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ABSTRACT 

Bald eagle (Haliaeetus leucocephalus) populations in the continental United 

States experienced a dramatic population decline during the twentieth century. 

Populations across the species’ range have largely recovered, thanks in part to the ban of 

DDT, rapidly enacted conservation measures, and reintroduction efforts. Using six 

microsatellite loci, I tested the genetic variation of bald eagles across six states in the 

Pacific Northwest. Genetic analysis revealed that, despite undergoing a population-wide 

decline, the bald eagles in the locations sampled outside of Idaho did not exhibit the 

characteristics typically associated with a genetic bottleneck (i.e., a reduced number of 

alleles and a heterozygosity excess) and likely persisted through the DDT-era with stable 

genetic variability. Furthermore, there was no significant genetic structuring in the 

Pacific Northwest samples outside of Idaho, suggesting a panmictic population across the 

area. The bald eagle’s long generation time may act as an intrinsic buffer against the loss 

of genetic diversity and aid in retaining genetic variability across its range. The retention 

of genetic diversity in these isolated populations likely reduced the effective time of the 

bottleneck and contributed to the genetic similarity of the populations sampled in this 

research. 
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CHAPTER ONE: INTRODUCTION 

Introduction 

Natural populations with sufficient genetic variation have the ability to respond to 

changes in their environment. These responses can include changes in morphology, 

behavior, and life history. Genetic variation may also be essential for long-term 

population persistence (Lande and Shannon 1996). However, the ability to elicit these 

types of evolutionary responses depends on the genetic variation present in the gene pool. 

Species with small population sizes, particularly populations that are isolated 

from each other, are often exposed to higher rates of extinction because they are prone to 

losses of genetic variation (Saccheri et al. 1996). Loss of genetic variation in these small 

populations can lead to reduced short-term viability (Saccheri et al. 1996, Hailer et al. 

2006) and lead to the long-term persistence of reduced genetic variability (Leberg 1990, 

Luikart et al. 1998, Whitlock 2000). Moreover, the risk of inbreeding is also elevated in 

small populations. Inbreeding can lead to an alteration or reduction of a population’s 

genetic variation, can generate elevated levels of gametic phase disequilibrium, and  

increase levels of homozygosity among individuals in a population (Crow and Kimura 

1970, Leberg 1993, Rumball et al. 1994, Saccheri et al. 1999). For populations with high 

genetic load (i.e., recessive deleterious alleles), increased levels of homozygosity can 

lead to a reduction in the population’s fitness (Crow and Kimura 1970, Rumball et al. 

1994). 
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One of the demographic events through which genetic variation within natural 

populations can be lost includes population bottlenecks. A population bottleneck occurs 

when the size of a population is severely and temporally reduced as a result of 

environmental pressures such as habitat destruction or fragmentation (Leberg 1992).  

Natural populations that have undergone a bottleneck can be severely affected by random 

genetic drift (i.e., the stochastic loss of alleles over time) (Wright 1931). This process 

reduces the overall amount of genetic variation. Bottlenecks result in a rapid loss of low 

frequency alleles and an increase in abundance of mid- and high-frequency alleles 

(Luikart et al. 1998). The amount of genetic diversity lost during a bottleneck event 

depends upon the size and duration of the bottleneck event, and the rate of population 

growth following the bottleneck (Nei et al. 1975). 

Founder events are another demographic process that leads to the establishment of 

new, small populations in areas previously devoid of that species. Often these new 

populations arise from only a few migrants from a neighboring source population. During 

an event such as this, allelic richness is often reduced compared with the source 

population (Chakraborty and Nei 1977, Luikart et al. 1998). In addition, the random 

sampling of alleles from the source population can alter allele frequencies in the new 

population and may result in the fixation or complete loss of certain alleles (Chakraborty 

and Nei 1977, Maruyama and Fuerst 1985, Leberg 1992). 

Typical of large raptor species, Bald Eagles (Haliaeetus leucocephalus) possess 

several life history characteristics that place them at a high risk of population bottleneck 

events and potentially local extinctions/extirpations (Purvis et al. 2000, Brown et al. 

2007). As a high trophic-level predator, Bald Eagles occur at low population densities, 
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have low reproductive rates, high nest site and mate fidelity, low fecundity levels, and 

high levels of juvenile philopatry (Buehler 2000, Martinez-Cruz et al. 2004, Perkins 

2006). 

Bald Eagle populations across the conterminous United States began declining in 

the early 1900s due to habitat fragmentation and direct human persecution (Sprunt and 

Ligas 1964, Buehler 2000, Perkins 2006). In the mid-century, the decline was 

exacerbated by the use of toxic chemicals and pesticides such as dichloro-diphenyl-

trichloroethane (DDT) and other organochlorides. These chemicals had well-documented 

adverse effects on the size of natural populations and communities of raptor species 

(Brown et al. 2007). The use of DDT as an insecticide became widespread worldwide 

during the 1940s and 1950s. DDT was effective at preventing the transmission of insect-

borne diseases to humans (Carson 1962), and its derivatives are persistent organic 

pollutants that accumulate in the environment. DDT concentrations are highest in high 

trophic-level predators due to the process of bioaccumulation (EPA 1975). 

Although the use of DDT in the United States was banned in 1972, the number of 

Bald Eagles in the lower 48 states continued to severely decline into the 1970s. In 1978, 

the Bald Eagle was issued protection under the Endangered Species Act (ESA). This 

protection, combined with the ban on DDT and successful captive breeding programs, led 

to the recovery of Bald Eagle populations in the continental United States over the past 

three decades (Weidensaul 1996). In 2007, the Bald Eagle was de-listed from the ESA. 

Despite the recovery of this species, the genetic signatures of this prolonged bottleneck 

event may persist in Bald Eagle populations around the continental United States. 
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In the Pacific Northwest, a few populations of Bald Eagles in the Greater 

Yellowstone Ecosystem (GYE) of Wyoming and Montana, and populations in central 

Oregon, are believed to have persisted through the DDT era (F. Isaacs, pers. comm.). 

However, with no published molecular studies regarding the genetic structure of these 

populations, it is impossible to determine if there is in fact a persistent signature of a 

genetic bottleneck.  

An analysis of southern Idaho populations of Bald Eagles, however, revealed the 

characteristics of a recent bottleneck:  high levels of gametic phase disequilibrium and 

heterozygosity excesses (Perkins 2006). Both of these characteristics, combined with 

high levels of inbreeding and significant genetic population structuring, indicate that the 

populations in southern Idaho experienced a recent, severe population bottleneck. 

Populations in neighboring states (Wyoming, Montana, and Oregon) may also have 

retained the signatures of such an event.  

Microsatellites are useful genetic markers in population genetics studies because 

of their high-length polymorphisms. Allelic state can easily be genotyped by fragment 

length analysis (Anmarkrud et al. 2008).  These markers are especially useful when 

dealing with threatened or high-risk species because they can be analyzed via 

noninvasive sampling of tissue (e.g., shed feathers) (Taberlet et al. 1996, Luikart et al. 

1998). Genetic change can be readily monitored because microsatellites are codominant, 

hypervariable, and allow for numerous loci to be scored simultaneously (Paetkau et al. 

1995). 

The overall objective of this research was to determine, using microsatellite 

markers, if Bald Eagles in the Pacific Northwest exhibit both 1) a reduced number of 
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alleles and 2) a heterozygosity excess, which are the genetic characteristics typical of a 

population that has experienced a genetic bottleneck. Data collected from Idaho Bald 

Eagle populations by Perkins (2006) were utilized to determine levels of connectivity 

between populations in the Pacific Northwest (i.e., levels of gene flow that influence the 

genetic structuring of populations) and to determine if localities neighboring Idaho may 

have served as source populations for recent founder events, as was suggested by Perkins 

(2006). 
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CHAPTER TWO: METHODS 

Field Sampling 

In this study, feather samples were collected from known breeding territories in 

Bald Eagle populations across four states: Alaska, Oregon, Wyoming, and Montana. 

Volunteers from each state collected feathers during the 2008 and 2009 Bald Eagle 

breeding seasons (Figure 1). In addition, Perkins (2006) previously collected Bald Eagle 

feathers, and the data generated by Perkins (2006) are included here. 

 

Figure 1 Bald Eagle Populations Sampled During the 2008 and 2009 Breeding 

Seasons. Populations 8-13 were previously analyzed in Perkins (2006). 
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The feathers were collected 20-30 m from the base of an occupied Bald Eagle nest 

tree or perch tree. Shed feathers have proven to be suitable for microsatellite analysis and 

represent a noninvasive sampling method (Luikart et al. 1998, Horváth et al. 2005). 

Feathers were stored in plastic Ziploc bags or in 8.5 x 11 in. manila envelopes and 

shipped to the lab for analysis. In the instances that shipping whole feathers was not 

possible, feathers were clipped and only the tip of the feather was stored. Feathers were 

stored in the lab in Ziploc bags with trace amounts (>1 g) of silica gel and stored in the 

laboratory at room temperature until DNA extraction (Perkins 2006). 

Blood samples of 50-60 day-old nestlings (n = 27) were taken from the brachial 

vein in the Montana and Wyoming populations. Blood samples were stored in a 

Longmire buffer solution (Longmire et al. 1997) and shipped to the lab for storage at 4° 

C. 

DNA Extraction 

DNA was extracted from the shafts of the collected feathers using QIAGEN 

(Valencia, California) DNeasy kits and followed manufacturer’s protocol. To genotype 

individuals, I used six polymorphic loci developed for Bald Eagles by Tingay et al. 

(2006). Polymerase chain reaction (PCR) amplifications were performed in 10 uL 

volumes using 1 uL of genomic DNA, 1 uL of forward primer, 1 uL of reverse primer 

(only one primer was fluorescently labeled), 0.5 uL 1% BSA (0.05%), 0.2 uL PCR 

nucleotides (0.2 mM), 2 uL 5x NH4 reaction buffer, 0.4 uL MgCl2 (1.0 mM), 0.05 Taq 

polymerase (0.025 units), and 3.85 uL ddH20. The volume of genomic DNA was 

increased to 2 uL for individual samples that failed to produce amplified products that 

resulted in bands that were score-able.  
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Polymerase chain reaction amplification was carried out on an MJ Research PTC-

100 thermocycler (Bio-Rad, Hercules, California). After the initial denaturing step of 95° 

C for 2 min, 34 cycles were performed. Each cycle consisted of a 30 s segment at 95° C, 

30 s of annealing temperature (according to Tingay et al. 2006, variable annealing 

temperatures were utilized [see Perkins 2006]), followed by an extension step of 1 min, 

30 s at 72° C. Lastly, a 2 min extension step was used at 72° C following the annealing 

step of the final PCR cycle. 

Microsatellite Genotyping 

Polymerase chain reaction products were mixed with loading dye and spun down 

by centrifuge for 10 sec at maximum speed (14,000 rpm). Following dye addition, 

samples were loaded into a polyacrylamide gel; each gel was 0.25 mm x 25 cm and 6.5% 

polyacrylamide gel. Amplified PCR products were then electrophoresed alongside of a 

20-400 bp size standard using a LI-COR 4300 LR automated sequencer (LI-COR, 

Lincoln, Nebraska). Genotyping gels were visualized and scored using LI-COR e-seq 

software.  

To genetically identify two parental birds for each nest, I surveyed and compared 

the different genotypes of the feathers collected under the nests. When genotypes at a site 

did not match, they were assumed to be separate birds. When two unique genotypes were 

identified, they were determined to be the nesting pair of birds for that site. If samples 

from nesting sites were unable to be identified to two birds, the sample site was removed 

from analysis. 
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Statistical Analysis 

Population samples were hierarchically arranged based on the geographic region 

in which they were collected (Table 1). Within each region, the feathers were divided into 

their respective geographic populations for analysis. The program Micro-Checker 2.2.3 

was used to test for null alleles and scoring errors due to large allelic dropout and stutter 

peaks (van Oosterhout et al. 2004). Microsatellite loci were tested for linkage 

disequilibrium, as described by Lewis and Zaykin (2001), using the program GDA v. 1.1. 

GDA also allowed estimates of population structure to be made using pairwise estimates 

of Fst. RST CALC v. 2.2 (Goodman 1997) was used to obtain pairwise estimates of Rst . 

The number of alleles, number of polymorphic loci, and the number of private 

alleles within each population were determined using the program GENEPOP version 4.0 

(Raymond and Rousset 1995b). GENEPOP was also used to calculate estimates of Fis 

(Wright’s F/inbreeding coefficient) and to determine whether each locus conformed to 

Hardy-Weinberg equilibrium (HWE).  Within GENEPOP, the observed and expected 

heterozygosity for each locus were also calculated. A Markov chain method was used to 

estimate the exact P-value without bias as described by Guo and Thompson (1992). 

Standard Markov parameters (dememorization number = 1000, number of batches = 100, 

number of iterations per batch = 1000) as suggested by Raymond and Rousset (1995a) 

were used in this analysis. Allelic richness was calculated using the procedure described 

by Kalinowski (2005) in HP-RARE 1.1. 
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Table 1 Regions of Bald Eagle Populations and Number of Individuals and Territories Sampled. Acronyms for 

Populations Here Are Used in Subsequent Tables and Figures. 

Region Population 
Population 

Number 
Acronym Latitude Longitude 

# Territories 

Sampled 
N 

Oregon 

Klamath 

Reservoir 
1 KL N 42° 21.3'  W 121° 54.1'  8 16 

Wickiup 

Reservoir 
2 WK N 43° 43.2'  W 121° 47.3'  9 18 

Montana 

Glendive 3 GD N 46° 48.9'  W 105° 14.5'  3 6 

Custer 4 CS N 46° 4.4'  W 107° 42.9'  3 6 

Columbus 5 CO N 45° 36.4'  W 109° 11.3'  2 4 

Wyoming 
Greater 

Yellowstone 
6 GYS N 43° 40.4'  W 110° 42.2'  6 10 

Alaska Cold Bay 7 CB N 55° 11.2'  W 162° 40.1'  5 10 

Southwest 

Idaho 

Hell's Canyon 8 HC N 44° 42.4' W 117° 03.0' 4 8 

Long Valley 9 LV N 44° 34.9' W 116° 06.0' 15 24 

Boise River 10 BR N 43° 34.3' W 115° 51.3' 2 3 

Southeast 

Idaho 

Lower Snake 

River 
11 LSR N 43° 05.5' W 112° 31.7' 5 10 

Upper Snake 

River 
12 USR N 43° 39.3' W 111° 50.1' 6 12 

Palisades 

River 
13 PR N 43° 14.1' W 111° 06.6' 5 8 
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Pairwise migration rates were obtained using BAYESASS v.1.3 (Wilson and 

Rannala 2003). Using Bayesian inference to identify individuals that are potential 

immigrants from source populations, BAYESASS is able to estimate the percentage of 

individuals within a population that came from various source populations. This provides 

reliable estimates of migration between populations because BAYESASS does not 

assume constant population sizes, evolutionary equilibrium, or symmetrical migration  

(Wilson and Rannala 2003).  

To test for potential situations of isolation by distance, the web-based program 

IBD v3.6 (Jensen et al. 2005) was used. This program introduced a matrix containing 

parameters describing genetic differentiation between each pair of populations (i.e, Fst/1-

Fst) as well as a matrix containing Euclidean geographic distance (in kilometers) between 

each population pair.  

Gene flow (Nm) estimates were not included as it was suspected that several of the 

populations, especially those in Idaho, would be in violation of HWE (Perkins 2006). In 

situations where violation of equilibrium is expected, FST and RST estimators of Nm can 

be misleading because the influence of drift becomes confounded in the estimates of Nm 

(McCauley 1993, Bossart and Prowell 1998, Hutchison and Templeton 1999). 

To test the assumption that a breeding population of birds constitutes a true 

population, the program STRUCTURE 2.3.1 (Pritchard et al. 2000) was utilized. The 

program STRUCTURE implements a model-based clustering method for inferring 

population structure using genotype data consisting of unlinked markers (Pritchard et al. 

2000) and is useful in determining the correct number of populations in a study area and 

in assigning individuals to populations. Ten simulations were carried out for each K value 
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ranging from 1 – 6 when not including Perkins (2006) data, or K values from 1-13 when 

the data were included. Correlated allele frequencies and an admixture model were 

assumed as suggested by Pritchard et al. (2000). Analyses were carried out with 10,000 

iterations, following a burn-period of 10,000 iterations. 

Bottleneck Analysis 

The program BOTTLENECK v. 1.2.02 (Piry et al. 1999) was used to test for 

recent bottlenecks within populations in each state sampled and within the regions 

sampled. This program is particularly useful in testing for heterozygosity excess in a 

population; an excess in heterozygosity is a classic signature of populations that have 

undergone a recent bottleneck (Luikart et al. 1998). BOTTLENECK assumes that when 

Ne is reduced, the alleles in the population are lost at a more rapid rate while the 

heterozygosity of the population experiences slower decline. Heterozygosity is more 

closely related to breeding dynamics than alleles are, and declines at a slower rate.  

Wilcoxon sign-rank tests were used to test for heterozygosity excess in 

populations compared to drift-migration equilibrium expectations under a two-phase 

mutation model (TPM). This model incorporated a 95% single-step mutation model 

(SSM) with a variance of 12 as recommended for microsatellite loci by Piry et al. (1999). 

For the most accurate results, sample sizes are recommended to be no less than 10 (Piry 

et al. 1999). Because of this, the Glendive, Custer, and Columbus populations in Montana 

and the Boise River population in Idaho were not tested. Lastly, populations were 

grouped together by region and were tested for recent population bottlenecks as 

suggested by Piry et al. (1999). 
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CHAPTER THREE: RESULTS 

Results 

The total number of alleles per locus across the study area ranged from 4 to 11, 

while the mean number of alleles per locus in a population spanned a range of 2.93 

(Hle6A11) to 5.57 (Hle6H10) (Table 2). Allelic frequencies for all loci and populations 

across the study area are given in Appendix A and Appendix B. Pairwise comparisons 

across 105 pairs of all six loci revealed 5 pairs exhibiting significant levels of gametic 

phase disequilibrium (GPD) (Table 3). The pairs were found in Oregon (n = 2), Alaska (n 

= 1), Wyoming (n = 1), and Montana (n = 1); however, the loci in disequilibrium in 

Montana exhibited marginal significance (P = 0.0537). The overall number of loci in 

GPD was not substantially higher than what could be expected by chance alone (5%, or 

5.25 pairs). Further analyses were conducted under the assumption that no loci were 

physically linked and that all were independent; this was done because no pairs of loci 

exhibiting GPD were consistent across the study area and were most likely the result of 

demographic events occurring in the history of specific populations. 
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Table 2 PCR Primers and Conditions for the Six Microsatellite Loci (Tingay et al. 2006) Used to Analyze Genetic 

Structure of Bald Eagles (Including Idaho Populations). Forward and Reverse Primers are Designated by F and R, 

respectively. Ta (°C) Is the Annealing Temperature of Each Primer. 

Locus Primer Sequences (5’ – 3’) 

Ta 

(°C) 

MgCl2 

(mM) 

# 

Alleles 

Mean # 

Alleles/Locus 

Observed 

Allele 

Size 

Range 

(bp) 

EMBL 

Accession 

Number 

Hle6A11 F:CCCCTTATCCCAGGTGCTAT 55 2 4 2.93 194-200 AJ620434 

 R:GGAAATAAGAAGCACACCGAGT       

        

Hle0E12 F:CTAATGGTCCTGAGGGCAAA 60 2 8 3.86 153-171 AJ620427 

 R:TTCATGTGCCAGCTGACCT       

        

Hle6F02 F:TGGGACTCCAAATCCAAGTC 60 1 8 3 223-237 AJ620437 

 R:GGATAACTGGCACTGGAGGA       

        

Hle6H10 F:GCCTCACAGTGCCATTACCT 59 1 11 5.57 204-224 AJ620440 

 R:CCTTTCCTGGGGGATTAAAA       

        

Hle0B10 F:ATGATGGTGTTGTGGGTGAA 60 2 7 3.71 180-192 AJ620420 

 R:CAGGCTGTCCCATTTCAACT       

        

Hle0E05 F:CAAGACACCAATCTCCCCACATC 65 2 8 4 225-239 AJ620425 

  R:GGCTCGCTCTCACACAGAAGG             
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Table 3 Statistically Significant Linkage Disequilibrium Among 23 of 210 Loci 

Pairs. Calculations Performed in GDA 1.1 (Lewis and Zaykin 2001) and 

ARLEQUIN 2.000 (Schneider et al. 2000). 

Region Population 
Loci in 

Disequilibrium 
P-value 

Oregon WK Hle0E12-Hle6H10 0.0388 

    Hle6H10-Hle0E05 0.0431 

Montana CO Hle0B10-Hle0E05 0.0537* 

Wyoming GYS Hle0B10-Hle0E05 0.035 

Alaska CB Hle0B10-Hle0E05 0.0113 

*marginally significant 

Regional means of allelic diversity ranged from 2.72 (Montana) to 4.17 (Oregon), 

and rarefied allelic richness ranged from 1.87 (Montana) to 2.08 (Oregon) (Table 4). 

Oregon, Montana, Wyoming, and Alaska had relatively high levels of observed 

heterozygosity (0.729, 0.623, 0.617, and 0.667, respectively) and in all cases there was no 

significant differences between observed and expected heterozygosities (all populations 

were in HWE). 
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Table 4 Estimates of Each Population’s Average Genetic Diversity. AD = Allelic Diversity, AR = Allelic Richness 

Rarefied to Three Alleles/Locus Using the Program HP-Rare 1.1 (Kalinowski 2005), % P=Percent Polymorphic Loci, Ho = 

Mean Observed Heterozygosity (* = Statistically Significant Heterozygote Deficiency (P=.001). According to HW Global Tests 

in GENEPOP 4.0), He = Mean Expected Heterozygosity, Fis = Mean Inbreeding Coefficient (Weir and Cockerham 1984), W=P-

values from Wilcoxon Tests of Heterozygosity Excess Performed by BOTTLENECK 1.2.02 (* = Statistically Significant 

(P=0.05) Departure from Aallelic Diversity/Heterozygosity Proportions Expected by TPM Mutation-Drift Equilibrium). 

Region Population N AD            AR %P Ho He Fis 

# 

Private 

Alleles 

W 

Southwestern 

ID 

HC 8 4.17 2.17 1 0.396* 0.749 0.474 1 0.0391* 

LV 24 5.83 2.26 1 0.449* 0.718 0.365 3 0.0781 

BR 3 3.83 2.26 1 0.389* 0.711 0.433 0 † 

Mean     4.61 2.23 1 0.411 0.726 0.424 2.33   

Southeastern 

ID 

LSR 10 4 2.22 1 0.467* 0.718 0.357 2 0.0156* 

USR 12 4.5 2.19 1 0.403* 0.692 0.456 2 0.0078* 

PR 8 4.6 2.18 1 0.417* 0.676 0.381 1 0.5781 

Mean     4.37 2.2 1 0.429 0.695 0.398 1.67   

Oregon 
KL 16 4 2.04 1 0.738 0.627 -0.185 1 0.2188 

WK 18 4.33 2.11 1 0.72 0.656 -0.099 0 0.0781 

Mean     4.17 2.075 1 0.729 0.641 -0.142 0.5   

Montana 

GD 6 2.5 1.87 1 0.667 0.548 -0.244 0 † 

CS 6 3.17 1.92 1 0.667 0.563 -0.206 0 † 

CO 4 2.5 1.82 1 0.625 0.518 -0.25 0 † 

Mean     2.72 1.87 1 0.623 0.543 -0.233 0   

Wyoming GYS 10 3.5 1.89 1 0.617 0.548 -0.133 0 0.7188 

Alaska CB 10 2.5 2 1 0.667 0.595 -0.129 0 0.5 

† randomization tests not conducted due to limited sample size 
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When comparing the results of populations from OR, WY, MT, and AK with the 

previously reported results from Idaho populations (Perkins 2006), populations had much 

lower levels of observed heterozygosity (0.411 for populations from southwestern Idaho, 

and 0.429 for populations from southeastern Idaho (Table 4). After Fisher’s exact tests 

were performed across all loci, all Idaho populations were determined to deviate from 

HWE due to significant levels of heterozygosity deficiency (P = 0.001). 

Mean inbreeding coefficients for all populations corresponded inversely with the 

levels of observed heterozygosity (i.e., populations with high observed heterozygosity 

had low inbreeding coefficients). Idaho populations had high Fis values compared with 

populations from the rest of the study area, but were similar to each other (0.424 

southwest, 0.398 southeast) (Table 4). Other populations in the study displayed values 

and ranging from -0.233 (Montana) to -0.129 (Alaska) (Table 4), indicating higher 

observed heterozygosity values compared to the values for expected heterozygosity. 

BOTTLENECK revealed evidence of recent population bottlenecks in the HC, 

LV, LSR, and USR populations – all of which are in Idaho (Table 4). No other 

populations had significant heterozygosity excess levels indicative of a recent bottleneck. 

Wilcoxon sign-rank tests were also insignificant when populations were grouped by 

regions and treated as one (West Idaho [P = 0.4211], East Idaho [P = 0.6563], Oregon [P 

= 0.719], Montana [P = 0.219], Wyoming [P = 0.719], and Alaska [P = 0.5000]). 

Pairwise comparisons of Fst and Rst (Weir and Cockerham 1984) revealed no 

significant differentiation between populations within the same geographic regions (for 

example, KL and WK in Oregon did not significantly differ from each other). However, 



18 

 

populations from Idaho indicated significant genetic differentiation when compared to 

Oregon, Montana, Alaska, and Wyoming populations (Table 5).  

Southeastern Idaho populations exhibited significant genetic differentiation when 

compared to the populations in southwestern Idaho. Genetic structuring was most evident 

when comparisons were made across long geographic distances. For example, 

comparisons between LV in the southwest and LSR in the southeast exhibited statistically 

significant differentiation (Table 5). 

The Alaskan population displayed significant genetic structuring when compared 

to the eastern and western Idaho populations, as well as most of the populations in 

Montana. However, when comparisons were made with the Oregon or Wyoming 

populations, there was insignificant genetic differentiation, this despite the vast 

geographic distance separating these populations.  

In Wyoming, there was no significant structuring between the nearest populations 

in Montana (CU, CO) or Idaho (PR). Comparisons made with Oregon populations and 

both east and west Idaho did however indicate genetic structuring. 

In Idaho, migration rates estimated by Bayesian inference revealed that migration 

between eastern and western populations was uncommon but within region migration did 

occur (Table 6). For example, in western Idaho, the estimated percentage of individuals 

in the HC population derived from the LV population was 14%. The LV population in the 

west and USR population in the east had the lowest proportions of migrants from other 

populations (0.0471 and 0.0355, respectively) and most likely served as the source 

populations for those regions. 
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Table 5 Pairwise Values of Fst (Above Diagonal) and Rst (Below Diagonal) Between All Populations. Significant Values ( 

P < 0.05) Are Indicated in Bold. 

  Oregon Montana Wyoming Alaska Southwestern Idaho Southeastern Idaho 

   KL WK GD CU CO GYS CB HC LV BR LSR USR PR 

Oregon 
KL  - 

0.0022 0.0069 0.0617 -0.0055 0.0695 0.0405 0.1959 0.1602 0.1764 0.0855 0.1235 0.116 

WK 0.0036  - 
0.0274 0.0712 0.0091 0.043 0.0153 0.1712 0.1426 0.1601 0.061 0.1203 0.1003 

Montana 

GD 
-0.0485 -0.0147 

 - 
0.0611 0.0072 0.1412 0.1073 0.2145 0.1758 0.1909 0.1069 0.1414 0.1393 

CU 
0.0538 0.1226 0.0463 

 - 
0.0688 0.1425 0.1386 0.2353 0.1968 0.2319 0.1425 0.1192 0.1074 

CO 
-0.0747 -0.0406 -0.0837 0.0482 

 - 
0.1031 0.081 0.221 0.1893 0.2063 0.111 0.1228 0.1329 

Wyoming GYS 0.1668 0.1641 0.186 0.0543 0.1374  - 
0.0277 0.2086 0.1827 0.2377 0.1102 0.1936 0.1065 

Alaska CB 
0.0883 0.1142 0.0899 -0.0127 0.0812 -0.0105 

 - 0.1977 0.175 0.2068 0.103 0.175 0.1208 

Southwestern 

Idaho 

HC 0.236 0.2102 0.2314 0.2783 0.1613 0.2508 0.2528  - 
-0.0294 -0.123 0.0511 0.073 0.0099 

LV 0.2643 0.2224 0.2465 0.3202 0.1829 0.3027 0.2839 -0.0349 
 - 

-0.0549 0.0566 0.087 0.0499 

BR 0.2554 0.242 0.2479 0.298 0.1533 0.2805 0.2618 -0.0797 -0.0266 
 - 

0.0006 -0.0278 -0.0142 

Southeastern 

Idaho 

LSR 0.2567 0.2407 0.2536 0.2762 0.2591 0.2611 0.2545 0.2866 0.2753 0.2913  - 
0.0244 -0.013 

USR 0.352 0.3346 0.3476 0.372 0.3539 0.359 0.3507 0.3795 0.3684 0.3867 -0.043 
 - 0.0087 

PR 0.2372 0.2192 0.2329 0.2606 0.2391 0.2452 0.2373 0.2684 0.2555 0.2736 -0.0565 -0.0379 
 - 
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Table 6 Estimated Migration Rates of Bald Eagles Across Populations in the Pacific Northwest and Alaska. Estimates 

Obtained Using BAYESASS v.1.3 (Wilson and Rannala 2003). Rates Are Estimated as the Proportion of Individuals in 

Column Populations that are Derived from Other Populations. Values > 0.05 are Indicated in Bold. Italics Along the Diagonal 

Indicate Non-Migrant (Native) Individuals. 

    
Oregon Montana WY AK Southwestern Idaho Southeastern Idaho 

    KL WK GD CU CO GYS CB HC LV BR LSR USR PR 

Oregon 

KL 0.6847 0.0016 0.015 0.0144 0.0167 0.011 0.0102 0.0135 0.0033 0.0173 0.0113 0.0026 0.0141 

WK 0.2484 0.979 0.1247 0.1237 0.0883 0.1747 0.1894 0.012 0.0154 0.016 0.0262 0.0025 0.0259 

GD 0.0063 0.0017 0.7077 0.0157 0.0183 0.0103 0.0101 0.0129 0.0025 0.0163 0.0087 0.0032 0.0115 

Montana 
CU 0.0058 0.0018 0.0496 0.7086 0.0164 0.0101 0.0104 0.012 0.0023 0.0148 0.009 0.0027 0.0115 

CO 0.0064 0.0016 0.0157 0.0156 0.724 0.011 0.01 0.0148 0.0025 0.0156 0.0085 0.0029 0.0106 

Wyoming GYS 0.006 0.0021 0.015 0.0153 0.018 0.6974 0.0107 0.0119 0.0024 0.0172 0.0103 0.0027 0.0114 

Alaska CB 0.0057 0.0016 0.0151 0.0134 0.017 0.01 0.6373 0.0114 0.0028 0.0162 0.0113 0.0028 0.0134 

Southwestern 

Idaho 

HC 0.0062 0.0018 0.0156 0.016 0.0161 0.0104 0.0104 0.7101 0.0025 0.0155 0.0095 0.0028 0.0117 

LV 0.0061 0.0017 0.0146 0.0152 0.0179 0.0206 0.0102 0.1412 0.9529 0.05 0.0518 0.0031 0.0481 

BR 0.0061 0.0017 0.0148 0.0154 0.016 0.0107 0.0099 0.0139 0.0028 0.7557 0.01 0.0031 0.0119 

Southeastern 

Idaho 

LSR 0.0058 0.0019 0.016 0.0148 0.0173 0.0117 0.0094 0.0133 0.0036 0.017 0.7679 0.004 0.0288 

USR 0.0063 0.0018 0.0152 0.0157 0.0175 0.0114 0.011 0.0189 0.0041 0.0311 0.0623 0.9645 0.0805 

PR 0.0062 0.0017 0.0155 0.0163 0.0167 0.0105 0.011 0.0143 0.0028 0.0712 0.0131 0.0031 0.7205 
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Oregon exhibited a similar situation as Idaho in which one population (WK) 

appeared to be a source population for the other (KL). The proportion of migrants from 

other populations in WK was only 0.021 and approximately 25% of KL were migrants 

from WK. This was the only migrant source for the Oregon populations as no out-of-

region migrants significantly contributed to KL. The WK population also was a source 

for 12% of the CU and GD populations and 17% of the GYS population. 

When all populations were pooled by region and treated as one unit, Oregon, west 

Idaho, and east Idaho exhibited no significant migration between regions (Table 7). 

Despite the close geographic locale, migration values indicate that east Idaho did not 

receive or contribute any migrants. Similarly, Oregon and west Idaho did not contribute 

any significant level of migrants. Wyoming appeared to be comprised of migrants from 

both Oregon and west Idaho populations, while Montana’s only significant source of 

migrants appear to have been drawn from Oregon populations.  

Table 7 Estimated Migration Rates of Bald Eagles Across Five Regions in the 

Pacific Northwest (Alaska Excluded). Estimates Obtained Using BAYESASS v. 1.3 

(Wilson and Rannala 2003). Rates Are Estimated as Proportion of Individuals in 

Column Populations That Are Derived from Other Populations. Values >.05 Are 

Highlighted in Bold. 

  
Oregon Montana Wyoming 

Southwestern 

Idaho 

Southeastern 

Idaho 

Oregon 0.9896 0.2855 0.244 0.0204 0.0083 

Montana 0.0024 0.6854 0.0157 0.0043 0.0073 

Wyoming 0.0026 0.0099 0.6953 0.0044 0.0095 

Southwestern 

Idaho 
0.0024 0.0092 0.2428 0.9612 0.012 

Southeastern 

Idaho  
0.003 0.0099 0.0208 0.0096 0.9627 
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Results from IBD v3.6 revealed no significant correlation between geographic 

distance and genetic separation of the Oregon, Montana, and Wyoming populations 

(Mantel Test, P = 0.8402, R = 0.2100) (Figure 2). However, when Idaho populations 

were included in the analysis, significant correlation between genetic separation and 

geographic distance was detected (Mantel Test, P = 0.0140, R = 0.3089), which suggests 

the presence of isolation by distance (Figure 3). 

 

Figure 2 Mantel Test Showing Correlation between Genetic Separation and 

Geographic Distances (Jensen et al. 2005) between All Pairwise Comparisons of 

Pacific Northwest Bald Eagle Populations (Perkins [2006] Data Not Included). (P = 

0.8402, R = 0.2100). 

y = -0.1372x + 0.4334 

R
2 
= 0.0441 
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Figure 3 Mantel Test Showing Correlation between Genetic Separation and 

Geographic Distances (Jensen et al. 2005) between All Pairwise Comparisons of 

Pacific Northwest Bald Eagle Populations (Perkins [2006] Data Included). (P = 

0.0140, R = 0.3089). 

The clustering analysis implemented in STRUCTURE 2.3.1 detected only one 

distinct cluster within the Pacific Northwest Bald Eagle populations (Figure 4). While 

probabilities for all K values approached approximately the same value (Ln P(D) = -

841.0), the 10 iterations for K = 1 were closely clustered and exhibited the smallest range 

of probability values (-841.0 to -843.2). These results appear to agree with pairwise 

comparisons of populations in the Pacific Northwest (Table 5). Only the GYS population 

of Wyoming exhibited any significant levels of genetic structuring when comparing 

pairwise Fst values across the Pacific Northwest. This suggests one panmictic Bald Eagle 

Y = 0.2397x – 0.5313 

R
2
 = 0.0954 
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population in the Pacific Northwest; however, limited sample sizes and sampling ranges 

may have contributed to this conservative estimate.  

 

Figure 4 Bayesian Clustering Analysis of Bald Eagle Populations in the Pacific 

Northwest (Perkins [2006] Excluded). For Each Value of K, 10 Simulations Were 

Carried Out to Obtain Probability Values (y-axis). 

 

When Idaho populations were included in the STRUCTURE clustering, six 

distinct clusters were detected (K = 6) (Figure 5). It appears that the Idaho populations 

introduced sufficient diversity to this analysis  to begin to tease out some genetic 

differences among Bald Eagle populations in the Pacific Northwest. 
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Figure 5 Bayesian Clustering Analysis of Bald Eagle Populations in the Pacific 

Northwest (Perkins [2006] Included). For Each Value of K, 10 Simulations Were 

Carried Out to Obtain Probability Values (y-axis). 
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CHAPTER 4: DISCUSSION 

Discussion 

The results of this study provide necessary information to assess wide-scale 

genetic patterns among populations of Bald Eagles in the Pacific Northwest. For many 

populations, genetic information is provided for the first time. Despite experiencing a 

continent-wide decline in numbers, Bald Eagles in the regions sampled in the Pacific 

Northwest appear to have persisted through the DDT era with apparently stable 

population sizes (Harmata et al. 1999, Stinson et al. 2001, F. Isaacs pers. comm.) and 

genetic variability (Table 5).  

Bald Eagles in the Pacific Northwest exhibited Ho = 0.67, whereas raptor species 

that have undergone recent reductions in population size typically show reduced levels of 

heterozygosity: peregrine falcon (Falco peregrinus; Ho = 0.45; Nesje et al. 2000), 

Spanish imperial eagle (Aquila adalberti; Ho = 0.52, Martinez-Cruz et al. 2004), 

Bonelli’s eagle (Hieraaetus fasciatus; Ho = 0.48; Mira et al. 2005), and Bald Eagle in 

Idaho (Ho = 0.42; Perkins 2006). Elevated levels of gametic phase disequilibrium are 

also expected in recently bottlenecked populations (Slatkin 1994, Kruglyak 1999, 

McVean 2002), this has been observed in the Mexican pinyon (Pinus maximartinezii; 

14.5% maternal and 18.2% pollen loci pairs in GPD; Ledig et al. 1999), bowhead whales 

(Balena mysticetus; 16% of pairs in GPD; Rooney et al. 1999), and Bald Eagles in Idaho 
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(17% of pairs in GPD; Perkins 2006). In the populations from the Pacific Northwest and 

Alaska analyzed in this study, GPD levels of Bald Eagles did not exceed 5% (Table 5). 

Unlike all other populations sampled in the Pacific Northwest, Idaho populations 

exhibited all of the characteristics typical of a recently bottlenecked population (Perkins 

2006). The lower levels of genetic diversity and higher levels of GPD detected within 

Idaho populations of Bald Eagles appears to stem from several factors: population 

bottlenecks, elevated levels of inbreeding, and founder events that resulted in genetically 

distinct and structured populations (Nei et al. 1975, Slatkin 1994, Saccheri et al. 1996, 

Hutchison and Templeton 1999, McVean 2002, Perkins 2006). 

Bottleneck Analysis 

The results from BOTTLENECK indicate that none of the other populations 

sampled in the Pacific Northwest experienced a recent population bottleneck. This is 

supported by the lack of detectable heterozygosity excesses or deficiencies (Table 6). 

Most published studies that test for an expected population bottleneck using 

microsatellite markers report statistical support for the bottleneck (i.e., Glenn et al. 1999, 

Rooney et al. 1999, Nesje et al. 2000, Le Page et al. 2000, Whitehouse and Harley 2001, 

Bellinger et al. 2003, Perkins 2006,). My study provides one of the few microsatellite 

studies that tested for an expected population bottleneck (as reported in Idaho by Perkins 

[2006]) and failed to resolve statistical support for such an event in the Pacific Northwest. 

As expected in Alaska, no significant population bottleneck was detected. These results 

must be interpreted carefully as only 10 individuals were analyzed and may not provide 

an accurate assessment for the region’s true evolutionary history (Piry et al. 1999).  
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If a population experiences a genetic bottleneck and subsequently recovers, the 

recovered population often exhibits high inbreeding levels (Frankham et al. 2001). With 

estimated Fis values in the Pacific Northwest ranging from -0.250 to -0.099, combined 

with high levels of observed and expected heterozygosities and long generation times in 

Bald Eagles, it is unlikely that a bottleneck event went undetected due to subsequent 

growth and recovery. 

All populations sampled in Idaho exhibited significant heterozygosity deficiencies 

(Table 6). BOTTLENECK indicated that 3 of the 5 populations sampled had undergone a 

recent, severe population bottleneck (the BR population could not be tested due to a lack 

of sample size). The lack of evidence for the occurrence of a recent genetic bottleneck in 

the PR population was largely consistent with historic information that this population 

persisted at a relatively large size throughout the DDT era (Greater Yellowstone 

Ecosystem Working Team 1983). When Idaho populations were merged into two 

regional groups, eastern and western Idaho, BOTTLENECK did not detect the signature 

of a significant bottleneck. This may potentially be explained by regional and temporally 

isolated reductions in effective population sizes rather than a range-wide synchronized 

reduction in Idaho (Perkins 2006). Levels of GPD detected in Idaho were consistent with 

the pattern expected in recently bottlenecked populations that have experienced 

subsequent inbreeding (Slatkin 1994); inbreeding levels in Idaho ranged from 0.357 

(LSR) to 0.474 (HC) (Table 6). Significant GPD was detected in 18 of 105 (17%) 

pairwise comparisons among all six loci (Perkins 2006). The fact that GPD has persisted 

at such high levels suggests that isolation and elevated levels of inbreeding have played 

important roles in shaping the genetic diversity within these populations. 
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Intrinsic Buffer Against Loss of Genetic Diversity 

Bald Eagles possess several life history characteristics, such as long maturation 

periods, long life expectancy (average life span is about 16 years; Harmata et al. 1999), 

high nest site fidelity, high mate fidelity, strong juvenile philopatry, and low fecundity 

(Buehler 2000, Perkins 2006), which typically place them at high risk for bottleneck 

events and local extinctions. However, Hailer et al. (2006) has proposed that several of 

the characteristics large eagles possess, specifically long-life expectancies and associated 

long generation times, act as an intrinsic buffer against the loss of genetic diversity, thus 

producing a shorter effective time of an experienced bottleneck. Despite passing through 

documented demographic bottlenecks, microsatellite analysis of White-tailed Eagle 

(Haliaeetus albicilla) populations in Europe revealed high levels of genetic diversity 

retained within populations, without sustained migration among regions (Hailer et al. 

2006). A similar trend was reported in Canadian Peregrine Falcons (White et al. 2002); 

comparisons of historic and contemporary samples indicated no decline in mitochondrial 

DNA nucleotide diversity, this despite a documented population decline because of DDT 

exposure (Brown et al. 2007).  

With the high genetic diversity reported in the Pacific Northwest (Table 6), it 

appears that genetic diversity within populations was retained in part due to the long 

generation time of the Bald Eagle. The long life span of the Pacific Northwest Bald 

Eagles minimized genetic drift and acted as an intrinsic buffer against the rapid loss of 

genetic diversity. While the decline of the species across the continent is documented 

(Sprunt 1969), few analyses of the species have documented its evolutionary history. 

Further sampling and genetic analysis of the species across its entire range will help to 
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determine if the Bald Eagle’s long generation time has retained genetic diversity across 

the continent. 

Isolation by Distance Patterns 

Isolation by distance is the tendency of an individual to find a mate(s) from 

populations that are in close proximity and not from populations that are expected to be 

more distant (Wright 1943). As a result of this trend, populations in close geographic 

proximity are more genetically similar than populations separated by large geographic 

distances (Wright 1943). Typically, isolation by distance will occur in subdivided 

populations, when sub-populations exchange genes at a rate dependent upon the 

geographic distance separating the two, or when the dispersal of gametes and/or zygotes 

is spatially restricted (Wright 1943). 

The lack of evidence for isolation by distance in the Pacific Northwest samples (P 

= 0.8402; Figure 2) is surprising as several of the populations are separated by large 

distances (KL is approximately 1439 km from the GD population; Figure 1) and Bald 

Eagles are highly philopatric with strong nest-site fidelity. However, there is not always a 

direct association between the spatial distribution of populations and the spatial 

distribution of genetic diversity (Alcaide et al. 2009). An example of this was presented 

in Koopman et al. (2007). The authors found that boreal owls (Aegolius funereus) in 

North America were not partitioned into distinct subpopulations (Fst = 0.004), despite the 

fact that the species depends on spruce-fir forests (a habitat type that is in patchy 

distributions across the continent). Assignment results from STRUCTURE failed to 

assign individual owls to their population of origin and indicated that boreal owls instead 

formed a single panmictic population (Koopman et al. 2007). These results suggested that 
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the gene flow, even between the most distant and disconnected boreal owl habitat 

patches, was sufficiently high to genetically homogenize the subpopulations (Koopman et 

al. 2007). 

Although Nm was not estimated, estimates of genetic differentiation provided by 

Fst and Rst supported the results from IBD. Only a few pairwise Fst and Rst comparisons 

between populations in the Pacific Northwest exhibited significance, (Table 7), and these 

comparisons all involved the GYS population, perhaps suggesting that this population 

may be more genetically distinct from the rest of the study area. Nonetheless, pairwise Fst 

and Rst comparisons combined with the lack of an isolation by distance pattern suggest 

that the Pacific Northwest Bald Eagles exhibit characteristics typical of an admixed 

population rather than several unique regional populations. A similar trend of genetic 

uniformity and admixture was observed in the Eurasian Kestrel (Falco tinnunculus) 

(Alcaide et al. 2009). No significant evidence for an isolation by distance pattern was 

observed, (P = 0.84) and the Eurasian kestrel exhibited little genetic differentiation 

between sample sites. 

Tests in IBD that included the Idaho populations indicated a significant pattern of 

isolation by distance (P = 0.0140; Figure 3). In Idaho, the persistence of high GPD and 

inbreeding levels support the notion that these populations are isolated and genetically 

structured from each other and from the rest of the Pacific Northwest. Perkins (2006) 

suggested that Idaho populations were recently established due to a series of founder 

events in the area. The House Finch (Carpodacus mexicanus) exhibited a similar trend as 

described in Hawley et al. (2006). The House Finch is native to the western United 

States, but has established stable populations in the eastern United States through a series 
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of small founder events in the 1940s. Much like the Idaho Bald Eagles, the recently 

founded eastern population of House Finches exhibited significantly lower Ho values 

compared to the western population (P = 0.032), and the eastern House Finches also 

exhibited stronger isolation by distance trends than the source populations (P = 0.005 in 

introduced population, P = 0.801 in native population) (Hawley et al. 2006). 

Population Structure 

Similar to IBD results and pairwise Fst and Rst comparisons, STRUCTURE 

suggested a pattern of admixture in the Pacific Northwest populations of Bald Eagles 

when Idaho was not included. Bayesian clustering analysis most strongly supported a K-

value of 1 (Figure 4), suggesting that the regions sampled comprised one single 

population and not genetically distinct populations as was assumed prior to analysis. 

Pairwise comparisons of migration rates between previously assumed populations 

revealed that all populations with the exception of WK and CU received or contributed 

significant levels of migrants across state and regional boundaries (Table 8). For 

example, the GYS population in Wyoming was comprised of approximately 17% of 

migrants from the WK population in Oregon. This pattern is consistent with the findings 

of no isolation by distance patterns and the pattern of panmixia across the study area. 

Typically, avian species nesting at northern latitudes exhibit southward movement 

from their nesting territories (Dunstan 1973, Reese 1973, Dunstan et al. 1975, 

Postupalsky 1976, Gerrard et al. 1978, Griffin et al. 1980). Bald Eagle migration in the 

Pacific Northwest does not always follow that trend however, as birds from Washington, 

Oregon, and California have been documented travelling north to coastal British 

Columbia, Canada and southeastern Alaska for several weeks following breeding. Birds 
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remained in these areas for several weeks and returned to the Pacific Northwest in 

January or late February (Servheen and English 1979, Watson and Pierce 1998). Bald 

Eagles in the Greater Yellowstone Ecosystem (GYE) have been documented travelling as 

far west as the California and Washington coasts in the autumn (Harmata et al. 1999), 

and Bald Eagles of the Glacier National Park ecosystem have been documented as 

travelling south to eastern Idaho and northern Utah (McClelland et al. 1994).  

These documented movement patterns allow for the social interaction of birds 

from across the Pacific Northwest during the non-breeding periods of the year, but they 

do not explain the lack of genetic structure between the regions. While they may interact 

in the winter months, they are not exchanging genes. Recruitment of migrants into these 

wintering regions is unlikely as Bald Eagles exhibit philopatry to their nest-site and natal 

regions (Buehler 2000); Harmata et al. (1999) recorded five of eight radio PTT marked 

juveniles in the GYE returning in the general vicinity of their natal site after successive 

westward winter migrations.  

STRUCTURE analysis that included all Pacific Northwest populations and all 

Idaho populations indicated Idaho populations were strongly isolated and structured 

(Figure 5). The populations in Idaho provided enough variability to the overall analysis to 

identify six potential K’s in the entire Pacific Northwest. However, only two of the 

clusters are clearly separated and resolved (southeast Idaho and southwest Idaho) (Figure 

5); this may be representative of an artifact caused by admixture between populations in 

each region. The Idaho clusters also contained the only populations in the study area that 

exhibited a recent genetic bottleneck. High levels of inbreeding following the bottleneck, 
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combined with the geographic isolation of the populations and limited migration rates 

into these study areas likely resulted in these genetically distinct populations.  

It is surprising the addition of two populations to the Pacific Northwest 

STRUCTURE analysis led to the identification of six potential K’s in the study area. The 

results, with the exception of the two clusters in Idaho, do not fit the geographic pattern 

that is expected based on the Bald Eagle’s life history characteristics. Instead, the clusters 

are distributed in an unusual pattern that could be explained as an artifact of the sampling 

type (e.g., shed feather analysis), allelic frequencies in Idaho, or the number of 

microsatellite loci used in the study (here six loci were used, comparable studies have 

used 47 [Johnson et al 2009]; 26 [Hailer et al. 2006]; 11 [Brown et al. 2007] and nine 

[Alcaide et al. 2009]). 

Perhaps a more logical explanation of why six K’s appeared in STRUCTURE 

after adding Idaho populations is that Idaho populations were founded by populations not 

sampled in this study. The notion that the Idaho populations were established through a 

series of founder events from neighboring regions (i.e., Oregon, Wyoming, Montana) was 

rejected based on the results of this study. Idaho populations exhibited no significant 

migration rates to or from potential source populations (Table 8, Table 9) and genetic 

distance estimates clearly separated Idaho populations from all others (Table 7). 

Alternative source population(s) could have introduced new alleles into Idaho not found 

elsewhere in the Pacific Northwest, and could have led to the emergence of subtle 

differences in STRUCTURE for the Pacific Northwest samples that were not detected in 

my initial STRUCTURE analysis (Figure 4). This explanation is further supported by the 

fact that Idaho populations possess nine private alleles whereas the rest of the study area 
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in the Pacific Northwest only possesses one (Table 6). It is possible that an unsampled 

source population (potentially from Canada, Wyoming, Montana, or northern 

Utah/Nevada) for the founding populations in Idaho contained alleles that are otherwise 

rare throughout the Pacific Northwest  

Contributing Scenarios 

It appears that during the DDT era Bald Eagle populations in the Pacific 

Northwest experienced isolated and temporary reductions in size, as opposed to range-

wide decline as observed for other raptor species (Roberts and Green 1983, Safford and 

Jones 1997, Brown et al. 2007). Molecular data obtained from Bald Eagle nesting sites in 

the states surrounding Idaho failed to indicate any evidence of a recent genetic 

bottleneck, while sites within Idaho exhibited characteristics of a genetic bottleneck in 

three of the five populations. 

The fact that there are several pockets of sustained, genetically variable 

populations of Bald Eagles in the Pacific Northwest indicates that a range-wide decline 

was not the case for this species. It cannot be said with certainty that the Pacific 

Northwest as a whole did not experience a bottleneck, only that the six populations 

sampled in this study persisted through the DDT era with sufficiently large populations 

sizes. These results are supported by historical data (Greater Yellowstone Ecosystem 

Working Team 1983, Melquist 1987, Beals and Melquist 1995, Perkins 2006). The high 

genetic diversity reported in the Pacific Northwest populations of Bald Eagles (Table 6) 

appears to have been retained as a consequence of the long generation time of the Bald 

Eagle. Such long generation times have been shown to minimize genetic drift and act as 
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an intrinsic buffer against the rapid loss of genetic diversity (Hailer et al. 2006, Brown et 

al. 2007).  

In Idaho, significant heterozygote deficiencies, GPD levels, and high inbreeding 

coefficients indicate Bald Eagles in this region have not yet recovered from historic 

demographic events. The level of genetic diversity in southern Idaho Bald Eagles is 

comparable to populations of other raptors that also experienced population bottlenecks: 

peregrine falcons (4.41 alleles/locus, HO = 0.45; Nesje et al. 2000), Spanish Imperial 

Eagles (4.49 alleles/locus, HO = 0.52; Martinez-Cruz et al. 2004), and Bonelli’s Eagle 

(Hieraaetus fasciatus; 4 alleles/locus HO = 0.48; Mira et al. 2005). Post-bottleneck 

genetic variability within populations is subject to the various and unique combinations 

of demographic events and evolutionary forces acting within individual populations. 

Significant population structure among regions in Idaho indicates current levels of gene 

flow between the regions is not yet sufficient to overcome the reduction in genetic 

diversity associated with small population sizes. 

Whereas, populations outside of Idaho appear to be at an evolutionary 

equilibrium: all exhibit low levels of inbreeding, and genetic differentiation and 

migration levels suggest a pattern of panmixia. Further sampling of these areas may begin 

to detect new, rare alleles and define geographically distinct populations.  

Several isolated demographic events associated with Bald Eagles in Idaho have 

uniquely shaped the structure of these populations, and several scenarios could have 

shaped the genetic diversity of populations from this region. One such scenario is that the 

Idaho populations persisted at low population levels throughout the DDT era and 

subsequently recovered through inbreeding, leading to genetically unique and structured 



37 

 

populations. The conclusion that a population carries low genetic diversity because of a 

bottleneck is often only an inference. To truly grasp the evolutionary history, other 

sources of data must be gathered and compared (Dinerstein and McCracken 1990). 

Johnson et al. (2009) showed through microsatellite analysis that the critically 

endangered Madagascar Fish Eagle (Haliaeetus vociferoides) has maintained a small 

effective population size for hundreds to thousands of years and that the low genetic 

diversity of this species was not the result of a recent bottleneck. 

This scenario appears unlikely for Bald Eagles in Idaho as the historical records 

of these birds in this region is well documented; with the exception of the PR population, 

all populations were established after 1968 (Greater Yellowstone Ecosystem Working 

Team 1983, Melquist 1987, Beals and Melquist 1995, Perkins 2006), which was nearing 

the end of the DDT era. 

Another potential explanation for this unexplained panmixia is that Bald Eagle 

populations from outside of Idaho (Wyoming, Montana, and Oregon) are from long-

established populations and are largely in natural environments (i.e., not reliant on 

habitats created by humans, such as reservoirs). The only exception is the WK 

population, which is near a reservoir that was created in 1949. Idaho populations are 

almost entirely dependent upon human-made reservoirs, which may suggest that the Bald 

Eagles in Idaho occupy an ecologically distinct habitat type.  

The most likely scenario explaining the genetic diversity of Bald Eagles in Idaho 

is that these populations exhibit low observed heterozygosity, and elevated inbreeding 

which are the characteristics of recently founded populations (Wright 1943, Nei et al. 

1975, Slatkin 1994, Saccheri et al. 1996, Alcaide et al. 2009). Additionally, the unique 
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genetic diversity of Idaho Bald Eagle populations (e.g., private alleles) suggests that the 

source population of these founders has not yet been samples. A study of founder events 

in Canadian moose (Alces alces) populations found a reduction in observed 

heterozygosity ranging from 14-30% in recently founded populations (Broders et al. 

1999). This reduction in heterozygosity is consistent with comparisons between Idaho 

populations and the other Pacific Northwest populations (Table 6). Potential founder 

regions sampled here were from well-established regions in the states surrounding Idaho 

and were not necessarily the nearest populations in a geographical sense. With the GYE 

population in such close geographic proximity to many of the southeastern Idaho 

populations, it was surprising to find that the migration between the regions was almost 

non-detectable (Table 8, Table 9). This suggests that founder locations are orientated 

north-south as opposed to east-west, as tested here. Founders of the southern Idaho 

populations could have originated from northern Idaho or from northern Nevada or Utah 

where no genetic information on the species has been documented. It is also possible that 

potential founder populations in the Pacific Northwest were not included in this study. 

Conclusion and Future Directions 

The Idaho Bald Eagle population confounds the already complex population 

structure of Bald Eagles in the Pacific Northwest. Despite being in close geographic 

proximity to many of the populations sampled across the region, Idaho populations 

remained genetically distinct from the rest of the region. The Idaho populations were also 

the only populations to show signs of a recent population bottleneck. While these 

populations are suspected to have originated from recent founder events, none of the 
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sampled populations from the Pacific Northwest could resolve the source of these 

founders.  

When excluding Idaho, the Bald Eagles in the Pacific Northwest appear to 

represent a panmictic population. Large distances separated many of the populations, yet 

no genetic differentiation was evident among populations in the region. Furthermore, 

there was no evidence of a recent population bottleneck, despite the documented decline 

of the species due to the use of DDT and organochlorides.  

Additional analysis of Bald Eagles across North America may help clarify the 

evolutionary forces and demographic events shaping the genetic diversity of these Pacific 

Northwest populations. Larger sample sizes across the species' continental range may 

reveal that the Pacific Northwest region only includes a small portion of the species' 

geographic distribution. If this is the case, it may validate my conclusion of panmixia in 

the Pacific Northwest, but also reveal that Bald Eagle populations across North America 

are genetically structured over a larger spatial scale. An increased sample size may also 

help identify potential source populations for the individuals founding these Idaho 

populations. This may help to resolve the large-scale biogeographic history of this 

emblematic species. 
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Table A.1 Allele Frequencies by Locus as Performed in GENEPOP 4.0 

(Raymond and Rousset 1995b). Western and Eastern Idaho Populations are not 

Included. Number of Sampled Individuals in Each Population is Given in 

Parentheses. Bolded values indicate a private allele. 

    Oregon Montana Wyoming Alaska 

Locus Allele(bp) KL(16) WK(18) GD(6) CS(6) CO(4) GYS(10) CB(10) 

Hle6A11 194 0.0313 0 0 0 0 0 0 

  196 0.4839 0.3056 0.75 0.05 0.625 0 0.15 

  198 0.4375 0.5 0.25 0.5 0.375 0.65 0.8 

  200 0.0625 0.1944 0 0 0 0.35 0.05 

Hle0E12 153 0 0 0 0 0 0 0 

  159 0 0 0 0 0 0 0 

  161 0 0 0 0 0 0 0 

  163 0 0 0 0 0 0.1 0 

  165 0.0313 0.0833 0 0 0 0 0 

  167 0.1563 0.1667 0.0833 0.1667 0.25 0.1 0.25 

  169 0.5 0.5 0.6667 0.6667 0.625 0.75 0.5 

  171 0.3125 0.25 0.25 0.1667 0.125 0.05 0.25 

Hle6F02 223 0 0 0 0 0 0 0 

  225 0 0 0 0 0 0 0 

  227 0 0 0 0 0 0 0 

  229 0 0 0 0 0 0 0 

  231 0 0.0278 0 0 0 0 0 

  233 0.375 0.3889 0.4167 0.1667 0.125 0.55 0.5 

  235 0.5938 0.5833 0.5833 0.8333 0.875 0.45 0.45 

  237 0.0313 0 0 0 0 0 0.05 

Hle6H10 204 0 0 0 0 0 0 0 

  206 0 0 0 0 0 0 0.05 

  208 0 0.0278 0 0 0 0 0.05 

  210 0 0.0556 0.1667 0.0833 0 0 0.2 

  212 0.125 0.1111 0 0.4167 0.25 0.45 0.2 

  214 0.1875 0 0 0 0 0.1 0.05 

  216 0.4688 0.3889 0.5833 0.4167 0.5 0.45 0.25 

  218 0.125 0.1389 0 0 0 0 0.1 

  220 0.0938 0.2778 0.25 0.0833 0.25 0 0 

  222 0 0 0 0 0 0 0.1 

  224 0 0 0 0 0 0 0 

Hle0B10 180 0 0 0 0 0 0 0 
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    Oregon Montana Wyoming Alaska 

Locus Allele(bp) KL(16) WK(18) GD(6) CS(6) CO(4) GYS(10) CB(10) 

  182 0 0 0 0 0 0.05 0 

  184 0 0.0294 0 0.0833 0 0.1 0 

  186 0.5 0.3824 0.4167 0.3333 0.625 0.4 0.35 

  188 0.1 0.1471 0 0.0833 0 0.05 0.15 

  190 0.4 0.3824 0.5833 0.4167 0.375 0.35 0.45 

  192 0 0.0588 0 0.0833 0 0.05 0.05 

Hle0E05 225 0 0 0 0 0 0 0 

  227 0 0 0 0 0 0 0 

  229 0.0625 0.1667 0 0 0 0.1 0.15 

  231 0.5313 0.5556 0.5 0.0833 0.75 0.7 0.75 

  233 0.1563 0.1667 0.3333 0.6667 0.125 0.15 0.1 

  235 0.2188 0.0278 0.1667 0.25 0.125 0.05 0 

  237 0 0.0833 0 0 0 0 0 

  239 0.0313 0 0 0 0 0 0 
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Table A.2 Allele Frequencies by Locus as Performed in GENEPOP 4.0 

(Raymond and Rousset 1995b). Number of Sampled Individuals in Each Population 

is Given in Parentheses. Bolded values indicate a private allele 

    Southwestern Idaho Southeastern Idaho 

Locus Allele(bp) HC(8) LV(24) BR(3) LSR(10) USR(12) PR(8) 

Hle6A11 194 0.312 0.375 0.167 0 0 0.062 

  196 0.404 0.375 0.667 0.4 0.583 0.375 

  198 0.25 0.214 0.167 0.3 0.333 0.5 

  200 0 0.036 0 0.3 0.083 0.062 

Hle0E12 153 0.062 0 0 0 0 0 

  159 0 0.018 0 0 0 0 

  161 0.125 0.071 0 0 0 0.062 

  163 0.312 0.268 0.333 0 0 0.062 

  165 0.125 0.321 0 0.15 0.167 0 

  167 0 0.018 0 0 0 0 

  169 0.375 0.268 0.333 0.6 0.583 0.812 

  171 0 0.036 0.333 0.25 0.25 0.062 

Hle6F02 223 0 0.071 0 0 0 0 

  225 0 0 0 0 0 0.062 

  227 0 0.107 0.167 0 0 0 

  229 0 0 0 0 0.083 0 

  231 0.5 0.286 0.5 0.2 0.5 0.312 

  233 0.5 0.464 0.333 0.45 0 0.375 

  235 0 0.071 0 0.3 0.417 0.25 

  237 0 0 0 0.05 0 0 

Hle6H10 204 0 0.018 0 0 0 0 

  206 0.062 0.018 0 0 0 0 

  208 0.62 0.038 0 0 0.042 0.062 

  210 0 0 0.167 0 0 0 

  212 0.188 0.125 0.167 0 0.167 0.312 

  214 0.062 0.071 0.167 0.1 0.292 0.188 

  216 0.188 0.125 0.167 0.2 0.083 0.125 

  218 0.062 0.143 0.167 0.4 0.292 0.062 

  220 0.125 0.125 0.167 0.1 0.125 0.062 

  222 0.25 0.179 0 0.15 0 0.188 

  224 0 0 0 0.05 0 0 

Hle0B10 180 0 0 0 0 0.208 0 

  182 0 0 0 0.4 0.125 0.25 

  184 0.688 0.554 0.833 0.25 0.375 0.375 



54 

 

  186 0.188 0.214 0 0.25 0.125 0.312 

  188 0.125 0.161 0.167 0.1 0.125 0 

  190 0 0.054 0 0 0.042 0 

  192 0 0.018 0 0 0 0 

Hle0E05 225 0 0 0 0.05 0.042 0 

  227 0.188 0.278 0.333 0 0.333 0.125 

  229 0.5 0.407 0.333 0.4 0.292 0.5 

  231 0.25 0.204 0.333 0.35 0.125 0.125 

  233 0 0.074 0 0.1 0.167 0.188 

  235 0 0.037 0 0 0.042 0.062 

  237 0.062 0 0 0 0 0 

  239 0 0 0 0 0 0 

 


