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Nonlinear machine learning and design of reconfig-
urable digital colloids†

Andrew W. Long,a Carolyn L. Phillips,b Eric Jankowksi,c and Andrew L. Fergusona,d,∗

Digital colloids, a cluster of freely rotating “halo" particles tethered to the surface of
a central particle, were recently proposed as ultra-high density memory elements for
information storage. Rational design of these digital colloids for memory storage appli-
cations requires a quantitative understanding of the thermodynamic and kinetic stability
of the configurational states within which information is stored. We apply nonlinear ma-
chine learning to Brownian dynamics simulations of these digital colloids to extract the
low-dimensional intrinsic manifold governing digital colloid morphology, thermodynam-
ics, and kinetics. By modulating the relative size ratio between halo particles and central
particles, we investigate the size-dependent configurational stability and transition kinet-
ics for the 2-state tetrahedral (N=4) and 30-state octahedral (N=6) digital colloids. We
demonstrate the use of this framework to guide the rational design of a memory storage
element to hold a block of text that trades off the competing design criteria of memory
addressability and volatility.
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† Electronic Supplementary Information (ESI) available: Two movies highlighting
the structure and topography of the low-dimensional intrinsic manifolds for the N=4
and N=6 digital colloids, a figure showing the transition network for the N=6 digital
colloid, and a movie tracking a N=6 transition event over the intrinsic manifold. See
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1 Introduction

Digital colloids1, reconfigurable clusters of lock-and-key
colloidal particles2, have recently been proposed as a novel
soft matter-based substrate for high-density information
storage. A digital colloid comprises freely-rotating but teth-
ered “halo" particles that are bound to the surface of a cen-
tral particle (Figure 1). Information can be stored within
distinguishable configurations of the halo particles around
the central particle. These structures have been exper-
imentally synthesized via depletion mediated binding of
dimpled halo particles to the surface of a central spherical
particle1,2, as well as through programmable DNA interac-
tions3. These halo particles may be distinguished through
a variety of labeling techniques4, such as functionaliza-
tion with complementary Förster Resonant Energy Trans-
fer (FRET) pairs5 or through binding of short oligonu-
cleotides1, thereby enabling the unique identification of
distinct metastable halo particle configurations that medi-
ate information storage and retrieval.

Storing information in micron-scale colloids has the po-
tential to advance computing in unconventional environ-
ments. A prime example of which is DNA-based comput-
ing in solution, wherein arbitrary digital circuitry can be
mapped onto reaction networks of DNA strands6. One
practical limitation of DNA-based computing is the storage
of information in the concentrations of DNA strands, which
are essentially uniform throughout the computing volume.
Digital colloids have potential as compartmentalized, high-
density storage elements that can diffuse throughout a
computing volume, and which can in principle be reconfig-
ured during computations. In order to realize the potential
of digital colloids as unconventional computing elements,
we require a fundamental understanding of the configura-
tional transitions between storage states.

The number of distinguishable halo particle configura-
tions in the digital colloid ground state determines the
number of unique “bit states” of a cluster, and therefore
its information storage capacity. For example, the halo
particles of the N=4 digital colloid exist in a tetrahedral
ground state, meaning – after the elimination of trivial ro-
tational symmetries – it possesses exactly two distinguish-
able arrangements of the four halo particles (Figure 1c).
These two available states mean that the N=4 colloid is
a binary storage element that can encode exactly one bit
of information. In general, the number of storable states
is specified by the N! halo particle permutations divided
by the symmetry operator for the ground state configura-
tional arrangement, ϒN . The symmetry operator for an N-
particle colloid is determined by the spherical code solution
for the arrangement of the halo particles around the cen-

tral particle1,7–10. This arrangement is the solution to the
Tammes problem11 – a special case of the Thomson prob-
lem12 – corresponding to the configuration of N halo parti-
cles that maximizes the minimum distance (or equivalently
minimum angle) between the halo particle centers7–10,13.
This configuration determines both the point group of the
packing structure and the multiplicity of the symmetry op-
erator. Putatively optimal spherical code solutions up to
N=130 are reported in Ref. [14]. The spherical code solu-
tion for N=4 is a tetrahedron (Figure 1a) and for N=6 an
octahedron (Figure 1b) with corresponding point groups,
rotational symmetries, and number of storable states listed
in Figure 1d. The number of bit states that can be written
in a digital colloid is given by the base-2 logarithm of the
number of storable states, log2 (N!/ϒN). The information
storage capacity of digital colloids increases as O(log2(N!)),
making them ideal for high-density information storage1.
For example, a single N=6 octahedral cluster is capable
of storing 4.9 bits (0.613 bytes), and a N=12 icosahedral
cluster 22.9 bits (2.87 bytes).

A key feature of these digital colloids is that the halo
particles, although strongly tethered to the central parti-
cle, are free to move over the surface of the central parti-
cle. Defining the diameter ratio between the central and
halo particles as Λ = dcentral/dhalo, the spherical code solu-
tion imposes a minimum value ΛSC for a given system of
N halo particles, below which the N particles cannot bind
to the surface without overlapping. For Λ above this value
but below some threshold ratio, ΛSC ≤ Λ < ΛT, each halo
particle is confined within a cage composed of its neigh-
bors, and the digital colloid is locked into a single bit state.
This threshold ratio, ΛT, is given by the minimum value of
Λ needed for collective halo particle rearrangements to ac-
cess the transition state, and has been previously computed
for N=4-121. At Λ ≥ ΛT there is sufficient free volume for
the halo particles to transition between bit states and the
digital colloid becomes unlocked. By actuating halo parti-
cle transitions between bit states, information can be writ-
ten. By observing the halo particle bit state, information
can be read.

Above the unlocking transition, the digital colloid is no
longer confined to oscillate around the spherical code con-
figuration, and can explore a rich and complex morpholog-
ical landscape. The design of information storage elements
with tailored free energy barriers sufficiently low to actu-
ate the halo particle configuration (i.e., a low write free
energy) but sufficiently high to prevent thermally-activated
spontaneous bit state flips (i.e., low memory volatility) re-
quires an accounting of the thermally accessible configu-
rational state space, transition state free energy barriers,
and mean first passage times as a function of N and Λ.
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Furthermore, designing reliable digital colloids requires an
understanding of how sensitive bit transitions are to the
manufacturing tolerances of their constituent parts.

The configurational state of a digital colloid exists in a
2N-dimensional phase space defined by the azimuthal and
polar coordinates of the N halo particles on the surface of
the central sphere. Excluded volume and any other interac-
tions between the halo particles means that their motions
and locations are correlated, and these cooperative cou-
plings are expected to define an emergent low-dimensional
subspace to which the digital colloid dynamics are effec-
tively restrained15. This latent low-dimensional manifold
supports the free energy surface containing the thermally-
accessible system configurations, stable and metastable
states, and transition pathways between them. Determin-
ing this landscape provides quantitative understanding of
the system morphology, thermodynamics, and kinetics.

Dimensionality reduction techniques have demonstrated
good success in recovering these low-dimensional mani-
folds for both single molecule16–18 and many-body self-
assembling15,19,20 systems. Recently, we (A.W.L. and
A.L.F.) developed an extension of the diffusion map non-
linear dimensionality reduction technique21–23 for many-
body colloidal systems to infer low-dimensional assembly
landscapes from both simulation15 and experimental par-
ticle tracking data19. Building upon these foundations,
in this work we combine Brownian dynamics simulations,
nonlinear machine learning, and first passage time analy-
sis to quantify the stable and transition state morphologies
and determine the transition mechanisms, free energy bar-
riers, and transition rates for bit state switching for N=4
and N=6 digital colloids. We use this new quantitative un-
derstanding to computationally design addressable digital
colloids with tailored kinetic stability and actuation free
energies, providing a step towards the engineering of high-
density digital colloid information storage media.

2 Materials & Methods
We study the morphology, thermodynamics, and kinetics of
digital colloids comprising N=4 and N=6 halo particles us-
ing Brownian dynamics simulations, nonlinear dimension-
ality reduction, and first passage time analysis.

2.1 Brownian Dynamics simulations of digital colloids

Following the protocol previously detailed in Refs. [1,24],
we performed Brownian dynamics simulations of N=4 and
N=6 digital colloids using the HOOMD-blue GPU-based
molecular simulation package (http://glotzerlab.
engin.umich.edu/hoomd-blue/)25–27. The spherical
halo particles are constrained to glide over the surface
of the spherical central particle using a radial restor-

ing force perpendicular to the free particle direction of
motion. This restoring force provides a rigid constraint
binding the halo particles to the central particle surface1,
implemented via the HOOMD constrain.sphere

module (http://hoomd-blue.readthedocs.io/
en/stable/module-md-constrain.html). The
diameter of the central particle dcentral regulates the
geometric confinement of these halo particles, which is
defined by the ratio of central to halo particle diameters,
Λ = dcentral/dhalo. The central particle is treated as static
and inert, while halo particles i and j interact through
a surface-shifted Weeks-Chandler-Anderson (WCA) pair
potential to account for excluded volume interactions28,

u(ri j) =

⎧⎪⎨
⎪⎩

4ε
[(

σ
ri j−Δ

)12 −
(

σ
ri j−Δ

)6
]
+ ε, ri j < 2(1/6)σ +Δ

0, ri j ≥ 2(1/6)σ +Δ
(1)

where ri j is the center of mass separation between the halo
particles, ε is the interaction strength, σ is the size param-
eter, and the parameter Δ = 2σ shifts the WCA potential to
an effective surface of the halo particles. We perform our
simulations in a dimensionless gauge such that energy is
measured in units of ε and distance in units of σ . The re-
duced temperature is defined as T ∗ = kBT/ε, and reduced
time as t∗ = t/

√
mσ2/ε where m is the mass of a halo par-

ticle.

The surface-shifted WCA potential is a convenient com-
putational approximation for particles possessing hard core
interactions29,30, and can be mapped to a hard sphere
fluid using a perturbative generalization of the Rowlinson
scheme developed by Barker and Henderson31–33. Em-
ploying Eqn. 12 in Ref. [ 31], we determine an effec-
tive hard sphere diameter of the halo particles of dhalo

= 3.0785σ . The central particle diameter is defined as
dcentral = 2dcentral-halo − dhalo, where dcentral-halo is the con-
strained center of mass distance between the central and
halo particles. This mapping of our WCA halo particles to
effective hard spheres of diameter dhalo = 3.0785σ enables
us to calculate the spherical code diameter ratio ΛSC and
threshold diameter ratio ΛT based on purely geometric con-
siderations1,7. These hard sphere values do not hold pre-
cisely for our soft particles, but the steepness of the WCA
potential and moderate temperatures employed in our cal-
culations mean that they do behave as approximate hard
spheres. Specifically, we observe no pair of halo particles i
and j to approach closer than ri j = 2.95σ corresponding to
a pairwise interaction energy u(ri j) = 2.96ε. The values of
ΛSC and ΛT reported for each of the digital colloid archi-
tectures should therefore be interpreted as approximations
based on the effective hard sphere mappings.
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Simulations were performed at a reduced tempera-
ture of T ∗=0.1 and the Brownian dynamics (overdamped
Langevin dynamics) equations of motion numerically in-
tegrated using velocity verlet in the NVE ensemble and a
Langevin thermostat34 with a time step of dt∗=10−3 35.
Each simulation was initialized with Λ0 >> ΛT > ΛSC and
the halo particles randomly distributed and free to move
over unencumbered over the central particle surface. The
central particle was then gradually shrunk to the desired
value of Λ over the course of 1.1× 105 time steps to allow
the system to equilibrate before conducting a 109 time step
production run.

To make contact between our dimensionless simula-
tions and real units, we adopt a characteristic interaction
strength of ε = 10 kBT at 298 K between micron-sized halo
particles with σ = 0.915 μm (dhalo = 2.82 μm) fabricated
from 3-methacryloxypropyl trimethoxysilane (TPM) with
density ρ = 1.228 g/cm3 36. Under this choice the reduced
temperature T ∗ = 0.1 maps to T = 298 K, the reduced time
step dt∗ = 10−3 to dt = 0.54 μs, and the reduced simula-
tion time t∗ = 109 × 10−3 = 106 to t = 540 s.

2.2 Digital colloid dimensionality reduction

Simulations of the digital colloid dynamics provide all par-
ticle coordinates as a function of time, furnishing, in princi-
ple, all of the morphological, thermodynamic, and kinetic
details governing transitions between different configura-
tions of the distinguishable halo particles defining the in-
formation storage bit states. In practice, extracting this in-
formation from the trajectories is challenging due to the
high dimensionality of the system: a particular configu-
ration of N halo particles rolling around the surface of a
central particle exists as a point in a 2N-dimensional phase
space defined by the surface locations of each halo parti-
cle. For sufficiently small values of Λ the accessible phase
space volume is, however, drastically reduced by excluded
volume interactions that give rise to cooperative halo parti-
cle rearrangements1. These cooperative couplings are ex-
pected to yield a separation of time scales, wherein local
caged oscillations within a stable bit state give rise to high-
frequency motions, and transitions between bit states are
rare events with slow characteristic time scales. We an-
ticipate that these cooperative transition pathways corre-
spond to a small number of slow collective modes of the
halo particle dynamics15,19,37. Extracting these slow modes
from the simulation trajectory reveals the multi-body tran-
sition pathways governing the digital colloid dynamics, and
also presents kinetically meaningful collective coordinates
in which to construct low-dimensional free energy surface
mapping out the accessible morphologies, stable states,

and dynamical transition pathways15,16,18,19,38–41.
Nonlinear dimensionality reduction provides a means

to determine the low-dimensional hypersurface – the so-
called “intrinsic manifold” – within the high-dimensional
phase space to which the multi-body digital colloid dy-
namics are effectively restrained15,19. Geometrically, the
intrinsic manifold is the low-dimensional phase space vol-
ume parameterized by a small number of collective vari-
ables that contains the stable colloidal bit states and the dy-
namic transition pathways between them15,19,38,39. Tem-
porally, the existence of the intrinsic manifold can be
viewed through the Mori-Zwanzig formalism as the emer-
gence of a small number of slowly-evolving collective coor-
dinates to which the remaining system degrees of freedom
are slaved as effective noise15,19,23,38,39,42. Compared to
linear dimensionality reduction techniques such as princi-
pal components analysis (PCA)43 or multidimensional scal-
ing (MDS)44, nonlinear methods provide greater flexibility
in extracting collective modes that are nonlinear combina-
tions of the particle degrees of freedom16,39,45, enabling
the recovery of more general and complex intrinsic mani-
folds.

Path-based approaches such as transition path sam-
pling46, finite temperature string47, and the nudged elas-
tic band48 seek to compute high-probability (low-free en-
ergy) reactive pathways between two metastable system
configurations. These paths contain information on the re-
action coordinate, transition state ensemble, isocommittor
surfaces, and reaction mechanism for the structural transi-
tion between the metastable basins49. In contrast, nonlin-
ear dimensionality reduction approaches seek to discover
within high-dimensional simulation trajectories – includ-
ing ensembles of simulations performed under different
conditions18 or biased simulations to which artificial re-
straining potentials are applied to enhance sampling50 –
low-dimensional projections of the configurational phase
space containing the metastable states and transition path-
ways between them. These reduced dimensional maps
are valuable in identifying the metastable states, dynam-
ical pathways and transition mechanisms, and also fur-
nish good order parameters describing the emergent col-
lective motions governing the long-time dynamics of the
system39. Accordingly, the aims and utility of the two
classes of methods are slightly different. Path methods
are preferred where there exists an unambiguous defini-
tion of the reactant and product states and the objective
is to obtain a precise characterization of the transition
path ensemble, transition mechanisms, or reaction rates
between these two basins49. Nonlinear dimensionality re-
duction methods may be preferred where good order pa-
rameters distinguishing the metastable states are sought
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or it is the objective to obtain a global overview of the
available metastable states, their mutual connectivity, and
slow collective structural rearrangements. Of course only
those metastable states within the simulation trajectories
to which the dimensionality reduction methodology is ap-
plied can be resolved, and although accelerated sampling
techniques can facilitate barrier crossing, path-based meth-
ods are typically more adept at surmounting high free en-
ergy barriers and may be more efficient at resolving transi-
tion pathways within rugged free energy surfaces. Finally,
nonlinear dimensionality reduction may be profitably com-
bined with path sampling as a preprocessing step to iden-
tify metastable states, deliver good collective variables with
which to distinguish them, and determine initial transition
paths with which to initialize path sampling38,39.

We (A.W.L. and A.L.F.) recently reported a novel ap-
proach extending the application of the nonlinear diffu-
sion map technique to multi-body systems to extract ag-
gregate morphology and assembly mechanisms from com-
puter simulations of patchy colloid self-assembly15 and
experimental particle tracking data of Janus colloid self-
assembly19. In this work, we apply this technique to Brow-
nian dynamics simulations of digital colloids to extract
the intrinsic manifold governing digital colloid morphology
and transitions. We present a complete description of the
many-body diffusion map in Ref. [15], but we briefly detail
the approach below, including system specific adaptations
for the digital colloid system.

2.2.1 Microstate pairwise distances

The metastable bit states of the digital colloids are mor-
phologically identical in that they correspond to the same
configurational arrangement of halo particles around the
central sphere1. Information storage is only possible inso-
far as all (or some) of the halo particles are distinguish-
able, thereby permitting unambiguous discrimination be-
tween all (or some) of the bit state configurations. In this
work we consider all N halo particles to be distinguishable
such that there are N! relabelings cluster that are reduced
by the rotational symmetry of the bit state ϒN to yield an
information storage capacity of log2(N!/ϒN) bits.

Our nonlinear dimensionality reduction algorithm re-
quires as input a measure of similarity distances between
different digital colloid configurations observed over the
course of the simulation. When we measure the distance
between different halo particle configurations, we assume
the halo particles are indistinguishable, but retain the halo
particle label information for a posteriori identification of
the distinguishable bits states within the low-dimensional
projection. By separating morphology and labeling when
sampling the configurational phase space we achieve an

important practical advantage. Since each of the N! bit
states are morphologically identical, treating the halo par-
ticles as indistinguishable allows for comprehensive sam-
pling of the identical metastable basin of all bit states
within relatively short simulation trajectories. In contrast,
treating halo particles as distinguishable would result in
the emergence of (N!/ϒN) identical metastable free energy
wells within the intrinsic manifold, many of which would
be incompletely sampled, and some never sampled at all.
For small digital colloids containing few states, this is un-
likely to present difficulties, but for larger colloids contain-
ing hundreds of thousands of states, sampling the intrin-
sic manifold without this simplification presents a practical
challenge.

For digital colloids comprising N halo particles we com-
pile a library L (N,{Λ}) of all digital colloid microstates ob-
served in our simulation trajectories over a range of central
to halo particle diameter ratios Λ. We compute χ the N-by-
N pairwise distance matrix between all pairs of halo parti-
cles in a particular digital colloid microstate in L (N,{Λ}).
We normalize pairwise distances by the minimum dis-
tance between vertices in the idealized regular polyhedron
with equispaced halo particle vertices for a given value
of Λ. For a central to halo particle distance dcentral-halo =

dhalo (Λ+1)/2, the edge length of the idealized tetrahe-
dron in the N=4 system is d′

halo-halo =
√

8/3dcentral-halo, and
that of the idealized octahedron in the N=6 system is
d′

halo-halo =
√

2dcentral-halo. In each case, we define the nor-
malized pairwise distance matrix χ ′ = χ/d′

halo-halo. By nor-
malizing with respect to the ideal polyhedral edge length,
we enable direct comparisons between digital colloid mi-
crostates across different Λ values.

Using the χ ′ computed for each digital colloid microstate
in L (N,{Λ}), we can define a fast, rotationally invariant,
graph-based measure of structural similarity between pairs
of digital colloid microstates i and j,

di j = min
H

||χ ′
i −HT χ ′

jH||, (2)

where H is a permutation matrix rearranging the rows
and columns of χ ′

j. That is, our measure is the minimum
of the permuted entrywise L1,1 norm between halo par-
ticle distance matrices. Minimizing over permutations is
equivalent to minimizing over relabelings of halo particles.
For the N=4 and N=6 systems considered in this work,
the number of permutations is quite small, N! = 24 and
N! = 720, permitting us to determine the minimum per-
muted distance by brute force enumeration. Exhaustive
enumeration will become intractable for sufficiently large
systems, and it will be necessary to resort to approximate
graph matching approaches such as those we have previ-
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ously employed in Ref. [15].

2.2.2 Diffusion maps

Given our measure of structural similarity between all
pairs of digital colloid microstates in L (N,{Λ}), we ap-
ply the diffusion map nonlinear dimensionality reduction
technique21–23,39,51 to extract the collective order parame-
ters governing structural transitions between digital colloid
morphologies. These collective coordinates are associated
with the slow modes governing the long-time structural
evolution of the system to which the remaining motions
are effectively slaved. The diffusion map approach was
first introduced by Coifmann and coworkers21–23,51, and
has been used to determine the underlying pathways and
mechanisms underpinning both molecular folding18,40,45

and colloidal assembly15,19,20.
In the diffusion map approach, a random walk is con-

structed over the high-dimensional data with transition
probabilities based on structural similarity. Then a spec-
tral analysis of the random walk is performed to identify
the dimensionality and collective coordinates of a low-
dimensional intrinsic manifold to which the system dy-
namics are effectively restrained15,19,38,39. The approach
proceeds by forming the kernel matrix A by convoluting
our pairwise distance matrix with a Gaussian kernel, Ai j =

exp
(
−d2

i j/2ε
)

, where ε is a soft-thresholding bandwidth
that restricts transitions between structures to those within
an ε-neighborhood in the high dimensional space. This
procedure serves to model structural transitions between
microstates as a diffusion process over the discrete point
cloud of digital colloid microstates in the high-dimensional
space21. The value of ε is specified for each system using
an automated procedure detailed in Ref. [52].

We next form the right-stochastic Markov matrix M =

D−1A, where D is the diagonal matrix Dii = ∑k Aik. The
element Mi j can be interpreted as the transition probabil-
ity from microstate i to microstate j, and therefore M de-
scribes a random walk over the data21,22. M is positive-
semidefinite, right stochastic, and adjoint to a symmet-
ric matrix MS = D

1
2 MD− 1

2 , so possesses an orthogonal set
of real right eigenvectors {�Ψi} and associated eigenvalues
{0 � λi � 1} with the trivial top pair �Ψ1 = �1 and λ1 =

138. These eigenvectors are discrete approximations to
the eigenfunctions of the Fokker-Planck equation describ-
ing the time evolution of the probability density function
over the data21,22, with eigenvalues corresponding to the
frequency of these collective harmonic modes. Large eigen-
values correspond to the slow (e.g. long time) relaxation
modes of the Markov process, and small eigenvalues cor-
respond to fast modes. A gap in the eigenvalue spectrum
corresponds to a separation of relaxation time scales, with

collective modes above the gap corresponding to the slow
subspace modes governing long time structural evolution
to which the remaining fast modes are restrained23,38,42.
We employ the L-method of Salvador and Chan to system-
atically identify the location of this spectral gap15,18,53.

Identifying a gap in the eigenvalue spectrum after λ(k+1)

prompts construction of a low-dimensional landscape in
the top k nontrivial eigenvectors furnished by the diffu-
sion map {�Ψi}k+1

i=2 . The low-dimensional projection of the
ith microstate in our library L (N,{Λ}) is specified by the
“diffusion mapping” into the ith component of these top k
eigenvectors,

microstatei �→
(
�Ψ2(i),�Ψ3(i), ...,�Ψk+1(i)

)
. (3)

This projection defines the nonlinear dimensionality reduc-
tion from the 2N-dimensional phase space of halo particle
angular coordinates to the k-dimensional intrinsic mani-
fold.

One of the primary limitations of the diffusion map, and
nonlinear dimensionality reduction methods in general –
with the exception of autoencoders54 – is that the tech-
nique does not furnish a mapping for these collective vari-
ables to the input features of the original high dimensional
data. While automated techniques exist to sieve and ap-
proximate these top eigenvectors from a candidate feature
pool55,56, these algorithmic features can be so complex
that attributing physical characteristics to these eigenvec-
tors can still be exceedingly difficult. Further, there is no
guarantee that a concise physical mapping exists for the
nonlinear order parameters describing these many-body
systems15,39. To aid in physical interpretation, we corre-
late the diffusion map variables by physical “bridge” vari-
ables such as the polyhedral volume or the distance of a
configuration from an idealized polyhedron.

“Diffusion distances” in the high-dimensional space – de-
fined precisely in Refs. [21,51] – may be colloquially inter-
preted as the ease with which two microstates may inter-
convert, and are approximated by Euclidean distances in
the low-dimensional manifold. This property of diffusion
map embeddings provides a direct kinetic interpretation of
distances between microstates in the low-dimensional em-
bedding, which holds under the mild assumptions that (i)
the dynamics of the system may be described by a diffusion
process and (ii) that our measure of pairwise similarity ef-
fectively captures short time diffusive motions of the sys-
tem15,21,38,39,51. Regarding the first condition, we expect
that the coupled motions of the halo particles and coop-
erative motion required for transition events between bit
states will lead to the existence of a small set of slow collec-
tive modes describing the long time dynamical evolution.
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This hypothesis is supported post-hoc by the emergence of
a spectral gap in M and the small number of modes ex-
isting above this gap. This separation of time scales into
slow and fast collective modes suggests that the dynam-
ics of this digital colloid system can be modeled under the
Mori-Zwanzig formalism as a set of coupled stochastic dif-
ferential equations in the slow collective modes to which
the remaining fast modes couple as noise42,57. Accordingly,
the system dynamics are well approximated as a diffusion
process. Regarding the second condition, we have shown
in Refs. [15,19] that our graph-based distance metric for
many-body systems provides a good measure for structural
proximity over short time scales, and therefore captures the
short time diffusive motions.

2.3 Free energy surfaces

We construct free energy landscapes over the k-
dimensional intrinsic landscape defined by the diffusion
map embedding (Eqn. 3) for each digital colloid. The free
energy landscape is constructed by collecting histograms
over all microstates collected over the course of the simu-
lation projected into the low-dimensional projection, and
employing the statistical mechanical relationship58,59,

F∗(Λ,�ξ )/T ∗ =− ln P̂(Λ,�ξ )+C(Λ), (4)

where Λ is the diameter ratio, T ∗ = kBT/ε is the reduced
temperature at which we conduct our simulations, �ξ is a k-
dimensional vector specifying a point on the k-dimensional
intrinsic manifold defined by the diffusion map, P̂(Λ,�ξ ) is a
histogram approximation to the probability density of digi-
tal colloid microstates at�ξ for a specific value of Λ, F∗(Λ,�ξ )
is the reduced free energy of the configurations at location
�ξ and diameter ratio Λ, and C(Λ) is an arbitrary additive
constant that may differ for each diameter ratio. At con-
stant temperature and volume, F∗ = F/ε is identifiable as
the reduced Helmholtz free energy. In applying Eqn. 4 to
estimate the equilibrium free energy surface from the em-
pirical probability distribution computed from the Brow-
nian dynamics trajectories, we assume that our simula-
tions are sufficiently long to return converged estimates of
the probability distribution over the low-dimensional man-
ifold. Computing F∗ = F/ε from our simulations at a re-
duced temperature T ∗ = 0.1, we identify βF = εF∗/kBT .
By converting these units to room temperature T = εT ∗/kB

= 298 K, and a characteristic interaction energy of ε = 10
kBT , we can calculate βF = εF∗/kBT = F∗/T ∗ = 10F∗ in
units of kBT at T = 298 K.

Importantly, although each histogram P̂(Λ,�ξ ) is con-
structed from an independent simulation trajectory per-
formed at a different value of Λ, the diffusion map was

constructed from a library of microstates L (N,{Λ}) col-
lected over all values of Λ. This permits each individual
simulation trajectory to be projected into a shared intrin-
sic manifold spanned by the same nonlinear basis vectors
{�Ψi}k+1

i=2 , and allowing us to quantify the impact of Λ upon
the underlying free energy landscape of the digital colloid
of fixed size N. We have previously referred to this ap-
proach as the composite diffusion map approach18. We
choose the arbitrary constant C(Λ) for each value of Λ so
as to shift the global free energy minimum to zero (i.e.,
C(Λ) : min�ξ F(Λ,�ξ ) = 0). Uncertainties in the free energy
landscape were computed by performing 10 bootstrap re-
samples (random resampling with replacement) of the data
used to compile the histograms at each Λ.

2.4 Determining the digital colloid bit state

Up until now, the halo particles in the calculation have
been treated as indistinguishable. To discern one bit state
from another, we must now perform a post hoc accounting
of the distinguishable states of each of the digital colloid
microstructures projected into the intrinsic manifold. For
the N = 4 and N = 6 digital colloids considered in this work,
we employ a simple procedure to identify the distinguish-
able bit state of a given microstate based on the N-by-N
halo particle adjacency matrix G and the halo particle posi-
tions. We compute the symmetric binary adjacency matrix
G between the halo particles of any particular digital col-
loid configuration from the pairwise distances matrix χ by
specifying a threshold separation of 110% of the halo par-
ticle separation in the idealized polyhedral configuration.
Halo particles i and j closer than this distance are defined
as bonded (Gi j = 1) and those at larger separations are not
(Gi j = 0). Thus the adjacency matrix maps the set of all
possible microstates to a finite set of structures by applying
a proximity criterion between halo particles. We have veri-
fied that our results are robust to choices of cutoff over the
range 105% to 130% of the ideal polyhedron halo particle
separation. The symmetric binary adjacency matrix G can-
not, however, distinguish between two states that rotation-
ally distinguishable but related through a mirror reflection,
and distinguishing between these states requires additional
analyses described below.

2.4.1 N=4 bit states

The tetrahedral structure formed by the N=4 digital col-
loid belongs to the Td point group, with rotational sym-
metry ϒ4 = 12. Given the N! = 24 possible permutations
of halo particle labelings, we have N!/ϒN = 2 rotationally
distinguishable states that can be stored in the configura-
tion of these halo particles, corresponding to the two chiral
enantiomers of the tetrahedral bit state. We distinguish
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the two bit states through their chirality (i.e., handedness)
by computing the signed volume, V , of the parallelepiped
connecting the halo particle centers of mass using the triple
product. The sign of this volume, sgn(V ), determines the
handedness of the tetrahedron, allowing us to distinguish
between left- and right-handed structures and discriminate
between the two bit states.

2.4.2 N=6 bit states

The octahedral structure defined by the N=6 digital col-
loid belongs to the Oh point group with rotational symme-
try ϒ6 = 24, giving a total of N!/ϒN = 30 rotationally dis-
tinguishable bit states. These 30 bit states correspond to
15 possible unique permutations of the adjacency matrix
of an octahedron, each of which has two distinct chiral-
ities owing to a left- or right-handed arrangement of the
halo particles occupying the mid-plane of the octahedron.
To identify a digital colloid as belonging to a particular bit
state, we first classify the structure as containing one of the
15 unique adjacency matrices. To distinguish the two chi-
ral alternatives within each of these 15 matrix classes, we
tag the particle corresponding to the first row of the adja-
cency matrix and specify that particle to reside at the top
of the digital colloid (e.g., the red halo particle in Figure
1b). We then identify the three halo particles correspond-
ing to the first three non-zero entries of the first row of
the adjacency matrix as three neighboring particles resid-
ing in the mid-plane of the octahedron (e.g., the green,
yellow, and orange particles in Figure 1b). The signed vol-
ume, V , of the parallelepiped connecting these four halo
particle centers of mass distinguishes between a clockwise
or counter-clockwise arrangement of halo particles in the
mid-plane, permitting unambiguous identification of the
right- and left-handed chiral bit states. By pairing the adja-
cency matrix and chirality information, the instantaneous
configuration of an arbitrary sized digital colloid can be
unambiguously assigned to one of its distinguishable bit
states.

2.5 Bit state transition kinetics

Having determined the rotationally distinguishable bit
state of each digital colloid microstructure following the
approach detailed in Section 2.4, we can track transition
events as changes in colloidal bit state over time. To quan-
tify the transition kinetics and the dwell time (or volatil-
ity) of each bit state, we compute from our simulations
the mean first passage time (MFPT) as the average dura-
tion for which a bit state is occupied before a transition oc-
curs42,60. The minimum first passage time identified in our
simulation trajectories is 80-times larger that the sampling
period, assuring that the identified transition events are

“elementary transitions” in the sense that they correspond
to a single structural rearrangement events. We define for
each bit state a core region comprising an ensemble of con-
figurations around the idealized bit state structure. The
phase space between core regions comprises a “no man’s
land” belonging to none of the bit states. The digital col-
loid is considered to occupy a particular bit state when it
passes into its corresponding core region, and to have left
that bit state only when it passes into the core region of
a new bit state. Transient excursions into the no man’s
land and then back into the same bit state core region are
not considered transitions. The use of non-contiguous core
regions separated by a no man’s land leads to improved
MFPT estimates by eliminating diffusive recrossing events
of the separatrix between bit states that can artificially de-
press the MFPT estimate61. The particular definition of
the core regions depends on the architecture of the digi-
tal colloid under consideration and is detailed in Section
3. Having defined the core regions we analyze our Brow-
nian dynamics production run to extract for each of the
k = 1...K bit states all of the i = 1...P(k) first passage times
of the system out of that bit state {FPT k

i }P(k)
i=1 . The MFPT

for bit state k then follows straightforwardly as MFPT k =
1

P(k) ∑P(k)
i=1 FPT k

i . Moreover, since the bit states are all struc-
turally identical, we can average the estimate over all N
equivalent bit state transitions MFPT = 1

N ∑K
k=1 ∑P(k)

i=1 FPT k
i .

Similarly, we compute the variance of the first passage
time as σ2 = 1

N ∑K
k=1 ∑P(k)

i=1

(
FPT k

i −MFPT
)2. Using the

central limit theorem, we estimate 95% confidence in-
tervals from the sampling distribution of the MFPT as[
MFPT −1.96 σ√

N
,MFPT +1.96 σ√

N

]
.

The reciprocal of the MFPT is the escape rate Γ =

1/MFPT42, which, since all bit states for a particular dig-
ital colloid are structurally equivalent, is identical for all
bit states. For the N=4 system, the escape rate is pre-
cisely equal to the transition rate between the two chiral
bit states. For the N=6 case, the escape rate is equal to the
transition rate from any particular bit state to any one of
eight other rotationally distinguishable bit states accessible
by a single halo particle rearrangement event (Figure S1).
This quantification of mean first passage times and escape
rates can be straightforwardly extended to digital colloids
of arbitrary size.

As detailed in Section 2.1, we adopt experimentally rel-
evant parameter values of ε = 10 kBT at 298 K, σ = 0.915
μm, and ρ = 1.228 g/cm3 1,36. This maps our reduced
time step dt∗ = 10−3 to dt = 0.54 μs, and permits us to
report the MFPT in seconds and the escape rate in inverse
seconds.
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3 Results & Discussion

3.1 N=4 (2-state) digital colloids

Using the approach detailed in Section 2.1,
we performed Brownian dynamics simulations
of the tetrahedral N=4 digital colloid for Λ =

{0.4000,0.4142,0.4400,0.5000,0.7500,1.0000,1.1256}.
In each case we held the halo particle diameter fixed and
varied the size of the central particle. These values of Λ
span three regimes: (I) (ΛSC ≈ 0.2247)≤ Λ < (ΛT = 0.4142)
where the central particle diameter is sufficiently small that
the digital colloid bit state is effectively locked since the
halo particles possess insufficient free volume to transition
to a new bit state, (II) (ΛT = 0.4142) ≤ Λ < (ΛU = 0.5361)
where the central particle is sufficiently large such that
the cluster is unlocked and transitions between bit states
are permitted, and (III) Λ ≥ (ΛU = 0.5361) where the
central particle is so large that bit state transitions are
effectively barrierless and the digital colloid remains in
constant flux between states. ΛSC ≈ 0.2247 is the minimum
diameter ratio at which the halo particles can exist on the
surface of the central particle without overlaps1 under
the effective hard sphere mapping with dhalo = 3.0785σ .
(As observed above, the soft WCA potential does admit a
closer distance of approach but we never observe two halo
particles to approach closer than 2.95σ over the course of
any of our calculations.) The threshold ΛT = 0.4142 is the
transition threshold diameter ratio below which bit state
transitions are geometrically forbidden under the effective
hard sphere mapping, and was previously computed
from geometric considerations in Ref. [1]. The threshold
ΛU = 0.5361 is defined by the value of Λ for which the free
energy barrier height for bit state transitions falls to 1 kBT
and the transition free energy barrier is comparable to the
size of thermal fluctuations (cf. Figure 4a).

From each simulation we extract 2 × 106 digital col-
loid microstates saved every 500 time steps, and aggre-
gate these into a single composite library L (N = 4,Λ =

{0.4000,0.4142,0.4400,0.5000,0.7500,1.0000,1.1256}) com-
prising 1.4× 107 microstates. Constructing diffusion maps
over such a large number of microstates is computationally
intractable, so we reduce the number of microstates used
to construct the diffusion map embedding by subsampling
the data. In principle, this could be done uniformly, but to
ensure that we have good coverage of the structural con-
formations we instead take advantage of the vast number
of redundant (i.e., nearly identical) microstates in our li-
brary. We identify from each simulation trajectory the set of
unique adjacency matrices G and assign each conformation
in the trajectory as belonging to one of these prototypical
architectures. Aggregating the different architecture lists

across all values of Λ yields a set of 34 prototypical archi-
tectures. To obtain good coverage over this range of struc-
tures, we sample 30 configurations from each architecture
(when there are less than 30 configurations, we select all
observed microstates) to define a representative set of 941
digital colloid microstates over the various values of Λ.

We then applied diffusion maps to these 941 microstates
using the procedure detailed in Section 2.2.2, employing a
soft-thresholding bandwidth of ε = exp(3) determined via
the method defined in Ref. [ 52]. Using the L-method53,
we identified a gap in the eigenvalue spectrum beyond
λ3, prompting the construction of a two-dimensional land-
scape in the top two non-trivial diffusion map eigenvectors
(Ψ2,Ψ3). The remaining (1.4× 107 − 941) configurations
were projected into this two-dimensional intrinsic mani-
fold using the Nyström extension62–64. By constructing a
diffusion map over microstates collected from simulations
spanning all values of Λ, we can project each simulation
trajectory into a shared intrinsic manifold and quantify the
impact of Λ upon the morphology, stability, and kinetics
of the digital colloid within a unified low-dimensional ba-
sis18.

Morphology and stability. We present in Figure 2a the
reduced ensemble of digital colloid structures observed at
the transition threshold value of ΛT = 0.4142 in the two
dimensional intrinsic manifold spanned by (Ψ2,Ψ3). Each
point in this manifold corresponds to a single digital colloid
configuration observed in our simulation. To aid in visual-
ization, we have superimposed onto the manifold render-
ings of representative snapshots visualized using VMD65.
Given a particular labeling of the distinguishable halo par-
ticles (A – red, B – yellow, C – blue, D – green) illustrated in
Figure 2c, we compute for each digital colloid microstate
the vector triple product V = ÂB · (ÂC× ÂD

)
defining the

signed volume of a parallelepiped connecting the halo par-
ticle centers of mass, where X̂Y denotes the unit vector
pointing from X to Y . By employing unit vectors, the mag-
nitude of V is bounded on the interval [0,1] irrespective of
Λ and can be interpreted as a measure of the deviation of
the halo particle configuration from planarity: |V |= 0 cor-
responds to all halo particles residing in a single plane, and
|V | = √

2/2 to an idealized tetrahedral arrangement. The
sign of V distinguishes the chirality of the two tetrahedral
bit states: V > 0 corresponds to right-handed tetrahedra
and V < 0 to left-handed configurations.

Coloring each point in Figure 2a by |V | reveals a strong
correlation between Ψ3 and |V |, indicating that Ψ3 was dis-
covered by the diffusion map as a collective variable mea-
suring the relative planarity of the halo particle configu-
ration. The minimum value of |V | = 0 is attained at the
top of the tear-shaped intrinsic manifold in the region of
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(Ψ2 ≈ 0.01,Ψ3 ≈ 0.085) where the digital colloid adopts a
square planar geometry. The largest values of |V | ≈ √

2/2
are reached at (Ψ2 ≈ −0.03,Ψ3 ≈ −0.04) where the dig-
ital colloid adopts approximately tetrahedral geometries.
The square planar geometry defines the transition state
for interconversions between bit states1. At the transition
threshold value of ΛT = 0.4142 the transition state com-
prises essentially a single point within the intrinsic man-
ifold since the free volume available to the halo particles
at the transition state is so small as to admit essentially
a unique square planar configuration. Contrariwise, since
(ΛT = 0.4142)>ΛSC the tetrahedral structures occupy a rel-
atively larger volume at the bottom of the tear-shaped in-
trinsic manifold corresponding to a diversity of structures
defining the metastable bit state rattling around the caged
volume centered on the idealized tetrahedral geometry.

As a result of our choice to construct diffusion map em-
beddings without regard to halo particle distinguishability
(Section 2.2.1), the two rotationally distinguishable chiral
bit states accessible to the N=4 digital colloid are collapsed
together onto the intrinsic manifold in Figure 2a. In order
to separate these two bit states we present in Figure 2b
the diffusion map embedding augmented with a third axis
containing the signed triple product V = �AB ·

(
�AC× �AD

)
as

a measure of both microstate morphology and chiral bit
state. This augmented embedding separates the two chi-
ral bit states and makes clear their structural equivalence,
with each occupying a topographically identical volume of
the intrinsic manifold and connected by the square planar
transition structure occupying the slim bottleneck at V = 0.

In Figure 3, we present the augmented diffusion map
embeddings for all seven values of Λ. In each case we
present both the low-dimensional diffusion map projection
into (Ψ2,Ψ3,V ) of the 2×106 microstates recorded over the
course of this simulation trajectory, and the free energy sur-
face over the intrinsic manifold F(Ψ2,Ψ3,V ) defined by col-
lecting histograms over the embedding. As detailed in Sec-
tion 2.3, by assuming a characteristic interaction strength
between halo particles of ε = 10 kBT at 298 K (cf. Eqn. 1),
we report βF as a dimensionless free energy measured in
units of kBT at T = 298 K. In Movie S1 in the Electronic
Supplementary Information (ESI), we present rotating im-
ages of the images in Figure 3 that more clearly illustrate
the shape and topography of the intrinsic manifolds and
free energy surfaces.

For (Λ = 0.4000) < (ΛT = 0.4142) (Figure 3a,b), struc-
tural transitions are effectively forbidden and the digital
colloid is locked into the bit state in which it was initial-
ized. The square planar transition state at V = 0 is effec-
tively inaccessible due to excluded volume interactions and

is never visited over the course of our simulations.
At Λ = (ΛT = 0.4142) (Figure 3c,d), the digital colloid is

at the unlocking threshold and is able to access the square
planar transition state |V | = 0 and make transitions be-
tween the two bit states. The transition bottleneck ex-
ists at the top of a high Δ(βF) = (9.07±0.23) free energy
barrier. Accordingly, bit state transitions are an activated
process and a rare event, and we observe only three bit
state transitions over the course of the simulation. The
structural equivalence of the two chiral bit states means
that the topography of the free energy surface within each
metastable basin should be identical. The observed differ-
ences in the empirical free energy values computed within
the two basins is a consequence of kinetic trapping and rare
transition events leading to poor sampling of the accessible
phase space.

For Λ > (ΛT = 0.4142) (Figure 3e-n), the volume of the
transition state ensemble at |V | = 0 expands as the in-
creased free volume available to the halo particles ad-
mits a greater diversity of square planar transition struc-
tures. There is a commensurate drop in the transi-
tion barrier to Δ(βF) = (5.15±0.07) at Λ = 0.4400, to
Δ(βF) = (1.93±0.02) at Λ = 0.5000, before the transi-
tions become essentially barrierless with Δ(βF) < 1 for
Λ > (ΛU = 0.5361).

We present in Figure 4a the free energy barrier as a
function of Λ. An exponential fit of the form Δ(βF) =

C0 exp(−C1Λ) provides a good fit to the data, with best fit
parameters {C0 = (1.29± 0.89)× 104, C1 = (17.65± 1.55)}
and an adjusted R2 = 0.98. Quantification of the free en-
ergy barrier for the transition provides a measure of the
reversible work required to actuate a transition between
bit states, or equivalently the size of a concerted thermal
fluctuation necessary to induce a spontaneous transition.
This stands as one of the key variables for the design of
stable but addressable information storage elements.

To ascertain the change in the phase space volume and
structural morphologies of the transition state as a function
of Λ, we present in Figure 4b a superposition of 2D (Ψ2,Ψ3)

sections through the 3D free energy landscapes at V = 0,
where the halo particles occupy planar configurations at
the transition between the two chiral bit states. The broad-
ening of the transition region bottleneck with increasing
Λ is a result of the increased free volume available to the
halo particles moving over the surface of increasingly large
central particles, permitting access to a greater diversity of
planar transition structures and a commensurate reduction
in the free energy barrier between the two bit states.

Kinetics. The depression of the transition state free en-
ergy with increasing Λ leads to more frequently observed
transitions between the two chiral bit states. To quantify
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the transition rate as a function of Λ we report in Figure 5
the mean first passage time (MFPT) computed from each
simulation as the average duration for which a bit state is
occupied before a transition occurs42,60. MFPT calculations
were conducted for Λ ={0.4142, 0.4200, 0.4300, 0.4400,
0.4500, 0.4750, 0.5000, 0.5100, 0.5200, 0.5300, 0.5400,
0.5500, 0.6000, 0.6500, 0.7000, 0.7500, 1.000, 1.1256}.
To mitigate the impact of possible recrossing events at the
summit of the free energy barrier leading to artificially de-
pressed MFPT estimates, we define a core regions within
each bit state separated by a no man’s land61. We de-
fine the core region of the right-handed bit state to be
the region of the intrinsic manifold for which V > 0.5, and
that of the left-handed bit state to be the region for which
V <−0.5. The digital colloid is defined to enter a particular
bit state the first time it passes into the corresponding core
region, and is defined to have transitioned out of that bit
state only when it passes into the core region of a new bit
state. Excursions into the interstitial no man’s land (i.e.,
−0.5 � V � 0.5) followed by re-entry into the core region
of the same bit state are not considered transition events.

We present in Figure 5 the calculated MFPT as a function
of Λ and associated error bars delimiting 95% confidence
intervals. A shifted exponential of the form ln(MFPT) =
B0 exp(−B1Λ)+B2 provides a good fit to the data, with best
fit parameters {B0 = (2.03±0.91)×103, B1 = (14.08±0.92),
B2 = (−2.53±0.04)} and an adjusted R2 = 0.97.

For Λ < (ΛT = 0.4142), the cluster is effectively locked
and the MFPT is undefined since transitions are sterically
forbidden. For Λ ≥ (ΛT = 0.4142), the cluster unlocks and
MFPT rapidly decreases with increasing Λ as the free vol-
ume available to the halo particles increased and the transi-
tion free energy barrier decreases (cf. Figure 4). The MFPT
approaches an approximate asymptotic limit at Λ > (ΛU =

0.5361) corresponding to a central particle so large that
the motions of the halo particles are largely decorrelated
and transitions are effectively barrierless. The escape rate
Γ= 1/MFPT defines the transition rate from one bit state to
the other42 and is a critical design variable in the practical
realization of digital colloids for information storage.

3.2 N=6 (30-state) digital colloids

Using an analogous approach, we conducted Brown-
ian dynamics simulations of an N=6 digital colloid for
Λ = {0.4142,0.5100,0.5275,0.5500,0.5750,0.6000,0.6500},
again holding the halo particle size fixed and varying the
center particle diameter. There are three regimes of Λ:
(I) (ΛSC ≈ 0.4142) ≤ Λ < (ΛT = 0.5275) where the digi-
tal colloid configuration is effectively locked into a partic-
ular octahedral bit state configuration, and halo particle

transitions between bit states are sterically forbidden, (II)
(ΛT = 0.5275)≤Λ< (ΛU = 0.7021) where the configuration
becomes unlocked as halo particles are able to collectively
transition between bit states, and (III) Λ ≥ (ΛU = 0.7021)
where transitions between bit states are effectively barrier-
less, and the digital colloid configuration is in constant flux
between states. The spherical code diameter ratio ΛSC ≈
0.4142 and unlocking transition threshold ΛT = 0.5275 were
previously reported in Ref. [1] for the effective hard sphere
mapping. The barrierless transition threshold ΛU = 0.7021
is defined as the value of Λ at which the (extrapolated)
free energy barrier for bit state transitions drops to 1 kBT
(cf. Figure 7a).

We extract from our simulations 2 × 106 microstates
saved every 500 time steps for each value of Λ and
compile these into a composite library L (N = 6,Λ =

{0.4142,0.5100,0.5275,0.5500,0.5750,0.6000,0.6500}) com-
prising 1.4×107 microstates. We extract a restricted set of
1,932 representative microstates spanning the 110 proto-
typical cluster architectures observed in the simulations,
and apply diffusion maps employing a soft-thresholding
bandwidth of ε = exp(2)52. Using the L-method we
identify a gap in the eigenvalue spectrum above λ4

53,
prompting construction of a three-dimensional embedding
into the top three non-trivial diffusion map eigenvectors
(Ψ2,Ψ3,Ψ4). We identify three collective variables to pa-
rameterize the intrinsic manifold of the N=6 system com-
pared to only two for the N=4 case, reflecting the richer
configurational dynamics available to the larger system.
The remaining (1.4× 107-1,932) configurations were pro-
jected into this reduced embedding via the Nyström exten-
sion.

Morphology and stability. We present in Figure 6 the
three-dimensional diffusion map embeddings for all seven
values of Λ, constructed by projecting the 2 × 106 mi-
crostates recorded from each simulation into (Ψ2,Ψ3,Ψ4).
We also report the associated free energy landscapes
F(Ψ2,Ψ3,Ψ4) computed from histograms over the low-
dimensional projections. Rotating movies of these figures
are provided in Movie S2 of the ESI.

Our diffusion map embeddings treat all halo particles as
indistinguishable, collapsing together the structurally iden-
tical (N!/ϒN) = 30 bit states within the intrinsic manifold
spanned by (Ψ2,Ψ3,Ψ4). In the case of N=4 we were able
to distinguish the two chiral bit states by augmenting our
low-dimensional projection with the signed volume V of
the parallelepiped mapped out by the halo particles. For
the N=6 case, no simple order parameters are available to
separate out the 30 rotationally distinguishable bit states
within our low dimensional embedding. Accordingly, we
do not augment our embeddings but appreciate – by virtue
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of the structural equivalence of all bit states – that the low-
dimensional projections and free energy surfaces pertain
equally to all bit states. The connectivity graph illustrating
the bit states that are mutually accessible by single collec-
tive rearrangement events of the halo particles are illus-
trated in Figure S1 in the ESI.

To gain insight into the physical interpretation of the dif-
fusion map variables, we project representative microstates
onto the low-dimensional manifolds in Figure 6 and color
each microstate according to the L1,1 norm between its nor-
malized halo particle pairwise distances matrix and that of
an idealized octahedron ||χ ′ −χ ′

oct|| (cf. Section 2.2.1). The
collective variable Ψ2 is well-correlated with ||χ ′ − χ ′

oct||
indicating that it provides a measure of the octahedral
character of the digital colloid architecture. The mini-
mum value of ||χ ′ − χ ′

oct|| = 0 is found in the region of
(Ψ2 ≈ 0.05,Ψ3 ≈ 0.03,Ψ4 ≈−0.03) where the digital colloid
adopts an idealized octahedral geometry. Each of the low-
dimensional manifolds in Figure 6 is funnel-shaped, with
the narrow tip containing the transition state ensemble and
wide base corresponding to the “rattling” of halo particles
about a particular stable bit state. The size of the tip of
the funnel increases with Λ as the increased free volume
accessible to the halo particles opens access to a greater
diversity of transition state configurations.

At Λ = (ΛSC ≈ 0.4142) (Figure 6a,b) – corresponding
to the minimum diameter ratio for which effective hard
sphere halo particles can exist on the surface of the cen-
tral particle without overlapping1,24 – the digital colloid
is confined to a small set of possible configurations local-
ized around the ideal octahedron. At (Λ = 0.5100)< (ΛT =

0.5275) (Figure 6c,d), the digital colloid remains effectively
locked in a single bit state, but the increased free volume
permits the halo particles to rattle around around the ideal
octahedron and fill a greater volume of the intrinsic mani-
fold.

At the unlocking threshold of Λ = (ΛT = 0.5275) (Fig-
ure 6e,f), a structure very close to the triangular prism
transition state between octahedral bit states emerges at
(Ψ2 ≈−0.03,Ψ3 ≈−0.03,Ψ4 ≈−0.07)24. Nevertheless, bit
state transitions remain sterically disfavored and – in line
with Figure SI-I-3 in Ref. [1] – no transition events are ob-
served over the course of our simulations.

For (Λ = 0.5500) > (ΛT = 0.5275) (Figure 6g-h), there
is sufficient free volume for the halo particles to realize
the triangular prism transition structure, and we observed
multiple bit state transitions over the course of our cal-
culations. The free energy surface develops a funnel-like
structure with the caged octahedral structures occupying a
broad low-free energy region at the bottom of the funnel-
shaped intrinsic manifold, and the triangular prism tran-

sition state occupying a small high-free energy region at
the narrow end of the funnel. We define microstates as
belonging to the transition state ensemble by thresholding
the L1,1 norm between the normalized halo particle pair-
wise distance matrix and that of the idealized triangular
prism, given as ||χ ′ − χ ′

prism|| < 1.75. These configurations
possess an average 5% deviation in the normalized pair-
wise distances matrix away from that of the idealized tri-
angular prism. Productive transitions between bit states oc-
cur when the digital colloid enters the transition state and
the halo particles undergo a collective rearrangement into
a new rotationally distinguishable configuration (cf. Figure
S1 in the ESI). The free energy barrier between the bottom
of the octahedral free energy well and the transition state
is Δ(βF) = (8.22±0.17).

At larger values of Λ (Figure 6i-n), the volume of the
intrinsic manifold increases with the elevated free volume
available to the halo particles. The transition state ensem-
ble becomes markedly enlarged since the two planar lay-
ers of the triangular prism are able to move more freely
over the center particle surface, leading to an expansion of
the intrinsic manifold toward (Ψ2 ≈−0.10,Ψ3 ≈ 0.00,Ψ4 ≈
−0.05) due to a greater diversity of transition structures.
There is a commensurate decrease in the transition bar-
rier height from Δ(βF) = (5.52 ± 0.07) at Λ = 0.5750, to
Δ(βF) = (3.99 ± 0.06) at Λ = 0.6000, to Δ(βF) = (2.14 ±
0.04) at Λ = 0.6500.

We report the dependence of the transition state free
energy barrier as a function of Λ in Figure 7a. An expo-
nential fit of the form Δ(βF) = C0 exp(−C1Λ) provides an
excellent fit to the data, with best fit parameters {C0 =

(1.41 ± 0.58)× 104, C1 = (13.60 ± 0.70)} and an adjusted
R2 = 0.99. In the next section, we will use this dependence
to design of the digital colloids as information storage el-
ements that have sufficiently low free energy barriers so
as to be writable (i.e., their bit state can be changed by
doing external work) but sufficiently high to be stable to
thermally-activated spontaneous changes in the bit state.

Kinetics. We present in Figure 7b the MFPT as a function
of Λ. MFPT calculations were conducted for Λ ={0.5480,
0.5490, 0.5500, 0.5550, 0.5600, 0.5700, 0.5750, 0.5800,
0.5900, 0.6000, 0.6100, 0.6200, 0.6300, 0.6400, 0.6500}.
The MFPT corresponds to the mean residence time of the
digital colloid within a bit state before it makes a transition
to one of the eight other bit states accessible by a single
collective rearrangement of the halo particles (Figure S1
in the ESI). To eliminate artificial depression of the MFPT
due to recrossing events, we define the core region of a bit
state to be that region of the intrinsic manifold containing
configurations possessing a halo particle adjacency matrix
equivalent to that of the ideal octahedron. A transition is
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defined when the digital colloid adjacency matrix departs
from the octahedral architecture corresponding to one ro-
tationally distinguishable bit state then reforms the octahe-
dral adjacency matrix in different bit state. An illustration
of a productive transition event for Λ = 0.5750 is illustrated
in Movie S3 of the ESI, where we simultaneously visualize
the digital colloid configuration, follow its location on the
low dimensional manifold, and map the transition between
a pair of the 30 rotationally distinguishable bit states.

A shifted exponential of the form ln(MFPT) =

B0 exp(−B1Λ)+B2 provides a good fit to the data, with best
fit parameters {B0 = (2.30±0.16)×106, B1 = (23.17±0.12),
B2 = (−1.91 ± 0.08)} and an adjusted R2 = 0.93. In the
effectively locked region Λ < (ΛT = 0.5275) the MFPT is
undefined, before dropping steeply beyond the unlocking
threshold and attaining an approximate plateau at Λ >

(ΛU = 0.7021) where transitions become effectively barri-
erless. The escape rate Γ = 1/MFPT quantifies the volatil-
ity of a digital colloid memory storage element due to
thermally-driven bit state flips. In the next section, we will
combine this design variable with the transition free energy
barrier to design N=6 digital colloid memory elements.

3.3 Rational design of N=6 digital colloid memory
storage elements

We now proceed to use the calculated dependencies of the
transition barrier height Δ(βF) and escape rate Γ on Λ to
rationally design a N=6 digital colloid with desired mem-
ory volatility and/or actuation free energy. In Figure 8 we
present a parametric plot of the escape rate Γ = 1/MFPT
against the transition barrier height Δ(βF) for the four di-
ameter ratios at which bit state transitions were observed
Λ = {0.5500,0.5750,0.6000,0.6500}. We may interpret the
transition barrier height as the reversible work required
to actuate a halo particle rearrangement and intentionally
write a new bit state into the digital colloid. The escape
rate can be conceived as the rate at which errors are in-
troduced due to thermally-activated spontaneous bit state
transitions. An ideal storage medium would be both non-
volatile and cheap to address, implying a low write free
energy and a low error rate. Since the transition barrier
height controls both of these properties, they are compet-
ing design constraints and our design objective becomes to
identify the value of Λ that minimizes the write free energy
while maintaining the error rate below a user-specified tol-
erance. As an illustrative example, we consider the storage
of a short text block for the period of one hour, and il-
lustrate the tradeoff between the expected error rate and
write free energy. Our analysis indicates that relatively
large transition barriers are required to preserve data in-

tegrity over any significant time period. Determining the
tradeoff between volatility and ease of writing will depend
largely on the specifics of the system, but this approach can
help guide the design process by imposing the engineering
requirements of the write element and intended storage
duration.

4 Conclusions
We show how to use low-dimensional embeddings to char-
acterize the stability and dynamical transition pathways for
digital colloids. By applying diffusion maps to simulation-
generated trajectories of the digital colloid dynamics, we
discover a nonlinear projections of the digital colloid dy-
namics into low-dimensional embeddings. These projec-
tions of the dynamics into a low-dimensional space reveal
the metastable bit states and transition pathways between
them. The free energy surfaces supported by these low-
dimensional embeddings quantify the stability of the bit
states and height of the transition barriers for bit state
interconversions as a measure of the reversible work re-
quired to write a new bit state into the digital colloid. The
low-dimensional embeddings also reveal the diversity of
morphologies within the metastable bit state minima and
transition state ensemble, and a means to robustly iden-
tify transitions between bit states. Mean first passage times
calculated from our simulations provide a measure of the
average dwell time within a bit state, and a measure of
memory volatility and expected rates of memory degrada-
tion due to thermally-activated bit state transitions.

We apply our method to the N=4 and N=6 digital col-
loids capable of storing 0.125 bytes and 0.613 bytes, re-
spectively. Using our calculated barrier heights and es-
cape rates for the N=6 system, we calculate the tradeoff
between the reversible work required to write a bit state
change and the memory degradation rate due to thermal
fluctuations. The results of this calculation guide the ratio-
nal design of the relative halo and central particle diame-
ters for a memory storage application.

We also describe how to extend our analysis to larger sys-
tems. Our exhaustive graph matching methods to compute
the microstate pairwise distances required by the diffusion
map are limited by their high computational cost. We are
currently exploring and developing approximate methods
with sufficiently high efficiency and fidelity to robustly re-
cover the low-dimensional embeddings for larger digital
colloids with higher information storage capacity, such as
the 2.87 byte N=12 system1.

The double-exponential dependence of mean first pas-
sage times on Λ shows that rearrangement kinetics of dig-
ital colloids are extremely sensitive to Λ near the locking
transition. This fact highlights opportunities for designing
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digital colloids that can “lock” and “unlock” in response
to relatively small changes in the central particle size, and
also provides guidelines for manufacturaing digital colloids
that satisfy long-term data storage requirements. Exam-
ples of N=4 digital colloids have been realized by Grier,
Pine and coworkers using holographic optical tweezers1,
but it remains a challenge to produce larger clusters and
fabricate them at scale. Based on the findings of this work,
we anticipate next steps for manufacturing bulk quantities
of digital colloids will depend on controlling the monodis-
persity of central particles and developing mechanisms for
shrinking and swelling the central particles controllably.
Moreover, robust and scalable methods to read, store, and
write information to the colloids must be developed be-
fore this can be used as a practical information storage
substrate. Techniques based on DNA functionalization66,
FRET barcoding5, and swellable central particles67 have
been suggested, and this remains an area of active re-
search. We anticipate that the mutually beneficial feed-
back between simulation, machine learning-enabled data
analysis, and advanced experimental synthesis and imag-
ing techniques will improve our understanding and control
of this novel and potentially ultra-high capacity informa-
tion storage medium.
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Fig. 1 Schematic of the digital colloid architecture with N distinguishable halo particles with diameter dhalo tethered to the surface of a
central particle with diameter dcentral. The diameters exist in a ratio Λ = dcentral/dhalo. The spherical code structure defines the densest
packing of halo particles around the central particle at the minimum diameter ratio ΛSC for which the halo particles do not overlap1,
and defines the idealized structural arrangement of halo particles defining a distinguishable bit state. At Λ = ΛSC, the halo particles of
a (a) N=4 digital colloid define the vertices of a tetrahedron, and (b) an octahedron in a N=6 digital colloid. For ΛSC < Λ < ΛT there is
sufficient free volume for the halo particles to rattle around the stable spherical code structure, but not transition between different
structures. Above a critical diameter ratio Λ > ΛT > ΛSC, there is sufficient free volume for the halo particles to cooperatively transition
between different distinguishable configurations of the halo particles. (c) It is the availability of distinguishable bit states and transition
pathways between them that makes it possible to store information within digital colloids. The N=4 digital colloid, for example,
possesses two distinguishable tetrahedral bit states corresponding to left- and right-handed chiral arrangements. Transitions between
these two chiral configurations mediated by a structural transition through a square planar arrangement of halo particles. (d) Table of
the symmetry ϒN and information storage capability of the N=4 and N=6 digital colloids. The more rotationally distinguishable bit
states available the higher the information storage capacity. By using configurations for information storage, these digital colloids are
capable of ultra-high information storage density. For example, N=6 digital colloids composed of 3-methacryloxypropyl
trimethoxysilane (TPM) colloidal particles with density ρ = 1.228 g/cm3 36 and particle diameters of 1 μm possess an estimated
memory density of 1.1 TB / g.
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Fig. 2 Diffusion map embeddings of the N=4 tetrahedral digital colloid at the unlocking threshold ΛT = 0.4142. (a) Embedding into the
top two collective modes (Ψ2,Ψ3) furnished by the diffusion map. Each point represents one of the 2×106 microstates recorded over
the course of this simulation trajectory. To assist in interpretation of the embedding, we present visualizations of representative
microstates and color points by the absolute volume of the parallelepiped |V |= | �AB ·

(
�AC× �AD

)
| connecting the centers of mass of

the halo particles. The magnitude of V provides a measure of the deviation of the halo particle configuration from planarity: |V |= 0
corresponds to all halo particles residing in a single plane, and |V |=√

2/2 to an idealized tetrahedral arrangement. (b) Augmentation
of the 2D intrinsic manifold in panel (a) with a third axis containing the signed volume of the parallelepiped V . The sign of V
distinguishes the chirality of the two tetrahedral bit states: V > 0 corresponds to right-handed tetrahedra and V < 0 to left-handed
configurations. (c) Graphical illustration of the triple product defining the signed parallelepiped volume V = �AB ·

(
�AC× �AD

)
.
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Fig. 3 Diffusion map embeddings and the free energy surfaces they support of the N=4 tetrahedral digital colloid as a function of Λ.
Embeddings are constructed in (Ψ2,Ψ3,V ) where (Ψ2,Ψ3) are the top two non-trivial eigenvectors discovered by diffusion map
corresponding to the slowest collective modes of the digital colloid dynamical rearrangements and V is the signed volume of a
parallelepiped connecting the halo particle centers of mass (Figure 2c). The sign of V distinguishes the chirality of the two tetrahedral
bit states: V > 0 corresponds to right-handed tetrahedra and V < 0 to left-handed configurations. The magnitude of V provides a
measure of the deviation of the halo particle configuration from planarity: |V |= 0 corresponds to all halo particles residing in a single
plane, and |V |=√

2/2 to an idealized tetrahedral arrangement. In each pair of panels we present on the left the low-dimensional
projection of the 2×106 microstates harvested from the Brownian dynamics simulation at a particular value of Λ into the intrinsic
manifold, and on the right the free energy surface over the intrinsic manifold F(Ψ2,Ψ3,V ) computed by application of Eqn. 4
employing rectilinear histogram bins of size [ΔΨ2,ΔΨ3,ΔV ] = [0.01,0.01,0.05]. (a,b) Λ = 0.4000, (c,d) Λ = 0.4142, (e,f) Λ = 0.4400, (g,h)
Λ = 0.5000, (i,j) Λ = 0.7500, (k,l) Λ = 1.0000, (m,n) Λ = 1.1256. Points in the diffusion map embeddings are colored by |V |. Isosurfaces
are plotted at βF = {0,2,4,6,8,10,12}, with the arbitrary zero of free energy defined by the most populated voxel of the embedding.
Representative microstates have been projected over the embeddings to illustrate the halo particle configurations in each region of
the intrinsic manifold.
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Fig. 4 Free energy barriers for bit state transitions and cross sections of the transition region from the N=4 free energy surfaces in
Figure 3 as a function of Λ. (a) Free energy barrier height Δ(βF) computed as the free energy difference between the global minimum
of the free energy surface and the minimum free energy within the transition state region defined by V ∈ [−0.1,0.1]. Error bars
correspond to 95% confidence bounds computed by 10 rounds of bootstrapping. The blue dashed-line corresponds to an exponential
of the form Δ(βF) =C0 exp(−C1Λ) with parameters {C0 = (1.29±0.89)×104, C1 = (17.65±1.55)} and an adjusted R2 = 0.98. Best fit
parameters were computed by weighted least squares regression in which we confronted the observed heteroskedasticity in the data
by weighting each free energy measurement in inverse proportion to its variance68. The colored regions distinguish the different
regimes of Λ: (ΛSC ≈ 0.2247)≤ Λ < (ΛT = 0.4142) (red, locked), (ΛT = 0.4142)≤ Λ < (ΛU = 0.5361) (green, unlocked), and
Λ ≥ (ΛU = 0.5361) (blue, barrierless transitions). ΛT = 0.4142 defines the unlocking transition at which there is sufficient free volume
for the halo particles to transition between bit states through the square planar transition state. ΛU = 0.5361 defines the transition to
effectively unconstrained barrierless transitions between bit states where Δ(βF) = 1. (b) Sections through the 3D free energy
surfaces in F(Ψ2,Ψ3,V ) constructed from the subset of approximately planar halo particle configurations with V ∈ [−0.1,0.1]. At
ΛT = 0.4142 the cluster is at the transition threshold and there exists an essentially unique square planar transition state. With
increasing Λ the increased free volume available to the halo particles permits access to a greater diversity of planar configurations
including trapezoidal and kite geometries. This increase in the phase space volume of the transition region leads to a commensurate
decrease in the transition state free energy barrier due to reduced energetic and entropic barriers.
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Fig. 5 Mean first passage times (MFPT) for the N=4 digital colloid as a function of Λ. Errorbars denote 95% confidence intervals on
the mean value computed from the observed distribution of first passage times. The blue dashed-line corresponds to a shifted
exponential of the form ln(MFPT) = B0 exp(−B1Λ)+B2, with parameters {B0 = (2.03±0.91)×103, B1 = (14.08±0.92),
B2 = (−2.53±0.04)} and an adjusted R2 = 0.97. Best fit parameters were computed by weighted least squares regression in which
each MFPT measurement is weighted in inverse proportion to its variance to confront the observed heteroskedasticity in the data due
to elevated uncertainties in the low-Λ regime where bit state transitions are rare events68. Γ = 1/MFPT defines the transition rate
from one chiral bit state to the other.
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Fig. 6 Diffusion map embeddings and free energy surfaces for the N=6 octahedral digital colloid as a function of Λ. Embeddings are
constructed in the top three non-trivial eigenvectors discovered by diffusion maps corresponding to the slowest collective modes of
the digital colloid dynamical rearrangements (Ψ2,Ψ3,Ψ4). In each pair of panels we present on the left the low-dimensional projection
of the 2×106 microstates harvested from the Brownian dynamics simulation performed at a particular value of Λ into the intrinsic
manifold, and on the right the free energy surface over the intrinsic manifold F(Ψ2,Ψ3,Ψ4) computed by application of Eqn. 4
employing rectilinear histogram bins of size [ΔΨ2,ΔΨ3,ΔΨ4] = [0.005,0.005,0.005]. (a,b) Λ = 0.4142, (c,d) Λ = 0.5100, (e,f) Λ = 0.5275,
(g,h) Λ = 0.5500, (i,j) Λ = 0.5750, (k,l) Λ = 0.6000, (m,n) Λ = 0.6500. Points in the diffusion map embedding are colored by the L1,1

norm between the normalized halo particle pairwise distances matrix of the corresponding microstate and that of an idealized
octahedron ||χ ′ −χ ′

oct||. Isosurfaces are plotted at βF = {0,2,4,6,8,10,12,14}, with the arbitrary zero of free energy defined by the
most populated voxel of the embedding. Representative microstates have been projected over the embeddings to illustrate the halo
particle configurations in each region of the intrinsic manifold. The viewing angles of the triangular prism configurations within the
transition state ensemble were selected to emphasize the stacking of the two triangular layers of halo particles such that those closer
to the viewer eclipse from view those that are further away.
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Fig. 7 Free energy barriers for bit state transitions and mean first passage time as a function of Λ for the N=6 digital colloid. (a) Free
energy barrier height Δ(βF) computed as the free energy difference between the global minimum of the free energy surface and the
minimum free energy within the transition state region defined by the voxels containing microstates with ||χ ′ −χ ′

prism||< 1.75, where
χ ′

prism is the normalized halo pairwise distances matrix for the idealized triangular prism transition state structure. This threshold
identifies microstates possessing an average 5% deviation away from the normalized distance matrix for the idealized triangular
prism. Error bars correspond to 95% confidence bounds computed by 10 rounds of bootstrapping. The blue dashed-line corresponds
to an exponential of the form Δ(βF) =C0 exp(−C1Λ) with parameters {C0 = (1.41±0.58)×104, C1 = (13.60±0.70)} and an adjusted
R2 = 0.99. Best fit parameters were computed by weighted least squares regression in which we confronted the observed
heteroskedasticity in the data by weighting each free energy measurement in inverse proportion to its variance68. The colored
regions distinguish the different regimes of Λ: (ΛSC ≈ 0.4142)≤ Λ < (ΛT = 0.5275) (red, locked), (ΛT = 0.5275)≤ Λ < (ΛU = 0.7021)
(green, unlocked), and Λ ≥ (ΛU = 0.7021) (blue, barrierless transitions). ΛT = 0.5275 defines the unlocking transition at which there is
sufficient free volume for the halo particles to transition between bit states through the square planar transition state. ΛU = 0.7021
defines the (extrapolated) transition to effectively unconstrained barrierless transitions between bit states where Δ(βF) = 1. (b) Mean
first passage time computed as the average dwell time within a bit state before transitioning to a new bit state by a collective structural
rearrangement of the halo particles. Errorbars denote 95% confidence intervals on the mean value computed from the observed
distribution of first passage times. The blue dashed-line corresponds to a shifted exponential of the form
ln(MFPT) = B0 exp(−B1Λ)+B2, with parameters {B0 = (2.30±0.16)×106, B1 = (23.17±0.12), B2 = (−1.91±0.08)} and an adjusted
R2 = 0.93 Best fit parameters were computed by weighted least squares regression in which each MFPT measurement is weighted in
inverse proportion to its variance68. Γ = 1/MFPT is the escape rate from any particular bit state to any one of eight other rotationally
distinguishable bit states accessible by a single halo particle rearrangement event (Figure S1).
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Fig. 8 Rational design of a N=6 digital colloid with tailored write free energy and memory volatility. Red points correspond to the
calculated transition barrier heights Δ(βF) and transition rates Γ = 1/MFPT for the four N=6 digital colloid architectures with
Λ = {0.5500,0.5750,0.6000,0.6500}. The dashed blue line is a parametric fit of the best fit shifted exponential for the MFPT and the
best fit exponential for Δ(βF) (cf. Figure 7) constructed by eliminating Λ to obtain an expression for Δ(βF) as a function of Γ. The
ratio of the coefficients B1 and C1 of Λ in the two best fit exponentials controls the nonlinearity of the parametric fit. At a ratio of unity,
the parametric fit corresponds to Arrhenius behavior and the dashed blue line would appear a straight line in the semi-logarithmic
axes. The actual ratio is B1/C1 = (1.70±0.09) leading to non-Arrhenius behavior and the observed non-linearity of the dashed blue
curve. Δ(βF) is the reversible work required to actuate a halo particle rearrangement and write a new bit state into the digital colloid.
Γ is the expected rate at which errors are introduced due to thermally-activated bit state transitions. The lower the write free energy,
the higher the error rate. The design problem is to minimize the work required to write to the digital colloid elements while maintaining
a the error rate above a particular error tolerance threshold. As a simple example, the overlaid text boxes illustrate the information
storage fidelity of a short text block over a one hour duration. A system of 246 N=6 digital colloids would be required to encode this
text using two digital colloids per 8-bit ASCII character. Red text is illustrative of the expected number of errors due to
thermally-activated bit state transitions at the end of one hour of storage.
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Fig. S1 Bit state transition map for the N=6 digital colloid illustrating the 30 rotationally distinguishable bit states as nodes around the
exterior of graph and structural transition events linking bit states as edges through the interior. Nodes and edges are color coded to
aid in interpretation. Each bit state is able to access eight others through a single halo particle collective transition event. The
diameter of the transition network is such that a maximum of three transition events are required to transition between any pair of bit
states.
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Movie S1 Rotating movies of the diffusion map embeddings and free energy landscapes for the N=4 tetrahedral digital colloid given
in Figure 3 of the main text. In each pair of panels we present on the left the low-dimensional projection of the 2×106 microstates
harvested from the Brownian dynamics simulation at a particular value of Λ into the intrinsic manifold, and on the right the free energy
surface over the intrinsic manifold F(Ψ2,Ψ3,V ). (a,b) Λ = 0.4000, (c,d) Λ = 0.4142, (e,f) Λ = 0.4400, (g,h) Λ = 0.5000, (i,j) Λ = 0.7500,
(k,l) Λ = 1.0000, (m,n) Λ = 1.1256. Points in the diffusion map embeddings are colored by |V |. Isosurfaces are plotted at
βF = {0,2,4,6,8,10,12}, with the arbitrary zero of free energy defined by the most populated voxel of the embedding.
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Movie S2 Rotating movies of the diffusion map embeddings and free energy landscapes for the N=6 octahedral digital colloid given in
Figure 6 of the main text. In each pair of panels we present on the left the low-dimensional projection of the 2×106 microstates
harvested from the Brownian dynamics simulation performed at a particular value of Λ into the intrinsic manifold, and on the right the
free energy surface over the intrinsic manifold F(Ψ2,Ψ3,Ψ4). (a,b) Λ = 0.4142, (c,d) Λ = 0.5100, (e,f) Λ = 0.5275, (g,h) Λ = 0.5500, (i,j)
Λ = 0.5750, (k,l) Λ = 0.6000, (m,n) Λ = 0.6500. Points in the diffusion map embedding are colored by the L1,1 norm between the
normalized halo particle pairwise distances matrix of the corresponding microstate and that of an idealized octahedron ||χ ′ −χ ′

oct||.
Isosurfaces are plotted at βF = {0,2,4,6,8,10,12,14}, with the arbitrary zero of free energy defined by the most populated voxel of the
embedding.

26 | 1–27

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Soft Matter, published by the 
Royal Society of Chemistry. Copyright restrictions may apply. doi: 10.1039/C6SM01156J



Movie S3 Tracking a N=6 octahedral digital colloid transition event through the intrinsic manifold and transition network at Λ = 0.5750.
(middle) The digital colloid undergoes thermally-driven fluctuations that lead to a collective rearrangement of the halo particles from
one of the 30 rotationally distinguishable octahedral bit states to another via a triangular prism transition state. (left) We track the
structural evolution of the digital colloid as a black point moving over the low-dimensional intrinsic manifold discovered by diffusion
maps previously presented in Figure 6j. The digital colloid initially resides in the broad octahedral basin until fluctuations lead to a
cooperative transition event wherein the halo particles rearrange into the triangular prism transition structure that ultimately leads to a
productive transition to a new rotationally distinguishable bit state. (right) The transition event can be visualized as a transformation
from one of the 30 rotationally distinguishable octahedral bit states to another as illustrated by the pathway connecting the two nodes
in the bit state network. Each bit state is able to access eight others through a single halo particle collective transition event (cf.
Figure S1).
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