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A B S T R A C T 

The clustering signals of galaxy clusters are powerful tools for self-calibrating the mass–observable relation and are 
complementary to cluster abundance and lensing. In this work, we explore the possibility of combining three correlation 

functions – cluster lensing, the cluster–galaxy cross-correlation function, and the galaxy autocorrelation function – to self- 
calibrate optical cluster selection bias, the boosted clustering and lensing signals in a richness-selected sample mainly caused 

by projection effects. We develop mock catalogues of redMaGiC-like galaxies and redMaPPer-like clusters by applying halo 

occupation distribution models to N -body simulations and using counts-in-cylinders around massive haloes as a richness proxy. 
In addition to the previously known small-scale boost in projected correlation functions, we find that the projection effects also 

significantly boost three-dimensional correlation functions to scales of 100 h 

−1 Mpc. We perform a likelihood analysis assuming
surv e y conditions similar to the Dark Energy Surv e y and show that the selection bias can be self-consistently constrained at the 
10 per cent level. We discuss strategies for applying this approach to real data. We expect that expanding the analysis to smaller 
scales and using deeper lensing data would further impro v e the constraints on cluster selection bias. 

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology: theory. 

1  I N T RO D U C T I O N  

The abundance of galaxy clusters across cosmic time reflects the 
growth rate of cosmic structure and is a sensitive probe of cosmic 
acceleration (see e.g. Frieman, Turner & Huterer 2008 ; Allen, 
Evrard & Mantz 2011 ; Weinberg et al. 2013 ; Huterer et al. 2015 ). The 
halo mass function predicts the halo number density as a function 
of mass and redshift for a given set of cosmological parameters 
(see e.g. Press & Schechter 1974 ; Sheth, Mo & Tormen 2001 ; 
Tinker et al. 2008 ). To connect this theoretical prediction with the 
observed cluster abundance, we need well-calibrated and unbiased 
mass–observable relations. The mass–observable relation can be 
derived from combinations of X-ray luminosity and temperature 
(e.g. Rozo & Rykoff 2014 ; Giles et al. 2022 ), Sun yaev–Zeldo vich 
(SZ) effect (e.g. Saro et al. 2015 ; Bleem et al. 2020 ), galaxy 
velocity dispersion (e.g. Bocquet et al. 2015 ; Rozo et al. 2015 ), and 
weak gravitational lensing (e.g. Melchior et al. 2017 ; Simet et al. 
2017 ; Murata et al. 2018 , 2019 ; Dietrich et al. 2019 ; McClintock 
et al. 2019 ). The accuracy of the mass–observable relation critically 
impacts the constraining power of the cluster sample (e.g. Wu et al. 
2021 ). 

Deriving cosmological parameter constraints by combining ob- 
served cluster abundances and the mass–observable relation has been 

� E-mail: zeng.544@osu.edu (CZ); ansalcedo@arizona.edu (ANS);
hywu@boisestate.edu (HYW); hirata.10@osu.edu (CMH)

the strategy of many previous studies (e.g. Vikhlinin et al. 2009 ; 
Mantz et al. 2010 , 2014 ; Rozo et al. 2010 ; Bocquet et al. 2015 , 2019 ; 
de Haan et al. 2016 ; Planck Collaboration XIII 2016 ; Abbott et al. 
2020 ; Costanzi et al. 2021 ). A complementary approach would be to 
use the clustering of clusters (correlation functions or power spectra) 
to self-calibrate the mass–observable relation (e.g. Lima & Hu 2004 , 
2005 ; Majumdar & Mohr 2004 ; Wu, Rozo & Wechsler 2008 ; Salcedo 
et al. 2020 ). This strategy has been applied to X-ray surv e ys (e.g. 
Collins et al. 2000 ; Schuecker et al. 2003 ; Balaguera-Antol ́ınez et al. 
2011 ) and optical surv e ys (e.g. Croft, Dalton & Efstathiou 1999 ; 
S ́anchez et al. 2005 ; Estrada, Sefusatti & Frieman 2009 ; Mana et al. 
2013 ; Baxter et al. 2016 ; Paech et al. 2017 ; Chiu et al. 2020 ; To 
et al. 2021 ; Park et al. 2023 ). In particular, recent wide-field optical 
surv e ys hav e enabled precision cosmology analyses using cluster 
clustering. F or e xample, To et al. ( 2021 ) combine the autocorrelation 
and cross-correlation between clusters, galaxies, and shear from 

the Dark Energy Surv e y (DES) to deri ve competiti ve cosmological 
constraints. 

Ho we ver, recent studies show that optically selected galaxy 
clusters exhibit selection bias in their lensing and clustering signals 
(Abbott et al. 2020 ; Sunayama et al. 2020 ; Wu et al. 2022 ). In 
particular, at a given mass, a richness-selected sample tends to have 
a higher lensing and clustering signal than expected from its mass. 
This selection bias, if not accounted for, will lead to biased cluster 
mass calibration and cosmological parameters. This selection bias 
has been mostly ignored in previous studies but has become one of 
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Table 1. Fiducial values and descriptions for HOD parameters for the mock 
redMaGiC galaxy catalogues. 

Parameter Fiducial Description 

σ log M 

0.60 Width of central transition 
log M min 12.7 Minimum halo mass to host a central 
log M 0 11.0 Satellite cut-off mass 
log M 1 13.8 Minimum halo mass to host a satellite 
α 1.50 Slope of satellite occupation power law 

f cen 0.60 Central completeness fraction 

the dominant systematic uncertainties for current DES data (Abbott 
et al. 2020 ). 

In this work, we use multiple correlation functions to self- 
calibrate optical cluster selection bias. Salcedo et al. ( 2020 ) have 
pre viously sho wn that combining cluster lensing, cluster–galaxy 
cross-correlations, and galaxy autocorrelations provides an ef fecti ve 
way to break the de generac y between the scatter in the richness–
mass relation and the matter density fluctuation amplitude σ 8 . The 
basic idea is that these three observables can be combined to solve 
for three unknowns: cluster bias b c , galaxy bias b g , and σ 8 . The 
resulting b c directly constrains the scatter. We similarly use these 
observables to simultaneously solve for b g , b c , and σ 8 ; here, b c 
includes the effect of selection bias. We construct mock cluster 
and galaxy samples by applying the halo occupation distribution 
(HOD) framework (e.g. Berlind & Weinberg 2002 ; Cooray & 

Sheth 2002 ; Zheng et al. 2005 ; Zehavi et al. 2011 ) to the ABACUS 

COSMOS N -body simulation suite. We calculate three-dimensional 
(3D) and two-dimensional (2D) correlation functions between clus- 
ters, galaxies, and matter. We show that we can correctly reco v er 
the cluster bias b c and σ 8 by fitting these correlation functions 
simultaneously. We focus on scales greater than 10 h 

−1 Mpc and 
defer small-scale calibration to future w ork. This w ork paves the 
way for an analysis using wide-field surv e y data like DES and 
Vera C. Rubin Observatory’s Le gac y Surv e y of Space and Time 
(LSST). 

This paper is organized as follows. Section 2 describes the 
simulated mock catalogues, and Section 3 describes our mea- 
surements of correlation functions. In Section 4 , we present the 
likelihood analysis for self-calibrating cluster selection bias and 
constraining cosmological parameters. We discuss our results in 
Section 5 and summarize in Section 6 . In this work, we use the 
fiducial flat Planck Lambda cold dark matter cosmology (Planck 
Collaboration XIII 2016 ) adopted by the ABACUS COSMOS simulation 
suite: �M 

= 0.314, h = 0.673, σ 8 = 0.83, n s = 0.9652, and 
�B = 0.049. All distances are in comoving h 

−1 Mpc. We use
the spherical o v erdensity mass definition M 200m 

, defined such that 
the mean density enclosed is 200 times the mean density of the 
Universe. 

2  M O C K  G A L A X Y  A N D  CLUSTER  

C ATA L O G U E S  

We generate mock galaxy catalogues by applying HOD models 
to the ABACUS COSMOS N -body simulations. We apply two sets 
of HOD parameters. The first one simulates redMaGiC galax- 
ies, which have precise photometric redshifts and are optimized 
for calculating cross-correlation and autocorrelation functions (Ta- 
ble 1 ). The second one simulates the members of redMaP- 
Per clusters (Table 2 ). Below, we describe our approach in 
detail. 

Table 2. Similar to Table 1 , but for galaxies that match the colour–magnitude 
selection of the member galaxies of redMaPPer clusters. This HOD is different 
from that for redMaGiC galaxies because they correspond to different 
selection criteria. 

Parameter Fiducial Description 

log M min 12 Mass threshold of haloes 
log M 0 11.7 Same as in Table 1 
log M 1 12.9 Same as in Table 1 
α 1 Same as in Table 1 

2.1 ABACUS COSMOS N -body simulations 

We build our mock galaxy and cluster catalogues using the pub- 
lic ABACUS COSMOS N -body simulation suite 1 (Garrison et al. 
2018 ), which is based on the ABACUS N -body code (Metch- 
nik 2009 ; Garrison et al. 2018 ). We use 20 periodic boxes of 
the fiducial Planck cosmology with varied phases in the ini- 
tial conditions, with a box size 1100 h 

−1 Mpc (internally called 
Ab ac us C os mos 1100 box planck). We focus on the z = 0.3 outputs 
in this work. Each simulation box contains 1440 3 dark matter 
particles, corresponding to a mass resolution of 4 × 10 10 h 

−1 M �, and 
has a spline softening of 63 h 

−1 kpc. Dark matter halo catalogues are 
created by applying the ROCKSTAR halo finder (Behroozi, Wechsler & 

Wu 2013 ) to particle snapshots. For assigning galaxies to haloes, we 
use host haloes defined by ROCKSTAR and the mass definition M 200m 

. 
For the lensing calculations, we use a 0.1 per cent subsample of the 
dark matter particles, and we have tested that this downsampling can 
accurately reco v er the lensing signal well below 0.1 h 

−1 Mpc. 

2.2 Mock redMaGiC sample 

The redMaGiC (red-sequence Matched-filter Galaxy Catalog) galaxy 
samples (Rozo et al. 2016 ) are designed to minimize photometric 
redshift uncertainties and have been used in various galaxy clustering 
and lensing studies (e.g. Abbott et al. 2018 ). We populate simulated 
ABACUS COSMOS haloes with mock DES redMaGiC galaxies using an 
HOD model. As in Salcedo et al. ( 2022 ), we extend this framework to 
include central incompleteness, which is known to affect redMaGiC 

galaxies due to the strict colour selection criteria. We parametrize 
the mean central and satellite occupations of our haloes as 

〈 N cen | M h 〉 = 

f cen 
2 

[ 
1 + erf 

(
log M h −log M min 

σlog M

)] 
, (1) 

〈 N sat | M h 〉 = 

〈 N cen | M h 〉
f cen 

(
M h −M 0 

M 1

)α

, (2) 

where f cen allows for central incompleteness, i.e. the fact that not all 
high-mass haloes have a central satisfying the redMaGiC selection 
criteria. Table 1 lists the fiducial values we assume for each of our 
parameters. 

The number of mock central and satellite galaxies placed into each 
halo is drawn randomly from a binomial and Poisson distribution, 
respectively, with mean occupations as given above. Centrals are 
placed at the centre of their host halo, while satellites are distributed 
according to a Navarro–Frenk–White profile (Navarro, Frenk & 

White 1997 ) parametrized by halo concentration c 200m 

assigned using 
the fits of Correa et al. ( 2015 ). The extent to which satellite galaxies 
trace their host halo’s dark matter profile is an open question, but 
because our analysis only relies on large scales ( r > 10 h 

−1 Mpc) 

1 https:// lgarrison.github.io/ AbacusCosmos/ 

https://lgarrison.github.io/AbacusCosmos/


4272 C. Zeng et al.

MNRAS 523, 4270–4281 (2023) 

our results are unaffected by the assumption that galaxy and halo 
concentrations are the same. 

2.3 Mock redMaPPer sample 

The redMaPPer (red-sequence Matched-filter Probabilistic Perco- 
lation) cluster-finding algorithm (Rykoff et al. 2014 , 2016 ) iden- 
tifies clusters from multiband photometric galaxy catalogues by 
searching for o v erdense re gions of red galaxies. The algorithm 

first trains the red sequence – the tight relation between colour 
and magnitude for galaxies in clusters – as a function of redshift. 
The algorithm then uses this red-sequence model to calculate the 
probability that a galaxy is a member of a potential cluster centre. 
The sum of the membership probabilities is the richness of a 
cluster. 

At the beginning of the iteration, all red galaxies are considered 
potential cluster centres. After each iteration, potential cluster centres 
are ranked by their richness values. A galaxy near multiple cluster 
centres has a higher priority to be counted towards a higher ranked 
centre (a process called ‘percolation’). The algorithm iterates this 
process until the resulting cluster catalogue converges. 

In principle, one could apply the redMaPPer algorithm to a mock 
galaxy catalogue; for example, it has been applied to the Buzzard 
simulations (DeRose et al. 2019 ) and the CosmoDC2 simulation 
(Kov acs et al. 2022 ). Ho we ver, such a calculation is e xpensiv e 
and requires us to simulate accurate galaxy colours. Therefore, in 
this work, we simulate the redMaPPer catalogue using a simplified 
counts-in-cylinders approach introduced by Costanzi et al. ( 2019 ) 
and Sunayama et al. ( 2020 ). 

In the first step of our mock redMaPPer algorithm, we simulate the 
‘parent population’ of redMaPPer member galaxies – galaxies with 
colours consistent with the redMaPPer clusters’ red sequence and 
have the potential to be identified as cluster members. This step is 
similar to the initial colour and magnitude selection of the redMaPPer 
algorithm. These galaxies can contribute to cluster members if they 
are near the line of sight of a massive halo. 

We adopt the HOD parametrization in Sunayama et al. ( 2020 ) 
for this parent population. We assign a central to each halo abo v e 
M min = 10 12 h 

−1 M �. For satellite galaxies, we assume

〈 N sat | M h 〉 = 〈 N cen | M h 〉 
(

M h − M 0 

M 1 

)α

, (3) 

and we list the fiducial values in Table 2 . We emphasize that the HOD 

model for the redMaPPer parent population is different from that 
of the redMaGiC galaxies introduced earlier. Although redMaGiC 

galaxies and redMaPPer member galaxies are both red, they have 
different colour and magnitude selection criteria and thus different 
HODs. 

In the second step, we mimic the redMaPPer cluster-finding 
procedure by counting galaxies within a cylinder along the line of 
sight. We use a cylinder depth of ±30 h 

−1 Mpc (comoving distance 
along the line of sight). In Wu et al. ( 2022 ), we have shown that this 
projection depth well describes the projection effects and selection 
bias of redMaPPer in the Buzzard simulations. 

We assume that each galaxy can only be a member of a single 
cluster; that is, when a galaxy falls in the cylinders of multiple haloes, 
it is counted as a member of the most massive one. This simulates the 
percolation process of redMaPPer. The resulting number of galaxies 
inside a cylinder is our mock richness λ. The aperture of the cylinder 

Figure 1. Richness–mass relation for one of our mock cluster catalogues 
based on HOD and counts-in-cylinder cluster finding. The top and right-hand 
panels show the cumulative number density abo v e a giv en mass and richness, 
respectively. The cluster abundances from our mock catalogues are broadly 
consistent with those from DES Y1 cluster sample ( Y1CL ), shown as the 
dotted curve in the right-hand panel. 

is calculated iteratively based on λ: 

R λ = 

(
λ

100 

)0 . 2

physical h 

−1 Mpc . (4) 

Fig. 1 presents the richness–mass relation of one of our mock 
redMaPPer catalogues (phase 0). The hexagonal binning presents the 
number density of haloes in each richness–mass cell. We show the 
cumulative number density as a function of the mass threshold (top 
panel) and the richness threshold (right-hand panel). In the right- 
hand panel, we add the cumulative cluster number density versus 
richness from the DES Y1 redMaPPer catalogue 2 (Abbott et al. 
2020 , hereafter Y1CL ). The catalogue co v ers 1437 deg 2 , and we 
focus on clusters in the redshift range 0.2 < z < 0.35. We assume 
�M 

= 0.3 when converting cluster counts to comoving density in 
the unit of comoving h 

3 Mpc −3 . As can be seen, our mock cluster 
catalogue has a cluster abundance similar to that of the DES Y1 
redMaPPer catalogue. 

For the correlation function calculations, we define a mass-selected 
halo sample and a richness-selected cluster sample. For the former, 
we focus on haloes with M 200m 

≥ 2 × 10 14 h 

−1 M �. This threshold
corresponds to approximately 7500 haloes per simulation box of 
1100 h 

−1 Mpc and a number density ≈5.8 × 10 −6 h 3 Mpc −3 , which 
corresponds to a richness λ ≈ 30 in Y1CL . We then define a richness- 
selected sample by abundance matching; that is, we sort clusters by 
their richness values and select the top N clusters that match this 
number density. 

2 The DES Y1 redMaPPer catalogue is publicly available at https://des.ncsa.i 
llinois.edu . 
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Figure 2. Top: 3D two-point correlation functions ξ ( r ) for different pairs of objects, calculated by averaging over 20 mock catalogues. Bottom: halo/cluster bias 
and galaxy bias solved by combining various correlation functions. Left: haloes abo v e 2 × 10 14 h −1 M �. The average halo bias b h and galaxy bias b g at scales 
larger than 10 h −1 Mpc are 3.89 and 1.62, respecti vely, sho wn as the horizontal dotted lines. Right: richness-selected clusters with the same number density as 
the left-hand panel. The average cluster bias b c and b g at scales larger than 10 h −1 Mpc are 4.06 and 1.63, respectively. 

3  CLUSTER  C O R R E L AT I O N  F U N C T I O N  

OBSERVABLES  

With the mock cluster and galaxy catalogues, we are ready to 
calculate various two-point correlation functions. Below, we briefly 
introduce the basics of two-point correlation functions and describe 
our measurements. 

3.1 Basics for correlation functions 

The two-point cross-correlation function between two sets of points 
A and B, ξAB ( r ), is defined in terms of the joint probability δP of 
finding objects in two volume elements ( δV A , δV B ) separated by 
some distance r , 

δP = n A n B δV A δV B [ 1 + ξAB ( r) ] , (5) 

where n A and n B are the respective number densities of sets A and 
B (Peebles 1980 ). The correlation function represents the excess in 
spatial clustering of sets A and B relative to two uncorrelated sets 

of points. Since we use periodic simulation boxes, the correlation 
functions can be accurately obtained by the natural estimator: 

ξAB ( r ) = 

AB ( r ) 

RR ( r ) 
− 1 , (6) 

where AB( r ) is the number of A–B pairs with separation r , and RR( r ) 
is the expected number of pairs in random samples with the same 
respective number densities and volume geometry. We calculate the 
RR ( r ) analytically using the number densities of A and B . 

We first calculate the 3D galaxy autocorrelation function ξ gg , 
cluster–galaxy cross-correlation function ξ cg , and cluster–matter 
cross-correlation function ξ cm 

. We use the CORRFUNC software 
package (Sinha & Garrison 2017 ) with 30 logarithmically spaced 
bins r between 0.1 and 100 h 

−1 Mpc. Fig. 2 shows our measurements 
of various ξ ( r ) functions averaged over 20 mock catalogues. 

The projected correlation function is related to the 3D correlation 

art/stad1649_f2.eps
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Figure 3. Analogous to Fig. 2 but for projected correlation functions w p ( r p ). Left: haloes. The average halo bias b h and galaxy bias b g at scales larger than 
10 h −1 Mpc are 3.97 and 1.64, respecti vely, sho wn as the horizontal dotted lines. Right: clusters. The average cluster bias b c and b g at scales larger than 
10 h −1 Mpc are 4.07 and 1.73, respectively. 

function via 

w p , AB ( r p ) = 2 
 	 max

0
ξAB ( r p , π )d π, (7) 

where π is the line-of-sight distance, 	 max is the integration limit 
along the line of sight, and r p is the projected distance perpendicular 
to the line of sight. 

Parallel to ξ , we compute the following projected correlation 
functions: g alaxy–g alaxy w p,gg , cluster–g alaxy w p,cg , and cluster–
matter w p,cm 

. We note that w p,cm 

is related to cluster weak lensing 
signal �� via a linear transformation (see e.g. Park, Rozo & Krause 
2021 ). 

We use CORRFUNC to compute ξ gg ( r p , π ), ξ cg ( r p , π ), and ξ cm 

( r p , 
π ) in 30 logarithmically spaced bins with 0 . 1 < r p < 100 h 

−1 Mpc,
and in linearly spaced π bins with �π = 1 h 

−1 Mpc out to 	 max =
100 h 

−1 Mpc. We then sum o v er the π bins to obtain w p ( r p ). Fig. 3
shows our measurements of various w p ( r p ) functions averaged over 
20 mock catalogues. 

In this work, we use the true 3D positions of galaxies and clusters 
and do not simulate the photometric redshift uncertainties. For DES, 
the redshift uncertainties of redMaPPer clusters are σ z /(1 + z) ≈ 0.01 
(Rykoff et al. 2016 ), and those of redMaGiC galaxies are σ z /(1 + 

z) ≈ 0.017 (Rozo et al. 2016 ). The former is likely to be negligible,
while the latter can be approximated by a Gaussian distribution.
In general, the impact of photometric redshift errors is to suppress
two-point correlation functions consistently across all scales. For a
detailed treatment for photometric redshift uncertainties, we refer
readers to Wang et al. ( 2019 ).

3.2 Self-calibrated selection bias 

We start by examining the self-consistency between the 3D correla- 
tion functions ξ ( r ) between clusters, galaxies, and matter. We then 
use the 2D projected correlation functions w p ( r p ) to self-calibrate 
selection bias at scales greater than 10 h 

−1 Mpc. 
The left-hand panel of Fig. 2 shows the 3D correlation functions 

for haloes abo v e the 2 × 10 14 h 

−1 M � threshold, and the right- 

art/stad1649_f3.eps
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Table 3. Summary of the halo and cluster bias values derived from ξ and 
w p , and the mean halo mass, av eraging o v er 20 realizations of the mock 
catalogues. The cluster sample has a lower mean mass but a higher bias, 
indicating the impact of selection bias. 

Property Haloes Clusters 

3D bias from ξ 3.89 4.06 
2D bias from w p 3.97 4.07 
Mean mass (10 14 h −1 M �) 3.28 2.99 

hand panel shows the analogous calculations for richness-selected 
clusters with the same number density. We measure the correlation 
functions between 0.1 and 100 h 

−1 Mpc and average over the 20 
phases in ABACUS COSMOS . The halo autocorrelation curve starts 
from 2 h 

−1 Mpc because of the halo exclusion effects on small 
scales. 

In the lower panel, we show the halo bias b h and galaxy bias b g 
using various combinations of correlation functions. The green solid 
and dotted curves correspond to galaxy bias b g computed as 

b g = 

(
ξgg 

ξmm 

)1 / 2

, 

b g = 

ξhg

ξhm 

, (8) 

while red, blue, and orange curves correspond to halo bias b h 
computed as 

b h = 

(
ξgg 

ξmm 

)1 / 2

, 

b h = 

ξhm

ξmm 

, 

b h = 

ξhg

ξgg ξmm 

1 / 2 . (9) 

These combinations of correlation functions are largely consistent 
with each other at large scales, demonstrating the validity of the 
linear bias model. The bias calculated using the halo autocorrelation 
function (red) mildly disagrees with the bias calculated using cross- 
correlations below ≈20 h 

−1 Mpc due to halo exclusion. 
Av eraging o v er the solid green curves above 10 h 

−1 Mpc, we 
obtain b g ≈ 1.62. The bias is approximately scale-independent abo v e 
2 h 

−1 Mpc. Similarly, averaging over the blue and orange abo v e 10 
h 

−1 Mpc gives b h ≈ 4. In the right-hand panels, we apply the same
procedure to cluster observables. We add horizontal dotted lines to 
indicate the large-scale bias values. 

We apply the same procedure (mass cut, abundance matching, 
and CORRFUNC pair counts) to calculate the projected correlation 
functions w p ( r p ), which are presented in Fig. 3 . 

From Figs 2 and 3 , we obtain four halo bias and cluster bias values 
(also summarized in Table 3 ): 

(i) b h,3D : 3.89 (from ξ )
(ii) b c,3D : 4.06 (from ξ )
(iii) b h,2D : 3.97 (from w p )
(iv) b c,2D : 4.07 (from w p )

The halo bias values inferred from ξ and w p ( b h,3D and b h,2D ) 
are consistent with each other, indicating that our calculations are 
self-consistent and that the linear bias model can be applied to our 
projected correlation functions. We also include the mean mass of 
our halo and cluster samples averaged over all 20 phases in Table 3 . 

The cluster sample has a lower mean mass due to the scatter in the 
richness–mass relation and the steepness of the mass function. 

Focusing first on the halo bias and cluster bias from ξ ( b h,3D and 
b c,3D ), we observe that b h,3D < b c,3D . Given that the latter has a lower 
mean mass, we would expect a lower bias. However, our results show 

that the latter has a higher bias despite the lower mean mass. This 
indicates that the cluster selection bias is already present in the 3D, 
non-projected correlation functions. Our mock cluster catalogues 
are constructed by counts-in-cylinders along the line of sight, and 
therefore we expect a line-of-sight boost in the correlation function. 
The spherically averaged 3D correlation function does not eliminate 
this boost and still exhibits selection bias. 

Turning our attention to the cluster bias values inferred from ξ

and w p ( b c,3D and b c,2D ), we observe that they are roughly equal. 
Given that w p is a projected quantity, one would expect that the line- 
of-sight boost impacts w p more strongly than ξ . Ho we ver, we find 
that the projection effects boost both similarly. This suggests that the 
boosted signal from projection effects is due to a correlation between 
3D density and richness that propagates into measurements of 2D 

clustering. 
In our previous work (Wu et al. 2022 ), we have used the Buzzard 

simulations to calibrate the impact of optical selection bias on w p,cm 

and ξ cm 

. There, we have shown that both w p,cm 

(equivalent to the 
surface mass density �) and ξ cm 

(equi v alent to the 3D mass density 
ρ) exhibit strong selection bias at ∼1 h 

−1 Mpc but have vanishing 
selection bias at large scales. In contrast, this work expands to a much 
larger scale and includes a much larger cluster sample, and we find a 
non-vanishing boost at large scales and in 3D correlation functions. 
We will discuss this point further in Section 5 . 

3.3 Consistency between correlation functions 

Before fitting for the parameters, we verify that the correlation 
functions derived from mock data are consistent with the theo- 
retical expectation. Fig. 4 compares the w p,mm 

calculated directly 
from simulation particles (solid) with w p,mm 

derived from galaxy 
and cluster catalogues assuming linear bias (dotted and dash–
dotted). We can see that the w p,mm 

functions derived from the 
observables have an excess of �5 per cent at scales larger than
10 h 

−1 Mpc. This excess is much smaller than the uncertainty 
levels of DES (see Fig. 5 ). Therefore, we expect that combin- 
ing these three correlation functions would allow us to con- 
strain cosmological parameters together with the bias parameters 
self-consistently. 

4  L I K E L I H O O D  ANALYSI S  

Having verified the accuracy of the linear bias model for projected 
correlation functions at scales larger than 10 h 

−1 Mpc, we perform 

a likelihood analysis using three w p functions to constrain the 
cosmological parameters ( �M 

and σ 8 ) and bias parameters ( b c and 
b g ) simultaneously. 

4.1 Data vector and covariance matrix 

The observational data vector consists of the projected correlation 
functions w p,cm 

, w p,cg , and w p,gg , av eraged o v er 20 ABACUS COSMOS 

realizations (the right-hand panel in Fig. 3 ): 

x obs = 

{
w p , cm 

( r p ) , w p , cg ( r p ) , w p , gg ( r p ) 

}
. (10) 

We use 10 logarithmic-spaced r p bins between 10 and 100 h 

−1 Mpc.
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Figure 4. Projected matter autocorrelation function w p,mm 

derived from the 
combination of halo/cluster and galaxy correlation functions. The dash–dotted 
curve comes from halo correlation functions, and the dotted curve comes from 

cluster correlation functions. The solid curve is calculated with the dark matter 
particles from the simulations. The bottom panel shows the ratio of the w p,mm 

derived from observables with respect to the solid curve. The excess of w p,mm 

deri ved from observ ables is much smaller than the uncertainty le vel of DES. 

The corresponding model data vector is calculated with 

x model = 

{
b c w p , mm 

( r p ) , b 
2 
g w p , mm 

( r p ) , b c b g w p , mm 

( r p ) , (11) 

where w p,mm 

is calculated using the linear matter power spectrum 

P ( k ) as calculated by CAMB (Lewis, Challinor & Lasenby 2000 ) for 
a given set of cosmological parameters. 

To calculate the covariance matrix of w p,cm 

, we first calculate 
the covariance matrix of �� based on the approach presented in 
Wu et al. ( 2019 ). The covariance is dominated by shape noise 
at small scales and large-scale structure noise at large scales. We 
assume a DES-like surv e y condition: a sk y co v erage of 5000 deg 2 , 
clusters at 0.2 < z lens < 0.35 (corresponding to a comoving volume 
0.37 h 

−3 Gpc 3 ) and abo v e 2 × 10 14 h 

−1 M �, and source galaxies 
at z source = 0.75 with a surface density 10 arcmin −2 . To convert
from the covariance matrix of �� to that of w p,hm 

, we apply 
the linear transformation presented in Park et al. ( 2021 ). We note 
that the b c affects the lensing noise, and we use the bias corre- 
sponding to haloes of 2 × 10 14 h 

−1 M � instead of the abundance- 
matched clusters because the former is closer to our b c from mock 
catalogues. 

Figure 5. Fractional uncertainties for the three correlation functions, assum- 
ing a DES-like surv e y condition: 5000 deg 2 , for clusters at 0.2 < z < 0.35. 
The lensing noise is contributed by shape noise and large-scale structure noise 
and is the dominating uncertainty in our likelihood analysis. 

Figure 6. Correlation matrix for the three correlation functions, assuming 
a DES-like surv e y condition. Bin 0 to 9 (inclusive) refers to w p,cm 

, 10 to 
19 refers to w p,cg , and 20 to 29 refers to w p,gg . We assume that w p,cm 

is 
uncorrelated with w p,cg and w p,gg (corresponding to the white off-diagonal 
block) since the w p,cm 

is dominated by the lensing shape noise and the 
foreground and background structures uncorrelated with our redshift bin. 

To compute covariance matrices for w p,cg , w p,gg , and their 
cross-term, we use the Gaussian analytical formalism found in 
Salcedo et al. ( 2020 ); also see e.g. Marian, Smith & Angulo 
( 2015 ) and Krause & Eifler ( 2017 ). We again assume a DES- 
like surv e y condition and use non-linear power spectra calcu- 
lated from our simulations. We show the fractional error of 
w p,cm 

, w p,cg , and w p,gg in Fig. 5 and the correlation matrix in 
Fig. 6 . Selected diagonal values are shown in the correlation 
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Table 4. Parameters in our likelihood analysis. We show the fiducial values, 
initialization ranges, assumed priors, and best-fitting values. 

Parameter Fiducial value Initialization Prior range 

Best- 
fitting 
value 

�M 

0.314 [0.30, 0.32] [0.20, 0.40] 0.310 
σ 8 0.830 [0.80, 0.85] [0.50, 1.00] 0.840 
b c 4.097 [3.80, 4.20] [3.00, 6.00] 4.106 
b g 1.639 [1.50, 1.80] [1.00, 3.00] 1.591 

matrix. 
With the ingredients abo v e, we can calculate the χ2 for different 

model vectors by 

χ2 = ( x obs − x model ) 
T C 

−1 ( x obs − x model ) , (12) 

where C 

−1 is the inverse of the combined covariance matrix of w p,cm 

,
w p,cg , and w p,gg . This χ2 is used as the ne gativ e two times the log- 
likelihood function in the MCMC calculation. 

4.2 Parameter inference 

We perform a likelihood analysis to constrain �M 

, σ 8 , b c , and b g 
using the parallel af fine-inv ariant ensemble sampler (Goodman & 

Weare 2010 ) implemented in the PYTHON module EMCEE 3 (Foreman- 
Mackey et al. 2013 ). 

We initialize 200 w alk ers uniformly using the initialization range 
listed in Table 4 . The initialization of w alk ers enables the paral- 
lelization of the code, where processors handle multiple w alk ers 
simultaneously. The small range of initialization does not limit the 
exploration range of the sampler because w alk ers quickly branch out 
and reach the rest of the parameter space. We assume flat priors that 
are listed in the ‘Prior range’ column of the table. The final chain has 
184 000 steps in total, and we remo v e the first 18 000 as the burn-in. 
The chain was stopped according to the integrated autocorrelation 
time criteria. At the end of the chain, the ratio between the number 
of samples and the autocorrelation time is 22. 

Fig. 7 shows our posterior distribution of parameters, generated 
using the CORNER software package (F oreman-Macke y 2016 ). The 
contours refer to 68 and 95 per cent boundaries, and the blue vertical 
and horizontal lines refer to fiducial parameter values. All contours 
capture the true values in the 68 per cent level. We compare various 
χ2 values: 

(i) χ2 
fid = 5.583

(ii) χ2 
best-fitting = 3.380

(iii) χ2 
median = 3.421

The degrees of freedom are 26, and thus the χ2 per degree of
freedom is much less than 1. Since the total volume of our simulations 
is approximately 70 times the surv e y volume, we expect the data 
vector to be much less noisy than real data, and thus the χ2 per 
degree of freedom is small. 

Overall, we see that �M 

is constrained at the 4.1 per cent level 
and that σ 8 is constrained at the 12.4 per cent level. The modest 
constraint on σ 8 is due to the strong de generac y with b c and b g , 
both constrained at the 10 per cent level. In comparison, in table 5 
in Salcedo et al. ( 2020 ), the row corresponding to the large-scale (3 

3 We use EMCEE 3.1.1, CORRFUNC 2.4.0, CAMB 1.3.2, and CORNER 2.2.1 in our 
calculations. 

h 

−1 Mpc) ��, w p,cg , and w p,gg leads to a 3.7 per cent constraint on
σ 8 with fixed �M 

. Our constraints on σ 8 are weaker due to the larger 
scale cut and the free �M 

. This comparison highlights the benefit of 
a stronger prior on �M 

and smaller scale cuts. 
We note that the contour of σ 8 and �M 

does not show the usual 
anticorrelation from cluster number counts (e.g. Y1CL ). Fig. 8 in Sal- 
cedo et al. ( 2020 ) shows that the σ 8 and �M 

have the opposite effect 
in determining w p,gg and w p,cg ; that is, their deri v ati ves with respect 
to σ 8 and �M 

have opposite signs. Therefore, the constraints from 

the cluster and galaxy clustering signals are highly complementary 
to the constraints from cluster abundance and lensing. 

In Fig. 8 , we present the best-fitting model, together with the data 
vector and its uncertainties. Since the uncertainties increase with 
scale (also see Fig. 5 ), the best-fitting model is mostly driven by the 
smallest r p bins. At larger scales, the w p,mm 

predicted by the best- 
fitting parameters shows a small excess compared with the w p,mm 

from mock. This is related to the small excess shown in Fig. 4 
and the slightly larger �M 

and σ 8 compared with the true values. 
This excess is much smaller than the current level of experimental 
uncertainties but would require further examination for future data 
sets. 

5  DI SCUSSI ONS  

In this section, we discuss our results in the context of previous 
studies. We will then describe our plans for further developing the 
model and applying our method to real data. 

5.1 Comparison with previous studies 

Using N -body simulations, Osato et al. ( 2018 ) have shown that cluster 
surface density profiles exhibit a strong dependence on the orientation 
with respect to the line of sight (also see e.g. Dietrich et al. 2014 ; 
Zhang et al. 2023 ). The y hav e shown that this orientation dependence 
extends to 100 h 

−1 Mpc and can be explained by the anisotropic 
halo–matter correlation function ξ hm 

( s , μ). For a mass-selected halo 
sample, we expect that averaging over all haloes and all μ would 
reco v er the isotropic ξ hm 

( r ). The fact that we find ξ cm 

higher than 
ξ hm 

indicates that the richness selection prefers clusters with more 
strongly anisotropic ξ hm 

(e.g. due to the filaments along the line of 
sight). Our finding is consistent with their results of non-vanishing 
large-scale selection bias due to projection. 

Using mock cluster catalogues constructed from an HOD model, 
Sunayama et al. ( 2020 ) have demonstrated that the cluster lensing 
and cluster clustering signal are boosted relative to an isotropic halo 
model. Such a boost persists to large scales. Their fig. 13 shows that 
clusters that suffer from strong projection effects exhibit a highly 
anisotropic projected correlation function, indicating the existence 
of line-of-sight filaments. 

In our previous work (Wu et al. 2022 ), we have studied the cluster 
projection effects using the mock redMaPPer catalogues constructed 
from the Buzzard simulations, which are designed for DES mock 
analysis. We have used the full dark matter particles from the 
simulations and have focused on relatively small scales ( < 3 h 

−1 Mpc 
for ξ hm 

and < 30 h 

−1 Mpc for w p,cm 

). Those results have hinted at
a vanishing selection bias for both ξ hm 

and w p,cm 

at large scales. In 
addition, the Buzzard simulations have a lower cluster abundance 
compared with observed clusters. 

In this paper, we focus on a regime complementary to Wu et al. 
( 2022 ). We construct mock catalogues with a simple yet realistic 
HOD that matches DES cluster abundance, use large-volume N - 
body simulations, and focus on large-scale correlation functions. 
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Figure 7. Posterior distribution of cosmological parameters ( �M 

and σ 8 ) and nuisance parameters (cluster bias b c and galaxy bias b g ), derived from fitting 
projected cross-correlation functions w p,cm 

, w p,cg , and w p,gg . The contours correspond to 68 and 95 per cent levels. The blue lines refer to true parameter values. 
All contours capture the true values in the 68 per cent level. The calculated χ2 per degree of freedom is small ( ≈0.2) because the total volume of our simulations 
is approximately 70 times the surv e y volume, and the data vector is much less noisy than real data. 

We have found that the large-scale selection bias is non-vanishing 
and approaches a constant for ξ cm 

and w p,cm 

. In particular, the 
ξ cm 

selection bias is associated with projection effects, which is 
confirmed by calculating ξ cm 

in various orientations. 
The measurements of cluster clustering have recently come to 

fruition due to the availability of large-area surv e y data (e.g. Chiu 
et al. 2020 ; To et al. 2021 ; Park et al. 2023 ). These analyses have 
considered or incorporated cluster selection bias in various ways. 
Chiu et al. ( 2020 ) use the autocorrelation and cross-correlation func- 
tions ( ξ cc , ξ cg , and ξ gg ) between Hyper Suprime-Cam’s CAMIRA 

(Cluster finding algorithm based on Multi-band Identification of 
Red sequence gAlaxies) cluster catalogue and the CMASS (Con- 
stantMASS)) galaxy catalogue to constrain the normalization of the 

richness–mass relation. The y hav e assessed the impact of selection 
bias and concluded that it is unimportant for their data set but 
would be necessary for future studies. To et al. ( 2021 ) combine 
redMaPPer cluster abundance with the autocorrelation and cross- 
correlation functions between clusters, galaxies, and weak lensing 
shear. They focus on the angular correlation function w( θ ) and find 
that the selection bias is at the 15 per cent level at scales greater than 
8 h 

−1 Mpc. Park et al. ( 2023 ) use cluster abundance, cluster lensing, 
and cluster clustering of the SDSS (the Sloan Digital Sky Survey) 
redMaPPer catalogue and apply an empirical model for the projection 
effect. The y hav e found a 15–20 per cent anisotropic boost, similar 
to that in To et al. ( 2021 ). The y hav e found a lower �M 

and higher 
σ 8 compared with the Planck results. 
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Figure 8. The best-fitting model (colour curves) compared with the input 
data vector from our mock catalogues (colour points with error bars). The 
black curve shows the analytical w p,mm 

from the best-fitting parameters, and 
the black points show the w p,mm 

from mocks. 

Our results imply that the projection effects impact not only the 
projected correlation functions but also the 3D correlation function. 
In both cases, we can self-consistently model the large-scale cross- 
correlation functions between clusters, galaxies, and shear and 
use them to solve for the selection bias. We have not considered 
constraints from small-scale correlation functions, which are more 
difficult to model but have enormous constraining power (Salcedo 
et al. 2020 , 2022 ). Modelling the small-scale correlation function 
would require extra nuisance parameters, which may weaken the 
constraining power. We expect that the large-scale self-calibration 
we present in this work would be highly complementary to the small- 
scale bias calibration. 

5.2 Future work 

In this work, we focus on cluster selection bias and simplify the 
assumptions on other systematic uncertainties. In particular, we 
use the 3D positions of galaxies in simulations and ignore galaxy 
velocities and redshift uncertainties. The redshift uncertainties of 
clusters are likely to remain negligible, but the photometric redshift 
uncertainties of galaxies need to be modelled. A full analysis would 
need to take into account the photometric redshift uncertainties (e.g. 
Wang et al. 2019 ) and the redshift-space distortion (e.g. Kaiser 1987 ; 
Hamilton 1998 ; Sunayama 2023 ). 

We assume that the galaxy sample and the cluster sample are 
constructed from galaxies with different colour selection criteria, 
and therefore we need two separate HOD models. The different 
colour selection criteria are due to the fact that the galaxy sample 
and the cluster sample are optimized differently: the galaxy sample is 
optimized for a small redshift uncertainty, while the cluster sample is 
optimized for a small richness–mass scatter (Rykoff et al. 2014 ; Rozo 
et al. 2016 ). Ho we ver, the dif ferent colour selection criteria lead to 
a large number of nuisance parameters, which could be difficult to 
constrain. We plan to explore the possibility of using the same colour 

selection criterion for both samples, which will require only one set 
of HOD parameters. This approach would potentially optimize both 
samples simultaneously and impro v e their constraining power on 
HOD parameters. 

With the upcoming spectroscopic galaxy sample from the Dark 
Energy Spectroscopic Instrument and Nancy G. Roman Space 
Telescope , it is possible to cross-correlate cluster samples with 
spectroscopic galaxies (analogous to Gazta ̃ naga et al. 2012 ). We 
expect that the spectroscopic galaxy sample would have a smaller 
sample size but a better-constrained HOD. 

With the newly available large-area multiwavelength cluster 
samples, it is also possible to cross-correlate optical galaxies with 
clusters selected by X-ray or the SZ effect. For example, Shin et al. 
( 2021 ) measure cluster lensing and galaxy clustering around clusters 
selected by SZ signal from the Atacama Cosmology Telescope. 
Compared with optical cluster samples, X-ray and SZ cluster samples 
focus on more massive haloes and have smaller sample sizes. Another 
approach would be using clusters with various mass proxies and 
performing both self- and cross-calibrations of cluster selection bias 
(see e.g. Costanzi et al. 2021 ). 

In this work, we use the large-scale correlation function to demon- 
strate the feasibility of self-calibrating selection bias. On the other 
hand, small-scale correlation functions have enormous constraining 
power [see Salcedo et al. ( 2020 , 2022 ) for detailed discussion]. The 
modelling of small-scale correlation functions would require detailed 
simulations co v ering a wide range of parameters. These simulations 
are usually computationally e xtensiv e, but the recent development 
of emulators provides an ef fecti ve approach for constructing small- 
scale models (see e.g. Nishimichi et al. 2019 ; Wibking et al. 2020 ). 
We plan to apply an emulator approach to accurately model the 
small-scale correlation functions and their dependence on galaxy–
halo connection models. 

Galaxy clustering measurements suffer from various systematic 
uncertainties (see e.g. Weaverdyck & Huterer 2021 , and references 
therein). F or e xample, P ande y et al. ( 2022 ) analyse DES Y3 red- 
MaGiC galaxy clustering and galaxy–galaxy lensing and find that 
the galaxy bias derived from galaxy clustering is systematically 
higher than the galaxy bias derived from g alaxy–g alaxy lensing. 
They parametrize this discrepancy by a decorrelation parameter X lens 

and find that such a decorrelation can be alleviated by broadening the 
colour selection of the galaxy sample. This result indicates colour- 
dependent systematic uncertainties in the galaxy catalogue, which 
need to be taken into account in cluster–galaxy cross-correlation 
studies. 

Future photometric surv e ys like LSST demand more stringent 
control of systematic uncertainties compared with DES-like surv e ys 
(see e.g. Mandelbaum 2018 , for a re vie w). F or e xample, the blending 
of galaxies would become more significant, impacting the galaxy 
shape and photometric redshift measurements. These systematic 
uncertainties are likely to be resolved by the cross-calibration 
between LSST, Roman, and Euclid, as well as spectroscopic follow- 
up observations from the ground (e.g. Rhodes et al. 2017 ; Eifler et al. 
2021 ). 

6  SUMMARY  

Using mock catalogues of galaxies and galaxy clusters based on 
N -body simulations and HOD models, we assess the efficacy of 
using cluster lensing, cluster–galaxy cross-correlation functions, and 
galaxy autocorrelation functions to self-calibrate the optical cluster 
selection bias. Although cluster selection bias is mostly due to 
projection effects, we have found that the selection bias is present 

art/stad1649_f8.eps


4280 C. Zeng et al.

MNRAS 523, 4270–4281 (2023) 

even in 3D correlation functions and extends to ≈100 h 

−1 Mpc. Using 
the 2D correlation functions, w p,cm 

, w p,cg , and w p,gg , we show that the 
selection bias can be calibrated self-consistently at scales larger than 
10 h 

−1 Mpc (Fig. 3 ). We perform a likelihood analysis using a data 
v ector deriv ed from simulations and analytical covariance matrices 
assuming a DES-like surv e y condition (5000 deg 2 , 10 source galaxies 
per arcmin 2 , and focusing on the lowest redshift bin 0.2 < z < 

0.35 and large scale 10–100 h 

−1 Mpc). We find that �M 

and σ 8

are constrained at the 4.1 and 12.4 per cent le vels, respecti vely, and 
exhibit only mild degeneracy. The cluster bias b c and galaxy bias 
b g are strongly degenerate with each other and are constrained at 10 
per cent. 

The constraints forecasted here are modest due to the conserv ati ve 
scale cuts we use. We have discussed strategies for pushing the mod- 
elling to small scales and applying the method to real data. Optical 
cluster cosmology is at a crossroads because of the newly unco v ered 
systematic biases. The success of future cluster experiments would 
likely require a concerted effort of self- and cross-calibrations of 
cluster selection bias. 
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