000 000 000 000
007 063 007 000 000 000 000
008 063 018 000 000 000 000
009 055 036 000 000 000 000
010 040 056 000 000 000 000
011 023 072 001 000 000 000
012 015 083 002 000 000 000
013 008 087 005 000 000 000
014 005 08 009 000 000 000
015 003 080 018 000 000 000
0.1lé 001 068 020 000 000 000
017 001 055 044 000 000 000
018 000 041 059 000 000 000
019 000 028 071 001 000 000
020 000 019 0280 001 000 000
021 000 012 086 002 000 000
022 000 008 039 003 000 000
023 000 0405 080 0405 000 000
024 000 003 0389 008 000 000
025 000 002 038 012 000 000
026 000 001 o082 017 000 000
027 000 001 075 024 000 000
028 000 000 067 032 000 000
029 000 000 058 042 000 000
030 000 000 049 0351 000 000
031 000 OO0 040 060 000 000
032 000 000 031 069 000 000
033 000 000 024 076 000 000
034 000 000 019 021 000 000
035 000 000 014 086 000 000
036 000 000 O011 029 000 000
037 000 000 008 052 000 000
038 000 000 006 0294 000 000

N@m
1.73
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

N@®
3.09
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

N@
6.15
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

N@m
0.83
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

N@
15.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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Table F.2
MG N@®
0.06
039 000
040 000
041 000
042 000
043 000
044 000
045 000
046 000
047 000
048 000
049 000
0.50 0.00
051 000
052 000
053 0.00
054 000
S5 000
056 0.00
057 000
058 0.00
059 0.00
0.60 0.00
0.61 0.00
0.62 000
0.63 0.00
0.64 000
0.65 0.00
0.66 0.00
0.67 000
0.68 0.00
0.69 0.00
0.70 0.00
0.71  0.00
072  0.00
0.73 000
0.74 000
0.75  0.00
0.76 0.00
0.77 0.00
0.78 0.00
0.79 000
050 0.00
081 000
052 0.00
083 000
054 000

0.00

Kernel Function Results (cont.)

N@®
0.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

N@®
0.17
0035
0.03
003
002
0.02
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

N@
0.30
095
096
096
096
006
095
094
092
090
087
083
078
073
0.66
059
052
043
058
032
026
022
017
0.14
011
0.09
007
0.06
0.05
0.04
0.03
0.02
002
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

N@®
0.54
0.01
0.01
0.01
0.02
0.03
0.04
0035
0.07
0.09
013
017
021
027
034
0.40
048
0535
062
0.68
0.74
0.78
083
0.86
0.89
091
093
094
095
096
097
097
098
0.9%
098
098
098
098
098
098
097
097
096
095
0.94
093
091
090

N@
0.95
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.01
0.02
0.02
0.03
0.04
0.04
0.06
0.07
0.08
0.10

N@
1.73
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

N@
.09
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

N@
6.15
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

N@®
9.83
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

N@
15.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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Table F.3
0.86 0.00
MG N@®

0.06
0.87 0.00
0.88 0.00
089 0.00
0.90 0.00
091 0.00
092 0.00
093 000
0.94 000
095 000
096 0.00
097 0.00
098 0.00
099 0.00
1L.00 000
.01 000
.02 0.00
1.03 000
1.04 000
.05 0.00
1.06 0.00
1.07 000
1.0§ 0.00
1.09 000
110 000
1.11 Q.00
1.12  0.00
1.13  0.00
1.14 0.00
115 000
1.16 0.00
1.17 000
1.1§ 0.00
1.19 Q.00
120 0.00
121 000
122 000
123 000
124 000
125  0.00
126 0.00
127 000
128 0.00
129 000
130 0.00
131 000
132 0.00

1.33

0.00

Kernel Function Results (cont.)

0.00
N
0.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N
0.17
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N
0.30
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.87
N
0.54
0.83
0282
078
0.74
0.70
0.66
0.61
056
0351
046
041
036
052
028
024
021
0.1%
015
0.13
Q.11
0.10
0.08
0.07
0.06
0.05
0.04
0.04
0.03
0.03
0.02
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

013

N@®
0.95
015

0.18

022

026

030

034

039

0.44

0.49

0354

0359
0.64
0.63
0.72
0.76
074
082
0.85
0.87
.89
0.90
092
093

094
095
0.96
0.96
097
097
098
098
098
099
099
099
099
099
0299
099
099
099
099
090
0.99
099
099
099

0.00
N
1.73
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N@®
3.09
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N@®
6.15
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N{@®
0.83
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N@
18.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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Table F.4
134 000
MG N
0.06
135 (.00
135 0.00
137  0.00
138 0.00
139 (.00
140 0.00
141 000
142 000
143 000
144 000
145 000
l46 0.00
147 0.00
145 0.00
149 Q.00
150 0.00
151 0.00
152  0.00
1.53 0.00
1.54 0.00
155 0.00
156 0.00
157 0.00
1.58 0.00
1.59 0.00
160 0.00
161 0.00
162 000
163 0.00
l.64 0.00
165 0.00
l.66 0.00
1.67 0.00
168 0.00
1.69 0.00
170 0.00
.71  0.00
172 0.00
1.73  0.00
1.74 0.00
.75  0.00
1.76 0.00
.77  0.00
1.78 0.00
179 0.00
1580 0.00

0.00

Kernel Function Results (cont.)

0.00
N@
0.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N@m
0.17
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N
0.30
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N@®
0.54
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

099
N@®
0.95
099
099
099
099
099
099
0og
008
008
008
097
097
096
096
093
093
054
093
092
092
090
039
0388
0387
0383
0383
0382
0.80
077
075
073
0.70
068
063
062
0.60
057
054
051
048
043
042
040
057
034
052
020

0.01
N@
1.73
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.02
0.02
0.03
0.03
0.04
0.04
0.05
0.03
0.06
0.07
0.08
0.08
0.10
a11
012
013
015
017
018
020
023
025
a27
030
032
035
033
040
043
0.46
049
052
055
053
0.60
063
0.66
068
071

0.00
N@
3.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N@
6.15
0.00
0.00
0.00
0.00
0.00
0.00
0.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N@
0.83
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N@)
18.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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Table F.5
182 0.00
MG N@®
0.06
183 0.00
1.84 000
185 000
186 0.00
187 000
1.88 000
1.89 000
190 0.00
191 000
192 000
193 000
194 000
195 000
196 0.00
197 000
1958 000
199 0.00
200 0.00
201 000
202 000
203 000
204 000
205 000
206 000
207 000
208 000
209 000
210 000
211 000
212 000
213 000
214 000
215 000
216 000
217 000
218 000
221 000
222 000
223 000
224 000
225 000
226 000
227 000
228 000
229 000
230 000

231

0.00

Kernel Function Results (cont.)

0.00
N
0.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N
0.17
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N
0.30
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N@
0.54
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

027
N
0.95
025
023
021
019
018
d.16
0.15
0.14
0.12
0.11
010
0.09
0.09
008
007
0.06
006
0.03
003
0.04
0.04
0.04
0.03
003
0.03
0.02
002
0.02
0.02
0.02
0.02
0.01
0.01
0.0
0.01
0.01
001
0.01
0.01
0.0
0.01
0.00
0.00
0.00
0.00
0.00
0.00

0713
N@®
1.73
073
077
0714
081
082
0.24
0285
0.86
023
089
090
091
091
092
093
0.94
094
095
095
0.96
096
0.96
097
097
097
098
00g
098
098
098
098
089
099
0299
099
099
099
089
089
090
099
1.00
1.00
1.00
1.00
1.00
1.00

0.00
N
3.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N
6.15
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N
0.83
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
N@®
18.10
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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Table F.6 Kernel Function Results (cont.)

232 000 000 QOO0 OO0 000 Q00 100 000 000 000 Q00
MG N@ N@ N@ N@ N@ NO® N@® N@O NO N@ N@
0.06 010 017 030 054 095 1.73 309 6.15 92,53 18.10
233 Q00 000 000 000 000 000 100 000 000 000 0.00
234 000 000 000 OO0 000 000 100 000 000 000 Q00
235 Q00 000 000 000 000 000 100 000 000 000 0.00
236 Q00 000 000 000 000 000 100 000 000 0200 Q.00
237 Q00 000 000 Q000 000 000 100 000 000 000 Q.00
238 000 000 000 OO0 000 Q00 100 000 000 000 Q00
239 Q00 000 000 Q000 000 000 100 000 000 000 0.00
2.40 Q00 000 000 Q000 000 000 100 000 000 000 0.00
241 Q00 000 000 Q000 000 000 100 000 000 000 Q.00
242 000 000 000 OO0 000 000 100 000 000 000 Q00
243 Q00 000 000 000 000 000 100 000 000 000 Q.00
2.44 Q00 000 000 Q000 000 000 100 000 000 000 Q.00
2.45 Q00 000 000 Q000 000 000 100 000 000 000 Q.00
246 000 000 000 000 000 000 100 000 000 000 Q00
247 Q00 000 000 Q000 000 000 100 000 000 000 0.00
2.48 Q00 000 000 Q000 000 000 100 000 000 000 0.00
249 Q000 000 000 OO0 000 000 100 000 000 000 000
250 000 000 000 OO0 000 000 100 000 000 000 Q00
251 Q00 000 000 000 000 000 100 000 000 000 Q.00
2.52 Q00 000 000 000 000 000 100 000 000 0200 Q.00
253 000 000 000 000 000 000 100 000 000 000 000
254 000 000 000 OO0 000 Q00 100 000 000 000 Q00
2.55 Q00 000 000 Q000 000 000 100 000 000 000 0.00
2.56 Q00 000 000 Q000 000 000 100 000 000 000 0.00
257 000 000 000 000 000 000 100 001 000 000 000
258 000 000 000 OO0 000 000 100 001 000 000 Q00
2.59 Q00 000 000 000 000 000 100 001 000 000 Q.00
2.60 Q00 000 000 Q000 000 000 100 001 000 000 Q.00
261 000 000 000 000 000 000 100 001 000 000 000
262 000 000 QOO0 OO0 000 000 100 001 000 000 Q00
2.63 Q00 000 000 Q000 000 000 100 001 000 000 0.00
2.64 Q00 000 000 Q000 000 000 100 001 000 000 0.00
265 000 000 000 OO0 000 000 100 001 000 000 000
266 000 OO0 000 OO0 000 000 100 001 000 000 Q00
2.467 Q00 000 000 000 000 000 100 002 000 000 Q.00
2.658 Q00 000 000 000 000 000 100 002 000 000 Q.00
2690 000 000 000 000 000 000 100 002 000 000 000
270 000 000 QOO0 000 000 000 100 002 000 000 Q00
2.71 Q00 000 000 Q000 000 000 100 002 000 000 0.00
2.72 Q00 000 000 Q000 000 000 100 003 000 000 0.00
273 000 000 000 000 000 000 100 005 000 000 000
274 000 000 000 000 000 000 100 003 000 000 000
2.75 Q00 000 000 000 000 000 100 003 000 000 Q.00
2.76 Q00 000 000 Q00 000 000 096 004 Q000 000 Q.00
279 Q000 000 000 OO0 000 QOO0 OO 005 000 000 Q00
280 000 000 000 OO0 OO0 Q00 OO4 Q006 000 000 Q00
2.51 Q00 000 000 Q00 000 000 094 Q06 000 000 0.00
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Table F.7 Kernel Function Results (cont.)

282 000 000 000 000 000 OO0 093 007 000 000 000
MG N@®M N@® N@ N@® N@O N@ N@ N@ N@® N@O N@®
0.06 010 017 030 054 095 1.73 3.09 6.15 933 1810
283 000 000 000 000 Q00 OO0 092 008 000 000 000
284 000 000 OO0 OO0 Q00O OO0 092 Q08 000 Q00 000
285 000 000 000 000 OO0 000 02021 009 000 000 000
28 000 000 OO0 000 000 OO0 090 010 000 000 000
287 000 Q00 OO0 000 Q00 OO0 089 011 000 000 000
28 000 000 OO0 QOO QOO OO0 088 012 000 Q00 000
289 000 OO0 OO0 OO0 QOO OO0 OBY 013 000 000 000
29 o000 OO0 OO0 OO0 OO0 OO0 086 014 000 000 000
291 000 000 000 OQ0NO OO0 OO0 0B85 015 000 000 000
292 000 000 000 000 OO0 OO0 083 017 000 000 000
293 000 OO0 OO0 OO0 OO0 OO0 OS82 012 000 OO0 000
294 000 OO0 OO0 OO0 QOO OO0 O8O0 020 000 Q00 Q00
29 000 OO0 OO0 QOO QOO Q00 O79 021 0QOQ0 Q00 000
296 000 000 000 000 Q00 000 077 023 000 000 000
297 Q000 000 Q00 000 OO0 000 O7F5 025 000 000 000
298 000 000 OO0 OQOO QOO OO0 073 026 000 000 000
299 Q000 000 000 000 OO0 OO0 072 028 000 000 000
o0 o000 000 OO0 OO0 000 OO0 OO O30 QOO0 Q00 000
30 000 000 000 000 OO0 OO0 O68 032 000 000 000
302 000 000 000 OO0 OO0 OO0 065 035 000 000 000
3oy 000 000 OO0 000 000 OO0 063 037 000 000 000
304 000 000 OO0 OO0 QOO0 OO0 O61 039 000 Q00 000
30 000 000 OO0 QOO QOO0 OO0 039 041 000 000 000
o6 000 000 OO0 000 000 OO0 O5T7T 043 000 0QO00 000
307 000 OO0 OO0 OO0 OO0 OO0 O34 046 000 000 QOO0
308 000 000 OO0 OO0 QOO0 OO0 032 048 000 000 000
00 000 000 000 000 Q00 000 OS50 050 000 000 000
il o000 000 OO0 OO0 000 OO0 047 053 000 Q00 0.U00
31 o000 000 000 000 OO0 OO0 045 035 000 000 000
312 000 000 OO0 OO0 OO0 OO0 043 037 000 000 000
313 o000 000 000 000 Q000 Q00 040 059 000 000 000
314 000 OO0 OO0 QOO OO0 OO0 038 062 000 Q00 000
315 000 000 OO0 OO0 OO0 OO0 O36 O64 000 000 000
il o000 OO0 OO0 OO0 OO0 OO0 034 066 000 000 000
317 9000 000 000 000 OO0 000 032 068 000 000 000
318 o000 000 OO0 QOO Q0O OO0 O30 070 000 Q00 Q00
i1 000 000 000 000 Q00 OO0 028 072 000 000 000
320 000 000 000 O0Q00O OO0 OO0 027 073 000 000 000
321 000 000 000 000 OO0 OO0 025 075 000 000 000
122 000 000 000 000 000 000 023 077 000 000 000
32y o000 000 OO0 OO0 OO0 OO0 022 078 000 000 000
324 000 000 000 000 OO0 OO0 020 080 000 000 000
325 000 OO0 OO0 OO0 OO0 OO0 019 021 000 000 000
326 o000 OO0 OO0 OO0 OO0 OO0 O1% 0822 000 0QO00 000
327 000 OO0 OO0 QOO QOO OO0 016 024 000 Q00 QOO0
328 000 000 OO0 QOO QOO OO0 015 0B85 000 Q00 000
20 000 000 OO0 000 Q00 OO0 014 OB 000 000 000
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NG
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NG
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N
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013
N@
1.73
0.12
011
0.10
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0.08
007
0.06
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005
003
0.04
0.04
004
0.03
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0.03
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0.02
0.02
0.02
0402
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0.0
0.01
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0.01
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0m
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0.00
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0.00
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0.87
N@®
3.00
0.28
0.89
0.90
0.90
062
093
093
0.94
0.94
095
095
0.96
096
096
0.96
097
097
097
097
098
098
098
098
098
008
098
098
0.99
090
099
0.99
0.99
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099
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0.99
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0.99
0.99
099
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095
092

0.00
N@
6.15
0.00
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0.00
0.00
0.00
0.00
0.00
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0.00
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0.00
0.00
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0.00
0.00
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0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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0.01
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0.03
0.08

0.00
N@
0.83
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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0.00
0.00
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0.00
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0.00

0.00
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18.10
0.00
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0.00
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0.00
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Table F.9

525

M()
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N@®
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Kernel Function Results (cont.)
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Table F.10
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Kernel Function Results (cont.)
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0.50
049
047
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0.18
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.13
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0.06

047
N{@)
18.10
049
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0.55
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058
0.60
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0.66
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071
0.72
0.73
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0.76
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0.81
0.82
0.82
0.83
0.84
0.83
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0.86
0.87
0.87
0.88
028
0.89
0.89
090
090
091
091
092
092
092
093
0903
093
094
094
094
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Table F.11  Kernel Function Results (cont.)

25 000 000 000 Q00 000 000 000 000 000 O06 0904
MG N@MH N@) N@O N@®H N@O N@D NO N@O N@H N@OD N@
0.06 010 0.17 030 054 095 1.73 309 6.15 983 1510
W50 000 000 000 Q00 000 000 000 000 Q00 005 095
35 000 000 000 000 000 000 000 000 000 005 095
3100 000 000 Q00 Q00 000 000 000 000 000 005 095
3125 000 000 000 000 000 000 000 000 Q00 003 093
3150 000 000 Q00 Q00 000 000 000 000 000 005 095
3.7 000 Q000 Q000 OO0 000 000 OO0 000 000 O04 096
200 000 Q00 Q00 Q00 Q00 000 000 000 Q00 004 096
3225 000 Q00 Q00 QOO0 Q00 000 000 000 Q00 O04 096
250 000 000 Q00 Q00 000 000 000 000 000 004 0096
278 o000 OO0 000 OO0 OO0 OO0 OO0 OO0 OO0 004 006
3300 000 OO0 OO0 QOO0 OO0 OO0 OO0 QOO0 QOO0 O04 096
3325 000 000 Q000 Q00 000 000 000 000 000 003 097
3350 000 000 Q000 OO0 000 000 000 000 000 003 097
3375 000 Q00 Q00 000 000 000 OO0 000 000 QO3 097
400 000 Q00 Q00 Q00 Q00 000 000 000 Q00 QO3 097
3425 000 Q00 Q000 Q00 Q000 000 000 000 Q00 QO3 097
3450 000 000 Q00 QOO0 000 000 000 000 Q00 QO3 097
3475 000 000 000 000 000 000 000 000 Q00 003 097
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APPENDIX G

Sample RPD Calculation
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Sample RPD Calculation

Crrc = Cuoun %100

CLPC + CMOUDI

2

RPD =

Where:
RPD = relative percent difference
Cipc = LPC TSP concentration

Cwmoupr = MOUDI TSP concentration

Cipe = 0.59 pg/m’

CMOUDI =0.68 Mg/l’ll3

RPD =10.59 pg/m’ - 0.68 pug/m’l / ((0.59 pg/m’ + 0.68 pg/m?)/2)*100
RPD = 1-0.091/ (0.635) *100

RPD =14.17 %
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APPENDIX H

Sample Calculation of LPC 1 to LPC 2 Calibration, Stat Sheets, and Charts
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LPC 1 vsLPC 2 Particulate Count Comparison (0.5 pm, 5 min interval)

® [PC1lvsLPC?2
Linear Regression -

LPC 1 Count
b
LA
[ ]
L ]
1

2000 +
m=0.2134
1500 -
1000 T T T T T
1500 2000 2500 3000 3500 4000 4500

LPC 2 Count

Figure H.1 LPC 1 vs LPC 2 Particulate Count Comparison (0.5 pum, 5 min
Interval)

LPC 1 and LPC 2 Sample Particulate Count (0.50 pm, 5 min interval)
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Figure H.2 LPC 1 and LPC 2 Sample Particulate Count (0.5 pm, 5 min Interval)
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Table H.1 Mann-Whitney Rank Sum Test Results for 0.5 pm, 5 min interval.

t-test Wednesday, August 17, 2011, 3:27:42 PM
Data source: Data 2 in Summer LPC 1 to LPC 2. JNB

Normality Test: Failed (P <=0.030)

Test execution ended bv user request, Rank Sum Test begun
Mann-Whitney Rank Sum Test Wednesday, August 17, 2011, 3:2742 PM

Data source: Data 2 in Summer LPC 1 to LPC 2.JNB
Group N Missing Median 25% 75%

Col 5 155 4 2754919 2396.802 3091819
Col2 155 4 2668200 2273.050 2987.650

Mann-Whitnev U Statistic= 10037_000

T =24240.000 n(small)= 151 n(big)= 151 (P =0.072)

The difference in the median values between the two groups is not great enough to
exclude the possibility that the differenceis dueto random sampling variability; there is
not a statistically significant difference (P =0.072)
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LPC 1vsLPC 2 Particulate Count Comparison (0.7 pm, 5 min interval)

700

# LPC1lwsLPC2

—— Linear Regression
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400

LPPC 1 Count

200 T T T T T
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LPC 2 Count

Figure H.3 LPC 1 vs LPC 2 Particulate Count Comparison (0.7 pm, 5 min

Interval)
LPC 1 and LPC 2 Sample Particulate Count (0.70 pm, 5 min interval)
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Figure H4 LPC 1 and LPC 2 Sample Particulate Count (0.7 um, 5 min Interval)
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Table H.2 Mann-Whitney Rank Sum Test Results for 0.7 pm, 5 min interval.

t-test Wednesday, Augnst 17,2011, 4:37:03 PM
Data source: Data 3 in Summer LFC 1 to LPC 2 JNBE

Normality Test: Failed (P < 0.050)

Test execution ended by user request, Fank Sum Test begun
Mann-Whitney Rank Sum Test Wednesday, August 17,2011 4:37:03 PM

Data source: Data 3 m Summer LPC 1 to LPC 2. JNB

Group N  Missing Median 25% 7500
Col7 155 4 515.157 456.103 582302
Col2 155 4 541400 475330 616900

Mann-Whitney U Statistic= 9913.000
T=21394.000 n(small= 131 n(bigF 151 (P=0.031)
The difference n the median values between the two groups is not great enoughto exclude the possibility

that the differenceis dueto random sampling varability; there is not a statistically significant difference
(F =10.051)
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LPC1vsLPC 2 Particulate Count Comparison (1.0 pm. 5 min interval)

SOy
800 - ¢ IPClvsLPC2
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700 -
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S
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Figure H.5 LPC 1 vs LPC 2 Particulate Count Comparison (1.0 um, 5 min

Interval)
LPC 1 and LPC 2 Sample Particulate Count (1.0 pm, 5 min interval)
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Figure H.6 LPC 1 and LPC 2 Sample Particulate Count (1.0 pm, 5 min Interval)
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Table H.3 Mann-Whitney Rank Sum Test Results for 1.0 pm, 5 min interval.

t-test Wednesday, August 17,2011 3:35:11 PM
Data source: Data 4 in Surmumer LPC 1 to LPC 2.JNE

Normality Test: Failed (P <0.030)

Test execution ended by user request, Fank Sum Test begun

Mann-Whitney Rank Sum Test Wednesday, Augnst 17,2011,3:35:11 PM

Data source: Data 4 in Summer LPC 1 to LPC 2 JNEBE

Group N  Missing Median 2504 T5%
Col2 1355 4 483 200 382.700 576200
Col3 135 4 483200 3E0.850 573 800

Mann-Whitney U Statistie= 11277300
T=22999300 n(small= 131 nibigF 151 (P=028712)

The difference in the median values between the two groups is not great enoughto exclude the possibility
that the differenceis dueto randorm sampling vanability; there is not a statistically signmificant difference(P
=(0.872)
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LPC 1 vsLPC 2 Particulate Count Comparison (2.0 pm, 5 min interval)
800
700 - &« ILPC1lvsLPC2
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Figure H.7 LPC 1 vs LPC2 Particulate Count Comparison (2.0 pum, 5 min
Interval)

LPC 1 and LPC 2 Sample Particulate Count (2.0 pm, 5 min interval)
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Figure H.8 LPC 1 and LPC2 Sample Particulate Count (2.0 pm, 5 min Interval)
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Table H4 Mann-Whitney Rank Sum Test Results for 2.0 pm, 5 min interval.

t-test Wednesday, Augnst 17,2011, 3:36:18PM
Data source: Data 5 in Sunumer LPC 1 to LPC 2 JNEBE

Normality Test: Failed (P <0.030)

Test execution ended by user request, Eank Sum Test begun
Mann-Whitney REank Sum Test Wednesday, August 17,2011, 3:536:18PM

Data source: Data 3 in Sunmmer LPC 1 to LPC 2 JNEBE

Group N Missing Median 25% T5%
Caol2 153 4 304.800 2203500 373.100
Cal3 135 4 303.000 211.700 366.600

Mann-Whitney U Statistic= 11016.000
T=23261.000 n{small= 131 n(bigF 151 (P=10613)

The difference in the median values between the two groups is not great enoughto exclude the possibility
that the differenceis dueto random sampling variability; there is not a statistically significant difference
(F=0613)
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LPC 1vsLPC 2 Particulate Count Comparison (3.0 pm, 5 min interval)
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Figure H9 LPC 1 vs LPC2 Particulate Count Comparison (3.0 um, 5 min

Interval)
LPC 1 and LPC 2 Sample Particulate Count (3.0 pm, S min interval)
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Figure H.10 LPC 1 and LPC 2 Sample Particulate Count (3.0 um, 5 min Interval)
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Table H.5 Mann-Whitney Rank Sum Test Results for 3.0 pm, 5 min interval.

t-test Wednesday, Augnst 17,2011 3:51:17PM
Data source: Data 6in Summer LEC 1 to LPC 2. JNBE

Normality Test: Failed (P <0.050)

Test execution ended by user request, Fank Sum Test begun
Mann-Whitney Eank Sum Test Wednesday, August 17, 2011 3:51:17PM

Data source: Data 6m Summer LPC 1 to LPC 2. JNB

Group N  Missing Median 25% T5%4
Col2 135 4 184.600 125900 2219950
Col3 135 4 186912 122.139 236672

hMann-Whitney T Statistic= 11376.000
T=22832.000 n(small= 151 nfbigl= 151 (P=0975)

The differencein the median values between the two groups is not great enough to exclude the possibility
that the differenceis due to random sampling varability; there is not a statistically significant difference

(P =0975)
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LPC 1 vs LPC 2 Particulate Count Comparison (5.0 pm, 5 min interval)
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Figure H.11 LPC 1 vs LPC2 Particulate Count Comparison (5.0 pum, 5 min

Interval)
LPC 1 and LPC 2 Sample Particulate Count (5.0 um, 5 min interval)
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Figure H.12 LPC 1 and LPC2 Sample Particulate Count (5.0 pm, 5 min Interval)
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Table H.6 Mann-Whitney Rank Sum Test Results for 5.0 pm, 5 min interval.

t-test Wednesday, Augnst 172011 3:33:44 PM
Data source: Data T m Surmmer LPC 1 to LPC 2 JNB

Normality Test: Failed (P < 0.050)

Test execution ended by user request, Fank Sum Test begun
Mann-Whitney Rank Sum Test Wednesday, Augnst 17,2011, 3:33:44 PM

Data source: Data 7in Swnmer LPC 1 to LPC 2. JNE

Group N  Missing Median 2504 T5%
Col2 135 4 68.800 42800 04.030
Col7 135 4 64.741 39778 £5.252

Mann-Whitney U Statistic= 10432.000
T=23839.000 n{zmall= 151 n(bigF 151 (P=0203)

The difference in the median values between the two groups is not great enoughto exclude the possibility
that the differenceis dueto random sampling varability; there is not a statistically significant difference
(P =0203)




LPC 1 vs LPC 2 Particulate Count Comparison (7.0 pm, 5 min interval)
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Figure H.13 LPC 1 vs LPC2 Particulate Count Comparison (7.0 um, 5 min
Interval)
LPC 1 and LPC 2 Sample Particulate Count (7.0 um, 5 min interval)
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Figure H.14 LPC 1 and LPC2 Sample Particulate Count (7.0 pm, 5 min Interval)
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Table H.7 Mann-Whitney Rank Sum Test Results for 7.0 pm, 5 min interval.

t-test Wednesday, August 17,2011, 4:10:22 PM
Data source: Data 8. 0m Summer LPC 1 to LPC 2 JNE

Normality Test: Failed (P <0.050)
Test execution ended by user request, Rank Sum Test begun

Mann-Whitney Rank Sum Test Wednesday, Augnst 17,2011, 4:19:22 PM

Data source: Data £.0m Summer LPC 1 to LPC 2 JNEBE

Group N  Missing Median 25% T5%
Cold 135 4 33.147 20704 46964
Col2 135 4 33.000 22300 47200

Mann-Whitney U Statistie= 11290.000
T=22987.000 n(small= 151 nbig~ 151 (P =0.883)
The difference in the median values between the two groups is not great enoughto exclude the possibility

that the differenceis dueto random sampling varability; there is not a statistically significant difference
(P=10.883
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LPC 1 vs LPC 2 Particulate Count Comparizon (10.0 um, 5 min interval)
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Figure H.15 LPC 1 vs LPC2 Particulate Count Comparison (10.0 pm, 5 min

Interval)
LPC 1 and LPC 2 Sample Particulate Count (10.0 pm, 5 min interval)
80
— LPC1
— LPC2
LPC 2 Calibrated
- 60
=]
=
=]
@)
Q
5
£ 40
=
]
m 1
@]
= |
= 20 I \
fll J\ ‘ W
! ;/
J !
0 T T T T
0 200 400 600 800
Time (mins)

Figure H.16 LPC 1 and LPC2 Sample Particulate Count (10.0 pum, 5 min Interval)
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Table H.8 Mann-Whitney Rank Sum Test Results for 10.0 pm, 5 min interval.

t-test Wednesday, Augnst 17,2011, 4:31:17PM
Data source: Data @in Summer LPC 1 to LPC 2. JNBE

Normality Test: Failed (P < 0.0530)

Test execution ended by user request, Fank Sum Test begun
Mann-Whitney Eank Sum Test Wednesday, August 17,2011 4:31:17PM

Data source: Data 9m Summer LPC 1 to LPC 2. JNB

Group N  Missing Median 25% 7504
Col8% 155 4 13.712 0092 20353
Col2 155 4 15200 0250 22500

Mann-Whitney U Statistic= 10716.000
T=22192.000 n{small= 131 nfbigF 131 (P=036T)
The differencen the median valuesbetween the two groups is not great enoughto exclude the possibility

that the differenceis dueto random sampling vanability; there is not a statistically significant difference
(F=036T)
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APPENDIX I

Student T-Test Trip Blank Results



LPC 1, LPC 2, and Hi-vol Concentrations for Stage 5
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Figure 1.1 LPC 1, LPC 2, and Hi-vol Concentrations for Stage 5

LPC 1, LPC 2, and Hi-vol Concentrations for Stage 4
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Figure 1.2 LPC 1, LPC 2, and Hi-vol Concentrations for Stage 4
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LPC 1, LPC 2, and Hi-vol Concentrations for Stage 3
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Figure 1.3 LPC 1, LPC 2, and Hi-vol Concentrations for Stage 3

LPC 1, LPC 2, and Hi-vol Concentrations for Stage 2
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Figure 1.4 LPC 1, LPC 2, and Hi-vol Concentrations for Stage 2
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Concentration (pg/m3)
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LPC 1, LPC 2, and Hi-vol Concentrations for Stage 1
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Figure L.5 LPC 1, LPC 2, and Hi-vol Concentrations for Stage 1
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Figure 1.6 TPS Concentrations for LPC 1, LPC 2, and Hi-vol
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APPENDIX J

Student T-Test Trip Blank Results



Table J.1 Hi-vol trip blank results

150

Date Start Weight (mg) End Weight (mg) Rel. Difference
10-25 4.4229 4.4231 0.0002
10-22 4.4203 4.4202 0.0001
10-27 4.4189 4.4185 0.0004
10-28 4.4284 4.4288 0.0004
11-02 4.4268 4.4276 0.0008
11-03 44171 4.4169 0.0002
11-04 4.4049 4.4052 0.0003

Table J.2 T-Test

-test

Data source: Data 2in LPC pump calibration JNE
Normality Test: Paszed (P=10.035

Equal Variance Test: Paszed (P=002135

Group Name N  Missing

Col 3 Q 2
Col 4 Q 2
Difference 0000143

t=-0.0341 with 12 degrees of freedom. (P = 0.973)

Mean
4420
4420

Monday, October03, 2011, 1:539:38 PM

SEM
0.00294
0.00299

05 percent confidence mterval for difference of means: -0.00928 to 0.00200

The difference in the meanvalues ofthe two groups is not great enough to reject the possibility thatthe
differenceis dueto randem samplingvanability. There is not a statistically significant difference between

the input groups (F=0.073).

Power of performed test with alpha=0.030:0.030

The power ofthe perforrnedtest (0.030) iz below the desired power of 0.800.

Less than desired power indicates you areless likely to detect a difference when one actually exists.

MNegative results should be interpreted cautiously.




