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Abstract: Lipid ordering in cell membranes has been increasingly recognized as an important factor
in establishing and regulating a large variety of biological functions. Multiple investigations into
lipid organization focused on assessing ordering from temperature-induced phase transitions, which
are often well outside the physiological range. However, particular stresses elicited by environmental
factors, such as hypo-osmotic stress or protein insertion into membranes, with respect to changes in
lipid status and ordering at constant temperature are insufficiently described. To fill these gaps in our
knowledge, we exploited the well-established ability of environmentally sensitive membrane probes
to detect intramembrane changes at the molecular level. Our steady state fluorescence spectroscopy
experiments focused on assessing changes in optical responses of Laurdan and diphenylhexatriene
upon exposure of red blood cells to hypo-osmotic stress and pore-forming toxins at room temperature.
We verified our utilized experimental systems by a direct comparison of the results with prior reports
on artificial membranes and cholesterol-depleted membranes undergoing temperature changes. The
significant changes observed in the lipid order after exposure to hypo-osmotic stress or pore-forming
toxins resembled phase transitions of lipids in membranes, which we explained by considering the
short-range interactions between membrane components and the hydrophobic mismatch between
membrane thickness and inserted proteins. Our results suggest that measurements of optical re-
sponses from the membrane probes constitute an appropriate method for assessing the status of lipids
and phase transitions in target membranes exposed to mechanical stresses or upon the insertion of
transmembrane proteins.

Keywords: lipid order; hypo-osmotic shock; pore-forming toxins; Laurdan; diphenylhexatriene;
phase transition

1. Introduction

The cell membrane evolved from a selective barrier separating the cell from the exter-
nal environment to a more complex functional structure with regulatory roles in transport,
communication, and signal transduction. The ingenious arrangement of lipids proposed
by the long-revered mosaic fluid model more than five decades ago is still the most funda-
mental model for the structure and dynamics of the plasma membrane [1]. The concept
of basic lipid state phases postulated by the original model (i.e., liquid crystalline and
bilayer) [2] has been refined [1,3–6] to better capture the importance of lipid organization
in domains [7–12] for describing the membrane’s dynamics, regulation, and permeation.
Currently, the membrane is viewed as a complex system consisting of liquid-ordered
and liquid-disordered phases [5,13]. The lipid order in the membranes has physiological
relevance for a large variety of fundamental biological processes: apoptosis [14], signal-
ing [15–18], cellular development [19], interactions [20], receptor stabilization [21], the
segregation and mobility of membrane proteins [22], microvesicle release [23], and clonal
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expansion [24]. Consequently, the assessment of changes in lipid ordering is under intense
scrutiny to identify the origin of triggering factors and the cascades of biochemical and
biophysical signals leading to the observed biological effects. Investigations into the organi-
zation of lipids in membranes may be experimentally approached by employing numerous
biophysical techniques. Despite the variety of methodologies, the large availability of
steady-state fluorescence spectroscopy instrumentation and the ease of experimental proce-
dures led to a wide adaptation of this technique for investigating the status of membranes
in natural and artificial systems [25–32].

Multiple fluorescent probes for evaluating membrane status and lipid organization are
commonly used, and many alternatives have been proposed for adoption. Among these,
6-dodecanoyl-2-dimethylaminonaphtalene (Laurdan) and 1,6-diphenyl-1,3,5-hexatriene
(DPH) have been extensively used as reporters in numerous natural and artificial membrane
systems [26,27,33–38]. While neither probe directly responds to lipid ordering, their optical
responses adjust to changes in the physical environment. Laurdan’s dipolar relaxation
leads to spectral shifts [5,30–32,34,38,39], and DPH’s anisotropy is affected by the rotational
diffusion of the dye [29,36,37]. Both mechanisms are influenced by the ordering of the
lipids in the membranes in which the probes reside.

Changes in membrane status are ascribed to adjustments in numerous physical and
biomechanical parameters, which are closely associated with lipid ordering [25,40–46].
Absolute lipid ordering is not easy to quantify. As a result, many investigations focused
on assessing its variation in response to physical and chemical adjustments. The most
common environmental stressor is temperature as changes in ordering are closely related to
temperature-induced phase transitions. Temperature-induced phase transitions are easier
to observe in artificial systems with limited components [27,28,47] and intervals that include
the melting temperature of the lipids under investigation [26–28,47,48]. The indicative hall-
mark of transitions from ordered to disordered states is the sigmoidal shape of the melting
curve [26–28]. Even in artificial systems, the addition of cholesterol dramatically changes
the transition profile by adjusting the melting temperature and flattening the melting curve.
Consequently, sigmoidal shapes may be observed only by pushing the temperatures well
beyond physiological ranges [27,28,47]. The situation is more complicated for cell mem-
branes, in which the composition is very complex [49,50] and may include stabilizing small
molecules. Natural membranes are predominantly in a liquid-ordered phase and unable
to attain an ordered gel phase within physiological temperature ranges [2]. Cholesterol
additions adjust the melting temperatures and smooth the transitions as a result of lipid
ordering elicited by cholesterol [26,28,51,52]. However, this makes data interpretation
difficult. One example comes from attempts to decipher the effects of osmotic pressure
on membrane properties. In this respect, several reports indicate specific changes in lipid
ordering, but these investigations employed either artificial membranes or hyperosmotic
shock [35,53–55]. These experiments demonstrated that hyperosmotic conditions lead to
increased rigidity, ordering, and transition temperature, while hypo-osmotic shock ex-
periments that employed S. cerevisiae show membrane fluidization [56]. In addition to
assessing the effects of environmental factors, a different direction of research focuses on
understanding the effects on ordering of various inclusions into membranes, which is
highly relevant for protein insertion, assembly, and biological functionalities.

Despite numerous advancements in establishing relationships between the influence of
physical, chemical, and biological factors on lipid organization and biological consequences,
little is known of the influence of hypo-osmotic pressure or the insertion of transmembrane
proteins on ordering in natural membranes. To fill these gaps in our knowledge, we
employed fluorescence techniques to measure optical responses of Laurdan and DPH on red
blood cell (RBC) membranes exposed to hypo-osmotic shocks and increasing concentrations
of pore-forming toxins (PFTs).

We concluded that hypo-osmotic shocks and PFTs acting at room temperature gradu-
ally decrease the lipid ordering to an extent comparable with what is customarily observed
for phase transitions. The effects of hypo-osmotic shocks are interpreted by considering the
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stretching of the membranes, while the effects of protein insertions are explained based on
local changes in geometry and bending resulting from hydrophobic mismatches.

2. Materials and Methods
2.1. Red Blood Cell Preparation

Freshly isolated sheep RBCs in Alsever’s solution (Colorado Serum Company, Den-
ver, CO, USA) were utilized in our experiments. The RBCs were purified by repeated
centrifugation (3500 RPM, five minutes, Fisher Scientific bench centrifuge, ThermoFisher
Scientific, Waltham, MA, USA) and washing in phosphate buffer saline (PBS, pH 7.2),
followed by a final suspension in PBS. The RBCs in the final suspension were counted
with a bench cytometer (ThermoFisher Scientific, Waltham, MA, USA) and provided a
density of ~6 × 109 cells/mL. The RBCs were kept on ice but brought to room temperature
before initiating the experiments. The RBCs were stained with Laurdan or DPH (both from
ThermoFisher Scientific, Waltham, MA, USA) for fluorescence measurements. Laurdan
and DPH powders were solubilized at 1 mM final concentration in DMSO (Sigma-Aldrich,
St. Louis, MO, USA). For complete solubilization, the mixtures were vigorously vortexed,
followed by bath sonication for ten minutes. The stock solutions were kept away from
direct light and exposed to additional vortexing and one minute of sonication before each
use. For experiments employing fluorescence measurements, 2 mL of RBC stock solution
were stained with Laurdan or DPH at 5 µM final concentration, rotated in a test tube for two
hours at room temperature, and washed three times with PBS by centrifugation. The final
pellet was reconstituted in 2 mL PBS, and aliquots from it were used for cholesterol extrac-
tion, exposure to hypo-osmotic shock, and exposure to pore-forming toxins. Multiple 2 mL
tubes of stained and non-stained RBC stocks were prepared when larger volumes were
needed for experiments. In this case, all the pristine stocks were mixed prior to staining
and/or experimentation to avoid non-uniformities in each sample’s cellular density.

To deplete the cholesterol in the RBC membranes, we used methyl-β-cyclodextrin [48]
(MBCD, Sigma-Aldrich, St. Louis, MO, USA) solubilized in PBS at 250 mM final concentra-
tion. The stock solution was briefly sonicated for 30 s before each use in a bath sonicator.
Cholesterol extraction from RBCs was performed by combining in test tubes PBS, 25 µL
stock of stained RBCs, and MBCD at final concentration ranging from 0 µM (control) to
1000 µM for a total volume of 3 mL. The tubes were rotated in a bench rotator at room
temperature for two hours, and the contents were transferred to plastic cuvettes (1 cm path
length) for fluorescence measurements.

2.2. Pore-Forming Toxins

Two PFTs, lysenin and streptolysin O (SLO), were used for our experiments. Aliquots
from a stock solution of oxygen-stable SLO (a kind gift from Dr. Sarah Hobdey, VA, Boise,
ID, USA) were serially diluted in PBS to achieve the desired concentrations such that
no more than a few µL were added to the RBC solutions. The final concentrations of
lysenin and SLO in the samples are indicated in the Results and Discussion. Aliquots
from a recombinant lysenin stock solution [57] were serially diluted similarly to SLO. Both
toxins were added to test tubes containing 3 mL of PBS and 25 µL stock of stained RBCs.
PFT-exposed samples and negative controls without PFTs were rotated for one hour at
room temperature in a bench rotator, transferred to cuvettes, and subjected to fluorescence
measurements.

2.3. Hypo-Osmotic Shock Exposure

A total of 25 µL of stained stock RBCs were added to test tubes containing 3 mL
mixtures of PBS and water to achieve the desired hypo-osmotic pressures. The percentages
of added water varied from 0% (control) to 80%. After the tubes were rotated for 20 min
in a bench rotator at room temperature, the solutions were transferred to cuvettes for
fluorescence measurements.
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2.4. Fluorescence Measurements

The fluorescence was measured with a Fluoromax 4 Spectrofluorometer (Horiba
Scientific, Piscataway, NJ, USA). To ensure maximum sensitivity and minimization of
experimental errors, we implemented measurement protocols consisting of single-point
excitation and one- or two-point emission. For Laurdan, the protocol was defined as follows:
410 nm excitation, 5 nm excitation bandpass, emission one at 440 nm, 10 nm emission
bandpass, emission two at 490 nm, 10 nm emission bandpass, and a target measurement
error of 1%. Although Laurdan is customarily excited at 350 nm, excitation at longer
wavelengths improved the signal/noise ratio, which is theorized to be a consequence
of photo-selection [25,31,34]. All fluorescence intensity measurements were carried out
in triplicate and at room temperature. The generalized polarization function (GP) was
estimated from the ratiometric formula [4,30,33,47,58]:

GP =
I440 − I490

I440 + I490
(1)

The GP values were computed directly in the instrument’s software. Average values
and standard deviations were calculated and plotted using Origin 8.5.2 software package
(OriginLab, Northampton, MA, USA). Anisotropy was measured with the same instrument
equipped with polarizers to determine the fluorescence intensity for the parallel (I‖) and
perpendicular (I⊥) orientations. The anisotropy parameter “p” was measured with the
single-point protocol (360 nm excitation, 5 nm bandpass, 450 nm emission, 10 nm bandpass,
and 1% error) from the following relation [14,38,59]:

p =
I‖ − I⊥
I‖ + 2I⊥

(2)

The sigmoidal plots have been fitted in Origin 8.5.2 with the four-parameter Boltzmann
function [26,28]:

y =
max− min

1 + e(x−x0)/dx
+ min (3)

where max and min are the y coordinates of the plateaus, x0 is the x-coordinate of the inflex
points, and dx is the slope of the corresponding dependence [28].

3. Results and Discussion
3.1. Cholesterol Depletion in Red Blood Cell Membranes Modulates Lipid Ordering

Our initial investigations focused on understanding the response to cholesterol re-
duction in RBC membranes at room temperature by gradual depletion with MBCD. The
effects of the cholesterol content adjustments in artificial and natural membranes have been
extensively investigated with respect to the changes in the optical response of membrane
probes [26–29,31,33,60,61]. Many of these experiments were interpreted by exploiting the
changes elicited over substantial variations in temperature. We utilized these interpreta-
tions to relate the status of the membrane to molecular adjustments of the lipids in response
to environmental factors excluding temperature as a variable parameter.

Figure 1 shows Laurdan’s generalized polarization and DPH’s anisotropy for RBCs
exposed to increasing concentrations of MBCD (up to 1000 µM). The control, 0 µM of
MBCD, was characterized by initial values of GP (~0.6) and p (~0.3) typical for artificial
and natural membranes at room temperature [26–32,38,47,48,62]. To interpret the effects of
cholesterol, we considered the changes in lipid ordering induced by temperature variations
in membranes undergoing phase transitions [26,28,31,32,38,47].

Artificial membrane systems comprising few lipid components with no cholesterol
exist in a highly ordered gel phase at low temperature (i.e., under the melting temperature).
The increase in temperature leads to melting and the attainment of a liquid-disordered
phase, and a clear order–disorder transition is easily observable within narrow temperature
ranges [26–30,47,48,63]. The addition of cholesterol prevents the gel phase at temperatures
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under the melting point, keeping the lipids in a liquid-ordered phase. Complete phase tran-
sitions can still be observed in complex artificial and natural membranes with cholesterol,
but extreme temperature ranges must be employed [26,28,30,33]. For limited temperature
intervals, the mostly linear variation of the optical response prevents ascribing a clear-
cut transition temperature while enabling a qualitative analysis in terms of increasing or
decreasing ordering [27,28,33].
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Figure 1. Cholesterol depletion in red blood cell (RBC) membranes adjusts the lipid ordering. The
decrease in Laurdan’s generalized polarization function (a) and anisotropy of diphenylhexatriene
(DPH) (b) upon methyl-β-cyclodextrin (MBCD) addition indicates a reduced lipid order in the
membranes. The symbols represent average values ± SD (n = 3); the interrupted lines are added as
visual aids.

At room temperature, RBCs are in a liquid-ordered phase, and the extraction of
cholesterol is expected to lead to changes in ordering, which translates to changes in the GP
and p parameters. We observed that both parameters decreased as the MBCD concentration
increased, suggesting that cholesterol depletion led to a reduced order of the lipids in the
membrane [4,14,26,28,48].

The determined changes in GP and p were small. However, large variations for
similar MBCD concentrations have been obtained only in response to significant changes in
temperatures when true phase transitions were recorded [26,48]. If we inspect these prior
experiments, we may observe that the reported changes in GP and p near room temperature
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are similar to our measurements. An additional contributor to these small variations is the
fact that 1000 µM of MBCD does not completely remove the cholesterol from the target
membranes, resulting in a large fraction of the initial cholesterol concentration still residing
in the RBC membranes [48].

Our plots show a monotonic decrease in lipid ordering, but none suggest that a true
phase transition occurred at room temperature due to cholesterol depletion since the typical
sigmoidal shape of the plots [26–28,47,48,63] is not present. Despite the minor changes in GP
and p, we can provide an interpretation of our data by accounting for effects of cholesterol
at the molecular scale. Although no complete order–disorder transition is observed, and the
degree of ordering cannot be determined, both results are consistent with a gradual reduction
in the ordering of the lipids (i.e., the lipids become more disordered when the amount
of cholesterol decreases). While the DPH’s anisotropy is directly linked to viscosity and
fluidity [27,28,36,38,48], the GP parameter is descriptive of dipolar relaxation [5,31,32,34,38,60].
Irrespective of the interpretation of the changes in GP upon cholesterol depletion (i.e., water
penetration as opposed to the influence of the internal motions of lipids on the dipolar
relaxation in the vicinity of the excited state dipole [25]), the shift in emission and the changes
in anisotropy suggest a decrease in ordering.

3.2. Hypo-Osmotic Shock Modulates the Optical Responses of Environment-Sensitive
Membrane Probes

Our next experiments focus on investigating the physical changes in lipids in cell
membranes exposed to hypo-osmotic shock conditions. These investigations filled a large
gap in our knowledge [53] in regard to lipid organization since prior explorations em-
ployed artificial membrane systems [35,54–56,64], hyperosmolarity [53,56], or temperature
variations [56]. These experiments built a solid foundation for qualitative analyses of
membrane status from the provided interpretations of the changes in the properties of
membranes exposed to differential osmotic pressure conditions [55,56,65]. Laurdan and
DPH in RBCs’ membranes showed similar patterns in the optical responses upon expo-
sure to hypo-osmotic conditions with respect to changes in generalized polarization and
anisotropy (Figure 2).

The changes in GP and p are much larger than what we measured for cholesterol-
depleted RBC membranes. The GP value decreased from ~0.6 to ~−0.1 (theoretical range
+1:−1), and DPH’s anisotropy decreased from ~0.28 to ~0.02 (theoretical range +1:0). Both
variations are typical for temperature-induced phase transitions [26,28,30,33,48]. For com-
parison, experiments on giant vesicles and yeast exposed to osmotic pressure conditions
exhibited much smaller variations [35,56]. In addition to the large variation of the optical
response recorded for RBCs under hypo-osmotic conditions, it was striking that the plots
present a pronounced sigmoidal shape resembling true phase transitions similar to the
ones determined for membrane systems undergoing significant temperature changes. The
resemblance to phase transitions prompted us to apply a Boltzmann fit (Equation (3)) of the
experimental data [26,28] to provide insight into the molecular processes accompanying
changes in membranes exposed to hypo-osmotic pressure. The fit provided similar halfway
values of the osmotic pressure (i.e., ~35% water for Laurdan and ~42% water for DPH).
However, the Boltzmann fit is usually employed to provide an assessment of phase transi-
tions and ordering induced by changes in temperature, and the determined halfway values
indicate the temperatures at which a transition occurs [26,28]. This strongly suggests that
hypo-osmotic pressure induces a major transition from liquid-ordered to liquid-disordered
membranes at room temperature. One may argue that the asymptotic plateau observed
at extreme hypo-osmotic conditions may be a consequence of complete membrane disin-
tegration. However, membrane resealing after a rupture caused by hypo-osmotic shock
is well documented [66,67], and our images (Supplementary Material) suggest the exis-
tence of intact membranes after applying hypo-osmotic shocks and PFT treatments. To
explain this unexpected behavior in membranes containing cholesterol, we accounted for
the potential relationships between lipid order, fluidity, and interactions in the membrane.
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Basically, all the intermolecular forces between the components of the membrane have a
short range [68]. Hypo-osmotic pressure leads to water transport into RBCs, swelling, in-
creased membrane tension, an increased surface area, and an increase in the intermolecular
distances [44,52,55,65,68–70] (as depicted in Figure 3). Consequently, the intermolecular
forces were diminished dramatically because of their strong dependency on distance, the
lipid order decreased, and the membrane became more fluid, which opposed what was
observed for cells exposed to hyperosmotic pressure [53,56].
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exposure to hypo-osmotic shocks. The symbol represents average values ± SD (n = 3); the red traces
show the fit with the Boltzmann function, resembling phase transitions.
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Figure 3. Proposed mechanism for the changes in lipid ordering elicited by membrane exposure to
hypo-osmotic pressure. Under hypo-osmotic stress, the intermolecular distance d between neigh-
boring lipid molecules increases. The short-range interactions between the membrane components
are overcome by the membrane’s tension induced by stretching, leading to decreased lipid ordering,
greater fluidity, and accessible solvation.

The hypothesized changes in intermolecular distances and lipid ordering may ex-
plain water penetration, which adjusts the Laurdan’s emission, and the effects on DPH’s
rotational diffusion. The rotational diffusion depends on the environment’s viscosity and
temperature; however, our experiments were performed at a constant temperature. There-
fore, the increased intermolecular distances and less rigid membrane may allow faster
adjustments of the DPH’s orientation, hence modulating the anisotropy as observed in
our experiments.

3.3. Pore-Forming Toxins (PFTs) Adjust the Lipid Order in Target Membranes

Next, we addressed the changes in lipid order induced by the insertion of two model
PFTs, lysenin and SLO, into RBC membranes. The lysenin addition led to a gradual decrease
in the GP values (Figure 4a), which was interpreted based on the Laurdan’s ability to indi-
cate lipid order, fluidity, and solvent exposure. The GP decreased significantly (from ~0.6
at 0 ng/mL of lysenin to ~0.1 at 3 ng/mL of lysenin) as lysenin’s concentration increased,
indicating that the addition of a toxin led to a faster dipolar relaxation. Similarly, the DPH’s
anisotropy decreased considerably (Figure 4b) from ~0.24 at 0 ng/mL of lysenin to ~0.02
at 0.6 ng/mL of lysenin. Both variations were larger than the ones induced by cholesterol
depletion (Figure 1) and approached the changes measured for hypo-osmotic conditions
(Figure 2), suggesting the occurrence of major changes in the RBCs’ membrane status.
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Figure 4. Lysenin insertion into RBC membranes decreases lipid ordering. The Laurdan’s generalized
polarization function (a) decreased upon lysenin addition in a concentration dependent manner,
suggesting that channel insertion led to a reduced ordering of the lipids. A marked decrease was also
encountered for DPH’s anisotropy upon lysenin’s insertion (b), supporting the hypothesis of changes
in lipid ordering. Each symbol represents average experimental data ± SD (n = 3), and the red traces
show the fit with the Boltzmann function.

In addition to the larger variations in the optical responses, the exposure to lysenin
led to sigmoidal-shaped curves, which were characteristic of phase transitions [26,28].
However, the visual analysis of the plots and the Boltzmann fit indicated a quantitative
difference; the halfway concentration of lysenin (the inflex point) was different for the
two dyes (i.e., ~1.1 ng/mL for Laurdan and ~0.4 ng/mL for DPH). DPH’s anisotropy is a
direct consequence of the rotational diffusion and, hence, a measure of fluidity. However,
Laurdan’s fluorescence stems from its dipolar relaxation, which may have multiple origins.
For example, a local change in the lipid ordering by the inserted protein may have a
more pronounced influence on the rotational diffusion than water penetration or dipolar
relaxation. To further examine the influence presented by toxin insertion, we repeated
the experiments by replacing lysenin with another potent pore-forming toxin, streptolysin
O (SLO). Strong qualitative similarities between lysenin (Figure 4) and SLO (Figure 5)
have been observed in regard to optical response. SLO addition also led to a decrease in
generalized polarization and anisotropy in a concentration-dependent manner similar to
our lysenin observations. In addition, the absolute changes in GP and anisotropy resembled
the values determined for lysenin.
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The Laurdan’s response to SLO addition was smaller than the response prompted by
lysenin, and a similar decrease in GP was determined for much larger SLO concentrations
(i.e., ~16 ng/mL of SLO as opposed to ~3 ng/mL of lysenin). This large difference may not
have been a consequence of SLO’s lower biological activity since DPH was more sensitive
and showed an optical response similar to lysenin for the same concentration range (the
minimum plateau was reached at ~4 ng SLO/mL). Although the sigmoidal shape of the
anisotropy was obvious for DPH, Laurdan did not exhibit a strong sigmoidal curve. The
inflection points determined from the fit were 11.32 ng/mL for Laurdan and 1.9 ng/mL for
DPH. Both dyes are indicative of potential phase transitions occurring due to the protein–
membrane interactions, which we exploited to provide a mechanistic view of the changes
in membrane status upon exposure to PFTs.

The notable changes in the optical response and the sigmoidal behavior suggest that
the RBC membranes exposed to PFTs undergo major changes at the molecular level. The
functional pore is a result of many processes of primary interactions with channel-forming
membrane components, such as cholesterol or sphingomyelin, and oligomerization [71–77].
Both toxins act quickly on target membranes; therefore, the time frame of the experiment al-
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lowed for the full equilibration of each sample. No significant changes have been observed
for either toxin at low concentrations. A low concentration of the toxins may not preclude
interactions with the membranes, but it is uncertain if minimal changes in the optical re-
sponse are a consequence of the poor sensitivity of the measuring method or the absence of
insertion and pore formation. Both toxins elicited large variations in the optical response at
high concentrations, which is indicative of notable changes in the membrane’s environment.
However, asymptotic behavior, irrespective of the optical probe and approaching a minimal
value, was observed for lysenin. SLO presented this behavior only in the presence of DPH.
We may not exclude the existence of a similar plateau for the SLO/Laurdan system at SLO
concentrations greater than those used in our study. These quantitative and qualitative
differences may be explained by accounting for different biological activities (i.e., affinities
for target membranes) and the mechanisms of action for the two toxins (i.e., a different
mechanism of oligomerization, pre-pore formation, binding to lipid components, and
insertion). Nonetheless, major changes in the optical responses were triggered for both
toxins at certain concentrations.

An explanation of the sudden changes induced by the toxin’s insertion into target RBC
membranes is the consideration of boundary conditions at the lipid–protein interface. Inclu-
sions into membranes may manifest by midplane bending, torsional effects, or hydrophobic
mismatches [70,78–83]. Among these, the structural data of SLO and lysenin [74,84–86]
suggest that a hydrophobic mismatch leads to the observed changes in generalized po-
larization and anisotropy. At a low protein concentration, the center-to-center distance
between inserted proteins is large. Consequently, substantial membrane deformation may
be limited to the immediate region surrounding the inserted protein [70,79–81] (Figure 6).
This insertion-induced membrane curvature manifests at a short-length scale, and the lipid
order is disturbed only within the small volume surrounding the inserted channel. In this
small volume, solvent penetration and dipolar relaxation are limited. As opposed to DPH,
which undergoes enhanced rotational diffusion in the vicinity of the protein, Laurdan’s
relaxation may not benefit from hydration, explaining the weaker response. To explain
the large differences in the Laurdan’s response to lysenin and SLO, we may consider the
different geometries of the inserted proteins and the different interactions with membrane’s
components. Lysenin’s oligomerization and subsequent pore formation requires a primary
interaction with sphingomyelin [72,73,85], while SLO binds to the cholesterol molecules
inside the membrane [76,77,87]. Consequently, SLO may sequester cholesterol molecules
around the inserted channel, preventing major lipid disordering, a decrease in fluidity, and
water penetration, thus weakening the optical response to SLO insertion. This effect should
also influence the rotational diffusion of DPH, which is suggested by the slightly reduced
response elicited upon exposure to SLO in comparison to lysenin.

The weaker response presented by Laurdan in the presence of SLO may also be ex-
plained by a higher local concentration of cholesterol upon sequestration. The increased
rigidity of the membrane may reduce the lipid motion and prevent water penetration, a ma-
jor mechanism of Laurdan’s dipolar relaxation. However, higher densities of reconstituted
proteins may further contribute to substantial changes in the membrane’s geometry. At
reduced center-to-center distances, the curved surfaces may coalesce [70,80,81], leading to
larger deformations of the membrane, a global increase in the membrane thickness, greater
lipid disorder, and a larger portion of the membrane being prone to solvent penetration.
The SLO data are in agreement with tube extrusion experiments that show a loss of the elas-
ticity of SLO’s permeabilized membranes [88]. To explain the differences between SLO and
lysenin data, one may consider the lysenin’s preference for insertion into lipid rafts [72,89],
which may lead to much higher local densities of proteins in the target membranes.

An additional observation can be made regarding the initial values of GP and p
parameters. While these values are consistent with prior reports, the initial anisotropy
parameter underwent large variations, while the GP value remained practically the same.
One may assume that this experimental variability may originate in the “aging” of RBCs
preserved in vitro and our inability to perform all the experiments in a short period of time.
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Because only anisotropy exhibited large variations, it suggests that the optical responses
from the two dyes are not highly correlated. This assumption is reasonable since the two
dyes, although sparingly used to assess lipid ordering, respond to different membrane
conditions (i.e., dipolar relaxation as opposed to fluidity).
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Figure 6. Proposed hydrophobic mismatch mechanism for changes in lipid ordering induced by
insertion of pore-forming toxins (PFTs) into target membranes. At low PFT concentrations (top),
the hydrophobic mismatch locally affects the lipid ordering within a small region surrounding the
inserted protein (highlighted ellipses); consequently, the changes in lipid ordering are spatially
limited. At high PFT concentration (bottom), the inter-channel region is also affected, the disordered
volume increases significantly and leads to larger adjustments in dipolar relaxation and rotational
diffusion of environmentally sensitive probes.

In conclusion, our experiments show that Laurdan and DPH may be used to assess
changes in the membrane status induced by hypo-osmotic pressure or the insertion of
transmembrane proteins. For both environmental conditions, the variations in the optical
response resemble transitions between liquid-ordered and liquid-disordered phases. While
such transitions are typically encountered in response to variations in temperature, our
results show that they may occur at constant temperature under the influence of mechanical
or biological stimulation. We related the presumed phase transitions to the disorganization
of the lipids and short-range interactions in the membrane modulated by mechanical
stress elicited by hypoosmotic shocks or hydrophobic mismatches in the target membranes.
Nonetheless, further work is needed to concretely establish that the observed changes
are consequences of true phase transitions in the membranes. Therefore, this work may
lead to a better understanding of how cells respond to physical, chemical, or biological
environmental stimulations.
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45. Pan, J.; Tristram-Nagle, S.; Kučerka, N.; Nagle, J.F. Temperature Dependence of Structure, Bending Rigidity, and Bilayer
Interactions of Dioleoylphosphatidylcholine Bilayers. Biophys. J. 2008, 94, 117–124. [CrossRef]
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